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 rodent models. If some of these findings can be reproduced 
in humans, they would provide a new perspective on the 
implications that RAS-blockade can offer as a therapeutic 
strategy. This review intends to present available informa-
tion pointing to mitochondria as targets for therapeutic 
Ang-II blockade in human renal and CV disease. 

 Copyright © 2007 S. Karger AG, Basel 

 Introduction 

 Oxidative stress (OxStr), i.e. the sustained increase in 
the levels of oxidizing species, plays a key role in the 
pathophysiology of renal damage and cardiovascular dis-
ease (CVD). Renal lesions associated with hypertension, 
diabetes and glomerular diseases are among those that 
most frequently progress to chronic kidney disease 
(CKD). In addition, excess generation of reactive oxygen 
species (ROS), aggravated by the accompanying inflam-
matory syndrome, is mainly responsible for the accelera-
tion of cardiovascular decay in CKD. Regardless of abun-
dant information documenting the roles of OxStr and 
inflammatory processes in CKD and CVD, less is known 
on the involvement of mitochondria, i.e. the main cellu-
lar sources of ROS. Most of the evidence supporting a role 
for mitochondria in disease comes from studies in cul-
tured cells and animal models. Recently, angiotensin-II 
(Ang-II) was found to stimulate not only cytosolic- but 
also mitochondrial-ROS generation, indicating that Ang-
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 Abstract 

 Mitochondria are energy-producing organelles that con-
duct other key cellular tasks. Thus, mitochondrial damage 
may impair various aspects of tissue functioning. Mito-
chondria generate oxygen- and nitrogen-derived oxidants, 
being themselves major oxidation targets. Dysfunctional 
mitochondria seem to contribute to the pathophysiology of 
hypertension, cardiac failure, the metabolic syndrome, obe-
sity, diabetes mellitus, renal disease, atherosclerosis, and 
 aging. Mitochondrial proteins and metabolic intermediates 
participate in various cellular processes, apart from their 
well-known roles in energy metabolism. This emphasizes 
the participation of dysfunctional mitochondria in disease, 
notwithstanding that most evidences supporting this con-
cept come from animal and cultured-cell studies. Mitochon-
drial oxidant production is altered by several factors related 
to vascular pathophysiology. Among these, angiotensin-II 
stimulates mitochondrial oxidant release leading to energy 
metabolism depression. By lowering mitochondrial oxidant 
production, angiotensin-II inhibition enhances energy pro-
duction and protects mitochondrial structure. This seems to 
be one of the mechanisms underlying the benefits of angio-
tensin-II inhibition in hypertension, diabetes, and aging 

 Received: May 30, 2007 
 Accepted: July 16, 2007 
 Published online: August 30, 2007 

NephrologyAmerican    Journal of

 Leon Ferder, MD 
 Physiology and Pharmacology Department, Ponce School of Medicine 
 PO Box 7004 
 Ponce, PR 00732-7004 (USA) 
 Tel. +1 787 841 3736, E-Mail leferder@psm.edu 

 © 2007 S. Karger AG, Basel
0250–8095/07/0276–0545$23.50/0 

 Accessible online at:
www.karger.com/ajn 

http://dx.doi.org/10.1159%2F000107757


 de Cavanagh   /Inserra   /Ferder   /Ferder   

 

Am J Nephrol 2007;27:545–553546

II-related tissue damage may involve mitochondrial Ox-
Str. This review intends to present available information 
pointing to mitochondria as targets for therapeutic Ang-
II blockade in human renal and CV disease.

  ROS Are Dual Agents 

 ROS – including superoxide anion radical and hydro-
gen peroxide (H 2 O 2 ) – are continuous subproducts of 
normal aerobic metabolism that can oxidize nucleic ac-
ids, lipids and proteins, leading to the modification and/
or loss of their biological functions. Under pathophysio-
logical conditions that exhibit increased levels of ROS, 
these oxidizing agents contribute to initiate and intensify 
the injurious events that accompany inflammation, de-
generative diseases, hypertension, diabetes and oncogen-
esis  [1, 2] . However, under physiologically low ROS con-
centrations, these mediators constitute inter- and intra-
cellular signals that, by oxidizing redox-sensitive protein 
phosphatases or kinases which are activated or inactivat-
ed in the process, can modify the phosphorylation status 
of transcription factors or receptors. This results in activ-
ity changes that are vital to maintain proper cellular 
function. Thus, depending on their cellular levels, ROS 
can act as either deleterious or crucial biological agents 
 [3, 4] .

  In this regard, the identification of oxidized molecules 
in the kidney, and the protective action provided by an-
tioxidants in animal models for human conditions, indi-
cate a role for ROS in glomerular diseases  [5] .

  The Mitochondrion: A Multi-Task Organelle 

 Mitochondria are energy-producing organelles that 
also conduct other key cellular tasks, including the regu-
lation of cytosolic calcium levels  [6]  and tissue oxygen 
gradients  [7] , H 2 O 2  signaling  [8] , and the modulation of 
apoptosis  [9] . Importantly, mitochondria have emerged 
as organelles that receive, integrate and transmit signals, 
thus playing a critical role in cellular responses to a vari-
ety of stimuli  [10] . Hence, it is apparent that mitochon-
drial damage may lead to the impairment of various as-
pects of tissue functioning.

  Mitochondria and ROS 
 Mitochondria utilize more than 90% of cellular oxy-

gen and, while most of it is transformed to water at com-
plex IV of the mitochondrial electron transport chain 

(mtETC), approximately 1–2% of the oxygen consumed 
 [11]  receive electrons directly from complexes I and III 
 [12] , to form superoxide. Other sources of mitochondrial 
ROS (mtROS) include electrons derived from complex II 
substrates that can be reverse-transported towards com-
plex I and oxygen  [13] , matrix enzymes  [14, 15] , outer 
membrane monoaminoxidases (MAO)  [16] , and mito-
chondrial nitric oxide synthase (mtNOS) uncoupling 
 [17] . Superoxide is released to both the mitochondrial 
matrix and the space between the inner and outer mito-
chondrial membrane  [18]  where it can be converted to 
H 2 O 2  by Mn superoxide dismutase (Mn-SOD) and CuZn-
SOD, respectively  [19, 20] . H 2 O 2  can be detoxified to wa-
ter by mitochondrial glutathione peroxidase, or to water 
and oxygen by catalase, which is present in cardiac mito-
chondria. These enzymes belong to a complex multi-lev-
eled mitochondrial defense system, composed of enzymes 
and non-enzymatic antioxidants, that is involved in ROS 
detoxification.

  Additionally, mitochondria generate other oxidants 
derived from nitric oxide (NO), collectively known as re-
active nitrogen species (RNS), that include peroxinitrite 
anion, which is formed when superoxide and NO react. 
Thus, mitochondria are relevant cellular sources of ROS 
and RNS, and consequently, are themselves major oxida-
tion targets. This eventually leads to mitochondrial dys-
function, i.e. a defective capacity to generate ATP accom-
panied by increased ROS generation  [21] .

  Mitochondrial Dysfunction and Disease 

 Mitochondrial dysfunction is detrimental to cells as a 
consequence of both the reduction of bioenergetic capac-
ity and the derangement of mtROS-mediated signals. The 
contribution of dysfunctional mitochondria to disease is 
emphasized by the recent recognition that, in addition to 
their well-known roles in energy metabolism, mitochon-
drial proteins and metabolic intermediates participate in 
other processes. Thus, succinate dehydrogenase, an en-
zyme that contributes to mitochondrial oxidative phos-
phorylation by participating in the citric acid cycle, also 
seems to modulate mitochondrial K +  transport by taking 
part in the formation of an inner membrane multiprotein 
complex that displays ATP-sensitive K + -channel activity 
 [22] . Also, cytochrome c, in addition to its key function as 
a mitochondrial electron carrier, participates as a signal-
ing molecule in apoptosis  [23] . Finally, the citric acid cycle 
intermediate succinate also acts as a signaling molecule 
through its binding to G-protein coupled receptors  [24] .
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  In this setting, malfunctioning mitochondria are in-
volved in pathological conditions, such as hypertension 
 [25–27] , cardiac failure, the metabolic syndrome and 
obesity  [28] , diabetes mellitus  [29, 30] , renal disease  [31] , 
atherosclerosis  [32] , as well as in aging  [33] .

  Mitochondria and Aging 
 Oxidative damage to mitochondria, and the associat-

ed loss of mitochondrial function, not only contributes to 
disease, but was also postulated to be instrumental in the 
aging process. Accordingly, the mitochondrial free radi-
cal (FR) theory of aging  [34]  proposes that in aging cells 
accumulation of mitochondrial DNA (mtDNA) damage 
inflicted by FR generated by mitochondria, or at other 
cell sites, conducts to the progressive impairments of en-
ergy production, mitochondrial protein synthesis, and 
mitochondrial regeneration. In this way degenerative 
processes are initiated, eventually leading to the senes-
cence-associated loss of functional capacity.

  In support of the mitochondrial FR theory of aging, a 
reduction of mitochondrial number in certain organs is 
frequently associated with the aging process  [35, 36] . 
Also, tissues obtained from aged animals, display chang-
es in mitochondrial structure  [33]  associated with in-
creased superoxide and H 2 O 2  generation, and decreased 
energy production  [37, 38] . Notably, as the efficiency of 
mtATP production declines due to damage by ROS, elec-
tron leakage from the mtETC increases, further aug-
menting FR generation, and giving rise to a self-sustained 
vicious cycle  [39] . In this context, it was recently reported 
that mitochondria-targeted overexpression of catalase 
extends median and maximum mouse life-span  [40] . 
This life extension coincided with decreases in mtDNA 
oxidant damage, mitochondrial H 2 O 2  production, aconi-
tase inactivation, and mtDNA deletion accumulation 
 [40] , supporting a link between mtROS generation, mito-
chondrial damage, and aging.

  From another perspective, age-associated diseases, in-
cluding hypertension, diabetes, cancer, and cardiovascu-
lar pathologies, are often accompanied by alterations in 
lipid metabolism, which is largely modulated by mito-
chondrial activity.

  Mitochondria and Apoptosis 
 Present knowledge points to mitochondria as critical 

players in cell survival, as a consequence of their classical 
involvement in energy production and their crucial par-
ticipation in apoptosis. Cell death results from either ne-
crosis, when mtATP fails to be maintained at adequate 
levels, or apoptosis, when mtATP levels and mitochon-

drial membrane potential (mtMP) are sustained, and mi-
tochondria succeed in releasing pro-apototic proteins 
that act as molecular signals that initiate caspase activa-
tion  [41] .

  In the kidney, mesangial cell (MC) apoptosis is seri-
ously involved in glomerular remodeling after injury. 
MC behavior – regarding cell adhesion, replication, and 
extracellular matrix (ECM) production – is affected by 
changes in ECM composition associated with disease  [42, 
43] . Other examples of ECM influence on glomerular 
structure dynamics come from data showing that cell at-
tachment to the ECM is required to abolish apoptosis 
 [42] , and normal ECM composition serves as a signal that 
prevents MC from undergoing apoptosis  [44, 45] . In this 
context, accumulating evidences show that mitochondria 
may act as sensors for changes in ECM composition  [46, 
47] .

  Depending on cell type, receptor subtype, and on in-
teractions with other growth factors, Ang-II can induce 
differentiation, hypertrophy, proliferation, or apoptosis 
of vascular, cardiac, and renal cells. These Ang-II cell 
growth-related effects seem to contribute to the patho-
physiology of atherosclerosis, vascular and cardiac re-
modeling, and progression to CKD  [48] . AT2-receptor 
activation was suggested to be responsible for the apop-
togenic actions of Ang-II; however, this point remains 
conflicting because AT1-receptor blockade also attenu-
ates apoptosis in certain models  [49, 50] . Accordingly, 
work from our laboratory showed that renin-angiotensin 
system (RAS)-inhibition prevented the increase in myo-
cardiocyte apoptosis that was observed in untreated ag-
ing mice  [36] , and this was accompanied by attenuation 
of myocardiosclerosis and decreased intracardiac artery 
wall-to-lumen ratios  [51]. 

  mtROS Regulators 

 Various factors are known to regulate mtROS produc-
tion, including mtETC efficiency, mitochondrial antiox-
idant contents  [52] , local oxygen  [53, 54]  and NO concen-
trations  [55–57] , the availability of metabolic electron do-
nors  [58] , uncoupling protein (UCP) activity  [59] , and 
cytokines  [60]  ( fig. 1 ). Additionally, several factors relat-
ed to vascular pathophysiology can alter mtROS produc-
tion, such as oxidized LDL  [61, 62] , free cholesterol  [63] , 
free and albumin-bound fatty acids  [64–66] , hyperglyce-
mia  [67] , and, pertinent to this review, Ang-II  [68, 69]  
( fig. 1 ). Interestingly, different therapeutic strategies 
aimed at modulating these factors – including thiazoli-
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dinediones  [70] , statins  [71] , insulin  [72] , and Ang-II 
blockers – can attenuate mtROS production. Find below a 
revision concerning Ang-II inhibitor effects on mitochon-
drial functions (‘Mitochondria and Ang-II inhibitors’).

  Mitochondria and Ang-II 

 Ang-II can promote OxStr by stimulating the gen-
eration of both NO  [73]  and NAD(P)H oxidase-derived 
superoxide  [74] , thereby enhancing peroxynitrite for-
mation. Also, Ang-II can induce endothelial nitric oxide 
synthase (eNOS) to switch from NO to superoxide pro-
duction  [75] . In addition, a recent report indicates that 
Ang-II stimulates mtROS production in vascular smooth 
muscle cells and in rat aorta in vivo  [69] . In bovine aor-
tic endothelial cells, Ang-II prompts mitochondrial su-
peroxide production as a result of vascular NAD(P)H 
oxidase activation  [76]  ( fig. 2 ). A link between Ang-II-
related ROS/RNS production and mitochondrial func-
tion was suggested by a report showing that antioxi-
dants inhibit the regulatory effects of Ang-II on the
AP-1 signaling pathway  [77] . Since AP-1, whose activity 
responds to oxidation/reduction, regulates cytochrome 
c expression  [78] , it was suggested that Ang-II may fa-
cilitate changes in mitochondrial cytochrome c content 
 [79] .

  Of note, in endothelial cells, Ang-II enhances mtROS 
generation, thus activating redox-sensitive NF-kappaB, 
which is followed by stimulation of vascular cell adhesion 
molecule-1 expression, a key molecule in atherosclerotic 
lesion initiation  [68] . In mice, acute and chronic Ang-II 
infusion led to decreased cardiac mtETC and Krebs cycle 
gene expression  [80] , supporting previous observations 
indicating a role for Ang-II in the depression of mito-
chondrial energy metabolism  [81–83] . Moreover, recent 

findings show that Ang-II lowers mtMP as a result of 
stimulation of mtROS production  [69, 84] .

  Also, there are evidences indicating a direct interaction 
between Ang-II and mitochondrial components. In stud-
ies using  125 I-labeled Ang-II, Ang-II was detected in heart, 
brain and smooth muscle cell mitochondria and nuclei 
 [85, 86] . In rat adrenal zona glomerulosa, renin, angioten-
sinogen and angiotensin-converting enzyme (ACE) were 
detected within intramitochondrial dense bodies  [87] . 
Ang-II immunoreactivity was also observed in rat cere-
bellar cortex mitochondria  [88] . Hence, it is possible to 
speculate that Ang-II may have direct actions on mito-
chondria, independent of AT1-receptor signalling ( fig. 2 ).

  Under normal physiological conditions, Ang-II-medi-
ated ROS- and NO-derived oxidant production, and the 
resulting stimulation of redox-sensitive signaling path-
ways, are closely regulated  [89] . However, under condi-
tions associated with RAS overactivation, including hy-
pertension, diabetes  [90, 91]  and aging  [92–95] , dysregu-
lation of Ang-II-dependent ROS generation may become 
a significant contributor to cell oxidation and tissue dam-
age ( fig. 2 ). In this context, studies from our laboratory 
showed that in rodent models of hypertension, diabetes 
and aging, Ang-II blockade not only attenuates oxidant 
production, but also improves mitochondrial function 
 [26, 27, 30, 33] .

  Mitochondria and Ang-II Inhibitors 

 The renal and cardiac benefits of ACE-inhibitors and 
Ang-II type 1 receptor (AT1) blockers in hypertension, 
cardiovascular disease and diabetes patients  [96–98]  
seem to be – at least partly – independent from their 
blood pressure lowering actions  [96, 98–100] , suggesting 
that these drugs can execute direct tissue effects that do 
not result from their hemodynamic actions. In this re-
gard, RAS-inhibitors were proposed to act as a magic bul-
let against OxStr  [101] .

  Considering that (a) Ang-II inhibitors are indicated 
for the treatment of hypertension and cardiac failure, (b) 
international guide recommendations exist for the use of 
Ang-II inhibitors as first-line drug therapy for kidney 
protection in diabetic patients, even in the absence of hy-
pertension  [102] , (c) the cellular mechanisms responsible 
for Ang-II inhibitors protective effects are poorly under-
stood, and (d) malfunctioning mitochondria seem to be 
involved in the pathogenesis of a variety of disease condi-
tions, we set forth to investigate Ang-II inhibitors effects 
on mitochondria. The first study showed that ACE-inhi-

  Fig. 1.  Factors that influence mitochondrial ROS generation. 
  Fig. 2.  mtROS are involved in redox cell signaling, but are also 
potential mediators of oxidative stress. Ang-II can promote oxi-
dative stress by activating NAD(P)H oxidase-derived superoxide 
production, and/or by inducing eNOS to switch from NO to su-
peroxide production. Also, Ang II-mediated enhancement of 
mtROS generation leads to the depression of mitochondrial en-
ergy metabolism, and a direct interaction between Ang-II and 
mitochondrial components by-passes activation of NAD(P)H ox-
idase. Thus, Ang-II can lead to changes in gene expression that 
may result in disease. Ang-II inhibition is expected to lower 
mtROS release, increasing the efficiency of the respiratory chain 
and protecting mitochondrial structure.  
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bition (enalapril) in aging mice prevented the lowering of 
mitochondrial number  [35] , and attenuated age-related 
mitochondrial structure changes in myocardiocytes and 
hepatocytes [unpubl. results]. These protective effects of 
enalapril were associated with a significant increase in 
animal survival, suggesting that natural aging mecha-
nisms had been altered in enalapril-treated animals. The 
latter action on mice survival is in agreement with recent 
data in aging rats  [103] .

  Later, we found that long-term RAS inhibition during 
aging, with enalapril or AT1-blocker (losartan), improved 
kidney mitochondria mtATP production, lowered H 2 O 2  
generation, and enhanced mtNOS activity and UCP-2 
content, when compared with mitochondria isolated 
from untreated old rats  [33] . In the same study, a general 
improvement in mitochondrial number and structure 
was observed, indicating that RAS inhibition, regardless 
of how it is implemented, protects mitochondrial compo-
nents and function from certain effects of aging.

  Evidence pointing to mitochondrial dysfunction as a 
contributing factor to the pathophysiology of hyperten-
sion  [104]  led us to address the possibility that, in addition 
to the results obtained in aging rats, RAS inhibition might 
protect mitochondria from hypertension-related damage.

  In spontaneously hypertensive rat (SHR) kidneys, 
chronic Ang-II blockade prevented the decreases in 
mtMP, NOS, UCP-2 content, Mn-SOD and cytochrome 
oxidase activities, and the increase in H 2 O 2  production 
observed in untreated SHR  [26, 27] . The mitochondrial 
protective action displayed by losartan treatment was ab-
sent in amlodipine-treated SHR. Furthermore, in un-
treated and in amlodipine-treated SHR, mitochondrial 
impairment was accompanied by renal damage. Taken 
together, the above findings indicate that AT1-blockade 
attenuates mitochondrial dysfunction in SHR, and this 
may underlie the beneficial actions of AT1-blockade on 
kidney structure and function  [26] .

  Recent data indicating that the kidneys are main tar-
gets of mitochondrial impairment at the onset of and 
throughout streptozotocin-induced diabetes – a model of 
type-1 diabetes – and that insulin treatment is unable to 
restore normal mitochondrial function  [105] , led us to 
investigate whether AT1-blockade might protect mito-
chondria against the effects of diabetes. In streptozoto-
cin-diabetic rats, losartan protected kidney mitochon-
dria against changes in mtMP, H 2 O 2  production and py-
ruvate content, without normalizing plasma glucose. 
Conversely, amlodipine was equally potent as losartan as 
an hypertensive agent, but showed no beneficial effects 
on kidney mitochondrial changes  [30] . It can be proposed 

that the contrasting effects displayed by losartan and am-
lodipine on kidney mitochondrial function may be, at 
least partly, a consequence of losartan-mediated block-
ade of Ang-II actions (see above ‘Mitochondria and Ang-
II’). In agreement with our findings in the kidney, work 
by other groups support the notion that Ang-II inhibition 
improves cardiac mitochondria energy production  [106–
108] . In this line, a recent study showed that the expres-
sion of genes related to energy production were up-regu-
lated in captopril-treated diabetic rats  [109] .

  Concerning the potential factor(s) that may mediate 
the effects of Ang-II inhibitors on mitochondrial func-
tion, a study showed that in normotensive enalapril-treat-
ed rats, kidney mitochondrial electron transfer activities 
were lower, and UCP-2 content significantly higher, than 
in untreated controls. These changes were accompanied 
by a higher production/bioavailability of kidney NO, and 
were prevented by co-treatment with L-NAME (a NOS 
inhibitor). L-NAME abolished mtNOS activity, but failed 
to inhibit extra-mitochondrial kidney NOS, underscor-
ing the relevance of mitochondrial NO in mediating 
those effects of enalapril that were suppressed by L-
NAME co-treatment  [110] .

  Summary and Conclusion 

 Mitochondria are main sources of both of cellular en-
ergy and ROS. mtROS are involved in cell signaling, but 
are also potential mediators of OxStr. Available evidenc-
es suggest that Ang-II enhances mtROS generation lead-
ing to the depression of mitochondrial energy metabo-
lism ( fig. 2 ). Consequently, Ang-II inhibition lowers 
mtROS release, increasing the efficiency of mtETC and 
protecting mitochondrial structure. This seems to be one 
of the mechanisms underlying the beneficial effects of 
Ang-II inhibition in rodent models of hypertension, dia-
betes, and normal aging. If some of these findings can be 
reproduced in humans, they would provide a new per-
spective on the implications that RAS blockade can offer 
as a therapeutic strategy. 
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