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Abstract 

Large-scale ‘meta-omic’ projects are greatly advancing our knowledge of the human 
microbiome and its specific role in governing health and disease states. A myriad of ongoing 
studies aim at identifying links between microbial community disequilibria (dysbiosis) and 
human diseases. However, due to the inherent complexity and heterogeneity of the human 
microbiome, cross-sectional, case–control and longitudinal studies may not have enough 
statistical power to allow causation to be deduced from patterns of association between 
variables in high-resolution omic datasets. Therefore, to move beyond reliance on the 
empirical method, experiments are critical. For these, robust experimental models are 
required that allow the systematic manipulation of variables to test the multitude of 
hypotheses, which arise from high-throughput molecular studies. Particularly promising in 
this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput 
first-pass experiments aimed at proving cause-and-effect relationships prior to testing of 
hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo 
and in silico approaches to study host-microbial community interactions. Such systems, either 
used in isolation or in a combinatory experimental approach, will allow systematic 
investigations of the impact of microbes on the health and disease of the human host. All the 



currently available models present pros and cons, which are described and discussed. 
Moreover, suggestions are made on how to develop future experimental models that not only 
allow the study of host-microbiota interactions but are also amenable to high-throughput 
experimentation. 
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Introduction 

A human individual’s microbiota consists of around 100 trillion cells, which represent at least 
ten times as many cells as human cells constitute the body. These microbiota colonize the 
surface and deep layers of the skin, are found in saliva and the oral cavity, and in the 
conjunctiva as well as in the gastrointestinal tract (GIT) [1]. Recent large-scale metagenomic 
sequencing efforts, including those led by the human microbiome project (HMP; National 
Institutes of Health initiative) [2,3] and the metagenomics of the human intestinal tract 
(MetaHIT) [4,5] consortia, have convincingly corroborated the notion that humans should be 
considered as superorganisms in which the microbial symbionts play essential physiological 
functions [6,7]. Beneficial effects of the presence of microbial communities on human 
physiology range from immune cell development and homeostasis [8-10], food digestion via 
the fermentation of non-digestible dietary components in the large intestine [11-14] to 
balancing the host’s metabolism [15-17] and promoting angiogenesis [18,19]. Negative 
consequences for the host linked to the microbiota include for example chronic inflammation 
and infection (for recent reviews see [20,21]). Furthermore, shifts in microbial community 
structure and function (dysbiosis) have been linked to numerous human diseases, including 
inflammatory bowel disease, diabetes mellitus, obesity, cardiovascular disease and cancer 
(recently reviewed in [22]). 

The largest microbial reservoir of the human body is the GIT and, thus, it is also the most 
studied and important from a biomedical perspective [23]. Extensive analyses of small 
subunit (16S) ribosomal RNA gene sequences amplified from fecal samples [24-28], mainly 
reflecting the luminal microbiota of the distal large intestine, have more recently been 
supplemented by comprehensive data from large-scale metagenomic sequencing studies to 
establish a catalogue of microbial organismal and functional diversity in the GIT [4,5,7]. 
Descriptions at a more detailed taxonomic level reveal many hundreds of species and even 
more strains in a typical fecal sample [29]. Even though substantial inter-individual variation 
in microbial community composition has been reported [30], common sets of microbial 
species include members of the genera Faecalibacterium, Ruminococcus, Eubacterium, 
Dorea, Bacteroides, Alistipes and Bifidobacterium [4,25]. 

Beyond metagenomics, functional omic approaches, such as metatranscriptomics, 
metaproteomics and metabolomics (jointly referred to here as ‘meta-omic’ approaches), are 
now also rapidly gaining pace [31-33]. Integrated omic approaches provide qualitative and 
quantitative information on genetic potential, transcripts, proteins and metabolites that are 
present in microbial communities at specific points in space and time [34]. Moreover, such 



approaches have the potential to highlight the systemic impact of microbial communities 
beyond the vicinity of the GIT and thereby highlight the intricate cross-feeding between both 
the human and microbial (eco-)systems. For example, Wikoff and coworkers showed using a 
metabolomic approach that amino acid metabolites found in mammalian blood were 
particularly affected by the GIT microbiome [35]. In particular, indole-3-propionic acid 
(derived from tryptophan) could only be detected in conventionally raised mice compared to 
germ-free mice [35]. Only after colonization of the germ-free mice with Clostridium 
sporogenes could this bioactive amino acid derivate be identified in the plasma of these 
animals [35]. Another example of metabolic cross-feeding evidenced by metabolomics 
includes the higher prevalence of tricarboxylic acid cycle (TCA) metabolites in 
conventionally raised mice versus germ-free mice [36]. 

It is clear that ‘meta-omics’ approaches result in data that is essential for the definition of 
baseline healthy microbiota and the identification of differences that may be associated with 
human disease [37]. Recently, integration of different ‘meta-omic’ approaches was 
successfully used to pinpoint bacterial members of the GIT community, which are active, 
damaged, or responsive to a given compound [38]. However, to causally link the identified 
differences in the human microbiota with distinct human phenotypes including diseases, 
experiments are essential (Figure 1A). Therefore, representative in vitro (Figure 1B) and in 
vivo (Figure 1C) experimental models are required, which allow the systematic manipulation 
of variables and, thus, allow experimental testing and validation of results derived from meta-
omics. 

Figure 1 From association to causality. (A) Functional co-occurrence networks, established 
by the analysis of human microbial communities from healthy and diseased cohorts by meta-
omic approaches are crucial to define dysbiotic states and to correlate individual microbial 
community members with disease. (B) In order to gain detailed information about microbial 
compositional changes and their associated impact on disease, high-throughput in vitro 
experimental systems are essential. In vitro co-culture approaches allow the confirmation or 
the rejection of hypotheses resulting from meta-omic data. (C) In order to causally link 
changes in microbial community structure or in their associated biomolecular patterns with 
specific diseases, gnotobiotic animal models are indispensable for in vivo validation. In all 
panels, triangles represent different biomolecules whereas color-coded circles represent 
different microbial taxa. 

In vivo models 

Germ-free (GF) animals are reared in sterile isolators to control their exposure to 
microorganisms, including viruses, bacteria and eukaryotic parasites [39]. If these animals are 
colonized with specific microorganisms they become gnotobiotic [39]. The colonization of 
GF animals mimics the birth of an infant from a sterile environment of the womb towards a 
microbe-dominated environment. A considerable advantage of GF animals is that they can be 
made gnotobiotic with GIT microbial communities of specific donors (human or other animal 
species) and therefore allow analysis of the systemic impact of specific microorganisms on 
the xenograft recipient. Indeed, colonization of GF animals with single individual bacterial 
species allows one to directly link a putative function or shaping of the GIT to a particular 
bacterial species or group [40,41]. Being able to associate a specific function to a particular 
bacterial strain or species is of utmost importance considering the possibility that specific 
organisms could be used as a treatment for a given disease. However, a major drawback of 
monocolonization of GF animals with specifically selected bacteria is the lack of scope of 



such investigations to uncover the full effects of single bacterial species on the host because 
of lack of full microbial community context in such approaches. Therefore, the beneficial 
impacts of a single bacterial species/strain on the host should be validated by taking into 
account the full microbial community context. In particular, shifts in microbial community 
structure need to be assessed when adding single strains to communities to avoid potentially 
triggering a dysbiotic state. 

Different GF animal models (zebrafish, mice, rats and even pigs) have already been 
successfully established (Tables 1 and 2). Undoubtedly, such animal models have proven to 
be essential for studying host-microbe interactions (in particular immune-microbe feedbacks) 
and have allowed causal links to be established in a limited number of studies [42,43]. 



Table 1 Advantages and disadvantages of different animal models commonly used for studying host-microbe interactions 
Animal model Advantages Disadvantages 

Zebrafish • Transparent until adulthood allowing real-time visualization of fluorescently labeled microbes 
throughout the gut [44]. 

• GIT is homologous to that of 
mammals but not identical 
(reviewed in [45]). 

• Chemical screens and forward genetic tests can be performed to investigate host genetic factors or 
signaling pathways regulated by microbes [46]. 

• Diet and living environment 
strongly differs from humans 

• Relatively short generation time (3 to 4 months) with a progeny size of about 100 to 200 eggs/female 
[46]. 

• Aging differs strongly from 
humans 

• 3 to 4 cm long as an adult allowing storage of a large number in laboratory facilities [46]. • Zebrafish and their natural 
pathogens exist at a 
temperature of 28°C, while 
most human-relevant 
pathogens are only infectious 
at 37°C [47]. 

• Genome fully sequenced (http://www.sanger.ac.uk/Projects/D_rerio/). • Zebrafish do not have 
distinguishable lymph nodes, 
Peyer’s patches, or splenic 
germinal centers [48]. 

• Well characterized mutant strains [46].  

• Gastrointestinal tract (GIT) is homologous to that of mammals, containing a liver, pancreas, gall 
bladder, and a linearly segmented intestinal tract with absorptive and secretory functions. The intestinal 
epithelium forms tight junctions and microvilli. Displays absorptive enterocytes, goblet cells, and 
enteroendocrine cells (reviewed in [45]). 

Mouse • Numerous mouse specific disease models or genetically altered mice are available [49]. • Marked differences in the 
immune system [50] 



• Well characterized model; genome fully sequenced 
(http://www.sanger.ac.uk/resources/mouse/genomes/) and virtually all mouse genes have human 
homologues. 

• Marked differences in 
microbiota composition 
between mice and humans 
have been noted [51]. 

• Relatively small and thus can be easily maintained. • Diet and living environment 
differs from human. • Reproduction rather quick so that several generations can be observed in a relatively short period of 

time, generally a mouse can live 2 to 3 years. 
• Mice present the same organs as humans but in different proportions 

Rat • A lot of rat-specific disease models or genetically altered rats are available 
(http://rgd.mcw.edu/wg/physiology). 

• Diet and living environment 
differs from human. 

• Genome fully sequenced (http://rgd.mcw.edu/).  
• Relatively small and thus can be easily maintained. 
• Reproduction rather quick so that several generations can be observed in a relatively short period of 
time, 
• Generally a rat can live 2 to 3 years. 

Pig • Omnivore. • Reproduction rather slow (4 
months gestation), generally a 
pig can live 10 to 15 years. 

• Physiology of digestion, digestate transit times and associated metabolic processes are very similar 
between humans and pigs (reviewed in [52]). 

• Important in size and thus 
expensive and complicated to 
maintain in laboratory 
conditions. 

• Digestive tract shares many anatomical and physiological traits with that of humans. 
• Immune system similar to humans. 
• Genome fully sequenced (http://www.sanger.ac.uk/resources/downloads/othervertebrates/pig.html). 
• Conserved homology between human and pig genomes. 



Table 2 Examples of successfully conducted microbiota transplantation experiments into germ-free (GF) recipient animals 
Animal model Host Microbiota  aGF Status versus CONV-Rb Animals Donor’s Microbiota in the Recipient Animal 

Zebrafish Predominantly Proteobacteria (82% ± 
22%) and Fusobacteria (11% ± 15.2%). 
Minor populations are: Firmicutes, 
Bacteroidetes, Verrucomicrobia, 
Actinobacteria, candidate phyla TM6 
and TM7, Planctomycetes, Nitrospora 
and candidate division OP10 [53,54]. 

Reduced rates of epithelial proliferation [53]. Mouse to zebrafish: predominantly Firmicutes and 
Bacteroides [51]; when GF zebrafish are colonized 
with mouse microbiota the transplanted community 
resembles its community of origin in terms of the 
lineages present, but the relative abundance of the 
lineages changes to resemble the normal gut 
microbial community composition of the recipient 
host. Thus, a selective pressure of the host is imposed 
to the recipient’s gut habitat [54]. 

Compromised ability to use nutrients [53]. 

Mouse Mouse and human microbiota are 
similar at the phylum level, but 
different at the genus level (>99% of 
the bacterial phylogenetic types from 
wild-type mice belong to two divisions: 
Firmicutes and Bacteroidetes) [51]. 

Most widely used GF animal model and 
theoretically any mouse strain can be derived to 
GF status. 

Human to mouse: Transplantation of fresh or frozen 
adult human fecal microbial communities into GF 
mice results in stably and heritably colonized mice 
with a microbiota that reproduces much of the 
bacterial diversity of the donor’s microbiota (all 
bacterial phyla, 11/12 bacterial classes, and 88% 
(58/66) of genus-level taxa) [55,56]. 

Numerous immunological differences in GF 
animals: Peyer’s patches are poorly formed; 
composition of CD4+ T cells and IgA-producing 
B cells in the lamina propria is altered [57-63]; 
impaired development of follicular B- and T-cell 
areas of the spleen and peripheral lymph nodes 
[60]. Th17 and Treg CD4+ T cells are less 
efficient in GF mice [61-63]. 
The epithelial cell turnover is decreased by a 
factor 2 in GF animals compared to CONV-R 
mice [64,65]. 

Obese mouse to GF mouse: Microbiota 
transplantation experiments utilizing genetically 
obese ob/ob mice [66],CONV-R mice fed a Western 
diet [67], and mice lacking the Toll like receptor 5 
[68] have demonstrated that colonization with an 
obesity-associated gut microbiota results in an 
increased gain in adiposity relative to colonization 
with a gut microbiota harvested from lean controls. 

Postnatal gene expression of β1-4-
galactosyltransferase stays at low levels in GF 
mice [69] and in general host gene expression 
differs between GF and colonized mice [70]. 



Compromised ability to use nutrients in GF 
animals compared to CONV-R mice [60]. 

Pig to mouse: when GF mice are colonized with pig 
microbiota the overall bacterial group distributions 
are similar, but colony and cell morphologies of 
bacteria grown on specific media are different 
between pig and gnotobiotic mice [71]. 

Difference in metabolic signatures in GF mice 
compared to CONV-R mice and humans 
[72,73]. 

Rat Rat and human microbiota are similar 
at the phylum level but different at the 
genus level (wild-type rat microbial 
communities harbor at least eight 
different divisions dominated by two 
major phyla: Firmicutes (74%) and 
Bacteroidetes (23%)) [74]. 

Difference in metabolic signatures [75-81]. Human to rat: when GF rats are colonized with 
human microbiota the transplanted community 
resembles its community of origin in terms of the 
group or genus levels but differences at the dominant 
species level occur. Thus, a selective pressure of the 
host is imposed on the gut habitat [82]. However, 
certain metabolic characteristics (high equol-
producing and low equol-producing status or 
cholesterol-to-coprostanol conversion) of human 
intestinal floras can be transferred to GF rats [82,83]. 

In CONV rats, the colonic mucus layer is twice 
as thick as in GF rats [84], and the mucin 
chemical composition is altered [85,86]. 
Numerous immunological defects; the 
proportion of intraepithelial CD4+ and CD8+ T 
cells is altered [59,87], as well as the 
composition and T cell receptor repertoire [59]. 
Decreased enterocyte production [88]. 

Pig The microbiome of pigs is dominated 
by two major phyla: Firmicutes (≈81%) 
and Bacteroidetes (≈11%) [89,90]. 

Host gene expression differs between GF and 
colonized pigs [91]. 

Human to pig: pigs seem to induce less host specific 
selection of the donor microbiota [92]. 

Epithelial cell proliferation and differentiation 
genes are downregulated in GF piglets compared 
to CONV-R pigs [91]. 

CONV-R pigs to GF pigs: Genes involved in 
biological processes such as epithelial cell turnover, 
nutrient transport and metabolism, xenobiotic 
metabolism, JAK-STAT signaling pathway, and 
immune responsiveness become upregulated by the 
colonization of GF pigs [91]. 

aGF, germ-free 
bConv-R, conventionally raised 



From the most fundamental point of view, the study of GF animals demonstrated that life 
without microbes is possible [39]. Nevertheless, GF animals show a number of important 
physiological differences when compared to conventionally raised (CONV-R) animals (Table 
2). For example, GF animals show a slower epithelial renewal [64,93], an altered immune 
system [57-63,94] and marked differences in gene expression of mammalian gastrointestinal 
cells [69,70,91]. Interestingly, GF animals require a higher caloric intake to maintain their 
body weight, which might be linked to less efficient whole-body metabolism compared to 
CONV-R animals [6,72,73,75-81,84,95]. Moreover, GF animals, at least GF rats, exhibit a 
decreased mucus layer in the GIT compared to CONV-R animals, which might be due to the 
fact that different bacterial strains stimulate the secretion of colonic mucin [85,86,96]. Thus, 
since a number of essential physiological functions significantly differ between GF and 
CONV-R animal models, data extrapolated from experiments carried out with GF animal 
models must be considered with caution (Tables 1 and 2). However, the comparison between 
an ‘all’ (CONV-R animals) or ‘nothing’ (GF animals) situation is still invaluable for the 
definition of the host’s physiological pathways and functions, which are impacted and/or 
influenced by different microbiota (reviewed in [60]), as well as for the characterization of 
the biogeography of the GIT [97]. 

Although different animal models have been developed (Table 1), mice represent the most 
widely used and best characterized model organisms. Therefore, we chose to illustrate the 
pros and cons of experimental models by highlighting investigations carried out in GF mice. 
Several research groups have, for example, investigated how monocolonization by individual 
bacterial species shape the immune system of the host. In such studies, investigators have 
demonstrated that colonization of GF mice with particular segmented filamentous bacteria 
(SFBs) is sufficient to induce Th17 cell populations in the lamina propria of the gut [62,63]. 
This specific T cell subpopulation, which is important for protecting the host from bacterial 
and fungal infections, is absent or marginally detectable in GF mice [62,63]. Interestingly, it 
was recently shown that human colonization with SFBs, in contrast to mice, seems to be age-
dependent with the majority of individuals loosing SFBs by the age of 3 years [98]. 
Moreover, colonization of GF mice with human gut microbiota supplemented with SFB only 
results in a minor increase in the number of intestinal T cells. This indicates that multiple 
microbial species are involved in the development of intestinal T cells in humans [99] and 
that most likely different species and strains are important in humans compared to mice. 
Similarly, colonization of GF mice with indigenous Clostridium spp. [61] or Bacteroides 
fragilis [100] by means of a protease-resistant capsular polysaccharide, can increase the 
frequency or function of colonic CD4+ T regulatory cells, which in turn play critical roles in 
the maintenance of immune homeostasis [8]. However, these findings have yet to be fully 
validated in humans. 

A particularly interesting animal model for investigating microbes-host immune system 
feedbacks is the reversible microbe colonized GF mouse model that was recently described 
by Hapfelmeier et al. [101]. The reason behind the development of this model is that the 
continuous presence of commensal intestinal bacteria has made it difficult to study mucosal 
immune dynamics (for example, kinetics and longevity of IgA’s), which in turn does not 
allow answering fundamental questions such as: Is constant bacterial exposure required to 
induce antibody production? Is repetitive contact of the same bacterial species with the host 
immune system required to provide specific antibodies? What is the minimal bacterial 
concentration required to induce antibody production? This model consists of GF mice, 
colonized with a triple mutant Escherichia coli strain, which cannot divide and persist in vivo 
but which can sustain intestinal colonization up to 48 hours. Using this model the authors 



could decipher the dynamics of IgA immune responses and were able to demonstrate that (i) 
induction of high-titer IgA can be uncoupled from permanent intestinal bacterial colonization, 
(ii) an intrinsic threshold exists between 108 and 109 bacteria in the GIT below which the 
intestinal IgA system shows no response, (iii) the intestinal IgA system lacks classical 
immune memory characteristics (no observable prime-boost effect), and (iv) the intestinal 
IgA repertoire represents the most dominant species currently present in the intestine [101]. 

Using analogous GF approaches, relationships between diet, gut microbial ecology and 
energy balance have also been investigated (recently reviewed in [21,22,102]). For example, 
it was demonstrated that transplantation of the cecal microbiota from obese mice fed on high-
fat diets into GF recipients increases adiposity, thereby demonstrating a causal relationship 
between certain microbiota compositions and the host’s energy-harvesting capacity [67]. 

From GF animals experiments it is now well established that microbial communities impact 
deeply on essential physiological functions of the host. However, it is oftentimes difficult to 
causally link an apparent dysbiotic state to disease in humans mainly because of marked 
differences between mouse and man (see also paragraph below). In a few cases, however, 
causality within the context of dysbiosis-linked diseases has been demonstrated using 
microbial transplantation experiments. For example, a colitis phenotype was transferable 
from Tbx21−/− /Rag2−/−  mice, which develop ulcerative colitis in a microbiota-dependent 
manner, to wild-type mice by adoptive transfer of the implicated microbiota [42]. Similarly, 
there is also evidence that an altered microbiota associated with a colitogenic phenotype 
isolated from NLRP6 inflammasome-deficient mice alone is sufficient to drive intestinal 
inflammation [43]. 

While all GF as well as disease-specific CONV-R animal models present a number of 
advantages for studying host-microbe interactions, they often do not yield reliable preclinical 
results that readily translate into effective human treatments. Two important factors 
contribute to this failure: i) on the microbial side, bacterial species that colonize the GIT 
appear to be host-dependent and, thus, a host-specific microbiota is critical for a given host 
[99]; and ii) on the host side, the immune responses in non-human mammalian species is 
oftentimes distinct from those seen in human [50,103]. A partial solution to this problem 
could be the use of animals that show a humanized immune system. These animal models can 
be generated by grafting immunodeficient animals with suspensions of hematopoietic 
progenitor cells and/or human peripheral blood cells, and potentially even with supplemental 
human tissues driving the generation of human immune cells [104-107]. However, in order to 
causally link dysbiosis with human diseases, these animal models need to be gnotobiotically 
transplanted further with ‘humanized’ microbiota. The latter poses additional potential 
pitfalls, as many microbial species have evolved to fill host-specific niches [55,82,97] and the 
topology of the mouse GIT is, for example, distinct from that of humans, rendering the 
mimicking of human-specific niches challenging if not impossible. Consequently, xenograft 
microbiota may not representatively colonize the GIT of a humanized animal model. 

Another conceivable approach to study the interplay between host and microbes is the use of 
CONV-R animal models treated with antibiotics, leading to a temporary knock-out effect of 
selected bacterial groups, followed by a repopulation of host GIT with human feces-derived 
microbial communities. The assumption behind this idea is that these animals do not present 
significant alterations in essential physiological processes described for GF animals and that 
the antibiotic intake does significantly enhance the reshaping effect of the transplanted human 
microbiota. Surprisingly, the combination of antibiotic and transplantation treatments does 



not increase the establishment of the donor phylotypes but does interfere with the 
establishment of the exogenous communities by a yet unknown mechanism [74]. 

In summary, animal models, especially humanized GF models, can be attractive tools for 
human microbiome research. However, in addition to some of the pitfalls discussed above, 
animal models are labor-intensive (there is an immense logistical challenge associated with 
keeping the animals GF), relatively expensive, tedious, and limited in high-throughput. The 
establishment of animal models that are widely applicable realistic models of human diseases 
and that could be used to study the specific interplay between microbiota and their host 
presents a formidable challenge. Therefore, in vitro human-microbial co-culture strategies 
might offer alternative and complementary strategies, since they have a unique potential to 
facilitate much needed high-throughput validation of hypotheses that are emerging from 
state-of-the art molecular data and that link certain microbial community compositions and 
functions to human disease. 

In vitro models 

In vitro models mimic microbial processes along the GIT by employing either distinct 
serially connected bioreactors/microchannels or a single bioreactor/microchannel mimicking 
specific part(s) of the human GIT (Table 3). Such models represent enticing alternatives over 
in vivo models because they are typically cheaper and offer greatly improved throughput, 
flexibility and scalability for hypothesis testing. Moreover, downstream high-resolution 
molecular analyses are more readily carried out on in vitro generated samples compared to 
those derived from in vivo experiments. Traditional in vitro systems are however usually 
based around the partitioned cultivation of specific microbiota in dedicated bioreactors 
connected in series [108]. They typically lack human cells because they have been developed 
to model the individual steps catalyzed by the microbiota along the human GIT. 

Table 3 In vitro models used to study host-microbes interactions 
Feature Transwell 

Inserts 
SHIME  

[109] 
M-

SHIME  
[110] 

TIM1  
[111] 

TIM2  
[112] 

CCS 
[113] 

Gut-on-
a-Chip 

[44] 

Human cell culturea +b - - - - +b ++b 
GIT microbiota culture  - + + - + - - 

Anaerobic conditions for 
microbes 

- + + + + + - 

Mucin  + - + - - - - 
pH measurement - + + + + + - 

Throughput  + - - - - - + 
aThe models involving the possibility to incorporate human cells can be subjected to Trans-
epithelial Electric Resistance (TEER) measurements (except the model CCS). 
b+, co-culture for 3 to 6 h; ++, co-culture for >1 week. 
CCS, continuous culture system; GIT, gastrointestinal tract; M-SHIME, Mucus-Simulator of 
the Human Intestinal Microbial Ecosystem; SHIME, Simulator of the Human Intestinal 
Microbial Ecosystem; TIM1, model simulating the stomach and small intestine; TIM2, model 
simulating the large intestine. 

A pioneering example of such an in vitro system is the Simulator of the Human Intestinal 
Microbial Ecosystem (SHIME) [109]. Five reactors, harboring mixtures of luminal microbes, 



are sequentially connected to mimic acid- and pepsin-mediated digestions in the stomach, 
metabolism of monosaccharides in the small intestine as well as the distinct microbial 
fermentative processes that occur in the ascending, transverse and descending colons, 
respectively. Recently, a mucus layer has been integrated in the SHIME model (M-SHIME) 
that allows improved simulation of the mucosal and luminal microbiota in the GIT [110]. The 
SHIME and M-SHIME models allow the study of gut microbiota using either specific 
isolates or mixed fecal inocula from healthy and diseased (for example, Crohn’s disease) 
donors. Altogether, these models can be used to examine roles of the GIT microbiota in the 
digestion of specific human food ingredients (for example, fermentation of arabinogalactan, 
xylan and pectin [114]), to understand the pharmacokinetics of drugs (for example, 
sulphasalazine [114]) and/or to model the gut microbiota linked to gastrointestinal disorders 
[115]. 

Another well-established model is the in vitro GI tract system (TIM1 and TIM2) [111,112]. 
These automated models simulate the actions that occur along the GIT with peristaltic mixing 
as well as the absorption of water and fermentation products [111,112]. The TIM1 model 
simulates the stomach and the small intestine [111], whereas TIM2 mimics the large intestine 
[112]. The unique characteristics of these models are their unique capability to reflect a 
drug’s bioavailability in the intestine. Other unique characteristics include the modeling of 
the luminal conditions in the GIT of humans and monogastric animals by taking into account 
the secretion of gastric and small bowel fluids, GI transit times and discharge of microbially 
metabolized compounds. Therefore, similar to the SHIME model, these models allow 
investigations of the metabolic capability of the effective microbiota in the GIT. However, 
the TIM models clearly lack the possibility of partitioning the luminal and mucosal 
microbiota in artificial niches that reflect the GIT and, thus, cannot be regarded as fully 
representative models. 

A third example of an in vitro model is a three-stage continuous culture system (CCS), which 
was originally designed to study the effect of mucin on microbial sulfate reduction and 
methanogenesis [113]. The highlight of this model is that it reproduces some of the 
nutritional features, pH characteristics and fluid retention times of the large intestine with 
each vessel having a different operating volume and pH. Three different vessels are 
interconnected and mimic the microbial activities in the cecum, transverse colon and 
descending colon by taking into account the following characteristics: 1) the cecum is a 
nutrient-rich environment and has microbial growth at low pH, and 2) the other two subparts 
of the colon are rather nutrient limited with slow microbial growth at neutral pH. Recently, 
co-cultures of bacterial communities isolated out of a CCS and human intestinal Caco-2 cells 
were sustained for approximately 3 h in order to study bacterial adhesion to epithelial cells 
and to measure bacteria-triggered cytokine release [116,117]. 

A conceptual colonic fermentation model that is analogous to CCS - three similar sized 
reactors are connected in a continuous culture system mimicking the proximal, transverse and 
descending colons each at a distinct pH - has recently been suggested by Payne et al. [118]. 
Human fecal microbiota, either planktonic or immobilized on polysaccharide beads, can be 
inoculated in the proximal reactor and, thus, the metabolic transformations of different 
nutrients can be investigated. The results can be compared with the metabolism of the same 
nutrients in a batch-type reactor mimicking only one compartment and, thus, highlight the 
relative importance of the different compartments for the digestion of specific nutrients. 



Although the above-mentioned in vitro models have been successfully used to address 
specific research questions, they present a number of limitations, which hinder their routine 
use for the study of versatile questions related to the human GIT microbiome. The major 
drawback of all the models is the lack of long term co-cultures of human and microbial cells, 
and the subsequent inability to investigate questions related to host-microbe interactions 
[102,109]. Furthermore, all of these models are limited in the scope of hypotheses that can be 
tested. The former shortcoming might be taken care of by using Transwell inserts, in which 
microbial and human cell cultures can be separated by semipermeable membranes. This 
arrangement should theoretically allow continuous co-cultures of human cells with microbial 
consortia from the respective bioreactor compartments. However, the Transwell cell cultures 
can only be employed as end-point assays [119-122] and bear ample risks for cross-
contamination of cultures in human-microbe co-culture experiments. Most importantly, 
however, the representative inclusion of strictly anaerobic microbiota in Transwell insert 
setups is not possible. 

In contrast, adaptation of microfluidics-based cell culture approaches provide important 
characteristics for development of improved GIT in vitro models. These characteristics 
include laminar flow profiles, small volumes, continuous diffusion-based perfusion, 
controlled chemical gradients and the ability to probe cells in spatial confinements mimicking 
their extracellular matrix in vivo [123-125]. Most of these characteristics are unachievable in 
macro-scale bioreactor setups but they are essential for the ability to directly co-culture 
human and microbial cells under physiologically relevant conditions [126]. The ability to co-
culture human and microbial cells is particularly important to understand the intricate 
interplay between the human and microbial components that might be driven by direct cell-
cell interactions and/or extracellular signaling. Naturally, these interactions have a marked 
impact on all processes related to the human microbiome and, thus, should be incorporated in 
any representative in vitro model. Consequently, pronounced interest currently exists for the 
development of microfluidics-based in vitro models of the human GIT [127], in particular 
models that allow human-microbial co-cultures. The enormous potential of such approaches 
has recently been demonstrated by a study focusing on host-pathogen interactions [128], and 
by the successful co-cultivation of symbiotic microbial communities in aqueous micro-
droplets that were probed for synergistic interactions [129]. Conversely, in vitro (micro-
)fluidics-based systems have so far been mainly used for studying medically relevant biofilm 
formation using microbial isolate cultures [130-132]. Although several research groups have 
co-cultured different human cell types [133,134] only a limited number of studies have 
reported the successful co-culture of human cells with microbial isolates [135-138]. 
Microfluidic cell co-culture devices typically incorporate semipermeable membranes or 
porous materials that allow cell feed to diffuse through the permeable barrier to the cells, 
thereby protecting them from shear stress while simultaneously allowing exchange of 
nutrients and waste products. Efforts have recently been made to culture multiple cell types 
across such permeable barriers thereby allowing the mimicking of tissue niches [139]. 
Incorporation of protective yet permeable barriers is especially pertinent when co-culturing 
human cells and microbiota due to the large differences in their respective growth rates and 
possible bacterial virulence to their human counterparts [128]. 

Microfluidics-based in vitro human-microbial co-culture models may offer interesting 
characteristics for conducting rapid first-pass experiments aimed at proving cause-and-effect 
relationships (Figure 1B). Moving beyond the traditional lab-scale bioreactors, microfluidic 
models should allow the co-culture of human and microbial cells for extended periods of time 
and allow targeted perturbation experiments to be carried out. 



Most recently, a promising microfluidics-based Gut-on-a-Chip model has been presented that 
indeed allows the direct co-culture of epithelial cells with probiotic strains [44]. The model 
includes many dynamic physical and functional features of the human GIT essential for 
transport, absorption, and toxicity studies. Therefore, it can be regarded as an essential 
research tool for drug testing [44]. However, the model still lacks important features, most 
notably a simulated mucosal barrier and the provision for culturing strict anaerobic 
microorganisms that dominate the human gastrointestinal microbiota. 

Nonetheless the Gut-on-a-Chip model has laid the foundation for the development of novel 
microfluidics-based devices that allow sustained cultivation of human and representative gut 
microbial communities (also encompassing anaerobes) to study the links between microbial 
dysbiosis and disease pathogenesis in a truly systematic and representative manner (Figure 
2). 

Figure 2 Conceptualization of an idealized in vitro gastrointestinal experimental model. 
An idealized in vitro co-culture model may include three distinct culture chambers, namely 
microbial, human epithelial and human immune cell culture chambers, each separated by 
semipermeable membranes allowing molecular cross-talk between the different contingents 
while preventing microbes from rapidly overtaking human cells due to pronounced 
differences in their respective growth rates. Furthermore, an idealized gastrointestinal in vitro 
model should reflect the biogeographical distribution of the gastrointestinal microbiota. Such 
a model should allow the culture of representative microbial communities for the individual 
sections of the gastrointestinal tract (GIT) including stomach, small intestine, ascending 
colon, transverse colon and descending colon. All the individual compartments should be 
connected in series and allow modulation of their respective environmental factors including 
pH, fluid retention times, growth medium and other physiological factors such as mucin (in 
green in the microbial chamber) compositions, which actively interact and alter the microbial 
communities. To represent the GIT in the most realistic way, the microbial growth chamber 
needs to be depleted of oxygen, which could be achieved by flushing this chamber with 
anaerobic microbial medium, whereas the human cell chambers need to be flushed with 
oxygenated medium. Finally, an idealized GIT in vitro model suitable for microbiome 
research must support high-throughput omic analyses and, thus, needs to allow probing of the 
individual contingents to perform dedicated analyses on the different cell contingents 
following a particular experimental regime and to relate particular measurements back to the 
cell populations of origin. 

Ex vivo models 

Besides in vivo and in vitro experimental models, ex vivo models represent interesting tools to 
study host-microbiota interactions. Such systems compromise explant cultures (tissue 
cultures) extracted from the colon or rectum [140]. The advantages of such models, is that the 
tissue cytoarchitecture, including epithelial, lymphocyte subtypes and follicular-dendritic cell 
networks, is preserved and, thus, such systems can mimic more closely the in vivo situation 
when compared to traditional in vitro systems including isolated human cell types. For 
example, Tsilingiri et al. recently described a human mucosa explant culture model in which 
an apical to basolateral polarity is preserved during stimulation with bacteria [141]. Using 
this model, the authors demonstrated that probiotics are not always beneficial for the health 
of the host but that some postbiotics (metabolic products of probiotics) can protect healthy 
tissue against the inflammatory properties of invasive Salmonella [141]. 



Major drawbacks of ex vivo models are that during surgical resection, the mucus layer is at 
least partially removed or damaged. Additionally, the tissues are generally treated with a 
cocktail of antibiotics to avoid microbial contamination and therefore no immediate co-
culture of microbial communities and human GI cells is achievable. 

Furthermore, explants do not offer the required modularity that would allow analyses to be 
related to specific cell populations but rather only allows links to whole communities of cells, 
thereby convoluting any relevant molecular signals. 

In silico models 

To investigate microbe-microbe and host-microbe metabolic interactions, in silico 
reconstructions of genome-scale metabolic networks combined with constraint-based 
modeling also exhibit promising attributes. The conversion of a metabolic reconstruction (for 
example, as derived from the human genome sequences, microbial isolate genome sequences 
and/or metagenomic sequences) into a condition-specific model (for example, GIT model) 
requires the transformation of a (hopefully) comprehensive biochemical reaction list into a 
computable, mathematical matrix format [142]. It also requires the addition of physico-
chemical constraints (for example, mass conservation) and system boundaries [142]. Thus, 
(meta-)genome-scale, manually curated metabolic reconstructions can serve as knowledge-
bases to summarize existing knowledge about cellular pathways in target organisms in a well-
structured, mathematical manner [142]. However, so far, the knowledge-base for microbe-
microbe as well as host-microbe interactions is very sparsely populated and extensive 
dedicated efforts are required in coming years to establish such a database. Consequently, at 
present, cross-feeding and/or interaction experiments cannot yet be routinely carried out in 
silico. 

Even though, in silico constructed models represent powerful tools for modeling and 
predicting phenotypic characteristics of single organisms living in a community within a 
particular host [143], they can only be constructed based on existing experimental data. 
Consequently, in vitro, ex vivo and in vivo experimental data, which allow the unraveling of 
links between gut microbiota and host metabolism, are crucial for constructing 
comprehensive host-microbe interaction models as well as for the benchmarking of such 
models. Once constructed, models can predict what role individual microorganisms have and 
how their actions influence others within their native community [144]. The resulting 
hypotheses may drive experiments, which will in turn inform and improve the models. Thus, 
a combined computational-experimental approach for hypothesis generation and testing has 
the promise to accelerate new discoveries in the realm of microbe-microbe and microbe-host 
metabolic interactions. Disadvantages of in silico models are that the reconstruction process 
of such genome-scale high quality metabolic networks requires extensive computational and 
manual analysis efforts and that any new findings need to be experimentally validated. 
Furthermore, the resulting findings, especially in the case of in silico animal-based models 
[145], may not always efficiently translate to humans [143,145]. Despite the limitations of 
current in silico reconstructed host-microbe interaction models, such approaches are of 
utmost importance because they theoretically allow a detailed molecular resolution of the 
complex relationships within microbial communities and with their host. Therefore, such 
system approaches could dramatically improve our understanding of individual bacterial taxa 
within communities and the modes of interactions in which they engage. New links between 
a host and its microbiota could thus be predicted and perturbation experiments (for example, 
diet variation for the host or changed medium composition for the microbiota) and their 



outcome could easily be simulated. An example of a successful use of such an in silico 
reconstructed model was recently published by Heinken and co-workers [145]. In this study, 
the authors reconstructed and analyzed the first integrated stoichiometric model of murine 
and Bacteroides thetaiotaomicron metabolism and could demonstrate in silico that even at a 
low growth rate of Bacteroides thetaiotaomicron the mouse profited significantly from the 
presence of this microorganism in the gut lumen [145]. 

In summary, host-microbe in silico models, when combined with experimental data, will 
greatly strengthen our knowledge on how microbes influence their host and vice versa. 
Consequently, in silico models in combination with in vitro, ex vivo and in vivo experimental 
data will become an invaluable tool to predict metabolic interactions between gut microbes 
and their host in both diseased and healthy states. 

Conceptualization of experimental models 

A conceptualized ideal experimental model (Figure 2) for the study of host-microbiota 
interactions in the GIT and one that would allow testing the myriad of hypotheses linking 
dysbiosis to disease should allow paired wet- and dry-lab experiments and mimic as closely 
as possible the GIT. Such a model should in particular include: i) human GIT cells; ii) human 
microbiota sustainably growing under anaerobic/microaerophilic conditions; iii) a mucus 
layer simulating the physical separation of human and microbial cell contingents; and iv) the 
physico-chemical conditions encountered in the GIT including primarily pH, fluid retention 
times and dissolved O2 concentrations. Moreover, such a model should reflect simple and 
controlled experimental settings to allow reproducibility and limit discrepancies in the 
obtained results due to inter-individual variations occurring in in vivo animal models. Finally, 
in the case of a wet-lab model, it should allow massively parallel screening and validation of 
results revealed through meta-omic investigations of human subjects. 

An in vitro living cell-based and microfluidics-based model appears best suited to achieve the 
highlighted requirements since the gut microenvironment can be simulated by flowing 
specialized media at defined rates through the respective microchambers seeded with human 
intestinal cells and microbial communities, respectively. Furthermore, to simulate the 
physical separation of both human and microbial cells encountered in vivo [146], both 
contingents should be separated either by mucin and/or semipermeable membranes while still 
guaranteeing molecular cross-talk (metabolites, proteins, nucleic acids, cytokines, 
chemokines, etcetera) between both compartments. The feasibility of such a microfluidics-
based in vitro model has already been established by the successful co-culture of a single 
microbial species for over one week on the luminal surface of cultured epithelial cells without 
compromising epithelial cell viability [44]. However, a future challenge that needs to be 
overcome in order to be able to reproducibly analyze the interplay between microbes and 
their host in such an experimental model is the requirement for maintaining aerobic 
conditions in the human microfluidic chamber while at the same time guaranteeing strictly 
anaerobic conditions in the microbial chamber, which allow the culture of obligate anaerobic 
human gut microbes. Finally, an idealized in vitro model should include separate 
compartments mimicking the stomach, small intestine, the ascending colon, the transverse 
colon and the descending colon, each reflecting the biogeographically distinct characteristics 
of the GIT. 

In summary the conceptualized in vitro experimental model could be an elegant supplement 
to animal in vivo and in silico models since it would exhibit simple and controlled 



experimental settings allowing reproducibility and limit discrepancies resulting from inter-
individual variations that occur in in vivo animal models. Moreover, by the introduction of 
human cells the interplay between human and microbial cells should be traceable in real-time. 
This point seems to be of particular importance since a host-specific microbiota appears to be 
critical for a given healthy host [99]. Finally, the described conceptualized in vitro 
experimental approach would be well suited for high-throughput experiments in contrast to in 
vivo animal models. However, due to their in vitro nature experiments carried out in such a 
conceptualized experimental model will for the most part still require in vivo experimental 
validation. Combined experimental approaches in animal and in vitro models could thus lead 
to the establishment of causal relationships between microbial community compositions and 
human diseases. 

Conclusions 

Understanding of the human gastrointestinal microbiota and its putative role in governing 
health and disease states has rapidly expanded in recent years. However, the myriads of 
results, generated by linking ‘meta-omic’ data to disease, still require experimental 
validation. To reach this goal, we propose a biphasic experimental validation approach: i) 
rapid first-pass experiments in in vitro devices, which allow massively parallel screening and 
immediate cause-and-effect read-outs (Figure 1B) and ii) in vivo experimental validation 
(Figure 1C). 

Microfluidics-based in vitro devices appear particularly well suited for high-throughput 
experiments due to their small footprint, their ability to allow the co-culture of both human 
and microbial cells for extended periods of time, and their ability to facilitate dynamic 
perturbation experiments. However, in vitro experiments will for the most part still need to be 
followed up with in vivo experiments. Such experimental validation may be achievable using 
GF animal models. However, owing to specific differences in the living environments of GF 
and wild-type (CONV-R) animals, the physiologies of both are likely to be distinct, which 
leads to the somewhat artificial nature of GF animals. Therefore, in order to study the impact 
of specific microbial strains on the host, gnotobiotic animal models should be directly 
compared to CONV-R animals. In addition, GF animals should ideally be compared to ex-GF 
animals colonized by exposing them to the environmental conditions in which CONV-R 
animals were raised. 

We are living through exciting times in human microbiome research. With the advent of 
high-throughput molecular tools, we are for the first time able to probe the extensive 
organismal and functional diversity of the human host and identify links between certain 
microbial community constellations and disease. Beyond this cataloguing effort, 
experimental validation will become a major component of future studies. Importantly, all the 
necessary technology for devising representative high-throughput in vitro models is available. 
In the future, such models will become invaluable for large-scale screening efforts prior to in 
vivo experimental and clinical validation. 
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