
F. Daniel and F.M. Facca (Eds.): ICWE 2010 Workshops, LNCS 6385, pp. 13–24, 2010.
© Springer-Verlag Berlin Heidelberg 2010

From Mockups to User Interface Models:
An Extensible Model Driven Approach

José Matías Rivero1,2, Gustavo Rossi1,2, Julián Grigera1, Juan Burella2,3,
Esteban Robles Luna1,2, and Silvia Gordillo1

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{mrivero,gustavo,julian.grigera,esteban.robles,

gordillo}@lifia.info.unlp.edu.ar
2 Also at Conicet

3 Departamento de Computación, Universidad de Buenos Aires
jburella@dc.uba.ar

Abstract. Sketching web applications with mockup tools is a common practice
that improves the process of elicitation and validation of requirements in web
applications. However, mockups are used as a “quick and dirty” way of gather-
ing requirements, thus discarded before development. As a consequence, con-
cepts captured in them are usually lost in the manual transformation between
mockups and the final user interface. In this paper we present a model-driven
approach that overcomes this problem by importing mockups and then trans-
forming them into a technology-dependent model. Development then begins
from the imported version of the mockups.

Keywords: Mockups, User-Interface, MDWE, TDD, MDD.

1 Introduction

Agile methods are appealing for Web applications because they help to provide quick
feedback to customers, following short development iterations and involving them in
the development endeavor. Being requirement elicitation and managing an important
aspect of Web application development, most mature model driven web engineering
approaches (MDWE) use informal textual descriptions (e.g. Use case or User story) to
capture them. However, some requirements are not clearly understood and depend on
the interpretation of the observer. Particularly, requirements related to interface and
interaction issues that are paramount in Web applications are usually remain un-
checked until the application has been partially developed.

Mockups have become a very popular artifact to capture requirements in agile
methods. A mockup is a sketch of a possible user interface (UI) of the application that
helps to agree on broad aspects of the UI and can be easily created by any stake-
holder. In the last years, its use has been quickly expanded, generating a myriad of
tools such as Axure [1], Pencil [2] or Balsamiq [3] that help to create and administrate
mockups. Plain HTML can be also used to provide more detailed and realistic UIs.
However, most development approaches use them informally and consequently as a

14 J.M. Rivero et al.

“quick and dirty” way of gathering requirements, not providing ways to reuse them in
the development process.

In this paper we present a model-driven approach for reusing mockups, engaging
them as part of either a MDWE process or even in a more handcrafted coding based
approach. We first show how mockups can be created by using any of the aforemen-
tioned tools and then imported as instances of a metamodel. Then, we show how to
transform these instances to produce either models or technology dependent code that
can be used during the development process. Also, as part of our technology depend-
ent transformations, we show how UI structure is separated from UI behavior to allow
seamless evolution along the development cycles. In summary, the contributions of
this paper are the following:

● We present a metamodel that abstracts a common set of mockups mod-
els and show how we can import mockup model instances.

● We show how instances of the mockup metamodel can be translated to
different technology dependent concrete interface models.

● We show that the approach is easily extensible to other mockup tools
and UI technologies.

● Finally, we show how we handle evolution in our approach.

The rest of the paper is structured as follows: in Sect. 2 we present some related work.
In Sect. 3 we present our approach in detail. In Sect. 4, we show how we handle evo-
lution and in Sect. 5 we show some implementation details. In Sect. 6 we show how
we can easily extend the approach to use different mockup tools and new technology
dependent transformations. Finally in Sect. 7 we conclude and present some future
work we are pursuing.

2 Related Work

Several successful experiences with UI mockups in the context of agile development
processes in industry have been reported in the literature. In [4, 5], the use of UI pro-
totypes in conjunction with User stories in real projects was considered a key factor in
the entire development process, and facilitated interaction with stakeholders and be-
tween different work teams with distinct roles. A similar approach is described in [6],
where user interface mockups resulted useful for interaction between analysts, devel-
opers and customers in companion with summarized User stories.

At the same time many model-driven approaches to user interface specification
have been proposed; in most of them UI definition starts by specifying domain objects
or concepts like tasks or classes [7], thus neglecting the early capture of aspects like
presentation and look and feel that are essential for customers and final users. In [8], a
MDA-compliant model-driven UI environment has been defined in order to cope with
the complexities of defining modern user interfaces. The approach presented in the
paper consists in a framework allowing multi-context UI definition starting from a
model belonging to one of four levels of abstraction, from task and concepts to final
interface specification in a concrete technology. Once defined the model in a concrete
level of abstraction, the framework facilitates transformations to any other level of
abstraction, including the less abstract of all: the Final UI (FUI) implementation.

 From Mockups to User Interface Models: An Extensible Model Driven Approach 15

Also, transformations between models at different contexts of use like, for example,
desktop or Pocket PCs, are provided. In the context of the paper, the approach pre-
sented in our work depicts a transformation path from mockups to an abstract
mockup model similar to a Concrete UI (CUI), and then reification (a decreasing
abstraction transformation) to a Final UI (FUI) for supported technologies.

We have tested and analyzed several mockup UI tools such as Axure, Pencil, GUI
Design Studio [9] and Balsamiq to define our UI mockup metamodel concepts. De-
spite some of these tools provide interaction or behavior specification, the metamodel
proposed in this paper only tackles structural UI aspects, in order to support the vast
majority of mockup tools.

3 Out Approach in a Nutshell

In order to introduce the approach, we will show how we use it in the context of a
WebTDD [10] process, though it can be also used with other development styles such
as RUP based processes [11] or even Extreme Programming [12]. Nevertheless, we
are pursuing better automation and assistance for development tasks, with some addi-
tions and enhancements further commented in Sect. 7.

In WebTDD, requirements are captured using mockups and WebSpec [13]. The
approach presented in this paper crosscuts two important steps of the WebTDD proc-
ess: Requirements gathering and Implementation (UI derivation) (Fig. 1).

Fig. 1. Our approach’s process

During the requirements gathering steps, the approach is used to import mockups
and derive them to a concrete technology so that customers can check on a prelimi-
nary version of the application’s interface. During the development phase, the UI of
each requirement can be implemented directly from the “derived” version of the
mockups, bridging the gap between the original mockups and the final presentation.

The approach proposed in this paper (detailed in Fig. 2) consists in using a meta-
model that helps to abstract mockups in a tool-independent way. A collection of
mockup parsers (1) are provided for each tool, allowing a concrete mockup conver-
sion from each one into our metamodel. When the mockup parsing ends, a post-
processing is performed (2) to rearrange the parsed UI controls, and the final abstract
mockup model is then obtained. Once the whole importing process finishes and the
complete abstract mockup model is instantiated (3), it can be used to derive stub UI
classes/models implemented with a concrete technology (4) - similar to what mockup
tools like Axure provide. For each technology of interest, a code generator can be

16 J.M. Rivero et al.

Fig. 2. Our approach in action

constructed to transform mockup models to concrete UIs able to run in a browser.
This code generator will choose the most appropriate widgets in the particular web
technology to implement the respective UI components present in the abstract
mockup, deriving the code that constructs and configures each one.

3.1 Importing Mockups

The mockup importing process starts with individual UI component detection and
parsing from a mockup file created with a specific tool (Fig. 2, step 1). Since most of
mockup tools focus in user interface sketching, unlike common UI frameworks or
technologies they don’t provide ways of defining natural UI control composition.
Nevertheless, our metamodel contemplates this kind of composition in order to derive
complete UI specifications for concrete technologies. Thus, a mockup parser for a
concrete tool must scan a mockup file composed with the tool and return a collection
of metamodel controls representations grouped in “clusters”. Each “cluster” repre-
sents a set of components in a unique graphic space (for example, a page, a window
or another UI control grouping concept that a mockup tool could define).

Once the UI control groups are obtained, a post-processing over each particular
group is performed. The first processing task performs hierarchies detection: if a UI
control is graphically inside another and the first one is a composite control, the sec-
ond one is added as a child of the first. Finally, the controls are grouped in Pages.

At this phase, a UI model is composed of a set of pages containing a hierarchy-
arranged collection of controls each one. Because of the myriad of different Web UI
technologies implementations, an absolute positioning scheme is not sufficient to
model a user interface in a platform-independent way. To avoid this problem, the
components are arranged into a specific platform-independent layout used later to
derive positioning information in the code generation phase through application of
layout inference algorithms.

After this last post-processing task, the complete UI specification model with a
platform-independent layout configuration is obtained. This abstract and formal UI
description can be used later for UI platform-specific specifications derivation.

3.2 Automatic UI Model Derivation

Models obtained in the parsing phase can be derived to different concrete implementa-
tions using the previously mentioned code generators. The derivation process consists in

 From Mockups to User Interface Models: An Extensible Model Driven Approach 17

iterating through each model element in a Visitor-like process [14] and generating an
intermediate representation of the UI. This representation is used to derive the final UI
code that will become part of the web application from the original abstract mockup
model.

The derivation also considers the generation of code that assigns a unique identifier
to every UI component being constructed in the concrete technology. This feature is
fundamental in order to reference user interface controls from manually written code
that implements the UI behavior or enhance the derived components features. Finally,
code generators derive the initial structure of code files that can be used to enrich
generated UI components or add behavior. The separation of derived source code that
captures the representation of the mockup in the concrete technology and the manu-
ally written source code is paramount to isolate UI interaction or detailed specifica-
tion from automatically generated user interface code and structure.

4 Evolution

We introduced our approach in the context of agile methodologies, because mockups
are commonly used in those as a requirements gathering tool. Since agile processes
are characterized as iterative, with short development cycles and continuous interac-
tion with final users and stakeholders, changes in the UI specification are common,
resulting in a great number of user interface iterations through the complete develop-
ment process. Thus, the evolution of the UI is an important concern to be considered
in our approach. An extremely simple example of this problem can be observed in
Fig. 3. The Balsamiq mockup shows a first version of a login screen that has a simple
change to fulfill a new stakeholder requirement.

Fig. 3. A UI mockup change example

The possibility of enriching the generated mockup implementations without modi-
fying the generated source code, allows a clear separation between UI presentation
and behavioral concerns. Consequently, if the structural UI definition doesn’t change,
modifications to be made in behavioral aspects as a result of the application’s natural
evolution can be done isolated, therefore simplifying evolution.

Structural changes in UI mockups present a more complex problem, because modi-
fications in the user interface structure could cause invalid or obsolete references to
components that have changed or have been deleted in a new iteration. In the pre-
sented example, a change in the UI is proposed where a button is deleted and a link is
added. This modification implies that the behavior code referencing the deleted “Re-
turn” button is no longer valid in the new version of the UI and consequently should

18 J.M. Rivero et al.

be removed or changed. Additionally, since all the behavior code is maintained, ac-
tions associated to the new added link should be coded manually.

In order to solve these problems, an indirect way of referencing UI components
during the implementation is proposed. The solution we propose consists in the con-
struction of an identifier translation function to associate natural name identifiers for
UI components to native ids assigned by the code generators; we call this function a
reference translator. This approach has two advantages. First, the implementation
code references UI controls through natural identifiers as in pure manually coded
Web applications. Besides, if in some future iteration an existing component identifier
assigned by the code generator changes, a simple tuning in the reference translator is
sufficient to solve the reference problem. Changing a mockup source file could imply
one of three possible actions from an individual UI component point of view: (1) a
new UI control is created, (2) an existing UI control is preserved and possibly modi-
fied or (3) an existing UI control is deleted in the new iteration. The first one presents
no complexity since it doesn’t invalidates any behavior implemented in code. The
second could entail a reference problem if the automatically generated UI component
identifier changes from the previous iteration. In this case, a correction to the refer-
ence translator solves the problem. Finally, the last case implies behavioral changes
and, therefore, the manually written source code should be changed to reflect the
interaction semantics of the new UI.

Because of the non-predictable nature of UI control id generation, the best solution
is to redefine the reference translator after each iteration. Fig. 4 shows how a UI
change like the one expressed in the example of Fig. 3 can be handled with preserva-
tion of manually added behavioral code using the reference translator approach.

Fig. 4. Code preservation through mockup UI evolution using a reference translator

In the context of the MDD architecture vocabulary [15], the commented reference
translator could be considered as part of a domain framework for a concrete imple-
mentation platform. All access to the UI structure should be done using the provided
framework in order to write portable code between iterations.

So far, the presented approach solves the reference consistency problems between
automatically generated UI and manually coded behavior when new UI components

 From Mockups to User Interface Models: An Extensible Model Driven Approach 19

are added or existing ones are modified between iterations. However, the control
deletion is still a problem, since some of the controls referenced in the code written by
hand could no longer exist in the new UI version. Due to the potentially complex
logic implemented in behavior code, it is very difficult to apply an automatic and safe
refactoring that removes all the operations implied by a deleted control.

Nevertheless, the problem can be solved in a test-driven way. When the first UI it-
eration is generated, a test is written to check that the structural requirements are satis-
fied. When a mockup is changed and a new UI version is obtained, the user interface
structure test is run after the respective changes were done in the reference translator.
If the test fails, the handwritten code should be changed to fit the new UI structure.
On the other hand, if the test passes, it shows that the current handcrafted code will
work with the new user interface structure, but its semantic could be obsolete or inva-
lid. In both cases, the test should be updated in order to assert the new UI structure
features. An outline of the UI iteration life cycle can be observed in Fig. 5.

Fig. 5. UI life cycle

In conclusion, in handcrafted code approaches, on the first UI iteration, three arti-
facts are derived from abstract mockups specified with our metamodel: the user inter-
face structure, a first version of the reference translator and an initial code behavior
structure. To obtain the first functional UI version, the initial behavior must be written
after assigning natural ids to those automatically generated in the reference translator.
Also, user interface structural test writing in this phase is encouraged in order to re-
flect the initial UI structure requirements. After each iteration, the UI structure and
reference translator are regenerated, but the behavior code and structural test are
maintained and should be updated accordingly.

Assuming that the mockup tool assigns and maintains a unique id for each widget
in the mockup (as Balsamiq does), it can be stored in metamodel UI components (as
is shown in Sect. 5). Once stored, this id can be used to trace changes made between
mockup iterations through metamodel instances comparison, thus facilitating or even
avoiding some of the manual steps commented later.

5 Implementation

In Fig. 6, the structure of the proposed metamodel derived by finding and abstracting
common features between the set of analyzed tools is denoted. An abstract mockup
model has a root object which is an instance of the MockupModel class. A
MockupModel is composed by one or more pages (Page instances), which in turn

20 J.M. Rivero et al.

contains a collection of UIControls, each one representing a UI mockup compo-
nent. An UI control has position and size information and can belong to one of two
classes: CompositeControl and SimpleControl. The first ones work as a
container of another UIControls, while the second ones are atomic UI components
like buttons, links and textboxes. The set of UI controls types included in the meta-
model are those present in all the observed mockup tools.

Fig. 6. The core mockup metamodel

Additionally, the metamodel considers different layouts that can be associated to
any composite control (including Pages) to arrange its inner UI controls. As shown
in the figure, the layout is a separated concern and does not mix with the UI defini-
tion. We modeled three different kinds of layout, inspired in some LayoutManagers
present in Swing [16]: FlowLayout, BoxLayout and GridBagLayout. A
FlowLayout does not sort the UI controls in any particular way, but simply puts
one after another in an arbitrary manner. A BoxLayout aligns UI controls in a
vertical or horizontal sequence. Finally, a GridBagLayout arranges components
in an HTML table-like way: each UI control is placed in a particular row and column
of a grid, and is extended for a concrete numbers of columns and rows right and down
respectively. As said before, this layout was the one chosen to be used as default be-
cause of its richness and flexibility, and an iterative algorithm is applied over the
parsed widgets in order to configure it. This algorithm starts with a
GridBagLayout with 1 row and 1 column, and tries to put the components in a
particular cell depending on its relative position in its parent widget. If more than one
component is assigned to a cell, a row or a column is added and the process starts
again. To choose between adding a new row or a new column, the algorithm detects
in which direction the colliding components are closer, and chooses the option that
promotes better widget isolation. A graphically representation of the process execu-
tion can be appreciated in Fig. 7. Similar algorithms can be applied to infer another
layouts like, for example, BoxLayouts.

 From Mockups to User Interface Models: An Extensible Model Driven Approach 21

Fig. 7. GridBagLayout inference algorithm execution

We claim that the proposed metamodel is sufficient to specify the structural com-
position of a large set of common UIs. Likewise, with the addition of layout-oriented
composite widgets supported by existing mockup tools like tab or accordion panels,
an even wider set of UI could be expressed. To preserve generality, the metamodel
limits the existing UI widgets to those which are commonly present in most popular
mockup tools and avoids the specification of advanced aspects like behavior or inter-
action. Since only static aspects of an UI are considered, it is important to allow the
derived models to be extended in several ways. As has been said, the generated im-
plementation assigns an id to every derived UI control that can be used to obtain a
reference to the component in runtime and manipulate it, for example, attaching event
listeners to add interaction to the mockup. If some features of one or more user inter-
face components in a concrete technology only can be specified at construction time,
the domain framework provided allows defining them manually in a separated source
code file, avoiding changes in automatically generated construction code.

As a proof of concept, we successfully developed mockup model parsers for the
mockup tools Pencil, GUI Design Studio and Balsamiq, and constructed code genera-
tors for YUI [17] and Ext JS [18] Web technologies. In the context of MDWE ap-
proaches, we are implementing transformations to convert instances of our metamodel
to UsiXML Concrete UI (CUI) models [8] and WebRatio templates [19]. With this
addition, the model-driven approach presented in this paper can be linked to other
MDWE and model-driven UI methodologies and thus be combined with them.

6 Framework Extensibility

In the following subsections we show how we can extend our approach with a new
mockup tool and a new derivation to a technology dependent framework. Once de-
fined a mockup parser for a new mockup tool or a code generator for a new concrete
technology, it can be easily plugged in our framework.

22 J.M. Rivero et al.

6.1 Adding New Mockup Tools

Adding support for a new tool in the approach consists in implementing an interface
that receives a mockup source (e.g. a file) and returns a collection of controls sepa-
rated in independent graphically spaces or “clusters”. All the subsequent post-
processing is performed with existing software components, thus allowing the reuse
of all the mentioned tasks for any new parser that could be defined in the future.

In Fig. 8.a we show a class diagram of a mockup translator structure. A
MockupTranslator is the class responsible of taking a concrete mockup source
(the generic type TSource, usually a File) and translating it into an instance of our
metamodel (MockupMetamodel). An instance of a MockupTranslator is con-
figured with a concrete ControlParser, which implements the UI control parsing
and grouping for a concrete mockup tool. Additionally, an instance of
ControlParser is configured with a concrete MockupMetamodelFactory,
which provides methods for constructing metamodel elements for a particular repre-
sentation of our metamodel (e.g., a memory-stored one).

Fig. 8.a. Mockup translator structure Fig. 8.b. Code generator structure

The fact that the architecture expects from the mockup parsers only individual con-
trol parsing and spatial grouping implies a few assumptions in the features of the
source mockup format and, consequently, in the mockup tool used to construct it.
Hence, a mockup tool capable of drawing variable-size UI components and support-
ing the set of user interface elements included in the metamodel is sufficient to com-
pose a complete mockup translatable to our metamodel.

6.2 Adding New Technology Derivations

Extending the derivation scheme to add support for a different Web technology re-
quires the implementation of an interface that receives an instance of our metamodel
and derives a collection of specifications which will be translated later by our frame-
work into specific implementation artifacts as mentioned before. The framework
implements an extensible code generation library that resolves some usual code gen-
eration concerns like indentation and files creation and also provides an OO way of
defining and composing generated code artifacts. The idea behind the construction
and use of that library was having a non-restrictive and pure object-oriented approach
to define and compose textual representations generation.

 From Mockups to User Interface Models: An Extensible Model Driven Approach 23

The structure of a common code generator using our framework can be observed in
Fig. 8.b. Any code generator defined must implement the MockupCodeGenerator
interface in order to be plugged into our framework. The CodeArtifact class is
defined by the code generation library and generalizes and abstracts some aspects
relative to the generation of textual code artifacts. Additionally, the interface
MockupMetamodelVisitor defines methods that must be implemented in order
to apply the Visitor design pattern for code generation, and thus its implementation is
encouraged. Adding support for MDWE and model-driven UI approaches implies the
definition of code generators for deriving textual model representations as those gen-
erated by MDD tools to serialize models into files. The derived model could be later
imported in the respective model-driven tool and thus can be used in the context of its
associated MDD methodology.

7 Concluding Remarks and Further Work

In this paper we outlined a model-driven approach to represent UI mockups allowing
to import them from existing sketching tools and generating code for different modern
Web technologies. The implemented software allows translation from mockups con-
structed with any of the mockup tools supported to any Web technologies, using our
mockup abstract model representation as a “pivot”. The architecture of the framework
constructed implies a small amount of work to add support for new mockup tools or
Web technologies. Additionally, we show how the derived code for Web technologies
can be enhanced to obtain final implementations and handle application evolution,
allowing mockups being a reusable software specification artifact. Finally, the auto-
matic model-to-code translation promotes a uniform UI design style, avoids common
manual coding errors [20] in UI implementation and problems related to presentation
discrepancies between browsers in web applications.

The construction of a tool that facilitates the introduction of refinements to the
parsed UI models (e.g. widget composition) and also captures changes made in
metamodel instances in order to apply refactorings and changes necessary to reflect
them in the underlying implementation represents a potential future work. More de-
tailed UI specifications surely should be needed in real world cases as can be seen, for
example, observing modern interaction patterns and UI widgets in Web applications
[20]. Adding support for more mockup tools, Web technologies, MDWE and model-
driven UI methodologies represents a fruitful field for future work.

Finally, linking our UI metamodel with others metamodels oriented to domain, be-
havior, data transformation and process workflow definition could enhance model
instances semantics, resulting in more code artifacts able to be automatically gener-
ated. However, while these semantic increments could provide a more MDA-based
process, how to link the derived code with code-based agile methodologies remains
being a challenge and represents some important future work we are pursuing.

References

1. Axure, http://www.axure.com
2. Pencil, http://www.evolus.vn/pencil
3. Balsamiq, http://www.balsamiq.com

24 J.M. Rivero et al.

4. Ferreira, J., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In: AGILE
2007, pp. 50–58. IEEE Computer Society, Washington (2007)

5. Noble, J., Biddle, R., Martin, A.: The XP Customer Role in Practice: Three Studies. In:
Agile Development Conference (ADC 2004), pp. 42–54. IEEE Computer Society, Salt
Lake City (2004)

6. Ton, H.: A Strategy for Balancing Business Value and Story Size. In: Agile 2007 Confer-
ence, pp. 279–284. IEEE Computer Society, Washington (2007)

7. Lu, X., Wan, J.: Model Driven Development of Complex User Interface. In: The MoDELS
2007 Workshop on Model Driven Development of Advanced User Interfaces. CEUR-WS.
(2007)

8. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

9. GUI Design Studio, http://www.carettasoftware.com/guidesignstudio/
10. Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-Driven Approaches in

Web Engineering. In: Gaedke, M., Grossniklaus, M. (eds.) Web Engineering. LNCS,
vol. 5648, pp. 136–150. Springer, Heidelberg (2009)

11. Kruchten, P.: The Rational Unified Process: an Introduction. Addison-Wesley Longman
Publishing Co., Inc., Amsterdam (2003)

12. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley Profes-
sional, Reading (2000)

13. Robles Luna, E., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of Web re-
quirements using WebSpec. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 173–188. Springer, Heidelberg (2010)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

15. Tolvanen, J., Kelly, S.: Domain Specific Modeling: Enabling full code generation. Wiley-
IEEE (2008)

16. Using Layout Managers – The java Tutorials,
http://java.sun.com/docs/books/tutorial/uiswing/layout/
using.html

17. YUI Library, http://developer.yahoo.com/yui/
18. Ext JS – Javascript Framework and RIA Platform, http://www.extjs.com/
19. Acerbis, R., Bongio, A., Butti, S., Ceri, S., Ciapessoni, F., Conserva, C., Fraternali, P.,

Toffetti Carughi, G.: WebRatio, an Innovative Technology for Web Application Develop-
ment. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, p.
779. Springer, Heidelberg (2004)

20. Pastor, O.: From Extreme Programming to Extreme Non-programming: Is It the Right
Time for Model Transformation Technologies? In: Bressan, S., Küng, J., Wagner, R. (eds.)
DEXA 2006. LNCS, vol. 4080, pp. 64–72. Springer, Heidelberg (2006)

21. Mahemoff, M.: Ajax Design Patterns. O’Reilly Media, Sebastopol (2006)

	From Mockups to User Interface Models: An Extensible Model Driven Approach
	Introduction
	Related Work
	Out Approach in a Nutshell
	Importing Mockups
	Automatic UI Model Derivation

	Evolution
	Implementation
	Framework Extensibility
	Adding New Mockup Tools
	Adding New Technology Derivations

	Concluding Remarks and Further Work
	References

