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4.1 Introduction

Many different model selection information criteria can be found in the
literature in various contexts including regression and density estimation.
There is a huge amount of literature concerning this subject and we shall,
in this paper, content ourselves to cite only a few typical references in order
to illustrate our presentation. Let us just mention AIC, Cp or CL, BIC and
MDL criteria proposed by Akaike (1973), Mallows (1973), Schwarz (1978),
and Rissanen (1978) respectively. These methods propose to select among
a given collection of parametric models that model which minimizes an
empirical loss (typically squared error or minus log-likelihood) plus some
penalty term which is proportional to the dimension of the model. From
one criterion to another the penalty functions differ by factors of logn,
where n represents the number of observations.

The reasons for choosing one penalty rather than another come either
from information theory or Bayesian asymptotic computations or approx-
imate evaluations of the risk on specific families of models. Many efforts
were made to understand in what circumstances these criteria allow to
identify the right model asymptotically (see Li (1987) for instance). Much
less is known about the performances of the estimators provided by these
methods from a nonparametric point of view. Let us consider the particular
context of density estimation in L

2 for instance. By a nonparametric point
of view, we mean that the unknown density does not necessarily belong
to any of the given models and that the best model should approximately
realize the best trade-off between the risk of estimation within the model
and the distance of the unknown density to the model. When the mod-
els have good approximation properties (following Grenander (1981) these
models will be called sieves), an adequate choice of the penalty can produce
adaptive estimators in the sense that they estimate a density of unknown
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smoothness at the rate which one would get if the degree of smoothness
were known. Notable results in that direction have been obtained by Barron
& Cover (1991) who use the MDL criterion when the models are chosen as
ε-nets and by Polyak & Tsybakov (1990) who select the order of a Fourier
expansion via Mallow’s Cp for regression. One should also mention the re-
sults on penalized spline smoothing by Wahba and various coauthors (see
Wahba (1990) for an extensive list of references).

This paper is meant to illustrate by a few theorems and applications,
mainly directed towards adaptive estimation in Besov spaces, the power
and versatility of the method of penalized minimum contrast estimation on
sieves. A more general approach to the theory will be given in the compan-
ion paper Barron, Birgé & Massart (1995). We shall here content ourselves
to consider linear sieves and the particular contrast which defines projec-
tion estimators for density estimation. These restrictions will allow us to
make an extensive use of a recent and very powerful exponential inequal-
ity of Talagrand (1994) on the fluctuations of empirical processes which
greatly simplifies the presentation and proofs. The choice of the penalty
derives from the control of the risk on a fixed sieve. From that respect
our approach presents some similarity with the method of structural min-
imization of the risk of Vapnik (1982). Minimum contrast estimators on a
fixed sieve have been studied in great detail in Birgé & Massart (1994).
For projection estimators their results can roughly be summarized as fol-
lows: s is an unknown density in L

2(µ) to be estimated using a projection
estimator acting on a linear sieve S of dimension D and the loss function
is proportional to the square of the distance induced by the norm. Under
reasonable conditions on the structure of the space S one gets a quadratic
risk of the order of ‖s−π(s)‖2 +D/n if one denotes by π(s) the projection
of s on S. This is essentially the classical decomposition between the square
of the bias and the variance. The presence of a D/n term corresponding to
a D-dimensional approximating space is not surprising for those who are
familiar with Le Cam’s developments about the connections between the
dimension (in the metric sense) of a space and the minimax risk on this
space. One should see Le Cam (1973) and (1986, Chapter 16) for further
details.

Our main purpose, in this paper, is to show that if we replace the single
sieve S by a collection of linear sieves Sm, m ∈ Mn, with respective dimen-
sions Dm and suitable properties, and introduce a penalty function pen(m)
of the form L(m)Dm/n, one gets a risk which, up to some multiplicative
constant, realizes the best trade-off between ‖s − sm‖2 and L(m)Dm/n.
Here sm is the best approximant of s in Sm and L(m) is either uniformly
bounded or possibly of order logn when too many of the sieves have the
same dimension Dm. Note also that pen(m) will be allowed to be random.
We shall show that some more or less recently introduced methods of adap-
tive density estimation like the unbiased cross validation (Rudemo 1982),
or the hard thresholding of wavelet empirical coefficients (Donoho, John-
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stone, Kerkyacharian & Picard 1993) can be viewed as special instances
of penalized projection estimators. In order to emphasize the flexibility
and potential of the methods of penalization we shall play with different
families of sieves and penalties and propose some new adaptive estimators
especially in the context of wavelet expansions in nonhomogeneous Besov
spaces and piecewise polynomials with non equally spaced knots.

4.2 The statistical framework

4.2.1 The model and the estimators

We observe n i.i.d. random variables X1, . . . , Xn with values on some mea-
surable space X and common density s with respect to some measure µ.
We assume that s belongs to the Hilbert space L

2(µ) with norm ‖ · ‖ and
denote by ‖ · ‖p the norm in L

p(µ) for 1 ≤ p ≤ ∞ and p 
= 2. We first
consider an Nn-dimensional linear subspace S̄n of L

2(µ), then choose a
finite family {S̄m |m ∈ Mn} of linear subspaces of S̄n, each S̄m being a
Dm-dimensional subspace of L

2(µ) and finally for each m ∈ Mn we take
a convex subset Sm ⊂ S̄m. In most cases, Sm = S̄m. The set Mn usually
depends on n and more generally all the elements bearing a subscript (like
m or m′) which belong to Mn. In order to keep the notations as simple
as possible we shall systematically omit the subscript n when m is already
present and also when the dependence on n is clear from the context. All
real numbers that we shall introduce and which are not indexed by m or
n are “fixed constants”. We shall also denote by Sn the union of the Sm’s,
by sm and s̄n the projections of s onto Sm and S̄n respectively, by P the
joint distribution of the observations Xi’s when s obtains and by E the
corresponding expectation. The centered empirical operator νn on L

2(µ) is
defined by

νn(t) =
1
n

n∑
i=1

t(Xi) −
∫
X
t(x)s(x)dµ(x) for all t ∈ L

2(µ).

Let us consider on X × Sn the contrast function γ(x, t) = −2t(x) +
‖t‖2 where ‖ · ‖ denotes the norm in L

2(µ). The empirical version of this
contrast is γn(t) = (1/n)

∑n
i=1 γ(Xi, t). Minimizing γn(t) over S̄m leads to

the classical projection estimator ŝm on S̄m and we shall denote by ŝn the
projection estimator on S̄n. If {ϕλ}λ∈Λm

is an orthonormal basis of S̄m one
gets:

ŝm =
∑
λ∈Λm

β̂λϕλ with β̂λ =
1
n

n∑
i=1

ϕλ(Xi) and γn(ŝm) = −
∑
λ∈Λm

β̂2
λ.

In order to define the penalty function, we associate to each Sm a weight
Lm ≥ 1. The use of those weights will become clear later but let us just
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mention here that in the examples, either Lm � 1 or Lm � log n depending
on the number of sieves with the same dimension Dm. For each m ∈ Mn

the value of the penalty function pen(m) is defined by

pen(m) = K̃m(X1, . . . , Xn)
LmDm

n
(1)

where K̃m is a positive random variable independent of the unknown s.
Typically one must think of K̃m as a fixed constant (independent of m and
n) or as a random variable which is, with a large probability and uniformly
with respect to m and n, bounded away from zero and infinity. Then, in
both cases, pen(m) is essentially proportional to LmDm/n.

A penalized projection estimator (PPE for short) is defined as any s̃ ∈
Sm̃ ⊂ Sn such that

γn(s̃) + pen(m̃) = inf
m∈Mn

(
inf
t∈Sm

γn(t) + pen(m)
)

if s̃ ∈ Sm̃. (2)

If such a minimizer does not exist one rather takes an approximate mini-
mizer and chooses s̃ satisfying

γn(s̃) + pen(m̃) ≤ inf
m∈Mn

(
inf
t∈Sm

γn(t) + pen(m)
)

+
1
n
.

We shall assume in the sequel that (2) holds, the modifications needed to
handle the extra 1/n term being straightforward.

In the sequel we shall distinguish between two different situations cor-
responding to different structures of the family of sieves: nested and non-
nested. The nested situation can be described by the following assumption

N: Nested family of sieves We assume that the integer Nn is given sat-
isfying Nn ≤ nΓ−2 for some fixed constant Γ that m �→ Dm is a one-to-one
mapping, and that one of the two equivalent sets of assumptions holds:

(i) ‖u‖∞ ≤ Φ
√
Dm‖u‖ for all m ∈ Mn and u ∈ S̄m where Φ is a fixed

constant and Dm ≤ Nn for all m. Moreover, Dm < Dm′ implies that
S̄m ⊂ S̄m′ and Sm ⊂ Sm′ ;

(ii) S̄n is a finite-dimensional subspace of L
2(µ) with an orthonormal basis

{ϕλ}λ∈Λ̄n
and the cardinality of Λ̄n is |Λ̄n| = Nn. A family of subsets

{Λm}m∈Mn
of Λ̄n with |Λm| = Dm is given, S̄m is the linear span

of {ϕλ}λ∈Λm and ‖
∑

λ∈Λm
ϕ2
λ‖∞ ≤ DmΦ2. Moreover for all m and

m′, the inequality Dm < Dm′ implies that Sm ⊂ Sm′ and Λm ⊂ Λm′ .

The equivalence between (i) and (ii) follows from Lemma 6 of Birgé &
Massart (1994). Assumption N will typically be satisfied when {ϕλ}λ∈Λ̄n

is
either a bounded basis or a localized basis in natural order. In this case, the
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usual choices for Mn will be either a finite subset of N (and then m �→ Dm

is increasing) or a totally ordered family of sets. In some situations, the
basis {ϕλ}λ∈Λ̄n

is given (Fourier expansions for instance) from which one
defines S̄m. In other cases (piecewise polynomials for instance) one starts
with the family {S̄m}m∈Mn which is the natural object to consider.

In the non-nested situation we shall distinguish a particular situation
which is of special interest:
Case S: Non-nested subsets of a basis Let {ϕλ}λ∈Λ̄n

be an orthonor-
mal system in L

2(µ) with |Λ̄n| = Nn and S̄n be the linear span of {ϕλ}λ∈Λ̄n
.

Each m ∈ Mn is a subset of Λ̄n with cardinality Dm and Sm = S̄m is the
linear span of {ϕλ}λ∈m.

Particular choices of Mn and of the penalty function lead to various clas-
sical estimators. Here are three illustrations.

An analogue of Mallows’ CL

Assuming that N holds we define the penalty by pen(m) = KΦ2Dm/n.
This gives a sequence of parametric problems with an increasing number
of parameters and a penalty proportional to the number of parameters.
This is an analogue in density estimation of Mallows’ CL method for the
regression framework—see for instance Mallows (1973) or Li (1987).

Cross-validation

Assume again that N holds. A particular choice of the penalty function
leads to a well-known method of selecting the order of an expansion:

Proposition 1 Assume that we are in the nested situation described by
Assumption N and that

pen(m) =
2

n(n + 1)

n∑
i=1

∑
λ∈Λm

ϕ2
λ(Xi).

The resulting PPE s̃ is the projection estimator on Sm̃ where m̃ is chosen
by the unbiased cross-validation method.

Proof: Let us recall that the ideal m (in view of minimizing the quadratic
loss) should minimize ‖s − ŝm′‖2 or equivalently

∫
ŝ2
m′ − 2

∫
ŝm′s with

respect to m′ ∈ Mn. Since this quantity involves the unknown s, it has to
be estimated and the unbiased cross-validation method defines m̂ as the
minimizer with respect to m ∈ Mn of∫

ŝ2
mdµ− 2

n(n− 1)

∑
i �=i′

∑
λ∈Λm

ϕλ(Xi)ϕλ(Xi′).

Since ∫
ŝ2
mdµ =

1
n2

∑
i,i′

∑
λ∈Λm

ϕλ(Xi)ϕλ(Xi′)
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one finds m̂ as the minimizer of

−n + 1
n− 1

∫
ŝ2
mdµ +

2
n(n− 1)

n∑
i=1

∑
λ∈Λm

ϕ2
λ(Xi).

On the other hand the PPE selects m̃ as the minimizer of

γn(ŝm) + pen(m) =
∫

ŝ2
mdµ− 2

n

n∑
i=1

ŝm(Xi) + pen(m)

= −
∫

ŝ2
mdµ +

2
n(n + 1)

n∑
i=1

∑
λ∈Λm

ϕ2
λ(Xi)

which implies that m̂ = m̃ and the conclusion follows. �
In this case, assuming that Lm = 1, the estimator K̃m(X1, . . . , Xn) is

given by
2

n + 1

n∑
i=1

1
m

∑
λ∈Λm

ϕ2
λ(Xi).

Threshold estimators

We now consider the situation described by Case S, Mn being the family
of all (nonempty) subsets of Λ̄n and pen(m) = L̃nDm/n where L̃n is a
(possibly random) variable independent of m, we have to minimize over all
possible subsets m of Λ̄n the quantity

γn(ŝm) + pen(m) = −
∑
λ∈m

β̂2
λ +

L̃nDm

n
= −

∑
λ∈m

(
β̂2
λ − L̃n

n

)
.

The solution m̃ is the set of the λ’s such that β̂2
λ > L̃n/n which leads to

a threshold estimator introduced, in the context of white noise models, by
Donoho & Johnstone (1994)

s̃ =
∑
λ∈Λ̄n

β̂λϕλI{β̂2
λ
>L̃n/n}.

These three examples are indeed typical of the two major types of model
selection for projection estimators: selecting the order of an expansion or
selecting a subset of a basis. We shall later give a formal treatment of these
two problems.

4.2.2 Besov spaces and examples of sieves

The target function s, in most of our illustrations, will be assumed to belong
to some classical function spaces that we introduce below. We assume in
this section that µ is Lebesgue measure.
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Besov spaces

We shall consider here various forms of Besov spaces Bαp∞(A) with α > 0,
1 ≤ p ≤ ∞, and three different types of supporting sets A:

• Some compact interval which, without loss of generality, can be taken
as [0, 1] and then A = [0, 1];

• The torus T which we shall identify to the interval [0, 2π], then A =
[0, 2π] and we deal with periodic functions;

• Some compact interval [−A,A] (A = [−A,A]) but in this case we
shall consider it as the restriction of the Besov space on the whole
real line to the set of functions which have a compact support in
(−A,A).

Let us first recall some known facts on Besov spaces which can be found in
the books by DeVore & Lorentz (1993) or Meyer (1990). Following DeVore
& Lorentz (1993, page 44) we define the r-th order differences of a function
t defined on A by

∆r
h(t, x) =

r∑
k=0

(
r
k

)
(−1)r−kt(x + kh).

The Besov space Bαp∞(A) will be the space of functions t on X such that

sup
y>0

y−αωr(t, y)p < +∞ where ωr(t, y)p = sup
0<h≤y

‖∆r
h(t, .)‖p

and r = [α] + 1 (DeVore & Lorentz 1993, page 55). As a particular case,
we get the classical Hölder spaces when p = ∞. One should notice that
since we always work on a compact interval A, L

p-norms on A are easy
to compare and ωr(t, y)p ≥ C(p)ωr(t, y)2 for p ≥ 2. This implies that
Bαp∞(A) ⊂ Bα 2∞(A). Therefore, if p ≥ 2 we can restrict ourselves to
considering only the larger space Bα 2∞(A) since we are looking for upper
bounds for the risk.

Wavelet expansions

Let us consider an orthonormal wavelet basis {ϕj,k | j ≥ 0, k ∈ Z} of
L

2(R, dx) (see Meyer (1990) for details) with the following conventions:
ϕ0,k are translates of the father wavelet and for j ≥ 1, the ϕj,k’s are affine
transforms of the mother wavelet. One will also assume that these wavelets
are compactly supported and have regularity r in the following sense: all
their moments up to order r are 0. Let t ∈ L

2(R, dx) be some function
with compact support in (−A,A). Changing the indexing of the basis if
necessary we can write the expansion of t on the wavelet basis as:

t =
∑
j≥0

2jM∑
k=1

βj,kϕj,k, (3)
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where M ≥ 1 is a finite integer depending on A and the lengths of the
wavelet’s supports. For any j ∈ N, we denote by Λ(j) the set of indices
{(j, k) | 1 ≤ k ≤ 2jM} and if m ⊂ Λ =

∑
j≥0 Λ(j) we put m(j) =

m ∩ Λ(j). Let B0 denote the space of functions t such that Σ∞(t) =∑
j≥0 2j/2 supλ∈Λ(j) |βλ| < +∞. From Bernstein’s inequality (Meyer 1990,

Chapter 2, Lemma 8)

‖t‖∞ ≤ Φ∞Σ∞(t) for all t ∈ B0, (4)

where Φ∞ only depends on the choice of the basis. We also define V̄J ,
for J ∈ N, to be the linear span of {ϕλ |λ ∈ Λ(j), 0 ≤ j ≤ J}; then
2JM ≤ Dim(V̄J) = N < 2J+1M and it follows from (4) that there exists a
constant Φ, namely Φ2 = 2Φ2

∞/M , such that

‖t‖∞ ≤ Φ
√
N‖t‖ for all t ∈ V̄J . (5)

Let t be given by (3) with α < r + 1; if t belongs to the Besov space
Bαp∞([−A,A]) then (Kerkyacharian & Picard 1992)

sup
j≥0

2j(α+ 1
2− 1

p )


 ∑

λ∈Λ(j)

|βλ|p



1/p

= |||t||| < +∞. (6)

One derives from equation (6) that supλ∈Λ(j) |βλ| ≤ 2−j(α+ 1
2− 1

p )|||t||| which
proves the inclusion Bαp∞([−A,A]) ⊂ B0 provided that α > 1/p.

Piecewise polynomials

Without loss of generality we shall restrict our attention to piecewise poly-
nomial spaces on [0, 1]. A linear space Sm of piecewise polynomials is char-
acterized by m = (r, {b0 = 0 < b1 < . . . < bD = 1}) where r is the maximal
degree of the polynomials (that we shall essentially keep fixed in the sequel)
and {b0 = 0 < b1 < . . . < bD = 1} is a nondecreasing sequence which gen-
erates a partition of [0, 1] into D intervals. Such a space has the dimension
Dm = D(r+1). We shall distinguish between regular piecewise polynomials
for which all intervals have the same length and general piecewise polyno-
mials with arbitrary intervals subject to the restriction that their lenghts
are multiples of a fixed value 1/N with N ∈ N. In this case the bj ’s are of
the form Nj/N where the Nj ’s are integers and the corresponding set of
m’s will be denoted by Pr

N . The reasons for restricting the values of the
bj ’s to a grid are given in Birgé & Massart (1994, Section 3) and we shall
not insist on that. When dealing with regular partitions, we shall restrict,
in order to get a nested family of sieves, to dyadic partitions generated by
the grid {j2−Jm , 0 ≤ j ≤ 2Jm} where Jm is an integer. The corresponding
set of m’s for 0 ≤ Jm ≤ J will be denoted by P̄r

J .



4. From Model Selection to Adaptive Estimation 63

We shall need hereafter some properties of these spaces of polynomials.
Let us first recall (see Whittaker & Watson (1927, pp. 302-305) for de-
tails) that the Legendre polynomials Qj , j ∈ N are a family of orthogonal
polynomials in L

2([−1, 1], dx) such that Qj has degree j and

|Qj(x)| ≤ 1 for all x ∈ [−1, 1], Qj(1) = 1,
∫ 1

−1

Q2
j (t)dt =

2
2j + 1

.

As a consequence, the family of polynomials Rj(x) =
√

2j + 1Qj(2x − 1)
is an orthonormal basis for the space of polynomials on [0, 1] and if H is a
polynomial of degree r such that H(x) =

∑r
j=0 ajRj(x),

|H(x)|2 ≤


 r∑

j=0

a2
j





 r∑

j=0

2j + 1


 = (r + 1)2

r∑
j=0

a2
j .

Hence ‖H‖∞ ≤ (r + 1)‖H‖. Therefore any polynomial H of degree r on
an interval [a, b] satisfies ‖H‖∞ ≤ (r + 1)(b − a)−1/2‖H‖ from which one
deduces that for H ∈ Sm

‖H‖∞ ≤ r + 1√
h

‖H‖ where h = inf
1≤j≤D

{bj − bj−1 | bj > bj−1}. (7)

Therefore, if s is a function on [a, b] and Hs its projection on the space of
polynomials of degree ≤ r on [a, b], one gets

‖Hs‖∞ ≤ r + 1
(b− a)1/2

‖Hs‖ ≤ r + 1
(b− a)1/2

‖s‖ ≤ (r + 1)‖s‖∞ (8)

and this inequality remains true for the projections on spaces of piecewise
polynomials since it only depends on the degree and not on the support.

4.3 Presentation of some of the results

From now on, we shall have to introduce various constants to set up the
assumptions, describe the penalty function, state the results and produce
the proofs. In order to clarify the situation we shall stick to some fixed
conventions and give to the letters κ,C (or c) and K, with various sub- or
supscripts, a special meaning. The constants used to set up the assump-
tions will be denoted by various letters but the three letters above will
be reserved. κ1, . . . denote universal (numerical) constants which are kept
fixed throughout the paper. K,K ′, . . . are constants to be chosen by the
statistician or to be used as generic constants in some assumptions. Fi-
nally C, c, C ′, . . . denote constants which come out from the computations
and proofs and depend on the other constants given in the assumptions.
One shall also use C(·, ·, · · ·) to indicate more precisely the dependence on
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various quantities and especially those which are related to the unknown
s. The value of K or C is fixed throughout a proof but, in order to keep
the notations simple, we shall use the same notation for different constants
when one goes from one proof or example to another.

Before giving the formal results let us describe a few typical and illus-
trative examples (more will be given later) of applications of these results
together with a sketch of proof in order to make them more appealing. We
shall distinguish between the two situations described above: nested and
non-nested.

4.3.1 Nested models

We assume that N holds and Sm = S̄m and we choose either a deterministic
or a random penalty function of the form

pen(m) = KΦ2Dm

n
or pen(m) =

K

n(n + 1)

n∑
i=1

∑
λ∈Λm

ϕ2
λ(Xi)

where K is a suitably chosen constant. We recall from Section 4.2.1 that
the choice K = 2 corresponds to Mallows’ CL or cross-validated estimators.
We shall prove below that under such assumptions, one gets, as expected

E[‖s̃− s‖2] ≤ C inf
m∈Mn

[‖sm − s‖2 + Dm/n].

Assuming that the true s belongs to some unknown Besov space Bα 2∞ with
α > 0 and choosing a convenient basis with good approximation properties
with respect to such spaces (wavelet basis, dyadic splines or Fourier basis),
we shall get the usual and optimal n−α/(2α+1) rate of convergence for our
penalized estimator (see Example 1 below).
Remarks: The constant

√
K should be larger than some universal con-

stant involved in some suitable exponential inequality. A reasonable conjec-
ture (by analogy with the gaussian case) is that a lower bound for K is one
which means that our results should hold for the classical cross-validated
estimators.

4.3.2 Selecting a subset of a wavelet basis

We consider the wavelet basis of regularity r and the notations introduced
in Section 4.2.2 and assume that Case S obtains with Λ̄n =

∑
0≤j≤Jn

Λ(j)
where Jn is given by 2Jn � n/(log2 n). Then the dimension Nn of S̄n
satisfies 2JnM < Nn < 2Jn+1M and Dm = |m|.

Thresholding

Mn is taken to be all the subsets of Λ̄n and the penalty function is given by
K(Φ∞Σ∞(ŝn) + K ′)(log n)|m|/n. As mentioned in Section 4.2.1, the PPE
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is then a threshold estimator. We recall that ŝn is the projection estimator
on the largest sieve S̄n. It comes from (4) that Φ∞Σ∞(ŝn) is an estimator
of an upper bound of ‖s‖∞ provided that s belongs to B0. In this case we
shall prove that

Proposition 2 Let s̃ be the threshold estimator given by

s̃ =
∑
λ∈Λ̄n

β̂λϕλI{β̂2
λ
>T̃}, with T̃ = K(Φ∞Σ∞(ŝn) + K ′) log n/n

where K has to be larger than a universal constant and K ′ is an arbitrary
positive number. Provided that s belongs to B0, the following upper bound
holds for any q ≥ 1,

E[‖s̃− s‖q] ≤ C inf
m∈Mn

[
‖sm − s‖2 + log n

Dm

n

]q/2
(9)

as soon as
Φ∞ [Σ∞(s) − Σ∞(s̄n)] ≤ K ′. (10)

Either one knows an upper bound for Φ∞Σ∞(s) and one should choose K ′

to be this upper bound or (10) will hold only for n large enough. Assum-
ing that s belongs to some unknown Besov space Bαp∞, with r + 1 >
α > 1/p (and therefore s ∈ B0) the resulting rate of convergence is
(log n/n)α/(2α+1). There is an extra power of logn in the rate but it should
be noticed that (9) holds for a set of densities which is larger than the
Besov spaces. With a different thresholding strategy, the same rates have
been obtained by Donoho et al. (1993).

Special strategy for Besov spaces

We introduce a smaller family of sieves which has the same approximation
properties in the Besov spaces than the previous one. It can be described
as follows. Let us first introduce an auxiliary positive and decreasing func-
tion l defined on [1,+∞) with l(1) < 1. For each pair of integers J, j′

with 0 ≤ j′ ≤ J , let Mj′

J be the collection of subsets m of Λ such that
m(j) = Λ(j) for 0 ≤ j ≤ j′ and |m(j)| = [|Λ(j)|l(j − j′)] for j′ < j ≤ J ,
where [x] denotes the integer part of x. We define Mn =

∑
0≤j′≤Jn

Mj′

Jn

and pen(m) = K(Φ∞Σ∞(ŝn) + K ′)L|m|/n where K will be larger than
a universal constant, K ′ is an arbitrary positive number and L is a fixed
weight depending on l. The resulting penalized estimator s̃ will then satisfy

Proposition 3 Let s belong to B0 and (10) be satisfied. If the function l is
such that 2−j

′
log |Mj′

Jn
| is bounded by a fixed constant then, for any q ≥ 1,

E[‖s̃− s‖q] ≤ C inf
m∈Mn

[
‖sm − s‖2 +

Dm

n

]q/2
.
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We shall see in Example 4 that one can choose l satisfying the required
conditions and such that the resulting bias leads to the right rate of con-
vergence n−α/(2α+1) for all Besov spaces Bαp∞, with r + 1 > α > 1/p
simultaneously.

4.3.3 Variable weights and piecewise polynomials

Up to know we only considered situations where the weights Lm did not
depend on m. The following example is meant to illustrate the advantage
of letting the weights vary with the models in some cases. It deals with
piecewise polynomials. Let us fix some maximal degree r for our polynomi-
als and take 2Jn � n/ log2 n. We consider the family of sieves {Sm}m∈Mn

where Mn = Pr
2Jn . The Sm’s are the corresponding piecewise polynomi-

als of degree ≤ r described in Section 4.2.2. One should notice that since
P̄r
Jn

⊂ Mn, this family of sieves includes in particular piecewise polynomi-
als based on regular dyadic partitions. Let us define Lm = 1 when m ∈ P̄r

Jn

and Lm = log n otherwise. In this situation, it is wiser to choose S̄n as the
space of piecewise polynomials based on the finest possible partition gen-
erated by the sequence {j2−Jn}0≤j≤2Jn and with degree 2r instead of r;
then Nn = (2r + 1)2Jn . With such a choice the squares of the elements of
all the sieves will belong to S̄n.

Proposition 4 Let us choose pen(m) = K(‖ŝn‖∞ + K ′)LmDm/n and
assume that s is bounded, then the PPE s̃ satisfies, for any q ≥ 1,

E[‖s̃− s‖q] ≤ C inf
m∈Mn

[
‖s− sm‖2 +

LmDm

n

]q/2
.

For an arbitrary s, the method hunts for a partition which provides, up
to a log n factor, the best trade-off between the dimension of the partition
and the bias. But if s belongs to some Besov space Bα 2∞ with α < r + 1,
then the estimator achieves the optimal rate of convergence n−α/(2α+1).

4.3.4 Sketch of the proofs

In order to prove results of the form

E[‖s− s̃‖q] ≤ C0 inf
m∈Mn

[
‖s− sm‖2 + LmDm/n

]q/2
we always follow the same basic scheme (with various additional tech-
nicalities). m is defined as the minimizer with respect to m′ ∈ Mn of
‖sm′ − s‖2 + Lm′Dm′/n. Using a powerful result of Talagrand (1994), we
begin to prove that with probability larger than 1−pm′ exp(−c

√
ξ), for any

m′ ∈ Mn and uniformly for t ∈ Sm′

νn(t−sm) ≤ 1
4
(
‖t− s‖2 + ‖sm − s‖2

)
+

ξ

n
+C

[
Lm′Dm′

n
+

LmDm

n

]
. (11)
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By assumption, the Lm′ ’s are chosen in such a way that
∑

m′∈Mn
pm′ ≤ C1

which implies that the control (11) holds for all m′ simultaneously with
probability larger than 1 − C1 exp(−c

√
ξ). In particular (11) holds with

t = s̃ and m′ = m̃. We then use the following simple lemma:

Lemma 1 Let s̃ = ŝm̃ be the PPE associated with the penalty function
pen(·), m a given element of Mn and sm the projection of the true under-
lying density s onto Sm. The following inequality holds:

‖s− s̃‖2 ≤ ‖s− sm‖2 + pen(m) − pen(m̃) + 2νn(s̃− sm). (12)

Proof: The conclusion follows from the fact that γn(s̃) + pen(m̃) ≤
γn(sm) + pen(m) and the following inequalities:

γn(t) = ‖t‖2 − 2νn(t) − 2
∫

tsdµ for all t ∈ Sn;

‖s− t‖2 − ‖s− sm‖2 = ‖t‖2 − ‖sm‖2 + 2
∫

(sm − t)s dµ

= E (γn(t) − γn(sm)) . �

Using (11) and (12) simultaneously we get

‖s− s̃‖2 ≤ 3‖s−sm‖2 +2[pen(m)−pen(m̃)]+
4ξ
n

+4C
[
Lm̃Dm̃

n
+

LmDm

n

]
.

If pen(m′) is defined in such a way that for all m′ ∈ Mn,

2C
Lm′Dm′

n
≤ pen(m′) ≤ K

Lm′Dm′

n
,

one gets with probability larger than 1 − C1 exp(−c
√
ξ)

‖s− s̃‖2 ≤ 3‖s− sm‖2 + (4C + 2K)
LmDm

n
+

4ξ
n

.

One concludes using the following elementary lemma since LmDm ≥ 1.

Lemma 2 Let X be a nonnegative random variable satisfying X2 ≤ a +
K1t/n with probability larger than 1 −K2 exp(−K3

√
t) for all t > 0. Then

for any number q ≥ 1

E[Xq] ≤ 2(q/2−1)+

[
aq/2 + K2Γ(q + 1)

(
K1

nK3

)q/2
]
.

The case of a random penalty requires extra arguments but the basic ideas
are the same.
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4.4 The theorems

4.4.1 Talagrand’s Theorem

All our results rely upon an important theorem of Talagrand (1994) which
can be considered, if stated in a proper form, as an analogue of an inequality
for Gaussian processes by Cirel’son, Ibragimov & Sudakov (1976). Let us
first recall this inequality in the case of a real-valued non-centered process
in order to emphasize the similarity between the two results.

Theorem 1 Let Xt, t ∈ T be a real valued gaussian process with bounded
sample paths and v = supt Var(Xt). Then for ξ > 0

P

[
sup
t

(Xt − E[Xt]) ≥ E

[
sup
t

(Xt − E[Xt])
]

+ ξ

]

≤ 2√
2πv

∫ +∞

ξ

e−x
2/(2v)dx ≤ exp

[
−1

2
ξ2

v

]
.

Although Talagrand did not state his theorem3 in such a form one can
actually write it as follows:

Theorem 2 Let X1, . . . , Xn be n i.i.d. random variables, ε1, . . . , εn i.i.d.
random signs (+1 or −1 with probability 1/2) independent of the X ′

is and
{ft, t ∈ T} a family of functions that are uniformly bounded by some
constant b. Let v = supt∈T Var(ft(X1)). There exists universal constants
κ2 ≥ 1 and κ1 such that for any positive ξ

P


sup

t

(
1√
n

n∑
i=1

ft(Xi) − E[ft(Xi)]

)
≥ κ2E

[
sup
t

∣∣∣∣∣ 1√
n

n∑
i=1

εift(Xi)

∣∣∣∣∣
]

+ ξ




≤ exp
[
−κ1

(
ξ2

v
∧ ξ

√
n

b

)]
. (13)

In the sequel κ1 and κ2 will always denote the two constants appearing
in (13).

Talagrand’s Theorem has many useful statistical consequences, such as
the following extension of a result from Mason & van Zwet (1987): the con-
trol of χ2-type statistics K2

n,D =
∑D

j=1(Xj−npj)2/npj with (X1, . . . , Xk) a
multinomial random vector with distribution M(n, p1, . . . , pk) and D ≤ k.
If δ = inf1≤j≤D pj , x > 0 and ε > 0, the following inequality holds:

P
[
K2
n,D ≥ (1 + ε)κ2

2D + x
]
≤ 2 exp

[
−κ1εx

1 + ε

(
1 ∧

√
nδ

x

)]
. (14)

3During the final revision of our article we became aware of improvements
by Talagrand (1995) and Ledoux (1995) of Theorem 2 that might lead to more
explicit lower bounds for our penalty functions.
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This inequality implies Mason and van Zwet’s inequality (Mason & van
Zwet 1987, Lemma 3) when x ≤ nδ and provides more information on the
tail distribution of K2

n,D since it holds without any restriction on x. The
proof is given in Section 4.6.

4.4.2 Selecting the order of an expansion

In this section, we shall restrict ourselves to the nested case. The first result
deals with the analogue of Mallows’ CL.

Theorem 3 Assume that N holds, choose some positive θ and define the
penalty function by pen(m) = (κ2

2Φ
2 + θ)Dm/n. Then for any q ≥ 1

E[‖s̃− s‖q] ≤ C(q, ‖s‖,Φ,Γ, θ) inf
m∈Mn

[
Dm

n
+ ‖sm − s‖2

]q/2
. (15)

In view of Proposition 1, the following theorem applies to cross-validated
projection estimators provided that the conjecture κ2 = 1 is true, but cross-
validation would also make sense with different values of the constant Kn

in (16) below.

Theorem 4 Assume that N is satisfied, that Sm is the linear span of
{ϕλ}λ∈Λm for all m’s, and that

inf
m∈Mn

1
Dm

∫ ( ∑
λ∈Λm

ϕ2
λ

)
sdµ = a > 0;

pen(m) =
Kn

n(n + 1)

n∑
i=1

∑
λ∈Λm

ϕ2
λ(Xi) with Kn =

n + 1
n

(κ2
2 + θ) (16)

for some positive θ. Then for any q ≥ 1

E[‖s̃− s‖q] ≤ C(q, ‖s‖,Φ,Γ, a, θ) inf
m∈Mn

[
Dm

n
+ ‖sm − s‖2

]q/2
. (17)

4.4.3 Extension

In order to analyze some particular types of estimators which were first
proposed by Efroimovich (1985) (see Example 2 below), it is useful to have
some more general version of Theorem 3. S̄n is a finite-dimensional space
with an orthonormal basis {ϕλ}λ∈Λ̄n

and |Λ̄n| = Nn. Let M̄n be a finite
collection of sets (not necessarily totally ordered by inclusion but having a
maximal element m̄n) and m′ �→ Λm′ be an increasing mapping from M̄n

into the family of nonvoid subsets of Λ̄n. We define Sm′ as the linear span
of {ϕλ}λ∈Λm′ ; then Dm′ = |Λm′ |. Let Mn be a totally ordered subfamily
of M̄n containing m̄n and for which Assumption N holds. One defines for
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each m′ ∈ M̄n an associate τ(m′) ∈ Mn which is the smallest m such that
m ⊃ m′. Assuming that the penalty function satisfies the inequality

(κ2
2Φ

2 + θ)Dτ(m′)/n ≤ pen(m′) ≤ KDτ(m′)/n,

it is easily seen that the bound (15) still holds for the PPE s̃ based on the
larger family of sieves {Sm}m∈M̄n

, where sm is defined as before, since the
proof only involves the larger spaces Sτ(m′) and the values of the penalty
function. If we assume that for each m′ ∈ M̄n

Dm′ ≥ δDτ(m′) (18)

for some fixed positive constant δ, the penalty pen(m′) = δ−1(κ2
2Φ

2 +
θ)Dm′/n will satisfy the above inequality and since ‖sm′−s‖ ≥ ‖sτ(m′)−s‖
the following bound remains valid:

E[‖s̃− s‖q] ≤ δ−q/2C(q, ‖s‖,Φ,Γ, θ) inf
m′∈M̄n

[
Dm′

n
+ ‖sm′ − s‖2

]q/2
.

4.4.4 Selecting a subset of a basis

Let us now study the more general situation of a rich and possibly non-
nested family of sieves. We shall use the assumption

B: Rn(s) = supt∈S̄n
‖t‖−2

∫
t2sdµ is finite and there exists a family of

weights Lm ≥ 1, m ∈ Mn and a fixed constant ∆ such that∑
m∈Mn

exp(−LmDm) ≤ ∆. (19)

Our first theorem deals with a bounded situation where Sm 
= S̄m .

Theorem 5 Assume that ‖t‖∞ ≤ Bn for all t ∈ Sn and that B holds with
Rn(s) ≤ Bn, pen(m) being possibly random.Then, for any q ≥ 1,

E[‖s̃− s‖qIΩ̃]

≤ C(q)
[

inf
m∈Mn

[
‖s− sm‖q + E[(pen(m))q/2IΩ̃]

]
+ ∆(Bn/n)q/2

]

if Ω̃ is defined by

Ω̃ = {pen(m) ≥ κ−1
1 (3 + 5

√
2κ2 + 4κ2

2)BnLmDm/n for all m ∈ Mn}.

The boundedness restrictions on Sn and Rn(s) being rather unpleasant
we would like to be dispensed with them. A more general situation can be
handled in the following way. We recall that s̄n is the projection of s on
S̄n, ŝn the projection estimator defined on S̄n and tm the projection of t
on Sm.
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Theorem 6 Assume that B holds, µ is a finite measure and there exists
some orthonormal basis {ϕλ}λ∈Λ̄n

of S̄n which satisfies ‖ϕλ‖∞ ≤ Φ
√
Nn

for all λ ∈ Λ̄n with Nn = |Λ̄n| = n/(θn log n) where Φ is a fixed constant
and {θk}k≥1 a sequence converging to infinity. Suppose that a real function
ψ is given on S̄n such that for all t ∈ S̄n and m ∈ Mn, ‖tm‖∞ ≤ ψ(t) and

|ψ(s̄n) − ψ(ŝn)| ≤ Φ′√Nn sup
λ∈Λ̄n

|νn(ϕλ)|. (20)

Let us define the penalty function by

pen(m) = K
LmDm

n
(ψ(ŝn)+K ′), with K ≥ 2

κ1
(3+5

√
2κ2+4κ2

2) (21)

where K ′ is a positive constant to be chosen by the statistician. Then, for
any q ≥ 1,

E[‖s̃− s‖q] ≤ C(q,K,K ′,∆,Ψ(s)) inf
m∈Mn

[
‖s− sm‖ +

LmDm

n

]q/2
+ n−q/2C ′(q,K,K ′,Φ,Φ′, {θk},Ψ(s), ‖s‖)

provided that the following conditions are satisfied:

Rn(s) ≤ ψ(s̄n) + K ′ and Ψ(s) = sup
n

ψ(s̄n) < +∞. (22)

4.5 Examples

4.5.1 Nested models

Example 1 We assume here that the true s belongs to some unknown
Besov space Bα 2∞(A) and that Mn = {0, . . . , Jn}. If A = [−A,A],
let Jn = [logn], {ϕλ}λ∈Λ be a wavelet basis of regularity r and Λm =∑

0≤j≤m Λ(j), then Sm is the linear span of {ϕλ}λ∈Λm .If A = [0, 1], Sm
is the space of piecewise polynomials of degree ≤ r based on the dyadic
partition generated by the grid {j2−m, 0 ≤ j ≤ 2m} and Jn = [logn]. If
A = T, Sm is the set of trigonometric polynomials of degree ≤ m and
Jn = n. Provided that α < r + 1, the approximation properties of s by
sm which are collected in Section 4.7.1 lead, for each of our three cases,
to a bias control of the form ‖s − sm‖ ≤ C(s)D−α

m . Assumption N (ii) is
satified by the Fourier basis and N (i) by the piecewise polynomials because
of (7) and by the wavelets by (5). Therefore Theorem 3 applies and choos-
ing m in such a way that Dm � n1/(1+2α) we get a rate of convergence
of order n−α/(2α+1) provided that α < r + 1 except for the trigonometric
polynomials which allow to deal with all values of α simultaneously.

One can also use the cross-validated estimator defined in Theorem 5 if
we assume that (16) is satisfied.
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Example 2 S̄n is a finite-dimensional space with an orthonormal basis
{ϕλ}λ∈Λ̄n

and |Λ̄n| = Nn. Let M̄n be the collection of all subsets of
{1, . . . , Jn} and {Λ(j)}1≤j≤Jn

be a partition of Λ̄n. For any m′ ∈ M̄n we
define Λm′ =

∑
j∈m′ Λ(j) and Sm′ to be the linear span of {ϕλ}λ∈Λm′ . Let

Mn be the collection of the sets {1, . . . , j} with 1 ≤ j ≤ Jn and assume that
N holds for Mn. Let us choose the penalty function pen(m′) = K|Λm′ |/n.
Then the corresponding PPE will minimize

∑
j∈m′


− ∑

λ∈Λ(j)

β̂2
λ + |Λ(j)|K

n




with respect to m′ and the solution is clearly to keep only those indices j
for which

∑
λ∈Λ(j) β̂

2
λ ≥ |Λ(j)|K/n. This is the level thresholding estimator

introduced by Efroimovich (1985) for trigonometric expansions and more
recently in Kerkyacharian, Picard & Tribouley (1994) with wavelets expan-
sions. We can deal with this example using the extension of Theorem 3 given
in Section 4.4.3 provided that the dimension of Sm′ has the required prop-
erty (18). This property will be clearly satisfied if |Λ(j)| ≥ (1+ρ)|Λ(j−1)|
for all j’s and some ρ > 0. Comparing these results with those of Example 1
we notice that this method performs exactly as the methods described in
Example 1. This means that in such a case one cannot do better with the
larger family {Sm′}m′∈M̄n

than with the simpler one {Sm}m∈Mn
.

4.5.2 Selecting a subset of a wavelet basis

We shall now provide some details and proofs about the results announced
in Section 4.3.2. We follow hereafter the notations and assumptions of that
section. We recall that it follows from (5) that ‖ϕλ‖∞ ≤ Φ

√
Nn for all

λ ∈ Λ̄n and that Nn has been chosen of order n/(log2 n) so that all the
structural assumptions concerning the basis which are required to apply
Theorem 6 are satisfied.
Example 3 (Thresholding) Following the set-up given in Section 4.3.2 we
want to apply Theorem 6, Mn being the family of all the subsets of
Λ̄n and the penalty function being given by pen(m) = K(Φ∞Σ∞(ŝn) +
K ′) log nDm/n.

Proof of Proposition 2: Note first that Rn(s) ≤ ‖s‖∞ < +∞ since s ∈ B0.
The number of models m with a given cardinality |m| = D is bounded

by
(

Nn

D

)
< (eNn/D)D. Hence Assumption B holds with our choice

Lm = log n. Following (4), let us choose ψ(t) = Φ∞Σ∞(t) for all t ∈ S̄n.
Then

|ψ(s̄n) − ψ(ŝn)| ≤ Φ∞Σ∞(s̄n − ŝn) ≤ Φ∞ sup
λ

|νn(ϕλ)|
Jn∑
j=0

2j/2



4. From Model Selection to Adaptive Estimation 73

which implies (20). It remains to check (22) which is immediate from (10)
and Rn(s) ≤ ‖s‖∞ ≤ Φ∞Σ∞(s). �

When applied to Besov spaces, Proposition 2 gives

Corollary 1 Assume that s belongs to some Besov space Bα,p,∞ with r +
1 > α > 1/p. Then the threshold estimator described above satisfies, for
any q ≥ 1,

E[‖s̃− s‖q] = O
(
(log n/n)qα/(1+2α)

)
provided that (10) holds.

Proof: Since s belongs to B0, Proposition 2 applies and provides an upper
bound for the risk of the form C[‖sm− s‖2 + log nDm/n]q/2 for any subset
m of Λ̄n. Although Proposition 6 of Section 4.7.2 has been designed for
the smaller family of sieves to be considered in the next example, we can
a fortiori apply it with the larger collection of sieves that we are handling
here. The choices J = Jn and 2j

′ � (n/ log n)1/(1+2α) ensure the existence
of some m such that

Dm = O
((

n

log n

)1/(1+2α)
)

and ‖s− sm‖2 = O
((

n

log n

)−2α/(1+2α)
)

which leads to the expected rate. �
Example 4 (Special strategy for Besov spaces) We follow the set-up given
in Section 4.3.2. Let us first give more information about the computation of
the estimator. Since the penalty has the form K̃L|m|/n, the estimator will
take a rather simple form, despite the apparent complexity of the family of
sieves. We have to minimize over the values of m in Mn =

∑
0≤j′≤Jn

Mj′

Jn

the quantity K̃L|m|/n−
∑

λ∈m β̂2
λ. This optimization can be carried out in

two steps, first with respect to m ∈ Mj′

Jn
for fixed j′ and then with respect

to j′. The first step amounts to minimize

∑
j′<j≤Jn


K̃L

n
|m(j)| −

∑
λ∈m(j)

β̂2
λ


 .

Since for a given j, |m(j)| is fixed, the operation amounts to selecting the
set m̂j′(j) corresponding to the largest [|Λ(j)|l(j − j′)] coefficients |β̂λ| for
each j > j′. This is analogous but different from a thresholding procedure.
Instead of selecting the coefficients which are larger than some threshold,
one merely fixes the number of coefficients one wants to keep equal to |m(j)|
and takes the largest ones. For each j′ the minimization of the criterion
leads to the element m̂j′ of Mj′

Jn
. One should notice that all the elements of
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Mj′

Jn
have the same cardinality 2j

′
Q(j′). Therefore one selects j′ in order

to minimize
−

∑
λ∈m̂j′

β̂2
λ + K̃L2j

′
Q(j′)/n

which only requires a few comparisons because the number of j′’s is of the
order of logn. We now want to apply Theorem 6 to the family Mn with
pen(m) = K(Φ∞Σ∞(ŝn) + K ′)LDm/n.

Proof of Proposition 3: The proof follows exactly the lines of the pre-
ceding proof with the same function ψ, the only difference being the new
choice of the weight L which is now independent of n. Since |m| ≥ M2j

′

for all m ∈ Mj′

Jn
, we get

∑
m∈Mn

exp(−κ1L|m|) ≤
∑
j′

exp(−κ1LM2j
′
+ log |Mj′

Jn
|).

(19) follows if we choose L ≥ 2M−1 supj′(2−j
′
log |Mj′

Jn
|) which achieves

the proof. �
Let us now conclude with an evaluation of the risk of s̃ when the target

function s belongs to some Besov space. From now on, let l be the function
l(x) = x−32−x.

Corollary 2 Assume that s belongs to some Besov space Bα,p,∞ with r +
1 > α > 1/p. Then the estimator s̃ satisfies, for any q ≥ 1,

E[‖s̃− s‖q] = O
(
n−qα/(1+2α)

)
provided that (10) holds.

Proof: It follows the lines of the proof of Corollary 1 by applying again
Proposition 6 which is exactly tuned for our needs. One chooses 2j

′ �
n1/(1+2α) and one concludes by Proposition 3. �

4.5.3 Variable weights and piecewise polynomials

Example 5 We exactly follow the definition of the family of sieves given
in Section 4.3.3. and try to apply Theorem 6.

Proof of Proposition 4: Rn(s) is clearly bounded by ‖s‖∞. Since there
is at most one sieve per dimension when m ∈ P̄r

Jn
and since the number

of different partitions including D nonvoid intervals (and therefore cor-
responding to a sieve of dimension D(r + 1)) is bounded by (e2Jn/D)D,
(19) is satisfied and Assumption B holds. Recalling that whatever m and
t ∈ Sm, t2 ∈ S̄n, we conclude that Rn(s) ≤ ‖s̄n‖∞. Let ψ(t) = ‖t‖∞. Since
by (8) ψ(s̄n) ≤ (2r + 1)‖s‖∞, (22) is satisfied. It remains to find a basis of
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S̄n with the required properties. We take the basis which is the union of
the Legendre polynomials on each elementary intervals. Due to the prop-
erties of these polynomials mentioned in Section 4.2.2, the required bound
on ‖ϕλ‖∞ holds. Finally, denoting by Ij the interval [(j − 1)2−Jn , j2−Jn)
we get by (7)

‖ψ(ŝn) − ψ(s̄n)‖∞ = sup
1≤j≤2Jn

‖(ŝn − s̄n)IIj‖∞

≤ sup
1≤j≤2Jn

(2r + 1)2Jn/2‖(ŝn − s̄n)IIj
‖

≤ (2r + 1)2Jn/2
√

2r + 1 sup
λ∈Λ̄n

νn(ϕλ)

which gives (20) and Theorem 6 applies. �
Following the arguments of Example 1, one can conclude that the esti-

mator will reach the optimal rate of convergence n−α/(2α+1) for all Besov
spaces Bα 2∞([0, 1]) with α < r + 1 since in this case the best choice of
m corresponds to a regular partition and therefore Lm = 1. For other
densities, the risk comes within a log n factor to the risk obtained by the
estimator build on the best partition if s were known.
Remarks: A similar strategy of introducing variable weights could be ap-
plied in the same way to deal with the situation described in Example 3. It
would lead to similar results and give the right rate of convergence in Besov
spaces Bα 2∞([0, 1]) when 1/2 < α < r + 1. But the resulting estimator
would not be a thresholding estimator anymore since the penalty would
not be proportional to the dimension of the sieve.

4.6 Proofs

4.6.1 Inequalities for χ2 statistics

Let ‖a‖ denote the euclidean norm in R
D. Inequality (13) implicitly con-

tains the following bound on χ2-type statistics which is of independent
interest.

Proposition 5 Let X1, · · · , Xn be i.i.d. random variables and Zn =
√
nνn

the corresponding normalized empirical operator. Let ϕ1, · · · , ϕD be a fi-
nite set of real functions. Let v = sup‖a‖≤1 E[(

∑D
j=1 ajϕj(X1))2] and b2 =

‖
∑D

j=1 ϕ
2
j‖∞. The following inequality holds for all positive t and ε:

P


 D∑
j=1

Z2
n(ϕj) ≥ (1 + ε)κ2

2((Dv) ∧ b2) + x


 ≤ 2 exp

[−κ1ε

1 + ε

(
x

v
∧

√
nx

b

)]
.
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Proof: We denote by Z ′
n the symmetrized empirical process defined by

Z ′
n(f) = n−1/2

∑n
i=1 εif(Xi), where the εi’s are independent Rademacher

random variables independent from the Xi’s. Let

Y = sup
‖a‖≤1

∣∣∣∣∣∣Zn


 D∑

j=1

ajϕj




∣∣∣∣∣∣ and Y ′ = sup
‖a‖≤1

∣∣∣∣∣∣Z ′
n


 D∑

j=1

ajϕj




∣∣∣∣∣∣ .
From the well known duality formula sup‖a‖≤1 |

∑D
j=1 ajbj | = ‖b‖ and the

linearity of Zn and Z ′
n we derive that

(i) Y =


 D∑
j=1

Z2
n(ϕj)




1/2

and (i′) Y ′ =


 D∑
j=1

Z
′2
n (ϕj)




1/2

.

In order to apply Theorem 2 we first control Y ′. It comes from (i′) and
Jensen’s inequality that

E(Y ′) ≤


 D∑
j=1

E(Z
′2
n (ϕj))




1/2

≤


 D∑
j=1

E(ϕ2
j (X1))




1/2

≤
√
Dv ∧ b

and therefore Theorem 2 yields

P

[
Y ≥ κ2(

√
Dv ∧ b) + ξ

]
≤ 2 exp

[
−κ1

(
ξ2

v
∧ ξ

√
n

b

)]
.

Since for ε > 0, (α+β)2 ≤ α2(1+ε)+β2(1+ε−1), we get for x = (1+ε−1)ξ2

P[Y 2 ≥ (1 + ε)κ2
2((Dv) ∧ b2) + x] ≤ 2 exp

[
− κ1

1 + ε−1

(
x

v
∧

√
nx

b

)]

and the result follows from (i). �
In order to enlight the power of this bound, let us see what it gives for

the standard χ2 statistics. We want to prove (14). Considering a partition
of [0, 1] by intervals (Ij)1≤j≤D such that the length of each Ij is equal
to pj and applying Proposition 5 with Xi uniformly distributed on [0, 1],
ϕj = (1/√pj)IIj

, v = 1 and b2 = 1/δ ≥ D we get the required bound (14)
for the χ2 statistics K2

n,D which has the same distribution as
∑D

j=1 Z
2
n(ϕj).

4.6.2 Proof of Theorems 3 and 4

Without loss of generality we can assume that the index set Mn is chosen
in such a way that m = Dm and that S̄n is the largest of the Sm’s, which
we shall assume throughout the proof. Let m be some element of Mn which
minimizes the sum m/n + ‖s− sm‖2,m′ an arbitrary element in Mn and
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t ∈ Sm′ . We define w(t) = ‖s − t‖ + ‖s − sm‖ and apply Talagrand’s
Theorem to the family of functions ft = (t − sm)/w(t) for t ∈ Sm′ . It
will be convenient to use the following form of Theorem 2 which is more
appropriate for our needs:

P

[
sup
t

νn(ft) ≥ κ2E + ξ

]
≤ exp

[
−nκ1

(
ξ2

v
∧ ξ

b

)]
(23)

with

b = sup
t

‖ft‖∞; v = sup
t

Var(ft(X)); E = E

[
sup
t

∣∣∣∣∣ 1
n

n∑
i=1

εift(Xi)

∣∣∣∣∣
]
.

To control E, we shall distinguish between two cases:
(a) If m ≤ m′ then sm ∈ Sm′ . Let {ϕλ}λ∈Λm′ be an orthonormal basis of
S̄m′ . Then t− sm =

∑
λ∈Λm′ βλϕλ and

E


(

1
n

n∑
i=1

εi(t− sm)(Xi)

)2

 ≤ ‖t− sm‖2

∑
λ∈Λm′

E


(

1
n

n∑
i=1

εiϕλ(Xi)

)2



=
1
n

∑
λ∈Λm′

E[ϕ2
λ(X1)]‖t− sm‖2.

Since w(t) ≥ ‖t− sm‖ and Assumption N holds we get

E
2 ≤ 1

n

∫
Ψ2
m′sdµ where Ψ2

m′ =
∑

λ∈Λm′

ϕ2
λ ≤ Φ2m′. (24)

(b) If m > m′, one uses the decomposition t− sm = (t− sm′) + (sm′ − sm)
and the inequalities w(t) ≥ ‖s− t‖ ≥ ‖s−sm′‖ ≥ ‖sm−sm′‖ and ‖s− t‖ ≥
‖sm′ − t‖ to get by similar arguments

E ≤ E

[
sup
t

∣∣∣∣∣ 1
n

n∑
i=1

εi
(t− sm′)(Xi)

w(t)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣ 1
n

n∑
i=1

εi
(sm − sm′)(Xi)

inft w(t)

∣∣∣∣∣
]

≤
(

1
n

∫
Ψ2
m′sdµ

)1/2

+
(

1
n

∫
(sm − sm′)2sdµ
‖sm − sm′‖2

)1/2

. (25)

One concludes in both cases that E ≤ Em′ with

Em′ =
(

1
n

∫
Ψ2
m′sdµ

)1/2

+ I{m′<m}Φ
√

m

n
. (26)

Let us now fix η > 0, m̄ = m ∨ m′ and for ξ > 0 define xm′ = xm′(ξ) by
nx2

m′ = ξ2 + ηm̄. Notice that for any u ∈ Sm and t ∈ Sm′ , ‖t − u‖∞ ≤
‖t− u‖Φ

√
m̄ from which we get

‖ft‖∞ ≤ ‖t− sm‖∞
‖t− sm‖ ≤ Φ

√
m̄; Var(ft(X)) ≤

∫
(sm − t)2sdµ
‖t− sm‖2

≤ ‖s‖Φ
√
m̄.
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Then (23) implies that

P = P

[
sup
t∈Sm′

νn(t− sm)
w(t)

≥ κ2Em′ + xm′

]
≤ exp

[−nκ1

Φ
√
m̄

(
x2
m′

‖s‖ ∧ xm′

)]
.

Since nx2
m′ ≥

√
ηm̄/2(ξ+

√
ηm̄); xm′

√
2n ≥ ξ+

√
ηm̄ and m′ ≤ m̄ ≤ nΓ−2,

one gets

P ≤ exp

[
−κ1

Φ
(
ξ +

√
ηm̄

) (√
η/2
‖s‖ ∧

√
n√

2m̄

)]

≤ exp
[
− κ1

Φ
√

2

(
ξ +

√
ηm′

) (√
η

‖s‖ ∧ Γ
)]

.

Denoting by Ωξ the following event

Ωξ =

{
sup
t∈Sm′

νn(t− sm)
w(t)

≤ κ2Em′ + xm′(ξ) for all m′ ∈ Mn

}
(27)

we see that since the m′’s are all different positive integers

1 − P[Ωξ] ≤ exp
[
−ξ

κ1

Φ
√

2

(√
η

‖s‖ ∧ Γ
)] ∞∑

j=1

exp
[
−

√
j
κ1

√
η

Φ
√

2

(√
η

‖s‖ ∧ Γ
)]

.

If Ωξ is true, Lemma 1 implies that

‖s− s̃‖2 ≤ ‖s− sm‖2 + pen(m) − pen(m̃)
+ 2(κ2Em̃ + xm̃(ξ))(‖s− s̃‖ + ‖s− sm‖). (28)

We shall again distinguish between two cases and repetedly use the inequal-
ity 2ab ≤ α2a2 + α−2b2.
(a) If m̃ < m one applies (26) and (24) to get

[κ2Em̃ + xm̃(ξ)]2 ≤ 8κ2
2Φ

2m

n
+

2
n

[
ξ2 + ηm

]
=

2
n

[
m(4Φ2κ2

2 + η) + ξ2
]
,

from which (28) becomes

‖s− s̃‖2 ≤ ‖s− sm‖2 + pen(m) +
1
2
(‖s− s̃‖2 + ‖s− sm‖2)

+
8
n

[
m(4Φ2κ2

2 + η) + ξ2
]

and finally

‖s− s̃‖2 ≤ 16
n

[
m(4Φ2κ2

2 + η) + ξ2
]
+ 3‖s− sm‖2 + 2pen(m). (29)
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(b) If m̃ ≥ m, one chooses two real numbers α and β ∈ (0, 1) and applies
the following inequalities

2‖s− sm‖ [κ2Em̃ + xm̃(ξ)] ≤ α2 [κ2Em̃ + xm̃(ξ)]2 + α−2‖s− sm‖2;

2‖s− s̃‖ [κ2Em̃ + xm̃(ξ)] ≤ β2 [κ2Em̃ + xm̃(ξ)]2 + β−2‖s− s̃‖2;

[κ2Em̃ + xm̃(ξ)]2 ≤ (1 + α2)
(
(κ2Em̃)2 + α−2x2

m̃(ξ)
)

together with (28) to derive

(1 − β−2)‖s− s̃‖2 ≤ (α2 + β2)(1 + α2)
[
(κ2Em̃)2 + α−2x2

m̃(ξ)
]

+ (1 + α−2)‖s− sm‖2 + pen(m) − pen(m̃).

Since by (26), nE2
m̃ =

∫
Ψ2
m̃sdµ and nx2

m̃ = ξ2 + ηm̃ when m̃ ≥ m, we get

(1 − β−2)‖s− s̃‖2 ≤ (1 + α−2)
(
‖s− sm‖2 + (α2 + β2)

ξ2

n

)
+ pen(m) (30)

provided that the penalty satisfies for all m′ ∈ Mn

pen(m′) ≥ (α2 + β2)(1 + α2)
n

[
κ2

2

∫
Ψ2
m′sdµ +

ηm′

α2

]
. (31)

Under the assumptions of Theorem 3 we can apply (24) and (31) will hold
provided that α, η and 1 − β are small enough depending on θ. One then
derives from (29) and (30) that in both cases with probability greater than
1 − P[Ωξ]

‖s− s̃‖2 ≤ C1‖s− sm‖2 + C2
m

n
+ C3

ξ2

n
.

Theorem 3 then follows from Lemma 2.
To prove Theorem 4 we first apply (24) and Hoeffding’s inequality to get

P
[∣∣νn (

Ψ2
m′

)∣∣ > εm′] ≤ 2 exp
[−2nε2m′2

4Φ2m′2

]

for any positive ε, which implies that P(Ωc
n) ≤ 2nΓ−2 exp[−(nε2)/(2Φ2)] if

we denote by Ωn the event


∣∣∣∣∣∣
1
n

n∑
i=1

∑
λ∈Λm′

ϕ2
λ(Xi) −

∫
Ψ2
m′sdµ

∣∣∣∣∣∣ ≤ εm′ for all m′ ∈ Mn


 .

If Ωn is true

pen(m′) ≥ Kn

n + 1

(∫
Ψ2
m′sdµ− εm′

)

≥ 1
n

(
κ2

2 +
θ

3

) ∫
Ψ2
m′sdµ +

θam′

3n
+

θm′

3n

(
a− ε

3nKn

θ(n + 1)

)
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for all m′ ∈ Mn and (31) will then be satisfied provided that we choose
α, η, ε and 1 − β small enough, depending only on κ2, θ and a. In order to
conclude we notice that on Ωc

n

‖s− s̃‖2 ≤ 2


‖s‖2 +

∑
λ∈Λ̄n

β̂2
j


 ≤ 2

(
‖s‖2 +

(
nΦ
Γ2

)2
)

since S̄n is one of the Sm’s and therefore |β̂λ| ≤ ‖ϕλ‖∞ ≤ Φ
√
Nn. Hence

E
[
‖s− s̃‖qIΩc

n

]
≤

[
2(‖s‖2 + n2Φ2Γ−4)

]q/2 2n
Γ2

exp
[
− nε2

2Φ2

]
.

On the other hand on Ωn (31) is satisfied and pen(m) is bounded by

pen(m) ≤ Kn

n + 1

(∫
Ψ2
msdµ + εm

)
≤ 1

n
(κ2

2 + θ)(Φ2m + εm)

and finally by (30)

‖s− s̃‖2
IΩn ≤ C1‖s− sm‖2 + C2

m

n
+ C3

ξ2

n

which allows us to conclude by Lemma 2.

4.6.3 Proof of Theorems 5 and 6

Let m be some fixed element of Mn, m
′ an arbitrary element in Mn and

t ∈ Sm′ . Once again, we want to apply Theorem 2 to the family of functions
ft = (t − sm)/w(t) where w(t) = (‖s − t‖ + ‖s − sm‖) ∨ 2xm′ with t ∈
Sm′ , x2

m′ = x2
m′(ξ) = Bn(ξ2 + κ−1

1 Dm′Lm′)/n and ξ ≥ 1. We get

‖ft‖∞ ≤ ‖t− sm‖∞
2xm′

≤ 2Bn

2xm′
; Var(ft(X)) ≤

∫
(sm − t)2sdµ
‖t− sm‖2

≤ Bn;

E ≤
√

BnDm′/n +
√

Bn/n ≤ Em′ =
√

2xm′

by the analogues of (24) and (25) since Rn(s) ≤ Bn and now Dm′ 
= m′.
Theorem 2 then implies that

P

[
sup
t∈Sm′

νn(t− sm)
w(t)

> κ2Em′ + xm′(ξ)

]
≤ exp

[
−nκ1x

2
m′

Bn

]

and we use Assumption B with Ωξ defined by (27) to get

1 − P[Ωξ] ≤
∑

m′∈Mn

exp[−κ1ξ
2 + Dm′Lm′ ] ≤ ∆ exp(−κ1ξ

2). (32)
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Let 2(κ2Em′ + xm′) = κxm′ . Lemma 1 implies that, if Ωξ is true

‖s− s̃‖2 ≤ ‖s− sm‖2 + pen(m) − pen(m̃) + κxm̃(ξ)w(s̃). (33)

Then either w(s̃) = 2xm̃(ξ) and xm̃(ξ)w(s̃) = 2x2
m̃(ξ) or

2xm̃(ξ)w(s̃) = 2xm̃(ξ)‖s− s̃‖ + 2xm̃(ξ)‖s− sm‖
≤ x2

m̃(ξ) + ‖s− sm‖2 + κx2
m̃(ξ) + ‖s− s̃‖2/κ.

In both cases since κ = 2(1 + κ2

√
2) > 3

2κxm̃(ξ)w(s̃) ≤ κ‖s− sm‖2 + κ(1 + κ)x2
m̃(ξ) + ‖s− s̃‖2

and (33) becomes with κ(1 + κ) = 2(3 + 5
√

2κ2 + 4κ2
2)

‖s− s̃‖2 ≤ (2 + κ)‖s− sm‖2 + 2[pen(m) − pen(m̃)] + κ(1 + κ)x2
m̃(ξ).

Therefore on the set Ωξ ∩ Ω̃,

‖s− s̃‖2 ≤ 2
[
(2 + κ2

√
2)‖s− sm‖2 + pen(m)

]
+ κ(1 + κ)Bnξ

2/n

and Theorem 5 follows from (32) and an analogue of Lemma 2.
Let us now turn to Theorem 6. Let R = ψ(s̄n) + K ′ ≥ Rn(s), ε =

R/(3Φ′√Nn) and Ω̃ be the event {supλ |νn(ϕλ)| ≤ ε}. From our assump-
tions and Bernstein’s inequality we get

P[Ω̃c] ≤ 2Nn exp

[
−nε2

2Rn(s) + 2
3Φ

√
Nnε

]
≤ 2Nn exp

[ −K ′θn log n

2Φ′(9Φ′ + Φ)

]
(34)

since ‖ϕλ‖∞ ≤ Φ
√
Nn and Var(ϕλ(X1)) ≤

∫
ϕ2
λsdµ ≤ Rn(s). Let Bn =

2(ψ(s̄n)−R/3+K ′) and assume that Ω̃ is true; then by (20) ψ(s̄n)−R/3 ≤
ψ(ŝn) ≤ ψ(s̄n) + R/3. Since sm and ŝm are the projections of s̄n and ŝn
respectively on Sm, one derives that

R ≤ Bn; sup
m∈Mn

‖ŝm‖∞ ≤ ψ(ŝn) ≤ Bn; sup
m∈Mn

‖sm‖∞ ≤ ψ(s̄n) ≤ Bn

and for all m ∈ Mn simultaneously since K ≥ κ(1 + κ)/κ1

κ(1 + κ)Bn
LmDm

2nκ1
≤ pen(m) ≤ 4KLmDm

3n
(ψ(s̄n) + K ′).

If s̃′ is the penalized projection estimator defined on the family of sieves
S′
m,m ∈ Mn with a penalty given by (21) and S′

m = {t ∈ Sm | ‖t‖∞ ≤
Bn}, it follows from the above inequalities that s̃ = s̃′ and that Theorem 5
applies to s̃′. One can then conclude since LmDm ≥ 1 that

E[‖s̃− s‖qIΩ̃] ≤ C(q)
[
‖s− sm‖q + E[(pen(m))q/2IΩ̃] + ∆(Bn/n)q/2

]

≤ C(q)

[
‖s− sm‖q + C ′(q,∆,Ψ(s),K,K ′)

(
LmDm

n

)q/2]
.
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On the other hand, if Ω̃ does not hold one uses the crude estimate

‖s̃‖∞ ≤ ‖ψ(ŝn)‖∞ ≤ Ψ(s) + Φ′√Nn sup
j

‖νn(ϕλ)‖∞ ≤ Ψ(s) + ΦΦ′Nn

from which one deduces by (34) since C
′2 =

∫
dµ < +∞ that

E[‖s− s̃‖qIΩ̄c ] ≤ 2Nn[C ′(Ψ(s) + ΦΦ′Nn) + ‖s‖]q exp
[ −K ′θn log n

2Φ′(9Φ′ + Φ)

]
,

which is bounded by Cn−q/2 as required if C is large enough.

4.7 Some results in approximation theory for
Besov spaces

4.7.1 Linear approximations

We shall collect here some known results of approximation of Besov spaces
Bαp∞(A) defined in Section 4.2.2 by classical finite-dimensional linear
spaces. We first assume that p = 2 and consider the following approxi-
mation spaces:

• If A = [0, 1] let S be the space of piecewise polynomials of degree
bounded by r with r > α−1 based on the partition generated by the
grid {j/D, 0 ≤ j ≤ D};

• If A = T let S be the space of trigonometric polynomials of degree
≤ D;

• If A = [−A,A] let S be the space V̄J generated by a wavelet basis of
regularity r > α− 1 defined in Section 4.2.2 with D = 2J .

Let π(s) be the projection of s onto the approximating space S. Then in
each of the three situations, with different constants C(s) in each case, we
get

‖s− π(s)‖ ≤ C(s)D−α. (35)

The proof of (35) comes from DeVore & Lorentz (1993) page 359 for piece-
wise polynomials and page 205 for trigonometric polynomials. For the
wavelet expansion we shall prove a more general result than (35) which
holds when p ≤ 2 and α > 1/p− 1/2. From the classical inequality

∑
λ∈Λ(j)

|βλ|2 ≤ (2jM)(1−2/p)+


 ∑
λ∈Λ(j)

|βλ|p



2/p
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and (6) we derive that

‖s− π(s)‖2 =
∑
j>J

∑
λ∈Λ(j)

|βλ|2 ≤ |||s|||2
∑
j>J

2−2j(α+ 1
2− 1

p )(2jM)(1−2/p)+ .

This implies for p = 2

‖s− π(s)‖2 ≤ |||s|||2
∑
j>J

2−2jα =
|||s|||2

4α − 1
2−2Jα,

which gives (35) since D = 2J . Moreover for p < 2 and α > 1/p− 1/2,

‖s− π(s)‖2 ≤ |||s|||2
∑
j>J

2−2j(α+ 1
2− 1

p ) = |||s|||2 2−2J(α+ 1
2− 1

p )

4α+ 1
2− 1

p − 1
. (36)

4.7.2 Nonlinear approximations

Starting with a wavelet basis {ϕλ}λ∈Λ as described in Section 4.2.2, we
follow the framework stated for Proposition 3 of Section 4.3.2 with l(x) =
x−32−x. We want to study the approximation properties of the union of
linear spaces Sm = Span({ϕλ |λ ∈ m}) when m belongs to Mj′

J .

Proposition 6 All elements of Mj′

J have the same cardinality bounded by
κ′M2j

′
and log |Mj′

J | is bounded by κ′′M2j
′
. Moreover, if M2j

′ ≥ J3 and
s belongs to Bαp∞([−A,A]) with p ≤ 2 and α > 1/p − 1/2 there exists
m ∈ Mj′

J such that

‖s− sm‖2 ≤ C|||s|||2
(
2−2αj′ + 2−2J(α+ 1

2− 1
p )

)
. (37)

Remarks

• From the bounds on the cardinalities of both Mj′

J and the elements
of Mj′

J one can derive that ∪
m∈Mj′

J

Sm is a metric space with finite

metric dimension (in the sense of Le Cam) bounded by D = C ′2j
′

whatever J .

• Choosing J � αj′/(α + 1/2 − 1/p), this finite dimensional nonlinear
metric space approximates Bαp∞([−A,A]) within O(D−α). Hence
(37) provides an analogue of (35), the difference being that a non-
linear finite-dimensional space instead of a linear vector space (both
with dimensions of order D) is needed to get the D−α-rate of approx-
imation for p < 2.

• As a consequence, the ε-entropy of {s ∈ Bαp∞([−A,A]) | |||s||| ≤ 1} is
of order ε−1/α when α > 1/p− 1/2.
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Proof of Proposition 6: The bound on |m| derives from

|m| = M


 j′∑

j=0

2j + 2j
′
J−j′∑
k=1

2kl(k)


 < κ′M2j

′
.

The control of |Mj′

J | is clear for j′ = J . Otherwise

|Mj′

J | =
J∏

j=j′+1

(
M2j

[M2j l(j − j′)]

)
=

J−j′∏
j=1

(
M2j

′+j

[M2j+j′ l(j)]

)

and from the inequality log
( n
[nx]

)
< nx(log(1/x) + 1) which holds for

0 < x ≤ 1 one gets

log |Mj′

J | ≤ M2j
′

∞∑
j=1

2j l(j)
(

log
(

1
l(j)

)
+ 1

)

and the series converges from our choice of l. If p = 2, the conclusion of
Proposition 6 follows from (35). If p < 2 the bias can always be written as

‖s− sm‖2 =
∑
j>J

∑
λ∈Λ(j)

β2
λ +

J∑
j=j′+1

∑
λ∈Λ(j)\m(j)

β2
λ

where the second term is 0 when j′ = J . We can bound the first term by
(36). In order to control the second term we shall need the following

Lemma 3 Assume that we are given n nonnegative numbers 0 ≤ b1 ≤
. . . ≤ bn with

∑n
i=1 bi = B. For any number r > 1 and any integer k with

1 ≤ k ≤ n− 1 one has

n−k∑
i=1

bri ≤ Br k
1−r

r − 1
(1 − r−1)r.

Proof of the lemma: One can assume without loss of generality that
B = 1 and that for i > n − k the bi’s are equal to some b ≤ 1/k. Then∑n−k

i=1 bi + kb = 1 which implies that

n−k∑
i=1

bri ≤ br−1
n−k∑
i=1

bi = br−1(1 − kb),

and the conclusion follows from a maximization with respect to b. �
We choose m such that for j > j′, m(j) corresponds to the [M2j l(j−j′)]

largest values of the |βλ| for λ ∈ Λ(j). Since by assumption M2j
′ ≥ (J−j′)3
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and l < 1, 1 ≤ |m(j)| < |Λ(j)| and we may apply Lemma 3 with r = 2/p
and k = |m(j)| to get

∑
λ∈Λ(j)\m(j)

β2
λ ≤ C(p)


 ∑

λ∈Λ(j)

βpλ




2/p

(|m(j)|)1−2/p

≤ C(p,M)|||s|||22−2j(α+ 1
2− 1

p )
(
2j l(j − j′)

)1−2/p

from which we deduce that

J∑
j=j′+1

∑
λ∈Λ(j)\m(j)

β2
λ ≤ C(p,M)|||s|||22−2αj′

∞∑
j=1

2−2j(α+ 1
2− 1

p )
(
2j l(j)

)1−2/p

and the series converges since 2j l(j) = j−3 and α + 1/2 − 1/p > 0. �
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