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Abstract

Large-scale ‘meta-omic’ projects are greatly advancing knowledge of the human
microbiome and its specific role in governing health and diseassssA myriad of ongoing
studies aim at identifying links between microbial communigeduilibria (dysbiosis) and
human diseases. However, due to the inherent complexity and hettpgd the human
microbiome, cross-sectional, case—control and longitudinal studiesnotaiiave enoug
statistical power to allow causation to be deduced from pattdrr@ssociation between
variables in high-resolution omic datasets. Therefore, to move begiathice on th
empirical method, experiments are critical. For these, robxsérienental models afe
required that allow the systematic manipulation of variablesest the multitude qf
hypotheses, which arise from high-throughput molecular studies. Rangcpromising i
this respect are microfluidics-baskdvitro co-culture systems, which allow high-throughput
first-pass experiments aimed at proving cause-and-effecioredhips prior to testing of
hypotheses in animal models. This review focuses on widely inséglo, in vitro, ex viv
andin silico approaches to study host-microbial community interactions. Such systdras, ei
used in isolation or in a combinatory experimental approach, widwalsystemati
investigations of the impact of microbes on the health and dise#éise lofiman host. All the




currently available models present pros and cons, which are deésarizk discussed.
Moreover, suggestions are made on how to develop future experimenibsrtitat not onl
allow the study of host-microbiota interactions but are also doherta high-throughpyt
experimentation.

Keywords

Causality, diet, human microbiome, hypothesis testingivo model,in vitro model,ex vivo
model,in silico model, dysbiosis, disease, microfluidics, host-microbe interactions

Review

Introduction

A human individual’s microbiota consists of around 100 trillion cells, wheginesent at least
ten times as many cells as human cells constitute the bodge Thierobiota colonize the
surface and deep layers of the skin, are found in saliva and theawi}, and in the
conjunctiva as well as in the gastrointestinal tract (GIT) REcent large-scale metagenomic
sequencing efforts, including those led by the human microbiome p(6j&t®; National
Institutes of Health initiative) [2,3] and the metagenomics of hbean intestinal tract
(MetaHIT) [4,5] consortia, have convincingly corroborated the notion that maisteould be
considered as superorganisms in which the microbial symbionts gdapteal physiological
functions [6,7]. Beneficial effects of the presence of microb@hmunities on human
physiology range from immune cell development and homeostasis [&a0]digestionvia
the fermentation of non-digestible dietary components in the lagstine [11-14] to
balancing the host's metabolism [15-17] and promoting angiogenesis [18J&ghtive
consequences for the host linked to the microbiota include for exahmplecinflammation
and infection (for recent reviews see [20,21]). Furthermore, shiftsi¢robial community
structure and function (dysbiosis) have been linked to numerous human sliseclseling
inflammatory bowel disease, diabetes mellitus, obesity, cardiowasdidease and cancer
(recently reviewed in [22]).

The largest microbial reservoir of the human body is the GIT &g, it is also the most
studied and important from a biomedical perspective [23]. Extensivigsasaof small
subunit (16S) ribosomal RNA gene sequences amplified from fecal esuf2dl28], mainly
reflecting the luminal microbiota of the distal large intesti have more recently been
supplemented by comprehensive data from large-scale metagenguénaeg studies to
establish a catalogue of microbial organismal and functional siiyen the GIT [4,5,7].
Descriptions at a more detailed taxonomic level reveal many édsdif species and even
more strains in a typical fecal sample [29]. Even though substarigalindividual variation
in microbial community composition has been reported [30], common setdcodbial
species include members of the gen&mecalibacterium RuminococcusEubacterium
Dorea BacteroidesAlistipesandBifidobacterium[4,25].

Beyond metagenomics, functional omic approaches, such as metihtanscs,

metaproteomics and metabolomics (jointly referred to here as-omeic’ approaches), are
now also rapidly gaining pace [31-33]. Integrated omic approachegl@rqualitative and
guantitative information on genetic potential, transcripts, proteinsnatdbolites that are
present in microbial communities at specific points in spaceiarel[B4]. Moreover, such



approaches have the potential to highlight the systemic impageticobbial communities
beyond the vicinity of the GIT and thereby highlight the intricatess-feeding between both
the human and microbial (eco-)systems. For example, Wikoff andrkergosshowed using a
metabolomic approach that amino acid metabolites found in mammaloaod blere
particularly affected by the GIT microbiome [35]. In particulardole-3-propionic acid
(derived from tryptophan) could only be detected in conventionally ramseel compared to
germ-free mice [35]. Only after colonization of the germ-freece with Clostridium
sporogenescould this bioactive amino acid derivate be identified in the @asithese
animals [35]. Another example of metabolic cross-feeding evidetgednetabolomics
includes the higher prevalence of tricarboxylic acid cycleCAY metabolites in
conventionally raised miceersusgerm-free mice [36].

It is clear that ‘meta-omics’ approaches result in dataithassential for the definition of
baseline healthy microbiota and the identification of differertbat may be associated with
human disease [37]. Recently, integration of different ‘meta-orajproaches was
successfully used to pinpoint bacterial members of the GIT comynuwiiich are active,
damaged, or responsive to a given compound [38]. However, to causally lidethiéed
differences in the human microbiota with distinct human phenotypesdingl diseases,
experiments are essential (Figure 1A). Therefore, representatvitro (Figure 1B) andn
vivo (Figure 1C) experimental models are required, which allow tsisytic manipulation
of variables and, thus, allow experimental testing and validatiorsoltsederived from meta-
omics.

Figure 1 From association to causality(A) Functional co-occurrence networks, established
by the analysis of human microbial communities from healthy and diseasetsdohoreta-
omic approaches are crucial to define dysbiotic states and to correlate indwichadial
community members with diseasB) (n order to gain detailed information about microbial
compositional changes and their associated impact on disease, high-througitput
experimental systems are essentrakitro co-culture approaches allow the confirmation or
the rejection of hypotheses resulting from meta-omic d@jan(order to causally link
changes in microbial community structure or in their associated biomalgatiarns with
specific diseases, gnotobiotic animal models are indispensaltevigo validation. In all
panels, triangles represent different biomolecules whereas color-doded epresent
different microbial taxa.

In vivo models

Germ-free (GF) animals are reared in sterile isolatarscantrol their exposure to
microorganisms, including viruses, bacteria and eukaryotic parasites [B#s¢f animals are
colonized with specific microorganisms they become gnotobiotic [39].cbleization of
GF animals mimics the birth of an infant from a sterile emnment of the womb towards a
microbe-dominated environment. A considerable advantage of GF anirttads ikey can be
made gnotobiotic with GIT microbial communities of specific donbtsn(an or other animal
species) and therefore allow analysis of the systemic ingdaspecific microorganisms on
the xenograft recipient. Indeed, colonization of GF animals with esimglividual bacterial
species allows one to directly link a putative function or shapirtheofGIT to a particular
bacterial species or group [40,41]. Being able to associate disaaction to a particular
bacterial strain or species is of utmost importance consgiéhni@ possibility that specific
organisms could be used as a treatment for a given disease. Hosvevajor drawback of
monocolonization of GF animals with specifically selected bactsrithe lack of scope of



such investigations to uncover the full effects of single bat&picies on the host because
of lack of full microbial community context in such approaches.rdfoee, the beneficial
impacts of a single bacterial species/strain on the hostdlt@ulalidated by taking into
account the full microbial community context. In particular, shiftsnicrobial community
structure need to be assessed when adding single strains to caesrtoretvoid potentially
triggering a dysbiotic state.

Different GF animal models (zebrafish, mice, rats and even) igse already been
successfully established (Tables 1 and 2). Undoubtedly, such animal rhadelproven to
be essential for studying host-microbe interactions (in particukaune-microbe feedbacks)
and have allowed causal links to be established in a limited number of studies [42,43].



Table 1 Advantages and disadvantages of different animal models commonly used foudying host-microbe interactions

Animal model

Advantages

Disadvantages

Zebrafish

Mouse

 Transparent until adulthood allowing real-time visualization of fluoresceitt&dd microbes
throughout the gut [44].

» Chemical screens and forward genetic tests can be performed to investiggenbts factors or
signaling pathways regulated by microbes [46].

* GIT is homologous to that
mammals but not identical
(reviewed in [45]).

* Diet and living environment
strongly differs from humans

* Relatively short generation time (3 to 4 months) with a progeny size of about 200 €ggs/female Aging differs strongly from

[46].
* 3to 4 cm long as an adult allowing storage of a large number in laboratoitiefpi6].

» Genome fully sequenced (http://www.sanger.ac.uk/Projects/D _rerio/).

» Well characterized mutant strains [46].
* Gastrointestinal tract (GIT) is homologous to that of mammals, containimgragancreas, gall

bladder, and a linearly segmented intestinal tract with absorptive andsgéueattions. The intestin

epithelium forms tight junctions and microvilli. Displays absorptive entees¢cgoblet cells, and
enteroendocrine cells (reviewed in [45]).
* Numerous mouse specific disease models or genetically altered masadable [49].

humans

* Zebrafish and their natural
pathogens exist at a
temperature of 28°C, while
most human-relevant
pathogens are only infectious
at 37°C [47].

rafigebdo not have
distinguishable lymph nodes,
Peyer’s patches, or splenic
germinal centers [48].

* Marked differences in the
immune system [50]




Rat

Pig

» Well characterized model; genome fully sequenced » Marked differences in
(http://'www.sanger.ac.uk/resources/mouse/genomes/) and virtually all moesehgere human microbiota composition

homologues. between mice and humans
have been noted [51].
* Relatively small and thus can be easily maintained. * Diet and living environment

« Reproduction rather quick so that several generations can be observed in a relativpsrisitbof differs from human.

time, generally a mouse can live 2 to 3 years.

» Mice present the same organs as humans but in different proportions

* A lot of rat-specific disease models or genetically altered rats/ailalae * Diet and living environment

(http://rgd.mcw.edu/wg/physiology). differs from human.

» Genome fully sequenced (http://rgd.mcw.edu/).

* Relatively small and thus can be easily maintained.

» Reproduction rather quick so that several generations can be observed in a relativpbristibof

time,

» Generally a rat can live 2 to 3 years.

* Omnivore. * Reproduction rather slow (4
months gestation), generally a
pig can live 10 to 15 years.

* Physiology of digestion, digestate transit times and associated metaboksg®s are very similar « Important in size and thus

between humans and pigs (reviewed in [52]). expensive and complicated to
« Digestive tract shares many anatomical and physiological trdftgtvat of humans. maintain in laboratory
e Immune system similar to humans. conditions.

» Genome fully sequenced (http://www.sanger.ac.uk/resources/downloads/oéeated/pig.html).
» Conserved homology between human and pig genomes.




Table 2 Examples of successfully conducted microbiota transplantation experimés into germ-free (GF) recipient animals

Animal model

Host Microbiota

3GF Statusversus CONV-R® Animals Donor’s Microbiota in the Recipient Animal

Zebrafish

Mouse

PredominantlyProteobacteria82% +

Reduced rates of epithelial proliferation [53]. Mouse to zebrafist: predominantlyFirmicutesand

22%) andrusobacterig11% + 15.2%)compromised ability to use nutrients [53].  Bacteroided51]; when GF zebrafish are colonized

Minor populations areFirmicutes
BacteroidetesVerrucomicrobia
Actinobacteria candidate phyla TM6
and TM7, Planctomycetehljtrospora

with mouse microbiota the transplanted community
resembles its community of origin in terms of the
lineages present, but the relative abundance of the
lineages changes to resemble the normal gut

and candidate division OP10 [53,54]. microbial community composition of the recipient

Mouse and human microbiota are
similar at the phylum level, but

hod. Thus, a selective pressure of the host is imp
to the recipient’s gut habitat [54].
Most widely used GF animal model and Human to mouse. Transplantation of fresh or frozen
theoretically any mouse strain can be derivedattult human fecal microbial communities into GF

different at the genus level (>99% of GF status. mice results in stably and heritably colonized mice
the bacterial phylogenetic types fromNumerous immunological differences in GF with a microbiota that reproduces much of the
wild-type mice belong to two divisionanimals: Peyer’s patches are poorly formed; bacterial diversity of the donor’s microbiota (all

FirmicutesandBacteroidetes[51].

composition of CD4T cells and IgA-producindacterial phyla, 11/12 bacterial classes, and 88%
B cells in the lamina propria is altered [57-63[p8/66) of genus-level taxa) [55,56].

impaired development of follicular B- andcEll

areas of the spleen and peripheral lymph nodes

[60]. Th17 and Treg CD4T cells are less

efficient in GF mice [61-63].

The epithelial cell turnover is decreased by aObese mouse to GF mou: Microbiota

factor 2 in GF animals compared to CONV-Rtransplantation experiments utilizing genetically
mice [64,65]. obeseob/obmice [66],CONV-R mice fed a Western
Postnatal gene expressionfaf4- diet [67], and mice lacking the Toll like receptor 5
galactosyltransferase stays at low levels in Gj68] have demonstrated that colonization with an
mice [69] and in general host gene expressiopbesity-associated gut microbiota results in an

differs between GF and colonized mice [70]. increased gain in adiposity relative to colonization
with a gut microbiota harvested from lean controls.




Rat

Pig

Compromised ability to use nutrients in GF  Pig to moust. when GF mice are colonized with pig
animals compared to CONV-R mice [60].  microbiota the overall bacterial group distributions
Difference in metabolic signatures in GF mic@re similar, but colony and cell morphologies of
compared to CONV-R mice and humans bacteria grown on specific media are different
[72,73]. between pig and gnotobiotic mice [71].

Rat and human microbiota are similaDifference in metabolic signatures [75-81]. Human to rat: when GF rats are colonized with

at the phylum level but different at thegn CONV rats, the colonic mucus layer is twid&uman microbiota the transplanted community

genus level (wild-type rat microbial as thick as in GF rats [84], and the mucin  resembles its community of origin in terms of the

communities harbor at least eight  chemical composition is altered [85,86]. group or genus levels but differences at the dominant
different divisions dominated by two Numerous immunological defects; the species level occur. Thus, a selective pressure of the
major phyla:Firmicutes(74%) and  proportion of intraepithelial CD4+ and CD8+ fost is imposed on the gut habitat [82]. However,
Bacteroidete$23%)) [74]. cells is altered [59,87], as well as the certain metabolic characteristics (high equol-
composition and T cell receptor repertoire [s@roducing and low equol-producing status or
Decreased enterocyte production [88]. cholesterol-to-coprostanol conversion) of human

intestinal floras can be transferred to GF rats [82,83].
The microbiome of pigs is dominatedHost gene expression differs between GF anBluman to pig: pigs seem to induce less host specific
by two major phylaFirmicutes(=81%)colonized pigs [91]. selection of the donor microbiota [92].
andBacteroidete~11%) [89,90].  Epithelial cell proliferation and differentiation CONV-R pigs to GF pigs Genes involved in
genes are downregulated in GF piglets comgbiological processes such as epithelial cell turnover,
to CONV-R pigs [91]. nutrient transport and metabolism, xenobiotic
metabolism, JAK-STAT signaling pathway, and
immune responsiveness become upregulated by the
colonization of GF pigs [91].

%GF, germ-free
PConv-R, conventionally raised



From the most fundamental point of view, the study of GF animatwdstrated that life
without microbes is possible [39]. Nevertheless, GF animals shoundber of important
physiological differences when compared to conventionally raG&MN{/-R) animals (Table
2). For example, GF animals show a slower epithelial renewal [64834ltered immune
system [57-63,94] and marked differences in gene expression of mammastrointestinal
cells [69,70,91]. Interestingly, GF animals require a higher calotake to maintain their
body weight, which might be linked to less efficient whole-body nuistn compared to
CONV-R animals [6,72,73,75-81,84,95]. Moreover, GF animals, at least GFexhibit a
decreased mucus layer in the GIT compared to CONV-R animalsh whght be due to the
fact that different bacterial strains stimulate the seureif colonic mucin [85,86,96]. Thus,
since a number of essential physiological functions significadififier between GF and
CONV-R animal models, data extrapolated from experimentsedaout with GF animal
models must be considered with caution (Tables 1 and 2). However, tpartson between
an ‘all’ (CONV-R animals) or ‘nothing’ (GF animals) situatias still invaluable for the
definition of the host's physiological pathways and functions, whichirapacted and/or
influenced by different microbiota (reviewed in [60]), as wallfar the characterization of
the biogeography of the GIT [97].

Although different animal models have been developed (Table 1), micseaprthe most
widely used and best characterized model organisms. Thereforehose to illustrate the
pros and cons of experimental models by highlighting investigatemigad out in GF mice.
Several research groups have, for example, investigated how monodaonaindividual
bacterial species shape the immune system of the host. Hnstudies, investigators have
demonstrated that colonization of GF mice with particular segdeiilamentous bacteria
(SFBs) is sufficient to induce Th17 cell populations in the lampno@ria of the gut [62,63].
This specific T cell subpopulation, which is important for protectivgghost from bacterial
and fungal infections, is absent or marginally detectable in GE [6R,63]. Interestingly, it
was recently shown that human colonization with SFBs, in contrast& seems to be age-
dependent with the majority of individuals loosing SFBs by the ag8 gkars [98].
Moreover, colonization of GF mice with human gut microbiota supplemerntedS®B only
results in a minor increase in the number of intestinal T cBfis indicates that multiple
microbial species are involved in the development of intestinall$ ;n humans [99] and
that most likely different species and strains are importaritumans compared to mice.
Similarly, colonization of GF mice with indigeno@ostridium spp. [61] orBacteroides
fragilis [100] by means of a protease-resistant capsular polysaccheaidencrease the
frequency or function of colonic CD4 regulatory cells, which in turn play critical roles in
the maintenance of immune homeostasis [8]. However, these findavgsylet to be fully
validated in humans.

A patrticularly interesting animal model for investigatingcrobes-host immune system
feedbacks is the reversible microbe colonized GF mouse modelaisatecently described
by Hapfelmeieret al. [101]. The reason behind the development of this model is that the
continuous presence of commensal intestinal bacteria has maffeeuitdio study mucosal
immune dynamics (for example, kinetics and longevity of IgA’)jcl in turn does not
allow answering fundamental questions such as: Is constant baetgrasure required to
induce antibody production? Is repetitive contact of the same izhcpecies with the host
immune system required to provide specific antibodies? What is thinah bacterial
concentration required to induce antibody production? This model con$istd mice,
colonized with a triple mutarischerichia colistrain, which cannot divide and persisivo
but which can sustain intestinal colonization up to 48 hours. Using thisl nh@dauthors



could decipher the dynamics of IgA immune responses and were a@entmstrate that (i)
induction of high-titer IgA can be uncoupled from permanent intestinal baatellization,
(i) an intrinsic threshold exists between®dhd 18 bacteria in the GIT below which the
intestinal IgA system shows no response, (iii) the intestinal sgétem lacks classical
immune memory characteristics (no observable prime-boost effext)(iv) the intestinal
IgA repertoire represents the most dominant species currently presenintestiee [101].

Using analogous GF approaches, relationships between diet, gut ialiceoblogy and
energy balance have also been investigated (recently reviavj2d,22,102]). For example,
it was demonstrated that transplantation of the cecal micrdbamtaobese mice fed on high-
fat diets into GF recipients increases adiposity, therebyodsirating a causal relationship
between certain microbiota compositions and the host’'s energy-harvegauit g §67].

From GF animals experiments it is now well established thabbial communities impact
deeply on essential physiological functions of the host. However piteéntimes difficult to
causally link an apparent dysbiotic state to disease in humainéy roacause of marked
differences between mouse and man (see also paragraph Hel@vijew cases, however,
causality within the context of dysbiosis-linked diseases ham likemonstrated using
microbial transplantation experiments. For example, a colitis pyyemowvas transferable
from Thx2I'"/RagZ’~ mice, which develop ulcerative colitis in a microbiota-dependent
manner, to wild-type mice by adoptive transfer of the implatabgcrobiota [42]. Similarly,
there is also evidence that an altered microbiota associatedawsblitogenic phenotype
isolated from NLRP6 inflammasome-deficient mice alone is d@afit to drive intestinal
inflammation [43].

While all GF as well as disease-specific CONV-R animaldels present a number of
advantages for studying host-microbe interactions, they often doetdtrgliable preclinical
results that readily translate into effective human treasnemtvo important factors
contribute to this failure: i) on the microbial side, bacter@cses that colonize the GIT
appear to be host-dependent and, thus, a host-specific microbooiigced for a given host
[99]; and ii) on the host side, the immune responses in nhon-human mamsadices is
oftentimes distinct from those seen in human [50,103]. A partial solttidhis problem
could be the use of animals that show a humanized immune system.ahimesl models can
be generated by grafting immunodeficient animals with suspensibnisematopoietic
progenitor cells and/or human peripheral blood cells, and potentiallyatlesupplemental
human tissues driving the generation of human immune cells [104-107]. Howeosler to
causally link dysbiosis with human diseases, these animal moaslsmée gnotobiotically
transplanted further with ‘humanized’ microbiota. The latter posestiaaiai potential
pitfalls, as many microbial species have evolved to fill hostispaiches [55,82,97] and the
topology of the mouse GIT is, for example, distinct from that of manaendering the
mimicking of human-specific niches challenging if not impossiGlensequently, xenograft
microbiota may not representatively colonize the GIT of a humanized animal.model

Another conceivable approach to study the interplay between host erabes is the use of
CONV-R animal models treated with antibiotics, leading to gpteary knock-out effect of
selected bacterial groups, followed by a repopulation of host G waman feces-derived
microbial communities. The assumption behind this idea is that thesala do not present
significant alterations in essential physiological procedsssribed for GF animals and that
the antibiotic intake does significantly enhance the reshaping effect matisplanted human
microbiota. Surprisingly, the combination of antibiotic and transplamiateatments does



not increase the establishment of the donor phylotypes but does etevidr the
establishment of the exogenous communities by a yet unknown mechanism [74].

In summary, animal models, especially humanized GF models, carirdetied tools for
human microbiome research. However, in addition to some of the pidfatiassed above,
animal models are labor-intensive (there is an immense [ajisthallenge associated with
keeping the animals GF), relatively expensive, tedious, and linmtadyh-throughput. The
establishment of animal models that are widely applicablestieathodels of human diseases
and that could be used to study the specific interplay betweeouta and their host
presents a formidable challenge. Therefaneyitro human-microbial co-culture strategies
might offer alternative and complementary strategies, simeg lhave a unique potential to
facilitate much needed high-throughput validation of hypotheses thaeraerging from
state-of-the art molecular data and that link certain micramaimunity compositions and
functions to human disease.

In vitro models

In vitro models mimic microbial processes along the GIT by emplowiiger distinct
serially connected bioreactors/microchannels or a single bioréaatrochannel mimicking
specific part(s) of the human GIT (Table 3). Such models repres&ning alternatives over
in vivo models because they are typically cheaper and offer greapioved throughput,
flexibility and scalability for hypothesis testing. Moreovelpwnstream high-resolution
molecular analyses are more readily carried ouinovitro generated samples compared to
those derived fromn vivo experiments. Traditionah vitro systems are however usually
based around the partitioned cultivation of specific microbiota in dedichioreactors
connected in series [108]. They typically lack human cells be¢hagehave been developed
to model the individual steps catalyzed by the microbiota along the human GIT.

Table 31n vitro models used to study host-microbes interactions

Feature Transwell SHIME M- TIM1 TIM2 CCS Gut-on-
Inserts [109] SHIME [111] [112] [113] a-Chip
[110] [44]
Human cell culture® +P - - - _ b 4P
GIT microbiota culture - + + - + - -
Anaerobic conditions for - + + + + + -
microbes
Mucin + - + - - . .
pH measurement - + + + + + -
Throughput + - - - - - +

#The models involving the possibility to incorporate human cells camltjected to Trans-
epithelial Electric Resistance (TEER) measurements (exceptatiel GCS).

b+, co-culture for 3 to 6 h; ++, co-culture for >1 week.

CCS, continuous culture system; GIT, gastrointestinal tractHiME&, Mucus-Simulator of
the Human Intestinal Microbial Ecosystem; SHIME, Simulator d Human Intestinal
Microbial Ecosystem; TIM1, model simulating the stomach and dntabtine; TIM2, model
simulating the large intestine.

A pioneering example of such am vitro system is the Simulator of the Human Intestinal
Microbial Ecosystem (SHIME) [109]. Five reactors, harboring oreg of luminal microbes,



are sequentially connected to mimic acid- and pepsin-mediatestidige in the stomach,
metabolism of monosaccharides in the small intestine as wetheaslistinct microbial
fermentative processes that occur in the ascending, transvedselescending colons,
respectively. Recently, a mucus layer has been integrated 8HWE model (M-SHIME)
that allows improved simulation of the mucosal and luminal microbmotiael GIT [110]. The
SHIME and M-SHIME models allow the study of gut microbiota usiithee specific
isolates or mixed fecal inocula from healthy and diseasedefample, Crohn’s disease)
donors. Altogether, these models can be used to examine roles dfftiheicBobiota in the
digestion of specific human food ingredients (for example, ferrtientaf arabinogalactan,
xylan and pectin [114]), to understand the pharmacokinetics of drugsegample,
sulphasalazine [114]) and/or to model the gut microbiota linked toogasttinal disorders
[115].

Another well-established model is thevitro Gl tract system (TIM1 and TIM2) [111,112].
These automated models simulate the actions that occur alongTthétt® peristaltic mixing
as well as the absorption of water and fermentation products [111TH&]TIM1 model
simulates the stomach and the small intestine [111], wherea? miMics the large intestine
[112]. The unique characteristics of these models are their uniguadbility to reflect a
drug’s bioavailability in the intestine. Other unique charactesisticlude the modeling of
the luminal conditions in the GIT of humans and monogastric animabking into account
the secretion of gastric and small bowel fluids, Gl transies and discharge of microbially
metabolized compounds. Therefore, similar to the SHIME model, thexkelsnallow
investigations of the metabolic capability of the effectiverobmta in the GIT. However,
the TIM models clearly lack the possibility of partitioning theminal and mucosal
microbiota in artificial niches that reflect the GIT and, thesnnot be regarded as fully
representative models.

A third example of am vitro model is a three-stage continuous culture system (CCS), which
was originally designed to study the effect of mucin on microidiate reduction and
methanogenesis [113]. The highlight of this model is that it reprodsoese of the
nutritional features, pH characteristics and fluid retentioresiraf the large intestine with
each vessel having a different operating volume and pH. Thréeredif vessels are
interconnected and mimic the microbial activities in the cecuamsterse colon and
descending colon by taking into account the following characteristicéhe cecum is a
nutrient-rich environment and has microbial growth at low pH, and 2) bes two subparts
of the colon are rather nutrient limited with slow microbialvgio at neutral pH. Recently,
co-cultures of bacterial communities isolated out of a CCS andrhintestinal Caco-2 cells
were sustained for approximately 3 h in order to study bactatesion to epithelial cells
and to measure bacteria-triggered cytokine release [116,117].

A conceptual colonic fermentation model that is analogous to CCSe #imilar sized
reactors are connected in a continuous culture system mimickipgaxienal, transverse and
descending colons each at a distinct pH - has recently beerstdygg Paynet al. [118].
Human fecal microbiota, either planktonic or immobilized on polysam#deads, can be
inoculated in the proximal reactor and, thus, the metabolic trandfomsaof different
nutrients can be investigated. The results can be compared wittetabolism of the same
nutrients in a batch-type reactor mimicking only one compartment ansl, highlight the
relative importance of the different compartments for the digestion of speatfients.



Although the above-mentioneith vitro models have been successfully used to address
specific research questions, they present a number of limitatibins) hinder their routine
use for the study of versatile questions related to the humam@ibbiome. The major
drawback of all the models is the lack of long term co-culturémigfan and microbial cells,
and the subsequent inability to investigate questions related to lwebmiinteractions
[102,109]. Furthermore, all of these models are limited in the scdmgotheses that can be
tested. The former shortcoming might be taken care of by usengsWwell inserts, in which
microbial and human cell cultures can be separated by semgldeneembranes. This
arrangement should theoretically allow continuous co-cultures ofrnggils with microbial
consortia from the respective bioreactor compartments. Howeverrahswell cell cultures
can only be employed as end-point assays [119-122] and bear ampldoriskoss-
contamination of cultures in human-microbe co-culture experiments. Mysirtantly,
however, the representative inclusion of strictly anaerobic mm@bn Transwell insert
setups is not possible.

In contrast, adaptation of microfluidics-based cell culture appreaphevide important
characteristics for development of improved QGiT vitro models. These characteristics
include laminar flow profiles, small volumes, continuous diffusion-basedugen,
controlled chemical gradients and the ability to probe cells inasjgainfinements mimicking
their extracellular matrixn vivo [123-125]. Most of these characteristics are unachievable in
macro-scale bioreactor setups but they are essential for thty &bidirectly co-culture
human and microbial cells under physiologically relevant conditions [Th&].ability to co-
culture human and microbial cells is particularly important to wstded the intricate
interplay between the human and microbial components that mightves diry direct cell-
cell interactions and/or extracellular signaling. Naturalhgse interactions have a marked
impact on all processes related to the human microbiome and, thus, lsbautdrporated in
any representativim vitro model. Consequently, pronounced interest currently exists for the
development of microfluidics-based vitro models of the human GIT [127], in particular
models that allow human-microbial co-cultures. The enormous potensalkcbfapproaches
has recently been demonstrated by a study focusing on host-pathtegantions [128], and
by the successful co-cultivation of symbiotic microbial commasitin aqueous micro-
droplets that were probed for synergistic interactions [129]. Ceelglin vitro (micro-
)fluidics-based systems have so far been mainly used foyisguchedically relevant biofilm
formation using microbial isolate cultures [130-132]. Although sevessdarch groups have
co-cultured different human cell types [133,134] only a limited nundbestudies have
reported the successful co-culture of human cells with microlsiallates [135-138].
Microfluidic cell co-culture devices typically incorporate semipeable membranes or
porous materials that allow cell feed to diffuse through the pdiendzarrier to the cells,
thereby protecting them from shear stress while simultaneaalkiywing exchange of
nutrients and waste products. Efforts have recently been madéuceanultiple cell types
across such permeable barriers thereby allowing the mimiakingssue niches [139].
Incorporation of protective yet permeable barriers is espeq@altinent when co-culturing
human cells and microbiota due to the large differences in tlsgiecgve growth rates and
possible bacterial virulence to their human counterparts [128].

Microfluidics-basedin vitro human-microbial co-culture models may offer interesting
characteristics for conducting rapid first-pass experimaimted at proving cause-and-effect
relationships (Figure 1B). Moving beyond the traditional lab-scaleedabors, microfluidic
models should allow the co-culture of human and microbial cells fon@steperiods of time
and allow targeted perturbation experiments to be carried out.



Most recently, a promising microfluidics-based Gut-on-a-Chip mioaelbeen presented that
indeed allows the direct co-culture of epithelial cells with pbbistrains [44]. The model
includes many dynamic physical and functional features ofhthrman GIT essential for
transport, absorption, and toxicity studies. Therefore, it can berded) as an essential
research tool for drug testing [44]. However, the model still lacksortant features, most
notably a simulated mucosal barrier and the provision for culturtnigt sanaerobic
microorganisms that dominate the human gastrointestinal microbiota.

Nonetheless the Gut-on-a-Chip model has laid the foundation for tleéogment of novel
microfluidics-based devices that allow sustained cultivation of humdnepresentative gut
microbial communities (also encompassing anaerobes) to studipkbebetween microbial
dysbiosis and disease pathogenesis in a truly systematic nedenatative manner (Figure
2).

Figure 2 Conceptualization of an idealizedn vitro gastrointestinal experimental model.

An idealizedin vitro co-culture model may include three distinct culture chambers, namely
microbial, human epithelial and human immune cell culture chambers, each separated b
semipermeable membranes allowing molecular cross-talk between #reriifontingents
while preventing microbes from rapidly overtaking human cells due to pronounced
differences in their respective growth rates. Furthermore, an idealiggdigeestinaln vitro
model should reflect the biogeographical distribution of the gastrointestinahiata. Such

a model should allow the culture of representative microbial communities for thieluadi
sections of the gastrointestinal tract (GIT) including stomach, smadtimée ascending

colon, transverse colon and descending colon. All the individual compartments should be
connected in series and allow modulation of their respective environmental factodsng

pH, fluid retention times, growth medium and other physiological factors such as muci
green in the microbial chamber) compositions, which actively interact ardtratmicrobial
communities. To represent the GIT in the most realistic way, the microbiattgchamber
needs to be depleted of oxygen, which could be achieved by flushing this chamber with
anaerobic microbial medium, whereas the human cell chambers need to be flushed with
oxygenated medium. Finally, an idealized @1Tvitro model suitable for microbiome
research must support high-throughput omic analyses and, thus, needs to allow probing of the
individual contingents to perform dedicated analyses on the different cell cari$inge
following a particular experimental regime and to relate particuéssorements back to the
cell populations of origin.

Ex vivo models

Besidedn vivo andin vitro experimental modelgx vivomodels represent interesting tools to
study host-microbiota interactions. Such systems compromise expldtoires (tissue
cultures) extracted from the colon or rectum [140]. The advantageglfmodels, is that the
tissue cytoarchitecture, including epithelial, lymphocyte subtgpesfollicular-dendritic cell
networks, is preserved and, thus, such systems can mimic more ¢hesiel vivo situation
when compared to traditionah vitro systems including isolated human cell types. For
example, Tsilingiriet al. recently described a human mucosa explant culture model in which
an apical to basolateral polarity is preserved during stimulatitn lvacteria [141]. Using
this model, the authors demonstrated that probiotics are not ah&agéicial for the health
of the host but that some postbiotics (metabolic products of probiotiosprotect healthy
tissue against the inflammatory properties of invaSaknonellg141].



Major drawbacks o&x vivomodels are that during surgical resection, the mucus layer is a
least partially removed or damaged. Additionally, the tissuegemerally treated with a
cocktail of antibiotics to avoid microbial contamination and thereforanmoediate co-
culture of microbial communities and human Gl cells is achievable.

Furthermore, explants do not offer the required modularity that woldd analyses to be
related to specific cell populations but rather only allows liokshole communities of cells,
thereby convoluting any relevant molecular signals.

In silico models

To investigate microbe-microbe and host-microbe metabolic inknactin silico
reconstructions of genome-scale metabolic networks combined withtrasoiibased
modeling also exhibit promising attributes. The conversion of a metaiealbnstruction (for
example, as derived from the human genome sequences, microlaitd ggahome sequences
and/or metagenomic sequences) into a condition-specific model (forpkxaGIT model)
requires the transformation of a (hopefully) comprehensive biocheneigetion list into a
computable, mathematical matrix format [142]. It also requihes addition of physico-
chemical constraints (for example, mass conservation) andvsysiendaries [142]. Thus,
(meta-)genome-scale, manually curated metabolic reconstructmnsecve as knowledge-
bases to summarize existing knowledge about cellular pathways in taggeisons in a well-
structured, mathematical manner [142]. However, so far, the knowledgefdwamicrobe-
microbe as well as host-microbe interactions is very spamsehulated and extensive
dedicated efforts are required in coming years to establishasdatabase. Consequently, at
present, cross-feeding and/or interaction experiments cannot yettieely carried outn
silico.

Even though in silico constructed models represent powerful tools for modeling and
predicting phenotypic characteristics of single organisms living tommunity within a
particular host [143], they can only be constructed based on exsstpgyimental data.
Consequentlyin vitro, ex vivoandin vivo experimental data, which allow the unraveling of
links between gut microbiota and host metabolism, are crucial for traotisg
comprehensive host-microbe interaction models as well as for thighrinarking of such
models. Once constructed, models can predict what role individuaorgemisms have and
how their actions influence others within their native community [144ie resulting
hypotheses may drive experiments, which will in turn inform and imptieeenodels. Thus,

a combined computational-experimental approach for hypothesisagjeneand testing has
the promise to accelerate new discoveries in the realm oblba@enicrobe and microbe-host
metabolic interactions. Disadvantagesrosilico models are that the reconstruction process
of such genome-scale high quality metabolic networks requires memnputational and
manual analysis efforts and that any new findings need to perimentally validated.
Furthermore, the resulting findings, especially in the caga silico animal-based models
[145], may not always efficiently translate to humans [143,145]. Desdpé limitations of
current in silico reconstructed host-microbe interaction models, such approaches are of
utmost importance because they theoretically allow a detailedcoial resolution of the
complex relationships within microbial communities and with their .h®berefore, such
system approaches could dramatically improve our understandingdivitiual bacterial taxa
within communities and the modes of interactions in which they endsaye links between

a host and its microbiota could thus be predicted and perturbation expuisrifice example,
diet variation for the host or changed medium composition for the micapbaoid their



outcome could easily be simulated. An example of a success&ubfusuch ann silico
reconstructed model was recently published by Heinken and co-woikéis [n this study,
the authors reconstructed and analyzed the first integrated stosthomodel of murine
andBacteroides thetaiotaomicrometabolism and could demonstraiesilico that even at a
low growth rate ofBacteroides thetaiotaomicrothe mouse profited significantly from the
presence of this microorganism in the gut lumen [145].

In summary, host-microb& silico models, when combined with experimental data, will
greatly strengthen our knowledge on how microbes influence theirdmastice versa.
Consequentlyin silico models in combination withn vitro, ex vivoandin vivo experimental
data will become an invaluable tool to predict metabolic intenastbetween gut microbes
and their host in both diseased and healthy states.

Conceptualization of experimental models

A conceptualized ideal experimental model (Figure 2) for the stfdiiost-microbiota
interactions in the GIT and one that would allow testing the adyof hypotheses linking
dysbiosis to disease should allow paired wet- and dry-lab expggaraad mimic as closely
as possible the GIT. Such a model should in particular include: ixm@hT cells; ii) human
microbiota sustainably growing under anaerobic/microaerophilic conditiohss mucus
layer simulating the physical separation of human and microdlaia#ingents; and iv) the
physico-chemical conditions encountered in the GIT including priyngHil, fluid retention
times and dissolved Lconcentrations. Moreover, such a model should reflect simple and
controlled experimental settings to allow reproducibility and tlisiscrepancies in the
obtained results due to inter-individual variations occurring wivo animal models. Finally,
in the case of a wet-lab model, it should allow massively pasgiteening and validation of
results revealed through meta-omic investigations of human subjects.

An in vitro living cell-based and microfluidics-based model appears best suigathieve the
highlighted requirements since the gut microenvironment can be sehulat flowing
specialized media at defined rates through the respective miotbergaseeded with human
intestinal cells and microbial communities, respectively. Fumbes, to simulate the
physical separation of both human and microbial cells encouniered/o [146], both
contingents should be separated either by mucin and/or semipermeabhranes while still
guaranteeing molecular cross-talk (metabolites, proteins, nucleids, a cytokines,
chemokinesgtceterd between both compartments. The feasibility of such a micratksdi
basedin vitro model has already been established by the successful co-afltarsingle
microbial species for over one week on the luminal surface of cultured epitedisavithout
compromising epithelial cell viability [44]. However, a future ¢tdade that needs to be
overcome in order to be able to reproducibly analyze the intel@tween microbes and
their host in such an experimental model is the requirement fntaming aerobic
conditions in the human microfluidic chamber while at the same guaganteeing strictly
anaerobic conditions in the microbial chamber, which allow the cultuoblmfate anaerobic
human gut microbes. Finally, an idealized vitro model should include separate
compartments mimicking the stomach, small intestine, the asgpdion, the transverse
colon and the descending colon, each reflecting the biogeographicéltgtdcharacteristics
of the GIT.

In summary the conceptualizéd vitro experimental model could be an elegant supplement
to animal in vivo and in silico models since it would exhibit simple and controlled



experimental settings allowing reproducibility and limit degancies resulting from inter-
individual variations that occur im vivo animal models. Moreover, by the introduction of
human cells the interplay between human and microbial cells should be traceabldime:.
This point seems to be of particular importance since a hostispa@fobiota appears to be
critical for a given healthy host [99]. Finally, the describeohceptualizedin vitro
experimental approach would be well suited for high-throughput expesgrnmeocbntrast tan
vivo animal models. However, due to thairvitro nature experiments carried out in such a
conceptualized experimental model will for the most part €duirein vivo experimental
validation. Combined experimental approaches in animalramiiro models could thus lead
to the establishment of causal relationships between microbial goityncompositions and
human diseases.

Conclusions

Understanding of the human gastrointestinal microbiota and its putalizén governing
health and disease states has rapidly expanded in recent yeaevelothe myriads of
results, generated by linking ‘meta-omic’ data to diseasd, reguire experimental
validation. To reach this goal, we propose a biphasic experimenidati@h approach: i)
rapid first-pass experiments im vitro devices, which allow massively parallel screening and
immediate cause-and-effect read-outs (Figure 1B) anth ijivo experimental validation
(Figure 1C).

Microfluidics-basedin vitro devices appear particularly well suited for high-throughput
experiments due to their small footprint, their ability to alliw co-culture of both human
and microbial cells for extended periods of time, and their alitityacilitate dynamic
perturbation experiments. Howevar,vitro experiments will for the most part still need to be
followed up within vivo experiments. Such experimental validation may be achievable using
GF animal models. However, owing to specific differences idititeg environments of GF
and wild-type (CONV-R) animals, the physiologies of both areiltelbe distinct, which
leads to the somewhat artificial nature of GF animals. Thexgiio order to study the impact
of specific microbial strains on the host, gnotobiotic animal modatalld be directly
compared to CONV-R animals. In addition, GF animals should idealtpimpared to ex-GF
animals colonized by exposing them to the environmental conditionsichvCONV-R
animals were raised.

We are living through exciting times in human microbiome reteaifith the advent of
high-throughput molecular tools, we are for the first time ablepriobe the extensive
organismal and functional diversity of the human host and identify linkseba certain
microbial community constellations and disease. Beyond this catatpgeifort,
experimental validation will become a major component of future studigertantly, all the
necessary technology for devising representative high-throughpiito models is available.
In the future, such models will become invaluable for large-scadei8ing efforts prior to
vivo experimental and clinical validation.
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