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From Minimax Shrinkage Estimation to
Minimax Shrinkage Prediction
Edward I. George, Feng Liang and Xinyi Xu

Abstract. In a remarkable series of papers beginning in 1956, Charles Stein
set the stage for the future development of minimax shrinkage estimators
of a multivariate normal mean under quadratic loss. More recently, paral-
lel developments have seen the emergence of minimax shrinkage estimators
of multivariate normal predictive densities under Kullback–Leibler risk. We
here describe these parallels emphasizing the focus on Bayes procedures and
the derivation of the superharmonic conditions for minimaxity as well as fur-
ther developments of new minimax shrinkage predictive density estimators
including multiple shrinkage estimators, empirical Bayes estimators, normal
linear model regression estimators and nonparametric regression estimators.
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1. THE BEGINNING OF THE HUNT FOR MINIMAX
SHRINKAGE ESTIMATORS

Perhaps the most basic estimation problem in Statis-
tics is the canonical problem of estimating a multivari-
ate normal mean. Based on the observation of a p-
dimensional multivariate normal random variable

X|μ ∼ Np(μ, I),(1)

the problem is to find a suitable estimator μ̂(x) of μ.
The celebrated result of Stein (1956) dethroned
μ̂MLE(x) = x, the maximum likelihood and best lo-
cation invariant estimator for this problem, by show-
ing that, when p ≥ 3, μ̂MLE is inadmissible under
quadratic loss

RQ(μ, μ̂) = Eμ‖μ̂(X) − μ‖2.(2)

From a decision theory point of view, an important part
of the appeal of μ̂MLE was the protection offered by its
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minimax property. The worst possible risk RQ incurred
by μ̂MLE was no worse than the worst possible risk of
any other estimator. Stein’s result implied the existence
of even better estimators that offered the same minimax
protection. He had begun the hunt for these better min-
imax estimators.

In a remarkable series of follow-up papers Stein pro-
ceeded to set the stage for this hunt. James and Stein
(1961) proposed a new closed-form minimax shrink-
age estimator

μ̂JS(x) =
(

1 − p − 2

‖x‖2

)
x,(3)

the now well-known James–Stein estimator, and
showed explicitly that its risk was less than RQ(μ,

μ̂MLE) ≡ p for every value of μ when p ≥ 3, that is, it
uniformly dominated μ̂MLE. The appeal of μ̂JS under
RQ was compelling. It offered the same guaranteed
minimax protection as μ̂MLE while also offering the
possibility of doing much better.

Stein (1962), though primarily concerned with im-
proved confidence regions, described a parametric
empirical Bayes motivation for (3), describing how
μ̂JS(x) could be seen as a data-based approximation
to the posterior mean

Eπ(μ|x) =
(

1 − 1

1 + ν

)
x,(4)
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the Bayes rule which minimizes the average risk
EπRQ(μ, μ̂) when μ ∼ Np(0, νI ). He here also pro-
posed the positive-part James–Stein estimator μ̂JS+ =
max{0, μ̂JS}, a dominating improvement over μ̂JS(x),
and commented that “it would be even better to use the
Bayes estimate with respect to a reasonable prior distri-
bution.” These observations served as a clear indication
that the Bayesian paradigm was to play a major role in
the hunt for these new shrinkage estimators, opening
up a new direction that was to be ultimately successful
for establishing large new classes of shrinkage estima-
tors.

Dominating fully Bayes shrinkage estimators soon
emerged. Strawderman (1971) proposed μ̂a(x) =
Eπa(μ|x), a class of Bayes shrinkage estimators ob-
tained as posterior means under priors πa(μ) for which

μ|s ∼ Np(0, sI ), s ∼ (1 + s)a−2.(5)

Strawderman explicitly showed that μ̂a uniformly
dominated μ̂MLE and was proper Bayes, when p = 5
and a ∈ [0.5,1) or when p ≥ 6 and a ∈ [0,1). This was
especially interesting because any proper Bayes was
necessarily admissible and so could not be improved
upon.

Then, Stein (1974, 1981) showed that μ̂H (x), the
Bayes estimator under the harmonic prior

πH(μ) = EπH
(μ|x) = ‖μ‖−(p−2),(6)

dominated μ̂MLE when p ≥ 3. A special case of μ̂a

when a = 2, μ̂H was only formal Bayes because
πH(μ) is improper. Undeterred, Stein pointed out that
the admissibility of μ̂H followed immediately from the
general conditions for the admissibility of generalized
Bayes estimators laid out by Brown (1971). A further
key element of the story was Brown’s (1971) power-
ful result that all such generalized Bayes rules (includ-
ing the proper ones of course) constituted a complete
class for the problem of estimating multivariate nor-
mal mean under quadratic loss. It was now clear that
the hunt for new minimax shrinkage estimators was to
focus on procedures with at least some Bayesian moti-
vation.

Perhaps even more impressive than the fact that μ̂H

dominated μ̂MLE was the way Stein proved it. Making
further use of the rich results in Brown (1971), the key
to his proof was the fact that any posterior mean Bayes
estimator under a prior π(μ) can be expressed as

μ̂π (x) = Eπ(μ|x) = x + ∇ logmπ(x),(7)

where

mπ(x) ∝
∫

e−(x−μ)2/2π(μ)dμ(8)

is the marginal distribution of X under π(μ). [Here
∇ = ( ∂

∂x1
, . . . , ∂

∂xp
)′ is the familiar gradient.]

At first glance it would appear that (7) has little to do
with the risk. However, Stein noted that insertion of (7)
into RQ, followed by expansion and an integration-by-
parts identity, now known as one of Stein’s Lemmas,
yields the following general expression for the differ-
ence between the risks of μ̂π and μ̂MLE:

RQ(μ, μ̂MLE) − RQ(μ, μ̂π)
(9)

= Eμ

[
‖∇ logmπ(X)‖2 − 2

∇2mπ(X)

mπ(X)

]

= Eμ

[−4∇2
√

mπ(X)
/√

mπ(X)
]
.(10)

(Here ∇2 = ∑
i

∂2

∂x2
i

is the familiar Laplacian.)

Because the bracketed terms in (9) and (10) do not
depend on μ (they are unbiased estimators of the risk
difference), the domination of μ̂MLE by μ̂π would
follow whenever mπ was such that these bracketed
terms were nonnegative. As Stein noted, this would
be the case in (9) whenever mπ was superharmonic,
∇2mπ(x) ≤ 0, and in (10) whenever

√
mπ was super-

harmonic, ∇2√mπ(x) ≤ 0, a weaker condition.
The domination of μ̂MLE by μ̂H was seen now to

be attributable directly to the fact that the marginal (8)
under πH , a mixture of harmonic functions, is super-
harmonic when p ≥ 3. However, such an explanation
would not work for the domination of μ̂MLE by μ̂a ,
because the marginal (8) under πa in (5) is not super-
harmonic for any a < 1. Indeed, as was shown later by
Fourdrinier, Strawderman and Wells (1998), a super-
harmonic marginal cannot be obtained with any proper
prior. More importantly, however, they were able to es-
tablish that the domination by μ̂a was attributable to
the superharmonicity of

√
mπa under πa when p ≥ 5

(and Strawderman’s conditions on a). In fact, it also
followed from their results that

√
mπa is superhar-

monic when a ∈ [1,2) and p ≥ 3, further broadening
the class of minimax improper Bayes estimators.

Prior to the appearance of (9) and (10), minimaxity
proofs, though ingenious, had all been tailored to suit
the specific estimators at hand. The sheer generality of
this new approach was daunting in its scope. By re-
stricting attention to priors that gave rise to marginal
distributions with particular properties, the minimax
properties of the implied Bayes rules would be guar-
anteed.
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2. THE PARALLELS IN THE PREDICTIVE
ESTIMATION PROBLEM EMERGE

The seminal work of Stein concerned the canonical
problem of how to estimate μ based on an observation
of X|μ ∼ Np(μ, I). A more ambitious problem is how
to use such an X to estimate the entire probability dis-
tribution of a future Y from a normal distribution with
this same unknown mean μ, the so-called predictive
density of Y . Such a predictive density offers a com-
plete description of predictive uncertainty.

To conveniently treat the possibility of different
variances for X and Y , we formulate the predictive
problem as follows. Suppose X|μ ∼ Np(μ,vxI ) and
Y |μ ∼ Np(μ,vyI ) are independent p-dimensional
multivariate normal vectors with common unknown
mean μ but known variances vx and vy . Letting p(y|μ)

denote the density of Y , the problem is to find an es-
timator p̂(y|x) of p(y|μ) based on the observation of
X = x only. Such a problem arises naturally, for exam-
ple, for predicting Y |μ ∼ Np(μ,σ 2I ) based on the ob-
servation of X1, . . . ,Xn|μ i.i.d. ∼ Np(μ,σ 2I ) which
is equivalent to observing X̄|μ ∼ Np(μ, (σ 2/n)I).
This is exactly our formulation with vx = σ 2/n and
vy = σ 2.

For the evaluation of p̂(y|x) as an estimator of
p(y|μ), the analogue of quadratic risk RQ for the mean
estimation problem is the Kullback–Leibler (KL) risk

RKL(μ, p̂) =
∫

p(x|μ)L(μ, p̂(·|x)) dx,(11)

where p(x|μ) denotes the density of X, and

L(μ, p̂(·|x)) =
∫

p(y|μ) log
p(y|μ)

p̂(y|x)
dy(12)

is the familiar KL loss.
For a (possibly improper) prior distribution π on

μ, the average risk r(π, p̂) = ∫
RKL(μ, p̂)π(μ)dμ is

minimized by the Bayes rule

p̂π (y|x) = Eπ [p(y|μ)|x]
(13)

=
∫

p(y|μ)π(μ|x)dμ,

the posterior mean of p(y|μ) under π (Aitchison,
1975). It follows from (13) that p̂π (y|x) is a proper
probability distribution over y whenever the marginal
density of x is finite for all z (integrate w.r.t. y and
switch the order of integration). Furthermore, the mean
of p̂π (y|x) (when it exists) is equal to Eπ(μ|x), the
Bayes rule for estimating μ under quadratic loss,
namely the posterior mean of μ. Thus, p̂π also carries

the necessary information for that estimation problem.
Note also that unless π is a trivial point prior, such
p̂π (y|x) will not be of the form of p(y|μ) for any μ.
The range of the Bayes rules here falls outside the tar-
get space of the densities which are being estimated.

A tempting initial approach to this predictive den-
sity estimation problem is to use the simple plug-in es-
timator p̂MLE ≡ p(y|μ = μ̂MLE) to estimate p(y|μ),
the so-called estimative approach. This was the con-
ventional wisdom until the appearance of Aitchison
(1975). He showed that the plug-in estimator p̂MLE is
uniformly dominated under RKL by

p̂U (y|x) ≡ EπU
[p(y|μ)|x]

(14)

= 1

{2π(vx + vy)}p/2 exp
{
− ‖y − x‖2

2(vx + vy)

}
,

the posterior mean of p(y|μ) with respect to the uni-
form prior πU(μ) = 1, the so-called predictive ap-
proach. In a related vein, Akaike (1978) pointed out
that, by Jensen’s inequality, the Bayes rule p̂π (y|x)

would dominate the random plug-in estimator p̂(y|μ =
μ̂) when μ̂ is a random draw from π . Strategies for av-
eraging over μ were looking better than plug-in strate-
gies. The hunt for predictive shrinkage estimators had
turned to Bayes procedures.

Distinct from p̂MLE, p̂U was soon shown to be the
best location invariant predictive density estimator; see
Murray (1977) and Ng (1980). That p̂U is best in-
variant and minimax also follows from the more re-
cent general results of Liang and Barron (2004), who
also showed that p̂U is admissible when p = 1. The
minimaxity of p̂U was also shown directly by George,
Liang and Xu (2006). Thus, p̂U , rather than p̂MLE, here
plays the role played by μ̂MLE in the mean estimation
context. Not surprisingly, μ̂U = x, the posterior mean
under the uniform prior πU is identical to μ̂MLE in that
context.

The parallels between the mean estimation problem
and the predictive estimation problem came into sharp
focus with the stunning breakthrough result of Komaki
(2001). He proved that when p ≥ 3, p̂U (y|x) itself is
dominated by the Bayes rule

p̂H (y|x) = EπH
[p(y|μ)|x],(15)

under the harmonic prior πH (μ) in (6) used by Stein
(1974). Shortly thereafter Liang (2002) showed that
p̂U (y|x) is dominated by the proper Bayes rule pa(y|
x) under πa(μ) for which

μ|s ∼ Np(0, sv0I ), s ∼ (1 + s)a−2,(16)
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when vx ≤ v0, and when p = 5 and a ∈ [0.5,1) or p ≥
6 and a ∈ [0,1), the same conditions that Strawderman
had obtained for his estimator. Note that πa(μ) in (16)
is an extension of (5) which depends on the constant v0.
As before, πH(μ) is the special case of πa(μ) when
a = 2. Note that p̂U is now playing the “straw-man”
role that was played by μ̂MLE in the mean estimation
problem.

3. A UNIFIED THEORY FOR MINIMAX PREDICTIVE
DENSITY ESTIMATION

The proofs of the domination of p̂U by p̂H in Ko-
maki (2001) and by p̂a in Liang (2002) were both
tailored to the specific forms of the dominating esti-
mators. They did not make direct use of the proper-
ties of the induced marginal distributions of X and Y .
From the theory developed by Brown (1971) and Stein
(1974) for the mean estimation problem, it was natu-
ral to ask if there was a theory analogous to (7)–(10)
which would similarly unify the domination results in
the predictive density estimation problem.

As it turned out, just such a theory was established
in George, Liang and Xu (2006), the main results of
which we now proceed to describe. The story begins
with a representation, analogous to Brown’s represen-
tation μ̂π (X) = Eπ(μ|X) = X + ∇ logmπ(X) in (7),
that is available for posterior mean Bayes rules in the
predictive density estimation problem. A key element
of the representation is the form of the marginal distri-
butions for our context which we denote by

mπ(z;v) =
∫

p(z|μ)π(μ)dμ(17)

for Z|μ ∼ Np(μ,vI) and a prior π(μ). In terms of our
previous notation (8), mπ(z) = mπ(z;1).

LEMMA 1. The Bayes rule p̂π (y|x) in (13) can be
expressed as

p̂π (y|x) = mπ(w;vw)

mπ(x;vx)
p̂U (y|x),(18)

where p̂U (y|x) is the Bayes rule under πU(μ) = 1
given by (14), mπ(x;vx) is the marginal distribution of
X, and mπ(w;vw), where vw = vxvy

vx+vy
, is the marginal

distribution of W = vyX+vxY

vx+vy
for independent X|μ ∼

Np(μ,vxI ) and Y |μ ∼ Np(μ,vyI ).

Lemma 1 shows how the form of p̂π (y|x) is deter-
mined entirely by p̂U (y|x) and the form of mπ(x;vx)

and mπ(w;vw). The essential step in its derivation is
to factor the joint distribution of x and y into terms in-
cluding a function of the sufficient statistic w. Inserting

the representation (18) into the risk RKL leads imme-
diately to the following unbiased estimate for the KL
risk difference between p̂U (y|x) and p̂π (y|x):

RKL(μ, p̂U ) − RKL(μ, p̂π )

=
∫ ∫

p(x|μ)p(y|μ) log
p̂π (y|x)

p̂U (y|x)
dx dy(19)

= Eμ,vw logmπ(W ;vw) − Eμ,vx logmπ(X;vx).

As one can see from (19) and the fact that vw =
vxvy

vx+vy
< vx , p̂U (y|x) would be uniformly dominated

by p̂π (y|x) whenever Eμ,v logmπ(Z;v) is decreasing
in v. As if by magic, the sign of ∂

∂v
Eμ,v logmπ(Z;v)

turned out to be directly linked to the same unbiased
risk difference estimates (9) and (10) of Stein (1974).

LEMMA 2.

∂

∂v
Eμ,v logmπ(Z;v)

(20)

= Eμ,v

[∇2mπ(Z;v)

mπ(Z;v)
− 1

2
‖∇ logmπ(Z;v)‖2

]

= Eμ,v

[
2∇2

√
mπ(Z;v)

/√
mπ(Z;v)

]
.(21)

The proof of Lemma 2 relies on Brown’s represen-
tation, Stein’s Lemma, and the fact that any normal
marginal distribution mπ(z;v) satisfies

∂

∂v
mπ(z;v) = 1

2
∇2mπ(z;v),(22)

the well-known heat equation which has a long his-
tory in science and engineering; for example, see Steele
(2001). Combining (19) and Lemma 2 with the fact that
p̂U (y|x) is minimax yields the following general con-
ditions for the minimaxity of a predictive density esti-
mator, conditions analogous to those obtained by Stein
for the minimaxity of a normal mean estimator.

THEOREM 1. If mπ(z;v) is finite for all z, then
p̂π (y|x) will be minimax if either of the following hold
for all vw ≤ v ≤ vx :

(i) mπ(z;v) is superharmonic.
(ii)

√
mπ(z;v) is superharmonic.

Although condition (i) implies the weaker condi-
tion (ii) above, it is included because of its convenience
when it is available. Since a superharmonic prior al-
ways yields a superharmonic mπ(z;v) for all v, the
following corollary is immediate.

COROLLARY 1. If mπ(z;v) is finite for all z, then
p̂π (y|x) will be minimax if π(μ) is superharmonic.
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Because πH is superharmonic, it is immediate from
Corollary 1 that p̂H is minimax. Because

√
ma(z;v) is

superharmonic for all v (under suitable conditions on
a), it is immediate from Theorem 1 that p̂a is minimax.
It similarly follows that any of the improper superhar-
monic t-priors of Faith (1978) or any of the proper
generalized t-priors of Fourdrinier, Strawderman and
Wells (1998) yield minimax Bayes rules.

The connections between the unbiased risk differ-
ence estimates for the KL risk and quadratic risk prob-
lems ultimately yields the following identity:

RKL(μ, p̂U ) − RKL(μ, p̂π )
(23)

= 1

2

∫ vx

vw

1

v2 [RQ(μ, μ̂U) − RQ(μ, μ̂π)]v dv,

explaining the parallel minimax conditions in both
problems. Brown, George and Xu (2008) used this
identity to further draw out connections to establish
sufficient conditions for the admissibility of Bayes
rules under KL loss, conditions analogous to those of
Brown (1971) and Brown and Hwang (1982), and to
show that all admissible procedures for the KL risk
problems are Bayes rules, a direct parallel of the com-
plete class theorem of Brown (1971) for quadratic risk.

4. THE NATURE OF SHRINKAGE IN PREDICTIVE
DENSITY ESTIMATION

The James–Stein estimator μ̂JS(x) in (3) provided
an explicit example of how risk improvements for es-
timating μ are obtained by shrinking X toward 0 by
the adaptive multiplicative factor (1 − p−2

‖x‖2 ). Similarly,
under unimodal priors, posterior mean Bayes rules
μ̂π (x) = Eπ(μ|x) shrink x toward the center of π(μ),
the mean of π(μ) when it exists. (Section 6 will de-
scribe how multimodal priors yield multiple shrinkage
estimators.) As we saw earlier, x here plays the role
both of μ̂MLE(x) = x and of the formal Bayes estima-
tor μ̂U (x) = x.

The representation (18) reveals how p̂π (y|x) analo-
gously “shrinks” the formal Bayes estimator p̂U (y|x),
but not p̂MLE �= p̂U , by an adaptive multiplicative fac-
tor

bπ(x, y) = mπ(w;vw)

mπ(x;vx)
.(24)

However, because p̂π (y|x) must be a proper probabil-
ity distribution (whenever mπ is always finite), it can-
not be the case that bπ(x, y) < 1 for all y at any x.
Thus, “shrinkage” here really refers to a reconcentra-
tion of the probability distribution of p̂U (y|x). Fur-
thermore, since the mean of p̂π (y|x) is Eπ(μ|x), this

reconcentration, under unimodal priors, is toward the
center of π(μ), as in the mean estimation case.

Consider, for example, what happens under πH

which is symmetric and unimodal about 0. Figure 1
illustrates how this shrinkage occurs for pH for vari-
ous values of x when p = 5. Figure 1 plots p̂U (y|x)

and p̂H (y|x) as functions of y = (y1, y2,0,0,0)′
when vx = 1 and vy = 0.2. Note first that p̂U (y|x)

is always the same symmetric shape centered at x.
When x = (2,0,0,0,0)′, shrinkage occurs by push-
ing the concentration of p̂H (y|x) = bH (x, y)p̂U (y|x)

toward 0. As x moves further from (0,0,0,0,0)′ to
(3,0,0,0,0)′ and (4,0,0,0,0)′ this shrinkage dimin-
ishes as p̂H (y|x) becomes more and more similar to
p̂U (y|x).

As in the problem of mean estimation, the shrink-
age by p̂H manifests itself in risk reduction over p̂U .
To illustrate this, Figure 2 displays the risk differ-
ence [RKL(μ, p̂U ) − RKL(μ, p̂H )] at μ = (c, . . . , c)′,
0 ≤ c ≤ 4 when vx = 1 and vy = 0.2 for dimensions
p = 3,5,7,9. Paralleling the risk reduction offered by
μ̂H in the mean estimation problem, the largest risk
reduction offered by p̂H occurs close to μ = 0 and
decreases rapidly to 0 as ‖μ‖ increases. [RKL(μ, p̂U )

is constant as a function of μ.] At the same time, the
risk reduction by p̂H is larger for larger p at each fixed
‖μ‖.

5. MANY POSSIBLE SHRINKAGE TARGETS

By a simple shift of coordinates, the modified
James–Stein estimator,

μ̂b
JS(x) = b +

(
1 − p − 2

‖x − b‖2

)
(x − b),(25)

remains minimax, but now shrinks x toward b ∈ Rp

where its risk function is smallest. Similarly, minimax
Bayes shrinkage estimators of a mean or of a predictive
density can be shifted to shrink toward b, by recenter-
ing the prior π(μ) to πb(μ) = π(μ− b). These shifted
estimators are easily obtained by inserting the corre-
sponding translated marginal

mb
π(z;v) = mπ(z − b;v)(26)

into (7) to obtain

μ̂b
π (x) = Eb

π(μ|x) = x + ∇ logmb
π(x;1),(27)

and into (18) to obtain

p̂b
π (y|x) = mb

π(w;vw)

mb
π(x;vx)

p̂U (y|x).(28)
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FIG. 1. Shrinkage of p̂U (y|x) to obtain p̂H (y|x) when vx = 1, vy = 0.2 and p = 5. Here y = (y1, y2,0,0,0)′.

Recentered unimodal priors such as πb
H and πb

a yield
estimators that now shrink x and p̂U (y|x) toward b

rather than toward 0. Since the superharmonic proper-

FIG. 2. The risk difference between p̂U and p̂H when
μ = (c, . . . , c)′, vx = 1, vy = 0.2.

ties of mπ are inherited by mb
π , the minimaxity of such

estimators will be preserved.
In his discussion of Stein (1962), Lindley (1962)

noted that the James–Stein estimator could be modi-
fied to shrink toward (x̄, . . . , x̄)′ ∈ Rp (x̄ is the mean
of the components of x), by replacing b and (p − 2)

in (25) by (x̄, . . . , x̄)′ and (p − 3), respectively. The
resulting estimator remains minimax as long as p ≥ 4
and offers smallest risk when μ is close to the subspace
of μ with identical coordinates, the subspace spanned
by the vector 1p = (1, . . . ,1)′. Note that (x̄, . . . , x̄)′ is
the projection of x into this subspace.

More generally, minimax Bayes shrinkage estima-
tors of a mean or of a predictive density can be simi-
larly modified to obtain shrinkage toward any (possibly
affine) subspace B ⊂ Rp , whenever they correspond
to spherically symmetric priors. Such priors, which in-
clude πH and πa , are functions of μ only through ‖μ‖.
Such a modification is obtained by recentering the prior
π(μ) around B via

πB(μ) = π(μ − PBμ),(29)

where PBμ = argminb∈B‖μ − b‖ is the projection of
μ onto B . Effectively, πB(μ) puts a uniform prior on
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PBμ and applies a suitably modified version of π to
(μ − PBμ). Note that the dimension of (μ − PBμ),
namely (p − dim(B)), must be taken into account
when determining the appropriate modification for π .
For example, recentering the harmonic prior πH (μ) =
‖μ‖−(p−2) around the subspace spanned by 1p yields

πB
H (μ) = ‖μ − μ̄1p‖−(p−3),(30)

where μ̄ = μ′1p/p. Here, the uniform prior is put
on PBμ = μ̄1p , and the harmonic prior in dimension
(p − dim(B)) = (p − 1) (which is different from the
harmonic prior in Rp) is put on (μ− μ̄1p), the orthog-
onal complement of B .

The marginal mB
π corresponding to the recentered

πB in (29) can be directly obtained by recentering the
spherically symmetric marginal mπ corresponding to
π , that is,

mB
π (z;v) = mπ(z − PBz;v),(31)

where PBz is the projection of z onto B . Analogously
to πB(μ), mB

π (z;v) is uniform on PBz and applies a
suitably modified version of mπ to (z − PBz). Here,
too, the dimension of (z−PBz), namely (p−dim(B)),
must be taken into account when determining the ap-
propriate modification for mπ . For example, recenter-
ing the marginal mπ around the subspace spanned by
1p would entail replacing ‖z‖ by ‖z − z̄1p‖, where
z̄ = z′1p/p, and appropriately modifying mπ to apply
to Rp−1.

Applying the recentering (29) to priors such as πH

and πa , which are unimodal around 0, yields priors πB
H

and πB
a and hence marginals mB

H and mB
a , which are

unimodal around B . Such recentered marginals yield
mean estimators

μ̂B
π (x) = EB

π (μ|x) = x + ∇ logmB
π (x;1),(32)

and predictive density estimators

p̂B
π (y|x) = mB

π (w;vw)

mB
π (x;vx)

p̂U (y|x),(33)

that now shrink x and p̂U (y|x) toward B rather than to-
ward 0. Shrinkage will be largest when x ∈ B , and will
diminish as x moves away from B . These estimators
offer smallest risk when μ ∈ B , but do not improve in
any important way over x and p̂U (y|x) when μ is far
from B .

A superharmonic mπ will lead to a superharmonic
mB

π as long as (p − dim(B)) is large enough. For ex-
ample, the recentered marginal mB

H will be superhar-
monic only when (p − dim(B)) ≥ 3. In such cases, the
minimaxity of both μ̂B

π and p̂B
π will be preserved.

6. WHERE TO SHRINK?

Stein’s discovery of the existence of minimax shrink-
age estimators such as μ̂b

JS(x) in (25) demonstrated that
costless improvements over the minimax μ̂MLE were
available near any target preselected by the statistician.
As Stein (1962) put it when referring to the use of such
an estimator to center a confidence region, the target
“should be chosen. . . as one’s best guess” of μ. That
frequentist considerations had demonstrated the folly
of ignoring subjective input was quite a shock to the
perceived “objectivity” of the frequentist perspective.

Although the advent of minimax shrinkage estima-
tors of the form μ̂B

π in (32) and p̂B
π in (33) opened

up the possibility of small risk near any preselected
(affine) subspace B ⊂ Rp (this includes the possibility
that B is a single point), it also opened up a challeng-
ing new problem, how to best choose such a B . From
the vast number of possible choices, the goal was to
choose B close to the unknown μ, otherwise risk re-
duction would be negligible. To add to the difficulties,
low-dimensional B , which offered the greatest risk re-
duction, were also the most difficult to get close to μ.

When faced with a number of potentially good tar-
get choices, say B1, . . . ,BN , rather than choose one of
them and proceed with μ̂B

π or p̂B
π , an attractive alterna-

tive is to use a minimax multiple shrinkage estimator;
see George (1986a, 1986b, 1986c). Such estimators in-
corporate all the potential targets by combining them
into an adaptive convex combination of μ̂B1

π , . . . , μ̂BN
π

for mean estimation, and of p̂B1
π , . . . , p̂BN

π for predic-
tive density estimation. By adaptively shrinking toward
the more promising targets, the region of potential risk
reduction is vastly enlarged while at the same time re-
taining the safety of minimaxity.

The construction of these minimax multiple shrink-
age estimators proceeds as follows, again making
fundamental use of the Bayesian formulation. For a
spherically symmetric prior π(μ), a set of subspaces
B1, . . . ,BN of Rp , and a set of nonnegative weights
w1, . . . ,wN such that

∑N
1 wi = 1, consider the mix-

ture prior

π∗(μ) =
N∑

i=1

wiπ
Bi (μ),(34)

where each πBi is a recentered prior as in (29). To sim-
plify notation, we consider the case where each πBi is a
recentering of the same π , although in principle such a
construction could be applied with different priors. The
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marginal m∗ corresponding to the mixture prior π∗ in
(34) is then simply

m∗(z;v) =
N∑
1

wim
Bi
π (z;v),(35)

where mBi
π are the recentered marginals corresponding

to the πBi as given by (31).
Applying Brown’s representation μ̂π = x +

∇ logmπ(x;1) from (7) with m∗ in (35) immediately
yields the multiple shrinkage estimator of μ,

μ̂∗(x) =
N∑

i=1

p(Bi |x)μ̂Bi
π (x),(36)

where

p(Bi |x) = wim
Bi
π (x;1)∑N

i=1 wim
Bi
π (x;1)

.(37)

Similarly, applying the representation p̂π (y|x) =
mπ(w;vw)
mπ (x;vx)

p̂U (y|x) from (18) with m∗ immediately
yields the multiple shrinkage estimator of p(y|μ),

p̂∗(y|x) =
N∑

i=1

p(Bi |x)p̂Bi
π (y|x),(38)

where

p(Bi |x) = wim
Bi
π (x;vx)∑N

i=1 wim
Bi
π (x;vx)

.(39)

The forms (36) and (38) reveal μ̂∗ and p̂∗ to be
adaptive convex combination of the individual poste-
rior mean estimators μ̂Bi

π and p̂Bi
π , respectively. The

adaptive weights p(Bi |x) in (37) and (39) are the pos-
terior probabilities that μ is contained in each of the
Bi , effectively putting increased weight on those indi-
vidual estimators which are shrinking most. Note that
the uniform prior estimates μ̂U and p̂U are here doubly
shrunk by μ̂∗ and p̂∗(y|x); in addition to the individ-
ual estimator shrinkage they are further shrunk by the
posterior probability p̂(Bi |x).

The key to obtaining μ̂∗ and p̂∗(y|x) which are mini-
max is simply to use priors which yield superharmonic
mB1

π , . . . ,mBN
π . If such is the case, then trivially from

(35)

∇2m∗ =
N∑
1

wi∇2mBi
π ≤ 0,(40)

so that m∗ will be superharmonic, and the minimaxity
of μ̂∗ and p̂∗(y|x) will follow immediately. Note that

FIG. 3. The risk difference between p̂U and multiple shrinkage
p̂H ∗ when μ = (c, . . . , c)′, vx = 1, vy = 0.2, b1 = (2, . . . ,2)′,
b2 = (−2, . . . ,−2)′, and w1 = w2 = 0.5.

marginals whose square root is superharmonic will not
be adequate, as this argument will fail.

The adaptive shrinkage behavior of μ̂∗ and p̂∗ man-
ifests itself as substantial risk reduction whenever μ

is near any of B1, . . . ,BN . Let us illustrate how that
happens for the predictive density estimator p̂H ∗ , the
multiple shrinkage version of p̂H . Figure 3 illustrates
the risk reduction [RKL(μ, p̂U )−RKL(μ, p̂H ∗)] at var-
ious μ = (c, . . . , c)′ obtained by p̂H ∗ which adaptively
shrinks p̂U (y|x) toward the closer of the two points
b1 = (2, . . . ,2)′ and b2 = (−2, . . . ,−2)′ using equal
weights w1 = w2 = 0.5. As in Figure 2, we consid-
ered the case vx = 1, vy = 0.2 for p = 3,5,7,9. As the
plot shows, maximum risk reduction occurs when μ is
close to b1 or b2, and goes to 0 as μ moves away from
either of these points. At the same time, for each fixed
‖μ‖, risk reduction by p̂H ∗ is larger for larger p. It is
impressive that the size of the risk reduction offered by
p̂H ∗ is nearly the same as each of its single target coun-
terparts. The cost of multiple shrinkage enhancement
seems negligible, especially compared to the benefits.

7. EMPIRICAL BAYES CONSTRUCTIONS

Beyond their attractive risk properties, the James–
Stein estimator μ̂JS and its positive-part counterpart
μ̂JS+ are especially appealing because of their simple
closed forms which are easy to compute. As shown
by Xu and Zhou (2011), similarly appealing simple
closed-form predictive density shrinkage estimators
can be obtained by the same empirical Bayes consider-
ations that motivate μ̂JS and μ̂JS+.
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The empirical Bayes motivation of μ̂JS, alluded to in
Section 1, simply entails replacing 1/(1 + ν) in (4) by
(p−2)/‖x‖2, its unbiased estimate under the marginal
distribution of X|μ ∼ Np(μ, I) when μ ∼ Np(0, νI ).
The positive-part μ̂JS+ is obtained by using the trun-
cated estimate (p − 2)/max{1,‖x‖2} which avoids an
implicitly negative estimate of the prior variance ν.

Proceeding analogously, Xu and Zhou considered
the Bayesian predictive density estimate,

p̂ν(y|x) ∼ Np

((
1 − vx

vx + ν

)
x,

(41)
vx

vx + ν
vy +

(
1 − vx

vx + ν

)
(vx + vy)

)
,

when X|μ ∼ Np(μ,vxI ) and Y |μ ∼ Np(μ,vyI ) are
independent, and μ ∼ Np(0, νI ). Replacing vx/(vx +
ν) by its truncated unbiased estimate (p − 2)vx/

max{vx,‖x‖2} under the marginal distribution of X,
they obtained the empirical Bayes predictive density
estimate

p̂p−2(y|x) ∼ Np

((
1 − (p − 2)vx

‖x‖2

)
+
x;

(42)

vy +
(

1 − (p − 2)vx

‖x‖2

)
+
vx

)

where (·)+ = max{0, ·}, an appealing simple closed
form. Centered at μ̂JS+, p̂p−2 converges to the best in-
variant procedure p̂U ∼ N(x, vx + vy) as ‖x‖2 → ∞,
and converges to N(0, vy) as ‖x‖2 → 0. Thus, p̂p−2
can be viewed as a shrinkage predictive density estima-
tor that “pulls” p̂U toward 0, its shrinkage adaptively
determined by the data.

To assess the KL risk properties of such empirical
Bayes estimators, Xu and Zhou considered the class of
estimators p̂k of the form (42) with (p−2) replaced by
a constant k, a class of simple normal forms centered
at shrinkage estimators of μ with data-dependent vari-
ances to incorporate estimation uncertainty. For this
class, they provided general sufficient conditions on k

and the dimension p for p̂k to dominate the best invari-
ant predictive density p̂U and thus be minimax. Go-
ing further, they also established an “oracle” inequal-
ity which suggests that the empirical Bayes predictive
density estimator is asymptotically minimax in infinite-
dimensional parameter spaces and can potentially be
used to construct adaptive minimax estimators. It ap-
pears that these minimax empirical Bayes predictive
densities may play the same role as the James–Stein
estimator in such problems.

It may be of interest to note that a particular pseudo-
marginal empirical Bayes construction that works fine

for the mean estimation problem appears not to work
for the predictive density estimation problem. For in-
stance, the positive-part James–Stein estimator μ̂JS+
can be expressed as μ̂JS+ = x + ∇ logmJS+(x;1),
where mJS+(x;v) is the function

mJS+(x;v)

=
⎧⎪⎨
⎪⎩

kp‖x‖−(p−2) if ‖x‖2/v ≥ (p − 2),

v−(p−2)/2 exp{−‖x‖2/2v}
if ‖x‖2/v < (p − 2),

with kp = (e/(p − 2))−(p−2)/2 (see Stein, 1974). We
refer to m(z;v) as a pseudo-marginal because it is
not a bona fide marginal obtained by a real prior.
Nonetheless, it plays the formal role of a marginal
in the mean estimation problem, and can be used to
generate further innovations such as minimax mul-
tiple shrinkage James–Stein estimators (see George,
1986a, 1986b, 1986c).

Proceeding by analogy, it would seem that m(z;v)

could be inserted into the representation (18) from
Lemma 1 to obtain similar results under KL loss. Un-
fortunately, this does not yield a suitable minimax pre-
dictive estimator because p̂JS+(y|x) is not a proper
probability distribution. Indeed,

∫
p̂JS+(y|x)dy �= 1

and varies with x. What has gone wrong? Because
they do not correspond to real priors, such pseudo-
marginals are ultimately at odds with the probabilistic
coherence of a valid Bayesian approach. In contrast to
the mean estimation framework, the predictive density
estimation framework apparently requires stronger fi-
delity to the Bayesian paradigm.

8. PREDICTIVE DENSITY ESTIMATION FOR
CLASSICAL REGRESSION

Moving into the multiple regression setting, Stein
(1960) considered the estimation of a p-dimensional
coefficient vector under suitably rescaled quadratic
loss. He there established the minimaxity of the max-
imum likelihood estimators, and then proved its inad-
missibility when p ≥ 3, by demonstrating the existence
of a dominating shrinkage estimator.

In a similar vein, as one might expect, the theory of
predictive density estimation presented in Sections 2
and 3 can also be extended to the multiple regression
framework. We here describe the main ideas of the de-
velopment of this extension which appeared in George
and Xu (2008). Similar results, developed indepen-
dently from a slightly different perspective, appeared
at the same time in Kobayashi and Komaki (2008).
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Consider the canonical normal linear regression
setup:

X|β ∼ Nm(Aβ,σ 2I ), Y |β ∼ Nn(Bβ,σ 2I ),(43)

where A is a full rank, fixed m × p, B is a fixed n × p

matrix, and β is a common p × 1 unknown regres-
sion coefficient. The error variance σ 2 is assumed to
be known, and set to be 1 without loss of generality.
The problem is to find an estimator of p̂(y|x) of the
predictive density p(y|β), evaluating its performance
by KL risk

RKL(β, p̂) =
∫

p(x|β)L(β, p̂(·|x)) dx,(44)

where L(β, p̂(·|x)) is the KL loss between the density
p(y|β) and its estimator p̂(y|x).

The story begins with the result, analogous to Aitchi-
son’s (1975) for the normal mean problem, that the
plug-in estimator p(y|β̂x), where β̂x is the least squares
estimate of β based on x, is dominated under KL risk
by the posterior mean of p(y|β), the Bayes rule under
the uniform prior

p̂U (y|x) = 1

(2π)n/2

|A′A + B ′B|−1/2

|A′A|−1/2

(45)

× exp
{
−RSSx,y − RSSx

2

}
.

Here, too, p̂U is minimax (Liang, 2002; Liang and Bar-
ron, 2004) and plays the straw-man role of the esti-
mator to beat. The challenge was to determine which
priors π would lead to Bayes rules which dominated
p̂U , and hence would be minimax. Analogously to the
representation (18) in Lemma 1 for the normal mean
problem, the following representation for a Bayes rule
p̂π (y|x) here, was the key to meeting this challenge.

LEMMA 3. The Bayes rule p̂π (y|x) = ∫
p(y|β) ×

π(β)dβ can be expressed as

p̂π (y|x) = mπ(β̂x,y;�C)

mπ(β̂x;�A)
p̂U (y|x),(46)

where �A = (A′A)−1, C = A′A + B ′B, �C =
(C′C)−1, β̂x is the least squares estimates of β based
on x, and β̂x,y based on x and y, and mπ(z;�) is the
marginal distribution of Z|β ∼ Np(β,�) under π(β).

The representation (46) leads immediately to the fol-
lowing analogue of (19) for the KL risk difference be-
tween p̂U (y|x) and p̂π (y|x):

RKL(β, p̂U ) − RKL(β, p̂π )

= Eβ,�C
logmπ(β̂x,y;�C)(47)

− Eβ,�A
logmπ(β̂x;�A).

The challenge thus became that of finding conditions
on mπ to make this difference positive, a challenge
made more difficult than the previous one for (19) be-
cause of the complexity of �A and �C . Fortunately
this could be resolved by rotating the problem as fol-
lows to obtain diagonal forms. Since �A and �C are
both symmetric and positive definite, there exists a full
rank p × p matrix W , such that

�A = WW ′, �C = WDW ′,
(48)

D = diag(d1, . . . , dp).

Because �C = (�−1
A +B ′B)−1 where B ′B is nonnega-

tive definite, it follows that di ∈ (0,1] for all 1 ≤ i ≤ p

with at least one di < 1. Thus, the parameters for the
rotated problem become

μ = W−1β, μ̂x = W−1β̂x ∼ Np(μ, I),
(49)

μ̂x,y = W−1β̂x,y ∼ Np(μ,D).

Letting Vw = wI + (1 − w)D for w ∈ [0,1], the risk
difference (47) could be reexpressed as

RKL(β, p̂U ) − RKL(β, p̂π )

= Eμ,D logmπW
(μ̂x,y;D)

(50)
− Eμ,I logmπW

(μ̂x; I )

= hμ(V0) − hμ(V1),

where hμ(Vw) = Eμ,Vw logmπW
(Z;Vw) and πW(μ) =

π(Wμ). The minimaxity of p̂π would now follow from
conditions on mπ such that (∂/∂w)hμ(w) < 0 for all
μ and w ∈ [0,1]. The following substantial general-
izations of Theorem 1 and Corollary 1 provide exactly
those conditions.

THEOREM 2. Suppose mπ(z;WW ′) is finite for all
z with the invertible matrix W defined as in (48). Let
H(f (z1, . . . , zp)) be the Hessian matrix of f .

(i) If trace{H(mπ(z;WVwW ′))[�A −�C]} ≤ 0 for
all w ∈ [0,1], then p̂π (y|x) is minimax.

(ii) If trace{H(
√

mπ(z;WVwW ′))[�A − �C]} ≤ 0
for all w ∈ [0,1], then p̂π (y|x) is minimax.

COROLLARY 2. Suppose mπ(z;WW ′) is finite for
all z. Then p̂π (y|x) is minimax if

trace{H(π(β))[�A − �C]} ≤ 0 a.e.

As a consequence of Corollary 2, the scaled har-
monic prior πH (β|W) ∝ ‖W−1β‖p−2 can be shown
to yield minimax predictive density estimators for the
regression setting.

Going further, George and Xu (2008) went on to
show that the minimax Bayes estimators here can be
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modified to shrink toward different points and sub-
spaces as in Section 5, and that the minimax multiple
shrinkage constructions of Section 6 apply as well. In
particular, they obtained minimax multiple shrinkage
estimators that naturally accommodate variable selec-
tion uncertainty.

9. PREDICTIVE DENSITY ESTIMATION FOR
NONPARAMETRIC REGRESSION

Moving in another direction, Xu and Liang (2010)
considered predictive density estimation in the con-
text of modern nonparametric regression, a context in
which the James–Stein estimator has turned out to play
an important asymptotic minimaxity role; see Wasser-
man (2006). Their results pertain to the canonical setup
for nonparametric regression:

Y(ti) = f (ti) + εi, i = 1, . . . , n,(51)

where f is an unknown smooth function in L2[0,1],
ti = i/n, and εi’s are i.i.d. N(0,1). A central problem
here is to estimate f or various functionals of f based
on observing Y = (Y (t1), . . . , Y (tn)). Transforming the
problem with an orthonormal basis, (51) is equivalent
to estimating the θi’s in

yi = θi + ei, ei ∼ N

(
0,

1

n

)
, i = 1, . . . , n,(52)

known as the Gaussian sequence model. The model
above is different from the ordinary multivariate nor-
mal model in two aspects: (1) the model dimension n is
increasing with the sample size, and (2) under function
space assumptions on f , the θi’s lie in a constrained
space, for example, an ellipsoid {∑i a

2
i θ

2
i ≤ C,ai →

∞}.
A large body of literature has been devoted to min-

imax estimation of f under L2 risk over certain func-
tion spaces; see, for example, Johnstone (2003), Efro-
movich (1999), and the references therein. As opposed
to the ordinary multivariate normal mean problem, ex-
act minimax analysis is difficult for the Gaussian se-
quence model (52) when a constraint on the parame-
ters is considered. This difficulty has been overcome by
first obtaining the minimax risk of a subclass of estima-
tors of a simple form, and then showing that the overall
minimax risk is asymptotically equivalent to the min-
imax risk of the subclass. For example, an important
result from Pinsker (1980) is that when the parame-
ter space is constrained to an ellipsoid, the nonlinear
minimax risk is asymptotically equivalent to the linear
minimax risk, namely the minimax risk of the subclass
of linear estimators of the form θ̂i = cixi .

For nonparametric regression, the following ana-
logue between estimation under L2 risk and predic-
tive density estimation under KL risk was established
in Xu and Liang (2010). The prediction problem for
nonparametric regression is formulated as follows. Let
Ỹ = (Ỹ (u1), . . . , Ỹ (um)) be future observations arising
at a set of dense (m ≥ n) and equally spaced locations
{uj }mi=1. Given f , the predictive density p(ỹ|f ) is just
a product of Gaussians. The problem is to find an es-
timator p̂(ỹ|y) of p(ỹ|f ), where performance is mea-
sured by the averaged KL risk

R(f, p̂) = 1

m
E

Y,Ỹ |f log
p(Ỹ |f )

p̂(Ỹ |Y)
.(53)

In this formulation, densities are estimated at the m lo-
cations simultaneously by p̂(ỹ|y). As it turned out, the
KL risk based on the simultaneous formulation (53) is
the analog of the L2 risk for estimation. Indeed, under
the KL risk (53), the prediction problem for a nonpara-
metric regression model can be converted to the one for
a Gaussian sequence model.

Based on this formulation of the problem, minimax
analysis proceeds as in the general framework for the
minimax study of function estimation used by, for ex-
ample, Pinsker (1980) and Belitser and Levit (1995,
1996). The linear estimators there, which play a cen-
tral role in their minimax analysis, take the same form
as posterior means under normal priors. Analogously,
predictive density estimates under the same normal pri-
ors turned out to play the corresponding role in the
minimax analysis for prediction. (The same family of
Bayes rules arises from the empirical Bayes approach
in Section 7.) Thus, Xu and Liang (2010) were ulti-
mately able to show that the overall minimax KL risk
is asymptotically equivalent to the minimax KL risk
of this subclass of Bayes rules, a direct analogue of
Pinker’s Theorem for predictive density estimation in
nonparametric regression.

10. DISCUSSION

Stein’s (1956) discovery of the existence of shrink-
age estimators that uniformly dominate the minimax
maximum likelihood estimator of the mean of a multi-
variate normal distribution under quadratic risk when
p ≥ 3 was the beginning of a major research effort
to develop improved minimax shrinkage estimation. In
subsequent papers Stein guided this effort toward the
Bayesian paradigm by providing explicit examples of
minimax empirical Bayes and fully Bayes rules. Mak-
ing use of the fundamental results of Brown (1971), he



MINIMAX SHRINKAGE PREDICTION 93

developed a general theory for establishing minimaxity
based on the superharmonic properties of the marginal
distributions induced by the priors.

The problem of predictive density estimation of a
multivariate normal distribution under KL risk has
more recently seen a series of remarkably parallel de-
velopments. With a focus on Bayes rules catalyzed
by Aitchison (1975), Komaki (2001) provided a fun-
damental breakthrough by demonstrating that the har-
monic prior Bayes rule dominated the best invariant
uniform prior Bayes rule. These results suggested the
existence of a theory for minimax estimation based
on the superharmonic properties of marginals, a the-
ory that was then established in George, Liang and
Xu (2006). Further developments of new minimax
shrinkage predictive density estimators now abound,
including, as described in this article, multiple shrink-
age estimators, empirical Bayes estimators, normal lin-
ear model regression estimators, and nonparametric
regression estimators. Examples of promising further
new directions for predictive density estimation can be
found in the work of Komaki (2004, 2006, 2009) which
included results for Poisson distributions, for general
location-scale models and for Wishart distributions, in
the work of Ghosh, Mergel and Datta (2008) which de-
veloped estimation under alternative divergence losses,
and in the work of Kato (2009) which established im-
proved minimax predictive domination for the multi-
variate normal distribution under KL risk when both
the mean and the variance are unknown. Minimax pre-
dictive density estimation is now beginning to flourish.
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