
PERSPECTIVE
published: 27 October 2021

doi: 10.3389/fphys.2021.763584

Frontiers in Physiology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 763584

Edited by:

Eun Bo Shim,

Kangwon National University,

South Korea

Reviewed by:

Steven Alexander Niederer,

King’s College London,

United Kingdom

Edward Joseph Vigmond,

Université de Bordeaux, France

*Correspondence:

Karoline Horgmo Jæger

karolihj@simula.no

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 24 August 2021

Accepted: 30 September 2021

Published: 27 October 2021

Citation:

Jæger KH, Edwards AG, Giles WR

and Tveito A (2021) From Millimeters

to Micrometers; Re-introducing

Myocytes in Models of Cardiac

Electrophysiology.

Front. Physiol. 12:763584.

doi: 10.3389/fphys.2021.763584

From Millimeters to Micrometers;
Re-introducing Myocytes in Models
of Cardiac Electrophysiology

Karoline Horgmo Jæger 1*, Andrew G. Edwards 1, Wayne R. Giles 1,2 and Aslak Tveito 1

1 Simula Research Laboratory, Lysaker, Norway, 2Department of Physiology and Pharmacology, Faculty of Medicine,

University of Calgary, Calgary, AB, Canada

Computational modeling has contributed significantly to present understanding of

cardiac electrophysiology including cardiac conduction, excitation-contraction coupling,

and the effects and side-effects of drugs. However, the accuracy of in silico analysis

of electrochemical wave dynamics in cardiac tissue is limited by the homogenization

procedure (spatial averaging) intrinsic to standard continuum models of conduction.

Averaged models cannot resolve the intricate dynamics in the vicinity of individual

cardiomyocytes simply because the myocytes are not present in these models. Here

we demonstrate how recently developed mathematical models based on representing

every myocyte can significantly increase the accuracy, and thus the utility of modeling

electrophysiological function and dysfunction in collections of coupled cardiomyocytes.

The present gold standard of numerical simulation for cardiac electrophysiology is based

on the bidomain model. In the bidomain model, the extracellular (E) space, the cell

membrane (M) and the intracellular (I) space are all assumed to be present everywhere

in the tissue. Consequently, it is impossible to study biophysical processes taking place

close to individual myocytes. The bidomain model represents the tissue by averaging

over several hundred myocytes and this inherently limits the accuracy of the model. In

our alternative approach both E, M, and I are represented in the model which is therefore

referred to as the EMI model. The EMI model approach allows for detailed analysis of the

biophysical processes going on in functionally important spaces very close to individual

myocytes, although at the cost of significantly increased CPU-requirements.

Keywords: computational modeling, computational electrophysiology, cardiac modeling, action potential

propagation, cell based model, EMI model, cardiac disease, conduction abnormalities

1. INTRODUCTION

In this brief Perspective we present our approach for cell-based modeling of the cardiac syncytium.
We point out the limitations of the standard, averagedmodels, and then illustrate how our approach
can be used to reveal fundamental dynamics of a range of important, but incompletely understood
mechanisms of arrhythmia. The main advantage of the cell-based approach is significantly
increased accuracy, and the main disadvantage is significantly increased cost of the computations,
and increased cost of the associated software development.
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2. A QUANTITATIVE UNDERSTANDING OF
MOST ARRHYTHMIAS REMAINS ELUSIVE

Optimal functioning of the heart relies on distinct
electrochemical waves repetitively traversing the entire four
chambered structure. Even transient perturbations to this
wave, referred to as arrhythmias, can be life-threating and have
therefore been subject to intense research efforts for at least
a century. In general, both atrial and ventricular arrhythmias
are well-defined clinical phenomena, but for many, precise
explanations of their origin and/or maintenance—how the
coordinated activity of myocytes becomes pathologically
discoordinated—is lacking. This significantly compromises
clinical efforts to restore normal cardiac conduction (Spach et al.,
2007; Nattel and Dobrev, 2017; Heijman et al., 2021).

3. THE LIMIT OF ACCURACY OF THE
STANDARD MODELS OF CARDIAC
ELECTROPHYSIOLOGY

The adult human heart contains several billion myocytes
(Tirziu et al., 2010). Spatial averaging (homogenization) has
been an invaluable tool for creating computationally tractable
mathematical models of electrochemical wave dynamics
including the action potential (AP) and details of change in
intracellular calcium (Ca2+). This has led to broad adoption
of two standard models of cardiac electrophysiology; the
monodomain and bidomain models. Since the late 1970’s, the
bidomain model (see e.g., Tung, 1978; Neu and Krassowska,
1993; Franzone et al., 2014) has been the gold standard for
simulating electrochemical conduction in cardiac tissue, and has
often been approximated by the slightly simpler monodomain
model (Sundnes et al., 2007; Clayton and Panfilov, 2008;
Vigmond et al., 2008). Coupled with models of myocyte
membrane ion transport, these models have been very successful
in accounting key aspects of the electrical activity in cardiac
tissue. Furthermore, owing to dramatically increased computing
power and substantially improved numerical methods, it is
now possible to solve the bidomain model to convergence. A
spatial resolution of 1x ≈ 0.25 mm is generally considered to be
sufficient to compute the solution of the model (Xie et al., 2004;
Clayton and Panfilov, 2008; Niederer S. A. et al., 2011; Niederer
S. et al., 2011). This mesh resolution represents tissue blocks
containing ∼980 myocytes each (assuming myocyte volume of
16 pL, including associated extracellular space, see numerical
example below; Nygren et al., 1998). Since the converged
solution can be computed, further mesh refinement does not
provide greater insight to the physiological processes or dynamic
characteristics of normal conduction. However, electrochemical
conduction disturbances that underlie arrhythmia are not well-
approximated by normal planar wave conduction. Rotor wave
dynamics provide one important and ubiquitous example in
which key details of the wave dynamics in smaller tissue regions
are likely to be important. In this paradigm, the trajectory
of a rotating wave is determined by a phase singularity and
an adjacent region of maximum wavefront curvature. The

singularity “meanders” around a central core and the maximum
curvature dictates that meander in a manner that determines
measurable clinical properties of the arrhythmia (e.g., dominant
frequency of fibrillation). Importantly, even in large mammal
(sheep) myocardium, rotor wave cores measured to be as small
as 3 mm2 (Mandapati et al., 2000) are sufficient to support
arrhythmic activity. The rotor wave core is one case in which
understanding sub-millimeter-scale dynamics is likely to be
important for defining and managing macroscopic outcomes.
In addition, other dynamical conditions (e.g., ectopic focus),
and heterogeneous innervation or non-uniform drug effects
also likely rely on dynamics that are not adequately captured by
models constructed to replicate only planar wave dynamics.

As mentioned above, the bidomain model has been very
successful in simulating propagation of electrochemical waves
in cardiac tissue on the macroscale when the transmembrane
conductances are assumed to vary only on that scale. However,
key properties of gap junctions can vary individually. Therefore,
averaging can give misleading results. In order to illustrate this,
let us consider a case where a long, one-dimensional strand in
which myocytes are connected via gap junctions. With normal
gap junctions and a strong electrical stimulation at one end of
the strand, an excitation wave will be initiated and move along all
myocytes both for EMI and for the bidomain models. Also, if the
parameters of the models are properly adjusted, the conduction
velocity of this wave will be similar. Suppose next that one
gap junction is significantly disturbed leading to almost infinite
resistance from one myocyte to the next. At that point the wave
will stop when using the EMI model since the impaired junction
will cause a complete conduction block. For the bidomain model
however, change of one gap junction connection will mean little
when the average is computed and the wave will only move a little
slower, but not stop. Although this is a specific single example
and the bidomain model can probably be adjusted (e.g., by mesh
alignment) to compute the correct solution, it does illustrate the
fundamental difficulties of averaging.

4. CELL-BASED MODELS OF
ELECTROPHYSIOLOGY

A second major assumption of the monodomain and bidomain
models is that the extracellular space, the myocyte membrane
and the intracellular space are all present everywhere in the
cardiac tissue. This represents a very significant simplification
since individual myocytes can be ignored, but it also imposes
strict limits on the range of problems than can be realistically
studied using these models. For example it excludes the ability
to understand how spatially localized ion channel expression
may impact macroscopic conduction, and this is known to be
fundamental to the contribution of sodium channel activation
to cardiac conduction (Rivaud et al., 2017; Jæger et al., 2019).
In short, classical cardiac models of electrochemical conduction
are relevant for phenomena at scales from several millimeters
to centimeters, and under conditions approximating planar
conduction; whereas dynamics occurring among groups of
myocytes at or below the millimeter scale are likely to be key to
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FIGURE 1 | Illustration of the EMI model domain. (A) Shows the approximate cylindrical geometry and associated mesh of a single myocyte of length 120 µm and

diameter ranging from 13 to 14 µm (Nygren et al., 1998). (B) Shows an illustration of the different components of the EMI model domain for an example collection of

four connected myocytes. The domain consists of a number of myocytes surrounded by an extracellular space. The cell membrane is defined at the interface between

the intracellular and extracellular spaces and intercalated discs with gap junctions are defined at the interface between adjacent myocytes. All computations presented

here are in 3D.

many mechanisms of arrhythmia. Here, we further develop our
approach described in Tveito et al. (2017a), Jæger et al. (2019),
and Jæger and Tveito (2021) and show that it is feasible to devise
mathematical models at themicrometer level and thereby include
every individual myocyte in the in silico tissue. We refer to this
as the EMI model since it explicitly represents the extracellular
(E) space, the cell membrane (M), and the intracellular (I) space.
Figure 1B illustrates the different components of the spatial EMI
model domain. Our results demonstrate the utility of the EMI
model by addressing key aspects of how arrhythmias can arise in
cardiac tissue. Specifically, we show that re-entry can arise in very
small, partially de-coupled, collections of myocytes.

5. CELL-BASED MODELS CAN RESOLVE
MICRO-REENTRY IN A SIMULATED
PULMONARY VEIN SLEEVE

In atrial fibrillation, the arrhythmia often begins in the “sleeve”
of the pulmonary veins of the left atrium (see e.g., Haissaguerre
et al., 1998). In particular, the pulmonary vein/left atrial
“junction” is assumed to be a driver of atrial fibrillation partially
due to the highly heterogeneous intercellular coupling in this
region (Koura et al., 2002; Pfenniger, 2020), and regions of
structural conduction discontinuities (Hamabe et al., 2003).
Heterogeneities in small collections of myocytes represented by
cell-to-cell variations in membrane ion currents and intercellular
coupling can initiate arrhythmias. Arrhythmias caused by
heterogeneities can clearly not be accurately represented by
models where the heterogeneities are accounted for only by
averages. In Figure 2, we illustrate a collection of 25 × 25
myocytes covering an area of 1 mm2 with associated volume

of 18 nL. We simulate the electrochemical wave (AP and
Ca2+-transient) in this heterogeneous syncytium using the EMI
model, combined with a myocyte membrane model representing
canine left pulmonary vein myocytes. To represent phenotypic
heterogeneity in the tissue, the maximum conductance of each
ionic current are in fact given as a random combination of
these values in models of the left atrial free wall myocyte and
the pure pulmonary vein myocyte. These differences are derived
from detailed studies of the two myocyte populations (Ehrlich
et al., 2003; Melnyk et al., 2005). Furthermore, to replicate
one known property of diseased atrial tissue the intercellular
resistance is increased (reducing gap-junction conductance)
again chosen randomly for each myocyte-to-myocyte coupling in
the right panel of Figure 2, similarly to Cherry et al. (2007). The
simulations reveal that stable re-entrant waves can develop and
propagate in very small collections of unhealthy myocytes under
conditions of markedly reduced intercellular coupling. Further
details of the model and method of solution are provided in
Supplementary Material.

6. EMI REPRESENTS A GRAND
CHALLENGE IN HIGH PERFORMANCE
COMPUTING

In the finite element mesh used in the simulations reported
here, the average edge length of a computational element is
about 10 µm. This means that the average mesh block has a
volume of 1 pL. This should be compared to a mesh block
for the bidomain model which is (0.25mm)3 = 15, 600 pL,
and to the volume of a myocyte which in the present model
is 16 pL. Because of the significantly increased resolution, the
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FIGURE 2 | Re-entry in a cell-based model. The upper panels (A,B) show the results (intracellular potential) of S1+S2 stimulations (see, e.g., Spach et al., 2007) of a

collection of 25×25 myocytes. The simulations are started by stimulation of the four leftmost rows of cells (marked by S1) and a resulting depolarization wave

propagates through the tissue from left to right. After the center cell is repolarized to −60 mV, the lower left quarter of cells (marked by S2) are stimulated, potentially

initiating a second depolarization wave through the tissue. In the healthy case (A), the S2 stimulation does not produce a second wave, whereas in the unhealthy case

(B), the solution evolves into to a stable re-entrant wave that continues indefinitely. In the lower panels (C,D), we show the solution of the single myocyte with the

largest observed variation in intracellular potential during the simulation at the time point when the largest variation is observed. The maximum single cell variation is

much larger in the healthy case (C) than in the unhealthy case (D).

EMI model is only applicable to relatively small collections of
myocytes in a syncytium. Using the finite element code described
in the Supplementary Material, we find that the computing
times needed for simulating one time step of size 0.001 ms with
100, 625, or 2,500 myocytes are 19, 125, and 568 ms, respectively.
Accordingly, the computing time requirements per myocyte are
0.19, 0.20, and 0.23 ms, respectively. These computing efforts
fulfills the requirements given by Feynman (2018) who stated
that the cost of a computation should be proportional to the
space-time volume of the problem under consideration. For the
EMI model, this means that the computational efforts should
be proportional to the number of myocytes included in our
simulations. This optimality criterion is met by the present finite
element code and also by a finite difference method applied
earlier (Tveito et al., 2017a; Jæger et al., 2021; Kuchta et al., 2021).
However, these computing times remain prohibitive for many
interesting and important applications, and further work on
optimizing computing methods and application of larger HPC-
facilities is definitely needed. Important steps toward improved
solution technology is underway in the EU-funded Microcard
project (www.microcard.eu).

Since the computing efforts needed to solve the EMI model
is proportional to the number of myocytes in the simulations, it
is obvious that there are well defined restrictions on the classes of
application can be studied by this model. Restricted collections of
myocytes like the special nodes of the cardiac conduction system
(SA- and AV-nodes, Purkinje fibers etc.), areas like the outlet
of the pulmonary veins, border zones associated with ischemic
regions can be analyzed. In contrast, whole organ simulations are
probably only accessible for very small model animals, such as
the zebrafish and perhaps atrial or right ventricular tissue from
adult mice.

7. STILL AVERAGING

Finally, it should be pointed out that even with explicit
representation of all myocytes in a simulation, the EMI model
is still based on averaging of the processes taking place
at a length scale that remains unreachable for tissue scale
simulations. Specifically, Ca2+-driven arrhythmia is known to
involve criticality in the ensemble behavior of subcellular (micron
scale) Ca2+-handling structures. Detailed models of sub-cellular
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Ca2+-dynamics have been developed (see, e.g., Colman et al.,
2020) but application of these models in syncytium of myocytes
remains challenging.

8. DISCUSSION

At present, almost all tissue simulations of cardiac
electrophysiology are based on models like the bidomain
and monodomain models which entail spatial averaging
and related limitations in spatial resolution. However, these
simulations used to be performed using models where individual
myocytes were coupled in cables and the electrical conduction
was assumed to be one dimensional (see, e.g., Lieberman et al.,
1973; Joyner, 1982; Rudy and Quan, 1987; Quan and Rudy, 1990;
Shaw and Rudy, 1997). These models based on representation
of individual myocytes have also been extended to two and
three space dimensions (Roberts et al., 2008; Stinstra et al., 2010;
Hubbard and Henriquez, 2012) while retaining the myocytes
in the model. However, these models are complex from an
implementational point of view, and also quite demanding
in terms of CPU requirements. Our EMI model is based
on formulations suggested by Krassowska and Neu (1994),
Henríquez et al. (2013), and Agudelo-Toro and Neef (2013) and
we first applied it to evaluate the accuracy of classical models
of the transmembrane potential of neurons (see Tveito et al.,
2017b).

As explained above, a major disadvantage of the EMI
approach compared to the bidomain or monodoman model
is the CPU requirements needed to perform simulations. It
is, however, worthwhile to recall that this also used to be a
disadvantage of the “averaged” models. In 1984, it was estimated
(see Barr and Plonsey, 1984) that simulating 10 ms using 106

mesh points, applying a brute force method, would take 3,000
years! But already in 2006, a 26 ×106 nodes simulation (600
ms) was performed in only 2 days (Potse et al., 2006), and
a few years later even more challenging computations were
performed in 5 min (see Niederer S. A. et al., 2011). Today,

such simulations are performed routinely. A comprehensive and
interesting discussion of the history of tissue models is provided
in Henriquez (2014).

We suggest that a series of important physiological questions
can be addressed using the EMI model. In particular, we believe
the EMI model can yield important new insights into mechanism
of action of cardiac drugs, how early after depolarizations
(EADs) and delayed after depolarizations (DADs) are generated
in collections of myocytes, how deterioration of gap-junction
coupling can modulate cardiac conduction, how reentry can be
generated in very small collections of myocytes, and whether
ephaptic coupling can maintain conduction in diseased tissue.
Furthermore, we believe that a more complete understanding of
the role of T-tubules in ventricular myocytes can be achieved if
the EMI model is applied along with improved spatial modeling
of ionic concentration changes in the associated restricted
extracellular spaces (see Ellingsrud et al., 2020; Setterberg et al.,
2021).
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