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Animals with widely varying body weight, such as flies, spiders,
and geckos, can adhere to and move along vertical walls and even
ceilings. This ability is caused by very efficient attachment mech-
anisms in which patterned surface structures interact with the
profile of the substrate. An extensive microscopic study has shown
a strong inverse scaling effect in these attachment devices.
Whereas �m dimensions of the terminal elements of the setae are
sufficient for flies and beetles, geckos must resort to sub-�m
devices to ensure adhesion. This general trend is quantitatively
explained by applying the principles of contact mechanics, accord-
ing to which splitting up the contact into finer subcontacts in-
creases adhesion. This principle is widely spread in design of
natural adhesive systems and may also be transferred into practical
applications.

walking � adhesion � locomotion � legs � insects

A ttachment structures have independently developed several
times in animal evolution (1, 2). Setose or hairy systems of

various animal groups, such as insects, spiders, and lizards
contain surfaces covered by fine patterns of protuberances of
different origin. These highly specialized structures are not
restricted to one particular area of the leg and may be located on
different derivatives of the tarsus and pretarsus (3). Even among
insects, the protuberances belong to different types: represen-
tatives of the Coleoptera and Dermaptera have setae with
sockets providing additional mobility of setae, whereas repre-
sentatives of Diptera have setae without sockets (acanthae).
Setae range in their length from several millimeters to a few
micrometers (4).

Despite �300 years of studies on hairy attachment systems,
there is still a debate concerning the attachment mechanism of
animals walking on smooth walls or ceilings. Different hypoth-
eses have been proposed to explain the mechanism of attach-
ment: sticking fluid, microsuckers, and electrostatic forces (5).
Based on experimental data, some of these theories have been
rejected, and adhesion has been attributed to a combination of
molecular interactions and capillary attractive forces mediated
by secretions (6) or purely van der Waals interactions (7).
Because some animals produce secretory fluids (insects) (8–10)
in the contact area, whereas others do not (spiders, geckos) (11,
12), one can expect different basic physical forces contributing
to the overall adhesion. Recently, strong evidence has been
presented (13) that the adhesion of gecko setae is caused by van
der Waals interaction, rejecting mechanisms relying on capillary
adhesion. Elements of contact mechanics have also been applied
to this problem (13, 14); it was predicted that arrays with smaller
setae endings should result in greater adhesive strength. In the
present study, we combine an extensive microscopical study¶ of
biological surface devices with the theory of contact mechanics
based on molecular adhesion. We will show that the scaling of the
surface protuberances, for animals differing in weight by 6 orders
of magnitude, can be quantitatively explained by this approach.

The setae of animals studied� are finely structured down to the
�m and sub-�m levels. The diameters of their spatula-like
terminal elements (Fig. 1) have been measured to range from 0.2

to 5.0 �m. Comparative structural data clearly show that the
areal density NA of these terminal elements strongly increases
with increasing body mass m (Fig. 2). It is remarkable that a
single master curve exists for the different species; it is given by
log�NA(m�2) � 13.8 � 0.699�log�m(kg), R � 0.919. Downscaling
of the contact elements, which results in a multiplication of the
number of single contact, thus appears to be a strong design
principle.

We want to interpret these findings in light of theoretical
contact mechanics. Consider a geometry in which a seta termi-
nates in a hemispherical shape. In the purely elastic case, the
diameter d of the area of contact with a flat substrate is given by
the Hertz equation:

d3 �
12RF

E*
, [1]

where R is the radius of the hemisphere, E* an average plain
strain modulus, and F the compressive contact load.

The Hertz theory has been extended to include surface
attraction effects by Johnson, Kendall, and Roberts (15). Their
result for the diameter of the contact area is

d3 �
12R
E*

�F � 3�R� � �6�R�F � �3�R��2	1/2
, [2]

where � is the adhesion energy per area. One of the conse-
quences of their analysis is the prediction of a finite pull-off force
given by

FC �
3
2

�R�. [3]

Let us apply this formalism to the attachment pad of the fly
Eristalis (16). Assume first that no hairy structure is present and
that R � 100 �m is given by the radius of the complete surface
of the attachment organ. To support the weight (80 mg) of the
fly when hanging from the ceiling on one leg, an adhesion energy
in excess of 1 J�m2 would be required according to Eq. 3; this is
clearly unrealistic for van der Waals interaction forces.
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¶Electron microscopy and data analysis were performed as follows. Animals were fixed in
70% ethanol. Some pieces of materials were dehydrated in ethanol and critical-point
dried. Pieces of the material were fractured with a razor blade. All preparations were
critical-point dried, mounted on holders, sputter-coated with gold-palladium (10 nm), and
examined in a Hitachi S-800 scanning electron microscope at 20 kV. Measurements of
structures were made on digital pictures with ANALYSIS 2.1 image analysis software (Soft-
Imaging Software, Münster, Germany).

�The following animals with attachment devices were used for analysis: spiders (Cupiennius
salei, and Aphonopelma seemanni), insects (Calliphora erythrocephala, Drosophila mela-
nogaster, Lucilia caesar, Platycheirus angustatus, Sphaerophoria scripta, Episyrpus baltea-
tus, Eristalis pertinax, Myathropa florea, Volucella pellucens, Cantharis fusca, Leptinotarsa
decemlineata, Gastrophysa viridula, Chrysolina fastuosa, Phyllobius pomaceus, and Rhod-
nius prolixus), and geckos (Tarentola mauritanica, Phelsuma madagascariensis, Tarentola
mauritanica, Anolis maynardi, and Gecko gekko).
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However, in reality, the animal takes advantage of an impor-
tant consequence of contact theory: inspection of Eq. 3 shows
that the adhesion force is proportional to a linear dimension of
the contact; therefore, by splitting up the contact into n sub-
contacts (setae), each with radius R��n (self-similar scaling),
the total adhesion force is increased to

F�C � �n�FC. [4]

Van der Waals forces (with typical adhesion energies in the
range from 50 to 10 mJ�m2) now create sufficient attachment
strength, provided the number of setae is of order 103 to 104 per
fly pulvillus. This is indeed in accordance with our microscopic
observations (Fig. 1).

It is interesting that such an approach allows some simple
predictions to be made about scaling of attachment devices
between small and large animals: for dimensionality reasons, the
weight of the animal increases more rapidly than the area of the

foot-to-substrate contact. This has to be compensated by a
simultaneous increase in the setal density. It is shown in the
Appendix that two simple cases can be considered:

(i) For self-similar scaling, the contact radius of the terminal
elements is linearly related to their size. The setal areal density
NA is then expected to scale as

NA � 4�2m2/3, [5]

where � � (2kp2/3�2/3g�3��) is a geometry-insensitive param-
eter, � is the average mass density, g is the gravitational
acceleration, k is a ‘‘safety’’ factor, and p is a shape factor.

(ii) For curvature invariance, the contact radius R is assumed
to be independent of seta size. This leads to

NA �
�

R
m1/3. [6]

Lines of these slopes are included in Fig. 3 and can now be
compared with the experimental data. It is striking that the
assumption of self-similarity (Eq. 5), leading to a slope of 2�3,
explains the scaling, from the fruit f ly to the gecko, very well.
Also a value for � can be extracted; the best fit is obtained for
� � 3.8  106 m�1�kg�1/3.

Closer inspection of Fig. 3 reveals some additional subtleties.
Whereas the relationship between body mass and density of
single contacts is well borne out for the complete sample of
animals from different evolutionary lineages (red line), the slope
appears to be lower within each lineage and approaches the value
1�3 predicted for curvature invariance (green lines). Especially
within lineages of beetles and flies this modified dependence
renders an improved description of the data. Using the above
value for �, values of contact radius R can be extracted from the
data: R � 1.6 �m for the flies (excluding the ultra-light fruit f ly)
and R � 0.3 �m for the lizards. It may be suggested that in
heavier animals within a given lineage adhesion is improved by
increasing the seta density slightly at a given radius of curvature
of the terminal elements. In lineages with much larger body
mass, both the seta diameter and the radius of curvature have to

Fig. 1. Terminal elements (circles) in animals with hairy design of attachment pads. Note that heavier animals exhibit finer adhesion structures.

Fig. 2. Dependence of the terminal element density (NA) of the attachment
pads on the body mass (m) in hairy-pad systems of diverse animal groups
(log�NA(m�2) � 13.8 � 0.699�log�m(kg), R � 0.919).

10604 � www.pnas.org�cgi�doi�10.1073�pnas.1534701100 Arzt et al.



be reduced. The curvature-invariant mechanism of increasing
adhesion has a natural limit: For curvature invariance the setae
density can only be increased until the seta diameter approaches
the contact diameter for a given curvature R. This limit of
maximum contact can approximately be calculated by the equa-
tions given here; as indicated by a blue line in Fig. 3, it lies well
outside the biological regime.

An additional advantage of the patterned surfaces is the
reliability of contact on various surface profiles and the in-
creased tolerance to defects at individual contacts (17). In the
real situation, failure of some microcontacts because of dust
particles or mechanical damage of single seta would minimally
influence contact adhesion. In the case of a solitary contact, even
a little damage of the contact caused by the presence of dirt or
surface asperities will immediately lead to contact breakage.

The present approach, of course, neglects several additional
contributions, such as the secretion of sticky fluids (18, 19);
however, we note that capillary forces scale in the same way as
the Johnson–Kendall–Roberts force (Eq. 3) so that the scaling
behavior would remain largely unchanged. Also, biological
materials in general and attachment systems in particular (20)
exhibit pronounced viscoelastic effects, which requires a more
complete treatment of the problem using viscoelastic contact
mechanics [e.g., Johnson and Greenwood (21)]. In the light of
these simplifications, it may be surprising that this approach
reproduces the scaling of the attachment devices from the fruit
f ly to the gecko, covering 6 orders of magnitude in body mass.
This finding suggests that contact splitting is the overriding
design principle. Overall, it comes as no surprise that the
concepts of contact theory are reflected in the evolutionary
design of biological attachment systems.

Appendix: Derivation of the Scaling Relations
We want to derive the dependence of seta density on animal
mass, as required by contact theory. The mass m is given by

m � D3�p, [A1]

where D is a size parameter that we choose to be the total
apparent contact diameter (i.e., size of one pulvillus); � is the
average mass density, and p is a dimensionless shape factor. The
adhesion force necessary to support this weight is written as

FW � k�mg, [A2]

where g is the gravitational acceleration and k is a safety factor.
Consider a pulvillus with n contacts (setae) of diameter s. The

areal density of setae can be expressed as

NA �
n

D2 �
1
s2. [A3]

For the calculation of the adhesion force, two cases are
distinguished (Fig. 4).

Self-Similarity. If the contract radius R scales with seta diameter
s (i.e., R � s�2 for hemispherical shape), then we obtain for the
Johnson–Kendall–Roberts adhesion force

FC � n�
3
4

�s� �
3
4

�D2��NA. [A4]

Equating Eqs. A4 and A2 yields

NA � 4�2m2/3, [A5]

where

� �
2kp2/3�2/3g

3��
, [A6]

which we assume to be, to first order, independent of the animal
and its size. Eq. A5 predicts plots of log�NA vs. log�m lines of slope
2�3 (Fig. 3).

Curvature Invariance. If the contact radius R is fixed and does not
scale with seta diameter, the adhesion force is approximately
given by

FC �
3
2

�R�n. [A7]

Equating Eqs. A7 and A2 leads to

Fig. 3. Interpretation of Fig. 2 in light of contact theory. A fit to all data (red
line) gives a slope of �2�3, corresponding to the self-similarity criterion.
Within each lineage, a lower slope of �1�3 is found, suggesting curvature
invariance of the contacts with radius R (green lines). The approximate limit
for such attachment devices (limit of maximum contact) is shown as a blue line.

Fig. 4. Two cases of contact scaling. (a) Self-similarity: contact radius R scales
with contact size s. (b) Curvature invariance: contact radius is independent of
contact size.

Arzt et al. PNAS � September 16, 2003 � vol. 100 � no. 19 � 10605

A
PP

LI
ED

PH
YS

IC
A

L
EV

O
LU

TI
O

N



NA � �
m1/3

R
, [A8]

which corresponds to lines of slope 1�3 in Fig. 3.
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