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Abstract. Metabarcoding is by now a well-established method for biodiversity assessment
in terrestrial, freshwater, and marine environments. Metabarcoding data sets are usually used
for a- and b-diversity estimates, that is, interspecies (or inter-MOTU [molecular operational
taxonomic unit]) patterns. However, the use of hypervariable metabarcoding markers may pro-
vide an enormous amount of intraspecies (intra-MOTU) information—mostly untapped so
far. The use of cytochrome oxidase (COI) amplicons is gaining momentum in metabarcoding
studies targeting eukaryote richness. COI has been for a long time the marker of choice in pop-
ulation genetics and phylogeographic studies. Therefore, COI metabarcoding data sets may be
used to study intraspecies patterns and phylogeographic features for hundreds of species simul-
taneously, opening a new field that we suggest to name metaphylogeography. The main chal-
lenge for the implementation of this approach is the separation of erroneous sequences from
true intra-MOTU variation. Here, we develop a cleaning protocol based on changes in entropy
of the different codon positions of the COI sequence, together with co-occurrence patterns of
sequences. Using a data set of community DNA from several benthic littoral communities in
the Mediterranean and Atlantic seas, we first tested by simulation on a subset of sequences a
two-step cleaning approach consisting of a denoising step followed by a minimal abundance
filtering. The procedure was then applied to the whole data set. We obtained a total of 563
MOTUs that were usable for phylogeographic inference. We used semiquantitative rank data
instead of read abundances to perform AMOVAs and haplotype networks. Genetic variability
was mainly concentrated within samples, but with an important between seas component as
well. There were intergroup differences in the amount of variability between and within com-
munities in each sea. For two species, the results could be compared with traditional Sanger
sequence data available for the same zones, giving similar patterns. Our study shows that
metabarcoding data can be used to infer intra- and interpopulation genetic variability of many
species at a time, providing a new method with great potential for basic biogeography, connec-
tivity and dispersal studies, and for the more applied fields of conservation genetics, invasion
genetics, and design of protected areas.

Key words: AMOVA; cytochrome oxidase; connectivity; eukaryotes; haplotype networks; Illumina;
metabarcoding; phylogeography; sequencing errors.

INTRODUCTION

Metabarcoding, whereby information on species pre-

sent in a variety of communities can be obtained from

so-called environmental DNA (eDNA), or from bulk or

community DNA (Creer et al. 2016, Macher et al.

2018), is by now established as a robust method for bio-

diversity assessment (Baird and Hajibabaei 2012, Deiner

et al. 2017, Taberlet et al. 2018, Adamowicz et al. 2019).

Metabarcoding provides a fast and accurate method for

measuring biodiversity, allowing identification of many

more taxa (Molecular Operational Taxonomic Units or

MOTUs) than morphological methods (Dafforn et al.

2014, Cowart et al. 2015, Elbrecht et al. 2017), as small

and cryptic organisms, early life stages, and fragments or

trace DNA left in the environment can be targeted. Fur-

ther, metabarcoding is largely independent of taxonomic

expertise, which is dwindling worldwide (Wheeler et al.

2004), albeit it is highly dependent on the completeness

of reference databases to reliably assign taxonomic

names to MOTUs (Cowart et al. 2015, Briski et al.

2016). Taxonomic expertise, of course, will always be

necessary to construct and expand accurate reference
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databases. Biodiversity assessment, detection of invasive

or endangered species, paleoecological reconstruction,

or diet analyses are among the main applications of

metabarcoding to date (e.g., Ji et al. 2013, Pochon et al.

2013, Kelly et al. 2014, Hajibabaei et al. 2016, Ficetola

et al. 2018). All of them are highly relevant for basic

biodiversity research and for establishing management

policies. There is, however, more information in

metabarcoding data sets than just a- and b-diversity

related issues. Further exploitation requires a shift from

interspecies genetic patterns, that constitute most of the

metabarcoding applications so far, to intraspecies

genetic patterns (reviewed by Adams et al. 2019), mak-

ing use of the within-MOTU genetic variability uncov-

ered by metabarcoding.

Being heirs to studies in prokaryotes, eukaryotic

metabarcoding initially relied heavily on ribosomal

RNA sequences for MOTU delimitation (mostly nuclear

18S rDNA sequences). These sequences lack variability

for within-MOTU studies in many groups, particularly

metazoans (Tang et al. 2012, Leray and Knowlton 2016,

Wangensteen et al. 2018a). However, in recent years,

intense efforts have been devoted to optimize the use of

mitochondrial COI sequences in metabarcoding

(And�ujar et al. 2018). Their use was hindered by the lack

of universal primers (Deagle et al. 2014), but new sets of

COI primers for general purposes or for specific groups

(Leray et al. 2013, Elbrecht and Leese 2017, Vamos

et al. 2017, Gunther et al. 2018) are overcoming this

problem and COI sequences are now being increasingly

used in general biodiversity studies (e.g. Leray and

Knowlton 2015, Aylagas et al. 2016, Macher et al. 2018,

Porter and Hajibabaei 2018a), where they typically

uncover a much higher degree of a-diversity than 18S

rDNA (Stefanni et al. 2018, Wangensteen et al. 2018a,

b). Furthermore, the use of COI opens the door to taxo-

nomic assignment using the extensive database of the

Barcode of Life Datasystems (BOLD), which is continu-

ously increasing in depth and coverage (Ratnasingham

and Hebert 2007, Porter and Hajibabaei 2018b).

COI sequences have been extensively used in studies

of population genetics and phylogeography of terrestrial,

freshwater, and marine organisms (Avise 2009, Emerson

et al. 2011). The shift to COI-based metabarcoding

(And�ujar et al. 2018), therefore, implies the generation

of databases containing an untapped reservoir of intras-

pecies variation that can allow characterizing intra- and

interpopulation genetic features of many species simulta-

neously. This could constitute a gigantic leap from the

current single-species studies, effectively opening a new

field in population genetics for which we suggest the

name of metaphylogeography.

The possibility of using metabarcoding for population

genetics was hinted at by Bohmann et al. (2014) and

Adams et al. (2019), but has been hardly developed.

Current instances are in general preliminary, proof of

concept, applications, always referred to particular taxa,

not to whole community assessments. For instance,

within- and between-population genetic structure using

bulk DNA has been assessed for ichthyosporean para-

sites of the cladoceran Daphnia (Gonz�alez-Tortuero

et al. 2015), for a Xyleborus beetle collected at two loca-

tions with differing management practices (Pedro et al.

2017) or for coral reef fishes of the genus Lethrinus (Stat

et al. 2017). In the marine realm, eDNA from water has

been used to obtain haplotype and ecotype information

for species that are hard to sample, such as whale sharks

(Sigsgaard et al. 2016), harbour porpoises (Parsons

et al. 2018), or killer whales (Baker et al. 2018). In inva-

sion biology, eDNA was proven useful to assess native

vs. nonnative strains of common carp in Japan (Uchii

et al. 2016).

An integrated phylogeography encompassing a range

of species would be a powerful tool to investigate land-

scape-level processes (either natural or anthropogenic),

over and above the signal given by each species. Studies

that combine population genetics data on multiple spe-

cies by traditional methods are costly and usually

involve just a handful of species (e.g., Haye et al. 2014).

The alternative is to use meta-analyses to collate the

information scattered in different works (e.g., Zink 2002,

Pascual et al. 2017), or to use the information contained

in georeferenced genetic databases (Gratton et al. 2017).

However, the pace at which climate change affect our

ecosystems and the projected increased exploration of

our resources in the coming decades urge for increased

knowledge of population structure and phylogeography

at the global biome level. The potential of metaphylo-

geography ranges from basic questions about biogeogra-

phy, connectivity, and dispersal patterns to more applied

fields of conservation genetics, invasion genetics, and

protected areas design. Nowadays, the consideration of

multispecies genetic conservation objectives is seen as

crucial to preserve community-wide genetic and evolu-

tionary patterns (Vellend et al. 2014, Nielsen et al.

2017).

The main problem for the application of eDNA or

community DNA to analyze intraspecies patterns lies in

the fact that this technique generates a high number of

reads containing sequencing errors, which can occur at

different steps in the procedure. Reads obtained by

amplification and sequencing can be thought of as a

“cloud” of erroneous sequences surrounding the correct

one (Edgar and Flyvbjerg 2015). Sequencing errors will

typically occur as low-abundance reads with one or few

base changes, while errors during amplification (PCR

point errors, chimeras) have the potential of generating

“daughter clouds” as they can reach higher read abun-

dances (Edgar and Flyvbjerg 2015). As erroneous

sequences in general diverge very little from the true

sequences, they are often incorporated into the right

MOTU during the clustering step, thus reducing poten-

tial impacts on the results of “standard” metabarcoding

approaches. However, they can severely bias intraspecies

genetic patterns by artificially inflating the true haplo-

type diversity. Thus, separating the “wheat” (true

Article e02036; page 2 XAVIERTURON ET AL.
Ecological Applications

Vol. 30, No. 2



sequences) from the “chaff” (false sequences) is the main

challenge for the application of metabarcoding data to

metaphylogeography.

To our knowledge, the problem of the correct assess-

ment of intraspecific genetic diversity from community

DNA in complex samples has been explicitly addressed

only in a recent work by Elbrecht et al. (2018a). Using

a single-species mock sample with known Sanger-

sequenced haplotypes, they assayed a combination of

denoising procedures to reduce the number of spurious

haplotypes obtained using a metabarcoding pipeline.

They then applied the best performing strategy to nat-

ural samples of freshwater invertebrates, deriving pop-

ulation genetic patterns for some of the species

present.

We sought here to develop a practical strategy to make

metabarcoding data sets amenable to phylogeographic

studies. There are an ever-increasing number of such

data sets publicly available in repositories. Mining COI-

metabarcoding data has been suggested for species dis-

covery (Porter and Hajibabaei 2018b), and these data-

bases can be a resource for phylogeography as well.

These data comprise different information, from raw

sequences to filtered and paired sequences to simply

MOTU tables. In many cases, no ground truth data or

mock community analyses exist for them. We therefore

need a strategy for cleaning noisy databases in the

absence of ground truth information. We contend that

the properties of coding sequences such as COI can pro-

vide such a strategy. Indeed, coding DNA sequences nat-

urally have a high amount of variation concentrated in

the third position of the codons, while errors at any step

of the metabarcoding pipeline would be randomly dis-

tributed across codon positions. Examination of the

change of diversity values (measured here as the entropy

of each position; Schmidt and Herzel 1997) as we elimi-

nate noisy sequences can therefore guide the choice of

the best cleaning parameters in the presence of an

unknown amount of noisy data. Entropy values have

been used previously to guide sequence trimming (Porter

and Zhang 2017) and OTU clustering (Eren et al. 2015),

but never before in the context of distinguishing true

variation from erroneous sequences.

A parallel inspection of the distribution of sequences

across samples is also necessary. Error-containing

sequences will typically co-occur in the same sample

with the correct sequence, albeit with less abundance,

and co-occurrence patterns can be incorporated to

detect these sequences in cleaning steps. At the same

time, while error sequences are likely to appear ran-

domly in the samples, true sequences should feature a

given ecological distribution, meaning that a sequence

appearing in all replicates of a community, for instance,

is unlikely to be an error. Distribution patterns of

sequences have been suggested to guide MOTU calling

or MOTU curating procedures (Frøslev et al. 2017,

Olesen et al. 2017), but have not been applied, to our

knowledge, for within-MOTU sequence curation.

Combining patterns of variation in entropy and

sequence distribution patterns can lead to meaningful

ways to reduce noisy data sets to operational data sets.

This approach can be used to generate customized pro-

cedures for each different study system that take into

consideration its particulars (replication level, pre-filter-

ing applied, clustering procedure). It only requires that,

for a given study, the information about which sequences

have been pooled in each MOTU in the clustering step,

with their sample distribution, is provided.

We want to point out that the “metaphylogeography”

concept is not equivalent to “conventional phylogeogra-

phy of many species,” and we therefore need to adapt

some definitions. In particular, relative frequencies of

reads of the different haplotypes are available instead of

the relative frequencies of individuals bearing these.

These are unlikely to be equivalent. The high difference

in number of reads that can be obtained in metabarcod-

ing can easily reach orders of magnitude and is hardly

representative of conventional frequencies based on the

number of individuals bearing a particular haplotype.

Further, the quantitative value of metabarcoding data is

debatable (Elbrecht and Leese 2015, Wares and Pap-

palardo 2016, Pi~nol et al. 2019). Once we have a curated

data set, we suggest performing phylogeographic infer-

ence using a semiquantitative abundance ranking

applied within each MOTU as a compromise between a

strictly quantitative interpretation of the data, on one

hand, and losing all the information contained in the

number of reads on the other. For comparative infer-

ence, the traditional analytical framework including

haplotype networks, AMOVA, and the like, is perfectly

valid if one keeps in mind these differences in the inter-

pretation of results.

In the present study, we developed cleaning strategies

to make community data derived from COI amplicon

sequencing amenable to the analysis of intraspecific vari-

ation. As a case study, we used a COI-based metabar-

coding survey of biodiversity of sublittoral marine

benthic communities. We then extracted phylogeo-

graphic trends from the MOTUs obtained with the best

pruning parameters selected. We finally compared

results with those of traditional phylogeographic studies

for two species for which information exists for the same

(or nearby) sampling areas. Our general goal was to

show the feasibility of the metaphylogeographic

approach using a “standard” metabarcarcoding data set

obtained from natural samples.

MATERIAL AND METHODS

Data set

The data set consisted of COI-based biodiversity data

obtained from benthic marine communities in two Span-

ish National Parks, one in the Atlantic and one in the

Mediterranean (Appendix S1: Fig. S1). The data set has

different replication levels: over time (two years), within
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communities (sample replicates), and within samples

(size fractions). Sample collection and processing fol-

lowed Wangensteen and Turon (2017) and Wangensteen

et al. (2018a). In short, several communities were sam-

pled in 2014 and 2015 by completely scraping off stan-

dardized 25 9 25 cm quadrats in hard bottom

substrates or by sampling with PVC corers, 24 cm in

diameter, in detritic communities. Three replicate sam-

ples were collected per community, and each sample was

then separated through sieving into three size fractions

(>10 mm, 1–10 mm, 63 lm–1 mm, roughly correspond-

ing to mega-, macro-, and meiobenthos; Rex and Ettter

2010). A total of 51 samples separated in 153 fractions

were included in the present study (Table 1).

The sampling performed in 2014 included four com-

munities in the Mediterranean Park (Cabrera Archipe-

lago, Balearic Islands) and four in the Atlantic Park

(Atlantic Islands of Galicia). These communities were,

in each Park, two well-lit communities, one deeper,

invertebrate-dominated, community, and a detritic bot-

tom with coralline algae (Table 1). In 2015, the sampling

was repeated on the same localities and communities,

except for a new community sampled in Cabrera (Cau-

lerpa cylindracea community) and the change of one of

the two well-lit communities in the Atlantic (Asparagop-

sis armata community instead of Cystoseira tamariscifo-

lia community, Table 1). Wangensteen et al. (2018a)

reported a- and b-diversity results of the sampling per-

formed in 2014, while some of the communities sampled

in 2015 were used in a study of the effect of invasive sea-

weeds (Wangensteen et al. 2018b).

Samples were extracted and sequenced using the

Leray-XT primer set, a modification of the Leray et al.

(2013) primers for a 313 base pair (bp) fragment of COI,

with the adequate blanks and negatives, following proce-

dures detailed in Wangensteen et al. (2018a). Separate

libraries were built with samples from 2014 and 2015

and sequenced in two runs on an Illumina MiSeq plat-

form (2 9 300 bp paired-end) at Fasteris SA (Plan-les-

Ouates, Switzerland).

For the present study, we pooled the reads of the two

years and analyzed the joint data set with a pipeline

based mostly on the OBITools suite (Boyer et al. 2016).

The length of the raw reads was trimmed to a median

Phred quality score higher than 30, after which paired-

reads were assembled using illuminapairedend. The

reads with paired-end alignment quality scores higher

than 40 were demultiplexed using ngsfilter, which also

removed the primer sequences. For this study, we applied

a strict length filter keeping only sequences of the

expected length (313 bp). Identical sequences were then

dereplicated (using obiuniq) and chimeric sequences

were detected and removed using the uchime_denovo

algorithm implemented in vsearch v1.10.1 (Rognes et al.

2016). At this step, we discarded sequences with just one

read in all the data set, as is common practice in

metabarcoding studies. We clustered sequences into

MOTUs using the SWARM2 method (Mah�e et al.

2015), with a d-parameter of 13. This parameter was set

for the COI fragment used here after comparing the

number of MOTUs obtained at different values and

checking that this number remained constant for values

of d in the range of 9–13. The value of d = 13 has been

previously used in other studies involving the same COI

fragment (Mac�ıas-Hern�andez et al. 2018, Kemp et al.

2019, Siegenthaler et al. 2019).

TABLE 1. Sample characteristics, with indication of locality, type of community, dominant species, depth, coordinates, and
number of replicate samples collected in each study year.

No. samples

National park, community, and dominant species Depth (m) Coordinates 2014 2015

Cabrera Archipelago

Photophilic algae

Lophocladia lallemandii 7–10 39.1250°N, 2.9603° E 3 3

Padina pavonica 7–10 39.1250°N, 2.9603° E 3 3

Sciaphilic algae

Sponges and invertebrates 30 39.1250°N, 2.9603° E 3 3

Caulerpa cylindracea 30 39.1250°N, 2.9603° E – 3

Detritic bottoms

Coralline algae 50 39.1249°N, 2.9604° E 3 3

Atlantic Islands

Photophilic algae

Cystoseira nodicaulis 3–5 42.2259° N, 8.8969° W 3 3

Cystoseira tamariscifolia 3–5 42.2260° N, 8.8970° W 3 –

Asparagopsis armata 4–6 42,2146° N, 8.8973° W – 3

Sciaphilic algae

Saccorhiza polyschides 16 42.1917° N, 8.8885° W 3 3

Detritic bottoms

Coralline algae 20 42.2123° N, 8.8972° W 3 3
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The taxonomic assignment of the MOTU was per-

formed using ecotag (Boyer et al. 2016), which uses a

local reference database and a phylogenetic tree-based

approach (using the NCBI taxonomy) for assigning

sequences without a perfect match. Ecotag searches the

best hit in the reference database and builds the set of

sequences in the database that are at least as similar to

the best hit as the query sequence is. Then, the MOTU is

assigned to the most recent common ancestor to all

these sequences in the NCBI taxonomy tree. With this

procedure, the assigned taxonomic rank varies depend-

ing on the similarity of the query sequences and the den-

sity of the reference database. We developed a mixed

reference database by joining sequences obtained from

two sources: in silico ecoPCR against the release 117 of

the EMBL nucleotide database and a second set of

sequences obtained from the Barcode of Life Datasys-

tems (Ratnasingham and Hebert 2007) using a custom

R script to select the Leray fragment. Details of this

newly generated database (db_COI_MBPK) are given in

Wangensteen et al. (2018a). It includes 188,929 reference

sequences and is available online.5

Following the pipeline, we generated an MOTU list

and assigned a taxonomical rank to each MOTU. Non-

eukaryotic MOTUs were removed. Occasionally, two or

more MOTUs received the same species-level assign-

ment, in which case, only the most abundant MOTU

was retained and the reads of the others were added to it

(this happened in 349 species). We also pooled the

sequences of the three fractions of each sample for

downstream analyses. For the goal of this study, not all

MOTUs carried the phylogeographic information

sought (i.e., genetic variation within and between com-

munities and seas). We therefore performed a previous

selection in which we included MOTUs that had at least

two different sequences (i.e., displayed intra-MOTU

structure). We also required that the MOTU appeared in

the two Parks with 20 or more reads in each one, and

appeared at least once in each of the two study years. We

acknowledge that this selection is arbitrary, but these

limits were set to ensure that the MOTUs were mini-

mally abundant and widely distributed for reliable phylo-

geographic inference. Note that this MOTU selection

does not imply that discarded MOTUs are artefacts, but

simply that they are not useful for population genetics

inference (e.g., one MOTU appearing only in a given

community, even if abundant).

Using the list of retained MOTUs, the original

sequence file, and the information of which sequence

belongs to each MOTU (contained in the output of the

clustering program used to generate MOTUs), we

obtained separate MOTU files containing, for each

MOTU, all sequences included with their abundances in

the different samples. We then aligned sequences within

each MOTU with the msa R package (Bodenhofer et al.

2015), and misaligned sequences, likely due to slippage

of degenerate primers (Elbrecht et al. 2018b), were

detected and eliminated.

Simulation analysis

All data manipulation and analyses were conducted

using R software (R Development Core Team 2008). To

avoid confusion between different terms, sometimes used

interchangeably, we will use the name denoising to refer

to any procedure that tries to infer which sequences con-

tain errors and merges their reads with those of the cor-

rect “mother” sequence. We will call filtering any

method that actually deletes sequences from the data set,

based on abundance thresholds or otherwise. Clustering

will refer to any procedure for combining sequences,

without regard to whether they are correct or not, into

meaningful MOTUs.

We ran a simulation study to infer the best cleaning

strategy and the best parameters for our data. The

rationale was to start with a known data set, introduce

sequencing errors, and clean it again to recover the

original data set. We used a custom R script for this

simulation. Following Wang et al. (2012), we consid-

ered that the 1,000 sequences with highest frequency (in

read number) in our data set were error free, and used

them for parameter estimation on a data set representa-

tive of our actual sequences. For this simulation, we did

not keep the ecological information and used just the

total number of reads of each of these 1,000 top

sequences.

We simulated that these allegedly correct amplicons

were sequenced with error rates between 0.001 and 0.01

per base, bracketing values published for HTS sequen-

cers and, in particular, for the MiSeq platform (Schirmer

et al. 2016, Pfeiffer et al. 2018). For simplicity, we

assumed a constant error rate for all bases in a sequence,

albeit we acknowledge that this is a simplification as

sequence features such as homopolymer regions make

some positions more prone to errors (Taberlet et al.

2018).

For the highest error rate (0.01), we then denoised the

resulting sequences using a procedure adapted from the

algorithm of Edgar (2016). We merged the reads of pre-

sumably incorrect daughter sequences with those of the

correct mother sequences if the number of sequence dif-

ferences (d) is small and the abundance of the incorrect

sequence with respect to the correct one (abundance

ratio) is low. The higher the number of differences, the

lower the ratio should be for the sequences to be merged.

This was formalized by the expression (Edgar 2016)

bðdÞ ¼ 1=2adþ1

where b(d) is the maximum abundance ratio allowed

between two sequences separated by d changes so that

the less abundant was merged with the more abundant.

The a parameter is user-settable to seek a compromise

between accepting as correct erroneous sequences (high5 http://github.com/metabarpark/Reference-databases
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a values) or merging true sequences (low a values). The

denoising was done for values of a from 10 to 1.

We analyzed changes in diversity of the different

codon positions as we introduced increasing levels of

noise (erroneous reads) and as we denoised the data set

with increased stringency (lower a values). As a measure

of diversity, we used the Shannon entropy value com-

puted with the R package entropy (Hausser and Strim-

mer 2009). We expected that random error will increase

more the entropy of the less variable position (second

position of the codons) and less the entropy of the third,

more variable, position. Thus, the entropy ratio (here-

after Er)

Er ¼ entropy position2=entropy position3

was expected to increase as simulated error rates

increased and to decrease when denoising. After each

round of denoising we noted the number of original

sequences remaining, the number of noisy sequences

remaining, and the entropy ratio of the sequences. We

expected that at some value of a the Er will reach the

original value and remain more or less constant after-

wards. As at this point many erroneous sequences

remained in the data set (see Results), we completed the

simulation with a filtering procedure in which low fre-

quency sequences were eliminated.

We assayed a range of minimal number of reads to

keep a sequence and looked at the number of original

and noisy sequences remaining, as well as their entropy

ratio. As before, we expected the Er to decrease markedly

and stabilize after some threshold is reached. The best a

parameter and the best minimal number of reads should

allow us to recover most of the original sequences with

as few erroneous sequences as possible.

Data set cleaning

The cleaning procedure followed the findings of the

simulation and was therefore based on two steps: denois-

ing (without loss of reads) and filtering by minimal

abundance (with loss of reads). We applied denoising

within defined MOTUs, under the assumption that most

erroneous sequences would have been included in the

same MOTU as the correct sequence, and thus sequence

distances and abundances, a key part of the denoising

algorithm, are more meaningful if compared within

MOTUs. Once denoising was complete and, thus, all

“salvageable” sequences had been merged with the cor-

rect sequence, the second step consisted of an abundance

filtering, in which low-abundance sequences, likely erro-

neous, “surviving” the denoising step were eliminated.

During the previous steps, co-occurrence patterns

were used to avoid merging or eliminating sequences

whose sample distribution and co-occurrence patterns

suggested they were not artifacts (for instance, sequences

that do not co-occur with similar sequences will not be

merged with them, and sequences found in all replicates

of a community will not be filtered out). The use of dis-

tribution data can reduce the risk of eliminating true

sequences, particularly when they are present at low

abundances (e.g., reflecting a low biomass of the organ-

ism).

To allow a daughter sequence presumed to be a

sequencing error to be merged with a more abundant

mother sequence, we required that the former co-occurs

with the latter. This is formalized by a co-occurrence

(Cocc) ratio in the form

COCC ¼ daughter=ðdaughter þ motherÞ

were daughter is the number of samples with only the

daughter sequence and daughter + mother is the num-

ber of samples with the daughter and the mother

sequence. The higher the ratio, the less we will merge

sequences, as we require a higher co-occurrence with the

mother sequence.

We set this parameter to a value of 1 (i.e., whenever a

daughter sequence was present, the mother sequence

was present in the same sample). Any “daughter”

sequence with co-occurrence ratio <1 was considered a

genuine sequence and was not merged. This is a conser-

vative value that seeks to avoid merging potentially good

sequences. It was set considering that we enforce the

presence at the sample level, and not at the fraction level,

which means that the sequence needs to be present in

just one of the three fractions (10 mm, 1 mm, 63 lm) of

the sample. In preliminary assays, changing Cocc influ-

enced the number of sequences retained, but represented

little change in the entropy ratios obtained. In addition,

in the filtering step sequences appearing in all replicates

of a given community were considered correct and not

filtered out, even if present at low abundance.

Taking these distribution patterns into consideration

we applied the denoising and filtering steps. A diagram-

matic representation of the pipeline used is presented in

Fig. 1. Denoising was performed at a values between 10

and 1, and for the best-performing a, filtering was done

for increasing minimal numbers of reads from 2 to 100.

After each round of sequence denoising or filtering, the

MOTUs were examined and retained only if they still

met the requirements of having at least two sequences,

appearing in the two Parks with 20 or more reads in each

one, and appearing at least once in the two study years.

The changes in Er of the retained MOTUs were exam-

ined over the range of a and minimal abundance values.

In both cases, the entropy ratio should decrease and, fol-

lowing the simulation results, the points where it became

stabilized (we chose as a threshold the point at which the

slope fell below 0.005) were used as optimal parameter

cutoffs.

Finally, even if sequences retained were mostly correct,

they can still include a number of nontarget variants due

to heteroplasmy or numts (Elbrecht et al. 2018a). How-

ever, numts tend to accumulate mutations resulting in

stop codons (Song et al. 2008). They can also present
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amino acid substitutions that result in a non-functional

protein: Pentinsaari et al. (2016) found 23 amino acids

completely conserved across the COI barcode region in

Metazoa, corresponding mostly to the helices of the pro-

tein that penetrate the mitochondrial membrane. Five of

these amino acid positions occur in the fragment

sequenced here. Some numts can therefore be detected

by inspecting the sequences retained, as has been done

in previous metabarcoding studies (Leray et al. 2013).

As the data set included many different eukaryotic

groups with different genetic codes, we adopted a con-

servative approach. For each MOTU, we tried the 20

genetic code variants stored in the Biostrings R package

(Pag�es et al. 2018) and used the translate function to

obtain the corresponding amino acid sequence. We then

chose, for each MOTU, the genetic code giving the lower

number of stop codons (often several code variants

resulted in no stop codons). In addition, we verified (for

the metazoan MOTUs) that the five conserved positions

described above did not have any amino acid substitu-

tion. The MOTUs denoised with the optimal a-value

(first step), once filtered with the optimal abundance cut-

off (second step) were checked for the presence of stop

codons and amino acid changes, and the sequences

presenting them were removed from the data set. The

remaining MOTUs and sequences constituted the

curated data set for further analyses (Fig. 1).

Metaphylogeographic analyses

We performed network analyses with function Hapl-

oNet of the R package pegas (Paradis 2010). We used

function amova of the R package ade4 (Dray and

Dufour 2007) to compute analyses of molecular variance

(AMOVA) in order to ascertain the percent variation

associated with the hierarchical organization of the sam-

ples. For AMOVA, we used the proportion of the differ-

ent sequences present (option distances = NULL).

Preliminary assays considering also sequence distances

(not just sequence frequencies) gave highly similar

results and were computationally slower.

In these analyses, we needed to capture the quantita-

tive information regarding frequencies of the different

sequence variants. As mentioned above, using number of

reads as a proxy for individual-based abundances can be

misleading. We adopted a semiquantitative index based

on Wangensteen et al. (2018b) applied within each

MOTU. To obtain this semiquantitative ranking, we

ordered the sequences of each sample in each MOTU by

increasing number of reads and ranked them from 0 to

4, indicating that the sequence is either absent in that

sample (rank 0) or falls in the following percentiles of

the distribution of ordered sequences: rank 1, ≤50%;

rank 2, >50 ≤ 75%; rank 3, >75 ≤ 90%; rank 4, >90%.

These semiquantitative ranks were used as proxies for

haplotype abundances in the analyses.

Comparison with previous studies

After examination of the curated MOTU data set, we

found only two species for which conventional phylogeo-

graphic analyses had been performed using COI infor-

mation in the same geographic area: the sea urchin

Paracentrotus lividus and the brittle star Ophiothrix frag-

ilis.

For Paracentrotus lividus, we collated haplotype infor-

mation from studies spanning the Atlanto-Mediterra-

nean transition (Duran et al. 2004), trimmed the

sequences to the same fragment amplified in our study,

and compared the haplotypes with the ones encountered

in our metabarcoding data set. Duran et al. (2004)

included two populations close to our localities: Eivissa

Island in the Balearic Archipelago, and Ferrol in the

Galician coast. Networks were generated with the haplo-

types found in these localities and compared with our

results.

For Ophiothrix fragilis, our MOTU corresponded to

Lineage II of P�erez-Portela et al. (2013). This brittle star

is in fact a complex of species, and Lineage II is likely a

cryptic species (Taboada and P�erez-Portela 2016), but it

remains unnamed so far. As before, we extracted haplo-

type information from all localities in P�erez-Portela

FIG. 1. Schematic representation of the pipeline followed in
this study. SeeMethods for details. The red arrows and text indi-
cate the two steps in the pipeline where parameter selection
should be carried out based on entropy values. MOTU, molecu-
lar operational taxonomic unit.
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et al. (2013), spanning the Atlanto-Mediterranean area,

and compared with our results. We also obtained haplo-

type networks for the two closest populations studied in

that work: Alcudia in the Balearic Archipelago and Fer-

rol in the Galician coast.

RESULTS

The data set

The original data set, once quality and length filtered,

contained 25,772,264 sequences of 8,900,080 unique

sequences. Without singletons, the numbers were

reduced to 17,808,524 reads and 936,340 unique

sequences. Following the pipeline, we obtained a MOTU

list of 26,561 eukaryote MOTUs. Of these, 13,410

MOTUs were present only in the Mediterranean site,

8,247 only in the Atlantic locality, and 4,904 were shared

by both basins. Of the latter, only 722 MOTUs (with a

total of 362,177 unique sequences and 9,430,236 reads)

fulfilled the conditions that we set for the metaphylogeo-

graphic analyses (see Methods) of having at least two

sequences, being present in the two Parks with at least

20 reads in each one, and having appeared in the two

years of study. After checking the alignment, only 158

sequences, comprising 689 reads, appeared as misa-

ligned, mostly as a result of 1 bp slippage, and were

removed. The singleton-free fasta sequence file (paired,

demultiplexed, and quality-filtered), the original MOTU

list, and the output of the SWARM analyses have been

uploaded as a Mendeley data set (see Data Availability).

The 722 MOTUs selected for the study are listed in Data

S1, together with their taxonomic assignment and abun-

dance (number of reads) per sample. The actual

sequences of each MOTU, with their abundances per

sample, are available at the Mendeley data set.

Simulation study

In our case, the top 1,000 sequences in the 722

MOTUs data set contained 5,948,135 reads. The entropy

values of the codon positions of these sequences

were: first position, 0.4298 � 0.037 bits (mean � SE);

second position, 0.1833 � 0.028 bits; third position,

0.9256 � 0.023 bits. The simulation of increasing

sequencing error rates clearly increased the entropy of

the three positions (Fig. 2A), but more so for the less

variable second position, which increased its value ~30%

at the highest error rate. On the other hand, the third

position increased entropy only about 1.8%. As a result,

the entropy ratio (Er, entropy2/entropy3) increased lin-

early with error rate, from 0.198 to 0.252 (Fig. 2B).

We then used the “noisy-most” data set, the one simu-

lated at the highest (0.01%) error rate. It had the same

original number of reads, but 5,141,683 erroneous

sequences (besides the 1,000 correct ones) were gener-

ated. For coherence with the global data set used, single-

tons were removed, leaving 144,791 sequences. This data

set was then denoised at a values between 10 (least strin-

gent) and 1 (most stringent). The Er decreased drasti-

cally at the initial steps, concomitantly with a decrease in

the number of erroneous sequences (Fig. 3A). The Er

value of the simulated data set reached the original value

at a between 6 and 5. Taking the more conservative

a = 5, which is also the point where the entropy curve

levelled off (slope < 0.005), we found that the data set

contained 895 of the original sequences and 17,799 erro-

neous sequences. In other words, while ~10% of the orig-

inal sequences have been incorrectly merged, there

remained still a high number of errors in the data set.

Using only the denoise procedure, we got completely rid

of erroneous sequences only at a = 1. But at this value

only 66% of the correct sequences were retained.

We therefore applied a round of filtering by minimal

number of reads to the data set denoised at a = 5.

Again, the Er decreased sharply at increasing thresholds

of minimal reads, following the elimination of erroneous

sequences (Fig. 3B), and stabilized clearly at seven reads

(Fig. 3B). The combination of denoising (a = 5) and fil-

tering (minimal abundance = 7) allowed us to recover

924 sequences, of which 895 (97%) were among the

1,000 original sequences and only 3% were erroneous

sequences. The frequency distribution of the number of

reads in both the original (1,000) and the recovered

(924) sequences was almost identical (not shown).

Importantly, the shape of the Er curve, specifically the

stabilization points, proved informative to select the cut-

points for the two variables.

Data set cleaning

As a first step, we tried to identify PCR errors dur-

ing amplification, as they can result in abundant

sequences and be more difficult to spot. We assumed

that PCR errors will affect one nucleotide at most,

will occur in few samples, where they will coexist with

the original sequence, and will be abundant. Therefore,

we looked within the 722 MOTUs for sequences dif-

fering by one nucleotide from a more abundant one,

co-occurring always with it, being present in at most

three samples (out of 51 samples), and having an

abundance of >200 reads (set as a threshold to iden-

tify relatively abundant sequences). Only 14 such

sequences were identified and merged with the more

abundant ones.

After applying the denoising step for a values from 10

to 1 and a co-occurrence index of 1 to the whole data set

of 722 MOTUs, we examined the change in number of

retained MOTUs and entropy ratio (Fig. 4A). The num-

ber of MOTUs remained constant but started decreasing

at a = 6. As expected, the Er decreased fast at first and

more slowly at lower a-values (i.e., with higher merging

power) (Fig. 4A). The curve leveled off (slope below

0.005) at a = 5, with only a slight loss of MOTUs (six

out of 722). We thus retained a = 5 as the optimal

denoising parameter.
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FIG. 2. Simulation analysis. (A) Relative increase (initial value = 1) of the entropy values of each position at increased error
rates. Bar plot shows the original and added entropy of each position at the highest (0.01) error rate. (B) Change in the entropy
ratio. (C) Bar plot showing the original and added entropy of each position at the highest (0.01) error rate.
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The MOTU list corresponding to the denoised data

set had 716 MOTUs, with 49,995 sequences (86% of the

original sequences had been merged) and 9,426,339

reads (Data S1). The corresponding MOTU files (avail-

able at the Mendeley data set; see Data Availability) were

submitted to an abundance filter, with a threshold from

2 to 100 reads. There was a decrease the number of

MOTUs retained at increasing minimal numbers of

reads, particularly in the interval 2–50 (Fig. 4B). The

entropy ratio fell markedly and became stabilized at a

FIG. 3. Simulation analysis. (A) Variation in the number of original and erroneous (“noisy”) sequences and entropy ratio at
decreasing values of the alpha parameter of the denoising algorithm (ND, no denoising). (B) Change in the entropy ratio and in
proportion of noisy vs. original sequences after filtering the data set by minimal abundance. The gray bars indicate the selected val-
ues of alpha (5) and minimal number of reads (7).
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value of 20 reads, after which it remained more or less

constant (Fig. 4B). Thus, 20 reads was used as a mini-

mal abundance threshold.

The sequences of the resulting MOTU files were trans-

lated and checked. Only eight sequences had stop

codons, while a further 52 metazoan sequences had

amino acid changes in the five positions invariable in

Metazoa. These 60 sequences were eliminated, and the

final MOTU list thus consisted of 563 MOTUs, with

7,146 sequences and 8,910,913 reads (Data S2). The final

MOTU files were uploaded to the Mendeley data set

(see Data Availability).

As for the taxonomy assigned, the most diverse

groups of Eukarya in the final data set were Rhodo-

phyta (91 MOTUs), Stramenopiles (90 MOTUs,

mostly diatoms and brown algae), and Metazoa (273

MOTUs) (Data S2). A total of 99 eukaryotic MOTUs

remained unassigned taxonomically (identified as

Eukarya). Among metazoans, 112 MOTUs were

assigned a species-level taxon, while 225 MOTUs were

assigned at least at the phylum level and 48 MOTUs

remained unassigned (Data S2). The phyla of meta-

zoans identified in the final MOTU list were Annelida

(34 MOTUs), Arthropoda (56 MOTUs), Bryozoa (17

MOTUs), Chordata (eight MOTUs), Echinodermata

(seven MOTUs), Mollusca (22 MOTUs), Nemertea

(six MOTUs), Porifera (30 MOTUs), and Xenacoelo-

morpha (one MOTU).

Further analyses concentrated in the major groups

detected, which accounted for 437 of the 464 MOTUs

that could be assigned: red algae (Rhodophyta), diatoms

(Bacillariophyta), brown algae (Phaeophyceae), and

metazoans (Metazoa). In the latter, phylum-level analy-

ses were performed.

FIG. 4. Final analyses of the littoral communities data set. (A) Variation in the number of sequences and number of MOTUs
remaining at decreasing values of the alpha parameter (ND, no denoising) of the denoising algorithm. (B) Change in the entropy
ratio and (C) change in residual (within-sample) variance of the amova model. The gray bars indicate the selected alpha value (5)
and abundance threshold (20).
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Phylogeography

Network graphs of the MOTUs (Appendix S2)

showed different patterns, albeit in most cases one or a

few haplotypes appeared as the most abundant, linked

to a varying number of low abundance haplotypes. Some

selected instances are presented in Fig. 5, showing also

the change in network shape along the process of clean-

ing. It can be seen that the major pruning effect was due

to the initial denoising step.

AMOVAs were used to partition the genetic variance

hierarchically into components due to the differences

between seas, between communities within seas, between

samples (replicates) within communities, and within

samples. The average values of these variance compo-

nents for the major groups detected, and for metazoan

phyla separately, displayed a clear overall trend: genetic

variance was concentrated within samples (60–75%) in

all major groups (Fig. 6A). The other components of

variance followed a decreasing trend, with a remarkable

variance associated to differentiation between the two

seas (14–25% of variance), and smaller variance between

communities within each sea, and even lower between

replicate samples of a given community. The latter com-

ponent was almost negligible (<1.2%) in the non-

metazoan groups considered, but reached 5.4% in meta-

zoans. The different components were compared across

groups with ANOVA (followed by Student-Newmann-

Keuls post hoc tests if significant). The between sample

component was significantly higher (all P < 0.001) in

metazoans than in the other groups. For the other com-

ponents, the values were in general comparable, the only

significant differences being a higher between seas differ-

entiation in diatoms than in metazoans, and a higher

within sample variance in red algae than in diatoms.

Metazoans therefore showed a higher heterogeneity

between replicate samples of a given community than

the other groups. When examined across phyla

(Fig. 6B), albeit the overall trend was in general main-

tained, a dominant within sample component and a vari-

ance between seas > between communities > between

samples, there were exceptions. In particular, molluscs

had a high between sample variability, and other groups

presented important small-scale (between communities

and/or between samples) variability as compared to the

between seas differentiation (Cnidaria, Nemertea, Pori-

fera). ANOVA showed few significant differences

between phyla, the only significant comparisons involv-

ing the between samples component in molluscs, which

was significantly higher than in bryozoans or sponges.

As for the comparison with previous studies, MOTU

697 was identified as the sea urchin Paracentrotus lividus

with 100% sequence identity. This MOTU had 15

sequences. This species has an Atlanto-Mediterranean

FIG. 5. Selected instances of networks obtained at different stages of the pipeline: (A) without filters; (B) after denoising at
alpha = 5; (C) after denoising at alpha = 5 plus minimal abundance filtering (threshold 20 reads). Circles represent haplotypes, and
their diameters are proportional to their abundance (in semiquantitative ranks) in the samples. Blue color represent abundance in
Mediterranean samples, red color in Atlantic samples. Length of links is proportional to the number of mutational steps between
haplotypes. Note that circles in panels A, B, and C are not drawn to the same scale. The names correspond to the taxonomical iden-
tification of the MOTUs with ecotag (OBITools package). The MOTU ids (as per Data S1) are, from left to right, 143, 1740, 2500,
and 25366.
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FIG. 6. Summary of the mean percentage of variance explained by the hierarchical structure of the AMOVA: (A) as per eukary-
ote groups; (B) per metazoan phyla. Error bars are standard errors. Btw seas, between seas; btw comm, between communities within
seas; btw samples, between samples within communities; wtn samples, within samples.
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distribution and Duran et al. (2004) analyzed popula-

tions spanning the western Mediterranean and northeast

Atlantic with COI. In that work, 65 different haplotypes

(of a longer fragment of COI) were detected. Once

trimmed to our sequence length and collapsed, there

were 32 remaining haplotypes. Nine out of the 15

sequences detected in our study had already been found

by Duran and co-workers, while the remaining six were

new.

We then selected the haplotypes found in the previous

work in the two localities closest to our sampling points

(Eivissa in Balearic Islands and Ferrol in Galicia). There

were 11 haplotypes (four of which were also present in

our MOTU). We performed a network with the 2004

information and compared it with the one obtained for

MOTU 697 with our semiquantitative abundance rank

(Fig. 7A, B). The two networks had a similar shape,

with a highest abundance of haplotype 2 (named after

the order of abundance of sequences obtained for this

MOTU), followed by haplotypes 1, 3, and 6. For the

shared haplotypes, the between seas distribution was the

same in the two studies (1, 2, and 3 shared between seas,

six present only in the Atlantic). An AMOVAwith a ran-

domization test (n = 1,000) of our MOTU 697 revealed

a significant differentiation between seas and between

and within samples (P < 0.001) but not between com-

munities (P = 0.812).

The MOTU 15396, comprising 37 sequences, was

identified (100% identity) with Ophiothrix sp. in P�erez-

Portela et al. (2013). In that work, the authors studied a

controversial species complex of the genus Ophiothrix in

the European waters using 16S and COI. Our sequences

corresponded to the Lineage II of Ophiothrix fragilis in

that work, that spanned from Britanny to Turkey. P�erez-

Portela et al. (2013) reported 125 haplotypes of Lineage

II that, once trimmed to our 313 bp length, resulted in

90 different haplotypes. When merged with our data set,

nine out of 37 sequences in MOTU 15396 had already

been found in the previous study, while another 28 were

new.

As before, we selected in P�erez-Portela et al. (2013)

the two localities closest to our sampling points (Alcudia

in Balearic Islands, and Ferrol in Galicia). There were 29

haplotypes in these localities, of which five were shared

with our study. The corresponding networks (Fig. 7C,

D) showed a star-shaped structure with a dominant hap-

lotype 1 found in the two studies, with many low abun-

dance sequences separated by one or a few mutations

from the central haplotype and some longer branches. It

is noteworthy that, in this case, the shared haplotypes do

not have always the same inter-basin distribution, thus,

haplotype 1 was present in both oceans, but haplotypes

3, 8, and 5 present only in the Mediterranean site in the

previous work, appeared now in the two seas (it should

be noted that haplotype 3 did appear in other Atlantic

sites in P�erez-Portela et al. 2013). Finally, haplotype 20

was present only in the Mediterranean site in P�erez-

Portela et al. (2013) and only in the Atlantic locality in

the present work. An AMOVAwith a randomization test

(n = 1,000) of our MOTU 15396 showed a significant

component of variation related to between and within

samples genetic variability (P < 0.001), but not between

seas (P = 0.729) or between communities within seas

(P = 0.212).

DISCUSSION

In this study, we have developed a method to apply

metabarcoding data sets to the study of intraspecies pat-

terns of many species at a time using a highly variable

coding fragment (COI). An initial denoising step, aimed

at merging erroneous sequences with the correct ones,

was followed by an abundance filtering step aimed at

removing the remaining erroneous sequences. We used

information from the variability of the different codon

positions, following a simulation study, to select the best

parameter values in the denoising and filtering steps. In

addition, sample distribution information was used in

the different steps to minimize loss of low abundance

true sequences.

All cleaning procedures are a compromise between

eliminating spurious sequences and losing true signal. In

the benchmarking approach of Elbrecht et al. (2018a),

943 erroneous haplotypes appeared in a sample known

to have only 15 before any processing. After a denoising

process, 15 haplotypes remained but, of these, 6 (40%)

were still sequences not present in the original sample,

while 6 of the 15 original variants were discarded during

the process. Clearly, separating wheat from chaff is a

challenging problem.

In this study, we suggest an operational approach

based on the stabilization of the entropy ratio to guide

the cleaning procedures. Both the simulation approach

and the analysis of the real data set pointed to an a-

value of 5 in the denoising step, which was also the opti-

mal value selected in Elbrecht et al. (2018a). Whether

this value can be taken as a general rule of thumb or not

will require analyses of more data sets. For the filtering

step, our method indicated 20 reads as the optimal

threshold. This is a parameter that will likely vary

between studies and should be optimized for each partic-

ular data set.

Some authors proposed that denoising should be per-

formed before clustering to identify genuine sequence

variants, using different procedures, such as the

UNOISE2 algorithm that we have adapted here (Edgar

2016), the MED (minimum entropy decomposition;

Eren et al. 2015) procedure, or the DADA2 algorithm

(divisive amplicon denoising algorithm; Callahan et al.

2016). It has also been suggested that sequence variants

should replace MOTUs to capture relevant biological

variation (Edgar 2016, Callahan et al. 2017). This sug-

gestion may be adequate in prokaryotes, where strains of

the same species can have different characteristics (e.g.,

pathogenicity). However, for eukaryotes, and particu-

larly metazoans, given the high amount of intraspecies
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information contained in the data sets, we think that it is

more advisable to define meaningful MOTUs and per-

form denoising procedures within them, in order to

obtain a “clean” data set and be able to use the intra-

MOTU sequence variability to make phylogeographic

and population genetics inference. Clearly, our proce-

dure is applicable only to coding sequences, which

excludes much work done on protists based on riboso-

mal DNA. However, the growing number of metabar-

coding studies using COI sequence data, together with

FIG. 7. (A) Network constructed with the 11 haplotypes of the sea urchin Paracentrotus lividus found by Duran et al. (2004) in
localities close to our sampling points and (B) network constructed with the 13 haplotypes comprising the MOTU corresponding to
this species (id 697). Haplotypes common to both studies are numbered. (C) Network with the 29 haplotypes of the brittle star
Ophiothrix fragilis identified by P�erez-Portela et al. (2013) in localities close to our sampling points. (D) Network of the 34 haplo-
types found in the present study in the MOTU corresponding to this species (id 15396). Haplotypes common to both studies are
numbered. The short slashes in the links between haplotypes represent mutational steps. Colors as in Fig. 5.
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the steady development of the BOLD database, makes

us confident that many metabarcoding data sets of enor-

mous potential for metaphylogeographic inference will

become available in the near future.

We found a couple of instances of previous studies

that have analysed COI structure in species recovered in

our MOTU data set and in nearby localities. For Para-

centrotus lividus, there were phylogeographic studies of

the Atlanto-Mediterranean area using COI (Duran

et al. 2004), 16S (Calder�on et al. 2008), and the nuclear

ANT intron (Calder�on et al. 2008). In all cases, a low,

but significant, signal corresponding to the separation

between Atlantic and Mediterranean was found. Our

COI results were in agreement with those of Duran et al.

(2004) for the localities that could be compared. We

detected a somewhat higher number of haplotypes (11 in

the previous work, 15 in our study) and the most com-

mon haplotypes were shared. The shape of the network

was also similar. We want to emphasize that, as far as we

could detect, not a single sea urchin of this species was

present in our samples, so we obtained a similar level of

haplotype diversity with community DNA than in a

study specifically devoted to collect sea urchin speci-

mens. For Ophiothrix fragilis, we also found a higher

haplotype diversity (37 haplotypes) than in comparable

localities in the work of P�erez-Portela et al. (2013; 29

haplotypes). We identified five haplotypes that were

shared in the two studies, including the commonest one

in both data sets, and the networks again had similar

structure. Of note here is that we could expand the distri-

bution range of some of the haplotypes. Our AMOVA

results for these two instances were equivalent to previ-

ous results for the only component that was analyzed in

both studies (the between-seas differentiation). Thus,

Duran et al. (2004) found a significant (P < 0.05)

between-basin differentiation in Paracentrotus lividus,

while P�erez-Portela et al. (2013) did not find any signifi-

cant genetic variability between Atlantic and Mediter-

ranean for Lineage II of Ophiothrix fragilis (P = 0.790).

This is consistent with our metabarcoding-derived

AMOVAs (P < 0.001 and P = 0.729, respectively). The

two species are of remarkable ecological importance,

Paracentrotus lividus is an engineer species able to mod-

ify the littoral landscape through its browsing activity

(Palacin et al. 1998, Wangensteen et al. 2011), and is

also a commercially exploited species (Barnes and Crook

2001). The different lineages of Ophiothrix fragilis are

highly abundant components of the littoral communities

and can form dense beds, with an important role in

clearing particulate matter with their filtering activities

(Davoult 1989, Davoult and Gounin 1995). For both

species, therefore, an accurate assessment of the genetic

relationships across the different basins is of utmost

importance for conservation and management purposes.

We have used an already collected data set, which can

mimic the situation that many a posteriori studies can

encounter. However, future metabarcoding studies can

be planned taking into consideration the potential

application for intraspecies analyses as well. For

instance, PCR replicates for each sample can be of

tremendous advantage to eliminate noise in the first

steps. Increasing ecological replication can also be of

great value for metaphylogeographic studies. We

strongly advocate that published metabarcoding studies

include in their data sets the information about which

sequences are grouped into each MOTU with their sam-

ple distribution. This information is not commonly pro-

vided, and is necessary to make these studies amenable

for intraspecies and metaphylogeographic analyses.

Metabarcoding now occupies a well-deserved promi-

nent place among the methods for assessing community-

level diversity (Kelly et al. 2014, Adamowicz et al.

2019). We have shown that it can be also an important

source for species-level genetic diversity information for

a wide assemblage of taxonomic groups. The mining of

metabarcoding data for intraspecies information opens

up a vast field with both basic and applied implications

(Adams et al. 2019). Among the latter, the possibility of

effectively basing conservation efforts on multispecies

genetic metrics to preserve community-level evolution-

ary patterns (Nielsen et al. 2017). It will also open the

phylogeography field, nowadays restricted almost exclu-

sively to macroorganisms, to the myriad of meio- and

micro-eukaryotes that make up most of the diversity pre-

sent in natural communities.

Another related field is the assessment of connectivity

between populations. This is important for endangered

species, invasive species, protected areas design, and

management in general. For instance, in the marine envi-

ronment, differences in larval dispersal have often been

suggested as responsible for determining population

genetic structure, but other factors, such as variation in

divergence times and changes in effective population

sizes, must be taken into account (Hart and Marko

2010). A powerful test for these contrasting assumptions

is to compare phylogeographic patterns among species

that concur or differ in larval type. Metaphylogeography

can provide such comparative data. For instance, in our

study we have found that metazoans in general have

more between-replicate variability than other groups,

and within metazoans the between community and

between-replicate components of genetic variation can

be significantly different between phyla.

In conclusion, our study shows the feasibility of min-

ing metabarcoding data sets for the analysis of intraspe-

cies genetic diversity using objective parameters for

denoising and filtering spurious sequences. We cannot at

present advice a set pipeline to do this, as procedures

should be customized for the particulars (e.g., replica-

tion level, number of habitats, number of localities) of

each study data set. With this article, we hope to stir fur-

ther discussion and developments in this field. The meta-

phylogeography application should be borne in mind to

guide the planning and reporting of metabarcoding

studies to ease the recovery of this, so far unexplored,

vast amount of information.
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