
 1

From Modelling Domain Knowledge to Metacognitive Skills:
Extending a Constraint-based Tutoring System

to Support Collaboration

Nilufar BAGHAEI and Antonija MITROVIC

Department of Computer Science and Software Engineering

University of Canterbury, Private Bag 4800, Christchurch, New Zealand
{n.baghaei, tanja}@cosc.canterbury.ac.nz

Abstract. Constraint-based tutors have been shown to increase individual learning in
real classroom studies, but would become even more effective if they provided support
for collaboration. COLLECT-UML is a constraint-based intelligent tutoring system that
teaches object-oriented analysis and design using Unified Modelling Language. Being
one of constraint-based tutors, COLLECT-UML represents the domain knowledge as a set
of constraints. However, it is the first system to also represent a higher-level skill such as
collaboration using the same formalism. We started by developing a single-user ITS. The
system was evaluated in a real classroom, and the results showed that students’
performance increased significantly. In this paper, we present our experiences in
extending the system to provide support for collaboration as well as problem-solving.
The effectiveness of the system was evaluated in a study conducted at the University of
Canterbury in May 2006. In addition to improved problem-solving skills, the participants
both acquired declarative knowledge about good collaboration and did collaborate more
effectively. The results, therefore, show that Constraint-Based Modelling is an effective
technique for modelling and supporting collaboration skills.

1 Introduction

Constraint-based tutors are Intelligent Tutoring Systems (ITS) which use Constraint-
Based Modelling (CBM) [15] to represent domain and student models. These tutors
have been proven to provide significant learning gains for students in a variety of
instructional domains. As is the case with other ITSs [4], constraint-based tutors are
problem-solving environments; in order to provide individualized instruction, they
diagnose students’ actions, and maintain student models, which are then used to
provide individualized problem-solving support and generate appropriate
pedagogical decisions. Constraint-based tutors have been developed in domains such
as SQL (the database query language), database modelling, data normalization [13],
punctuation [11] and English vocabulary [10].

All constraint-based tutors developed so far support individual learning. This
paper describes extending COLLECT-UML [1, 3], a constraint-based ITS, to support
the acquisition of collaboration skills. COLLECT-UML teaches Object-Oriented
(OO) analysis and design using Unified Modelling Language (UML). The system
provides feedback on both collaboration issues (using the collaboration model,
represented as a set of meta-constraints) and task-oriented issues (using the domain
model, represented as a set of syntax and semantic constraints).

 2

We start with a brief overview of related work in Section 2. The architecture of
COLLECT-UML and its interface are discussed in Section 3. Section 4 describes the
collaborative model, which has been implemented as a set of meta-constraints. In
Section 5, we present the results of an evaluation study conducted recently.
Conclusions are given in the last section.

2 Related Work

In the last decade, many researchers have contributed to the development of
computer-supported collaborative learning (CSCL) and advantages of collaborative
learning over individualised learning have been identified. Some particular benefits
of collaborative problem-solving include: encouraging students to verbalise their
thinking; encouraging students to work together, ask questions, explain and justify
their opinions; increasing students’ responsibility for their own learning; increasing
the possibility of students solving or examining problems in a variety of ways; and
encouraging them to elaborate and reflect upon their knowledge [17]. These
benefits, however, are only achieved by active and well-functioning learning teams
[8]. Various strategies for computationally supporting online collaborative learning
have been proposed and used, but more studies are needed that test the utility of
these techniques [9].

CSCL systems can be classified into three categories based on the collaboration
support they provide [9]. The first category includes systems that reflect actions; this
basic level of support makes students aware of each others’ actions. The systems in
the second category monitor the state of interactions; some of them aggregate the
interaction data into a set of high-level indicators, and display them to the
participants (e.g. Sharlok II [14]), while others internally compare the current state
of interaction to a model of ideal interaction, but do not reveal this information to
the users (e.g. EPSILON [18]). In the latter case, this information is either intended
to be used later by a coaching agent, or analysed by researchers in order to
understand the interaction [9]. Finally, the third class of systems offer advice on
collaboration. The coach in these systems plays a role similar to that of a teacher.
The systems can be distinguished by the nature of the information in their models,
and whether they provide feedback on strictly collaboration issues or both social and
task-oriented issues. An example of the systems focusing on the social aspects is
Group Leader Tutor [12], while COLER [5] addresses both social and task-oriented
aspects of group learning.

Although many tutorials, textbooks and other resources on UML are available,
we are not aware of any attempt at developing a CSCL environment for UML
modelling. However, there has been an attempt [18] at developing a collaborative
learning environment for OO design problems using Object Modeling Technique
(OMT), a precursor of UML. The system monitors group members’ communication
patterns and problem solving actions in order to identify situations in which students
effectively share new knowledge with their peers while solving problems. The
system dynamically assesses a group’s interaction, and determines when and why
the students are having trouble learning new concepts they share with each other.
The system does not evaluate the OMT diagrams and an instructor or intelligent
coach’s assistance is needed in mediating group knowledge sharing activities. In this
regard, even though the system is effective as a collaboration tool, it would probably

 3

not be an effective teaching system for a group of novices with the same level of
expertise, as the students may agree on the same flawed argument.

3 COLLECT-UUUUMMMMLLLL

COLLECT-UML is a problem-solving environment implemented in Allegro
Common Lisp, in which students construct UML class diagrams that satisfy a given
set of requirements. It assists students during problem solving, and guides them
towards the correct solution by providing feedback. The system is designed as a
complement to classroom teaching and when providing assistance, it assumes that
the students are already familiar with the fundamentals of UML.

We started by developing a constraint-based tutoring system which supported
students working individually. Being a Web-enabled system, its interface is
delivered via a Web browser. The system consists of a session manager that
manages sessions and student logs, a student modeller that maintains student
models, the constraint set and a pedagogical module. We performed an evaluation
study in a real classroom, and the results showed that students’ performance
increased significantly. For details on the architecture, functionality and the
evaluation studies of this version please refer to [1, 3].

The architecture of the collaborative version of the system (Figure 1) introduces
the group modeller, a new component responsible for creating and maintaining
group models. The pedagogical module uses both the student model and the group
model in order to generate pedagogical actions. The student model records the
history of usage for each constraint (both for domain constraints and the constraints

 Web
 browser

 Web
 browser

 Web
 browser

 Web Server
 (AllegroServe)

 Session
 manager

 Student
 modeller

 Group
 modeller

 Student
 models

 Domain
 Constraints Problems &

Solutions

 Group
 Models

 Logs

Internet

Collaboration
model (meta-
constraints)

 Pedagogical
 module

Fig. 1. The architecture of COLLECT-UML

 4

(54
 "Check whether you have defined all the methods as specified
 by the problem. You are missing some methods."
 (and (match IS METHODS (?* "@" ?tag ?name ?class_tag ?*))
 (match SS CLASSES (?* "@" ?class_tag ?*)))
 (match SS METHODS (?* "@" ?tag ?name2 ?class_tag ?*))
 "methods"
 (?class_tag))

from the collaboration model), while the group model records the history of group
usage for each domain constraint.

COLLECT-UML contains an ideal solution for each problem, which is compared
to the student’s solution according to the system’s domain knowledge, represented
as a set of constraints [15]. The system’s domain model contains a set of 133
constraints defining the basic domain principles, a set of problems and their
solutions [3]. In order to develop constraints, we studied material in textbooks, such
as [7], and also used our own experience in teaching UML and OO analysis and
design. Figure 2 illustrates a constraint from the UML domain, which checks
whether the student has defined all the methods necessary for the current problem.
The relevance condition identifies a method in the ideal solution (IS) and then
checks whether the class it belongs to also exists in the student’s solution (SS). The
student’s solution is correct if the satisfaction condition is met, when the matching
method also exists in the student’s solution. The constraint also contains a message
which would be given to the student if the constraint is violated.

Fig. 2. Example of a domain constraint

The student interface is shown in Figure 3. The problem text describes a
situation that needs to be modelled by a UML class diagram. Students construct their
individual solutions in the private workspace (right). They use the shared workspace
(left) to collaboratively construct UML diagrams while communicating via the chat
window (bottom). The private workspace enables students to try their own solutions
and think about the problem before they start discussing it in the group.

The group diagram is initially disabled. It is activated after a specified amount
of time, and the students can start placing components of their solutions in the
shared workspace. This may be done by either copying/pasting from private diagram
or by drawing new components in the group diagram. The private and shared
workspaces can be resized. The students need to select the component names from
the problem text by highlighting or double-clicking on the words/phrases. The
Group Members panel shows the team-mates already connected. Only one student,
the one who has the pen, can update the shared workspace at a given time. The
control panel provides two buttons to control this workspace: Get Pen and Leave
Pen, and shows the name of the student who has the control of this area. The chat
area enables students to express their opinions by selecting one of the sentence
openers, and typing their statement.

While all group members can contribute to the chat area and group solution,
only one member of the group (i.e. the group moderator) can submit the group
solution (by clicking on the Submit Group Answer button). The system provides
feedback on the individual solutions, as well as on group solutions and

 5

collaboration. All feedback messages will appear in the frame located on the right-
hand side of the interface.

The domain-level feedback on both individual and group solutions is offered at
four levels of detail: Simple Feedback, Error flag, Hint and All Hints. In addition,
the group moderator has the option of asking for the complete solution, by clicking
on Show Full Solution button. The collaboration-based advice is given to individual
students based on the content of the chat area (i.e. sentence openers the students
used), the student’s contributions to the shared diagram and the differences between
student’s individual solution and the group solution being constructed. The system
scales to a large number of participants and to large problem spaces. For more
details on the interface and justification of using sentence openers, private
workspace and turn taking, please refer to [2].

4 Modelling Collaboration

Research on learning has demonstrated the usefulness of collaboration for improving
student’s problem-solving skills. However, simply putting students together and
giving them a task does not mean that they will collaborate well. Collaboration is a
skill, and, as any other skill, needs to be taught and practised to be acquired.
Students learning via CSCL technology need practice, guidance and support in
learning the social interaction skills, just as students learning in the classroom need
support from their instructor [17].

The goal of our research is to support collaboration by modelling collaborative
skills. COLLECT-UML is capable of diagnosing students’ collaborative actions, such
as contributions to the chat area and contributions to the group diagram, using an

Fig. 3. COLLECT-UML Interface

Individual Diagram Chat

Pen

Group Diagram Feedback

 6

explicit model of collaboration. This collaboration model is represented using
constraints, the same formalism used to represent domain knowledge. A significant
contribution of our work is to show that constraint can be used not only to represent
domain-level knowledge, but also higher-order skills such as collaboration.

Our model of collaboration consists of set of 25 meta-constraints representing
ideal collaboration. The structure of meta-constraints is identical to that of domain-
level constraints: each meta-constraint consists of a relevance condition, a
satisfaction condition and a feedback message. The feedback message is presented
when the constraint is violated. In order to develop meta-constraints, we studied the
existing literature on characteristics of effective collaboration [5, 16, 17, 19], and
also used our own experience in collaborative work. The collaborative teaching
strategy used is based on the socio-cognitive conflict theory [6]. According to this
theory, social interaction is constructive only if it creates a confrontation between
students’ divergent solutions.

The meta-constraints are divided into two main groups: constraints that monitor
students’ contributions to the group diagram (making sure that students remain
active, encouraging them to discuss the differences between their individual
diagrams and the group diagram, etc.), and constraints that monitor students’
contributions to the chat area and the use of sentence openers.

Figure 4 illustrates two meta-constraints. The relevance condition of constraint
223 focuses on aggregation relationships that exist in the student’s individual
solution between certain classes, when the same classes also exist in the group
solution (GS). For this constraint to be satisfied, the corresponding relationships
should also appear in the group solution. If that is not the case, the constraint is
violated, and the student will be given the feedback message attached to this
constraint, which encourages them to discuss those relationships with the group, or
add them to the group solution. Constraint 238 is relevant if the student has made a
contribution to the chat area, and its satisfaction condition checks whether the
student has typed a statement after using any of the available sentence openers. If
not, it encourages them to provide more explanation as part of their contribution.

In order to be able to evaluate meta-constraints, the system maintains a rich
collection of data about all actions students perform in COLLECT-UML. After each
change made to the group diagram, an XML event message containing the update
and the id of the student who made that change, is sent to the server. Each chat
message will also be sent to the server in the XML format.

Histories of all contributions made to the shared diagram as well as the
messages posted to the chat area are stored on the server. The meta-constraints are
evaluated against these histories, and feedback is given on contributions which
involve adding/deleting/updating components in the shared diagram, as well as
contributions made to the chat area.

5 Evaluation

An evaluation study was carried out at the University of Canterbury in May 2006.
The study involved 48 volunteers enrolled in an introductory Software Engineering
course. The students learnt UML modelling concepts during two weeks of lectures
and had some practice during two weeks of tutorials prior to the study. The study
was conducted in two streams of two-hour laboratory sessions over two weeks. In
the first week, the students filled out a pre-test and interacted with the single-user

 7

version of the system. Doing so gave them a chance to learn the interface and
provided us with an opportunity to assess their UML knowledge and decide on the
pairs and moderators.

(223

 "Some relationship types (aggregations) in your individual
 solution are missing from the group diagram. You may wish to
 share your work by adding those aggregation(s)/discuss it with
 other members."
 (and (match SS RELATIONSHIPS (?* "@" ?rel_tag "aggregation"
 ?c1_tag ?c2_tag ?*))
 (match GS CLASSES (?* "@" ?c1_tag ?*))
 (match GS CLASSES (?* "@" ?c2_tag ?*)))
 (or-p (match GS RELATIONSHIPS (?* "@" ?rel_tag "aggregation"
 ?c1_tag ?c2_tag ?*))
 (match GS RELATIONSHIPS (?* "@" ?rel_tag "aggregation"
 ?c2_tag ?c1_tag ?*)))
 "relationships"
 (?rel_tag ?c1_tag ?c2_tag))

 (238
 "Ensure adequate elaboration is provided in explanations."
 (match SC DESC (?* "@" ?tag ?text ?*))
 (not-p (test SC ("null" ?text)))
 "descriptions"
 nil)

Fig. 4. Examples of meta-constraints

At the beginning of the sessions in the second week, we told students what

characteristics we would be looking for in effective collaboration (that was
considered as a short training session). The instructions describing the
characteristics of good collaboration and the process we expected them to follow
were also handed out. The idea of providing students with such a script and
therefore supporting instructional learning came from a recent study conducted by
Rummel and Spada [16]. The participants were also given a screenshot of the system
highlighting the important features of the multi-user interface (Figure 3).

The students were randomly divided into pairs with a pre-specified moderator.
The moderator for each pair was the student who had scored higher in the pre-test.
The pairs worked on a relatively complex problem individually and joined the group
discussion whenever they were ready – the group diagram was activated after 10
minutes. At the end of the session, each participant completed a post-test and a
questionnaire commenting on the interface, the impact of the system on their domain
knowledge and their collaborative skills, and the quality of the feedback messages
on their individual and collaborative activities.

The experimental group consisted of 26 students (13 pairs) who received
feedback on their solution as well as their collaborative activities. The control group
consisted of 22 students (11 pairs) who only received feedback on their solutions (no
feedback on collaboration was provided in this case). There were four female
participants in four different pairs (one from the control group and three from the
experimental group). All pairs received instructions on characteristics of good
collaboration at the beginning of the second week.

 8

The total time spent interacting with the system was 1.4 hours for the control
and 1.3 hours for the experimental group. The pre-test and post-test each contained
four multiple-choice questions, followed by a question where the students were
asked to design a simple UML class diagram. The tests included questions of
comparable difficulty, dealing with inheritance and association relationships. The
post-test also had an extra question, asking the participants to describe the aspects of
effective collaborative problem-solving. The mean scores of the pre- and post-test
are given in Table 1. The numbers reported for the post-test do not include the
collaboration question.

Table 1. Pre- and post-test scores

Control Experimental
Average s. d. Average s. d.

Collaboration 22% 22% 52% 39%

Pre-test 52% 20% 49% 19%

Post-test 76% 25% 73% 25%

Gain score 17% 28% 21% 31%

There was no significant difference on the pre-test results, meaning that the
groups were comparable. The students’ performance on the post-test was
significantly better for both control group (t = 2.11, p = 0.01) and experimental
group (t = 2.06, p = 0.002). The experimental group, who received feedback on their
collaboration performed significantly better on the collaboration question (t = 2.02,
p = 0.003), showing that they acquired more knowledge on effective collaboration.
We also calculated the effect size for the question about collaboration. The common
method to calculate it is to subtract the control group’s mean score from the
experimental group’s mean score and divide by the standard deviation of the control
group. Using this method, the effect size on student’s collaboration knowledge is
very high: (Average collaboration exp – Average collaboration control)/ s.d. control = 1.3.

The experimental group students contributed more to the group diagram, with
the difference between the average number of individual contribution for control and
experimental group being statistically significant (t = 2.03, p = 0.03). The meta-
constraints generated collaboration-based feedback 19.4 times on average for the
experimental group (for each student).

We have also analyzed the students’ individual log files, in order to identify
how students learnt the underlying domain concepts in the second week. Figure 5
illustrates the probability of violating a domain constraint plotted against the

Fig. 5. Probability of domain constraint violation for individuals in control and
experimental group

 9

occasion number for which it was relevant, averaged over all domain constraints and
all participants in control and experimental groups. The data points show a regular
decrease, which is approximated by a power curve with a close fit of 0.78 and 0.85
for control and experimental groups respectively, thus showing that students do
learn constraints over time. The probability of 0.21/0.23 for violating a constraint on
the first occasion of application has decreased to 0.09/0.12 at its eleventh occasion,
displaying a 61.9%/47.8% decrease in probability for the control/experimental group
respectively. Figure 6 illustrates the learning curve for meta-constraints only (for the
experimental group). There is also a regular decrease, thus showing that students
learn meta-constraints over time. Because the students used the system for a short
time only, more data is needed to analyze learning of meta-constraints, but the trend
identified in this study is encouraging.

The participants were given a questionnaire at the end of the session to
determine their perceptions of the system. Most of the participants (61% of control

and 78% of experimental
group) responded they
would recommend the
system to other students.
The students found the
interface easy to learn and
use and enjoyed working
with a partner. The
comments we received on
open questions show that
the students liked the system
and thought it improved
their knowledge, and also
pointed out several possible
improvements.

6 Conclusions

CBM has previously been used to effectively represent domain knowledge in several
ITSs supporting individual learning. The contribution of this research is the use of
CBM to model collaboration skills, not only domain knowledge. We described the
process of extending COLLECT-UML, an ITS for UML class diagrams, to support
collaboration. COLLECT-UML provides task-based feedback on students’ and group
solutions, as well as collaboration-based feedback intended to make the
collaboration process more effective. The collaborative feedback is provided by
analyzing students’ activities and comparing them to an ideal model of
collaboration.

The system’s effectiveness in teaching good collaboration and UML class
diagrams was evaluated in a classroom experiment. The results of both subjective
and objective analysis proved that COLLECT-UML is an effective educational tool.
The experimental group students acquired more declarative knowledge on effective
collaboration, as they scored significantly higher on the collaboration test. The
collaboration skills of the experimental group students were better, as evidenced by
these students being more active in collaboration, and contributing more to the
group diagram. All students improved their problem-solving skills: the participants

Fig. 6. Probability of meta-constraint violation

 10

from both control and experimental group performed significantly better on the post-
test after short sessions with the system, showing that they acquired more
knowledge on UML modelling. Finally, the students enjoyed working with the
system and found it a valuable asset to their learning.

The results, therefore, show that CBM is an effective technique for modelling
and supporting collaboration in CSCL environments.

References

1. Baghaei, N., Mitrovic, A., Irwin, W.: A Constraint-Based Tutor for Learning Object-

Oriented Analysis and Design using UML. Proc. ICCE 2005, (2005) 11-18
2. Baghaei, N., Mitrovic, A.: A Constraint-based Collaborative Environment for

Learning UML Class Diagrams. Proc. ITS 2006, (2006) 176-186
3. Baghaei, N., Mitrovic, A., Irwin, W.: Problem-Solving Support in a Constraint-based

Tutor for UML Class Diagrams, Technology, Instruction, Cognition and Learning
Journal, 4(2) (2006) (in print)

4. Brusilovsky, P., Peylo, C.: Adaptive and Intelligent Web-based Educational Systems.
Artificial Intelligence in Education, 13, (2003) 159-172

5. Constantino-Gonzalez, M. A., Suthers, D., Escamilla de los Santos, J.: Coaching web-
based collaborative learning based on problem solution differences and participation.
Int. J. Artificial Intelligence in Education, 13(2-4), (2003) 263-299

6. Doise, W., Mugny, G.: The social development of the intellect. Int. Series in
Experimental Social Psychology, 10, Pergamon Press. (1984)

7. Fowler, M.: UML Distilled: a Brief Guide to the Standard Object Modelling
Language. Reading: Addison-Wesley, 3rd edition. (2004)

8. Jarboe, S.: Procedures for enhancing group decision making. In: B. Hirokawa, M.
Poole (eds.): Communication and Group Decision Making. (1996) 345-383

9. Jerman, P., Soller, A., Muhlenbrock, M.: From Mirroring to Guiding: A Review of
State of the Art Technology for Supporting Collaborative Learning. In: P.
Dillenbourg, A. Eurelings, K. Hakkarainen (eds.) CSCL 2001, (2001) 324-331

10. Martin, B., Mitrovic, A.: Domain Modelling: Art or Science? In: Hoppe, U., Verdejo,
F., Kay J. (eds.), Proc. 11th Int. Conference on AIED, (2003) 183-190

11. Mayo, M., Mitrovic, A.: Optimising ITS behaviour with Bayesian networks and
decision theory. Artificial Intelligence in Education, 12(2), (2001) 124-153

12. McManus, M., Aiken, R.: Monitoring computer-based problem solving. Int. Journal
of Artificial Intelligence in Education, 6(4), (1995) 307-336

13. Mitrovic, A., Suraweera, P., Martin, B., Weerasinghe, A.: DB-suite: Experiences with
three Intelligent, Web-based Database Tutors. Journal of Interactive Learning
Research, 15(4), (2004) 409-432

14. Ogata, H., Matsuura, K., Yano, Y.: Active Knowledge Awareness Map:
Visualizing learners activities in a Web based CSCL environment. Int. Workshop on
New Technologies in Collaborative Learning, (2000) 89-97

15. Ohlsson, S: Constraint-based Student Modelling. In: J. Greer, G. McCalla (eds.):
Student Modelling: the Key to Individualized Knowledge-based Instruction, Berlin:
Springer-Verlag (1994) 167-189

16. Rummel, N., Spada, H.: Learning to collaborate: An instructional approach to
promoting collaborative problem-solving in computer-mediated settings. Journal of
the Learning Sciences, 14(2), (2005) 201-241

17. Soller, A.: Supporting Social Interaction in an Intelligent Collaborative Learning
System. International Journal of AIED, 12, (2001) 40-62

18. Soller, A., Lesgold, A.: Knowledge acquisition for adaptive collaborative
learning environments. AAAI Fall Symposium: Learning How to Do Things. (2000)

19. Vizcaino, A.: A Simulated Student Can Improve Collaborative Learning. Int. Journal
of Artificial Intelligence in Education, 15, (2005) 3-40

