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Simple Summary: Our comparative study brings new insights regarding the effects of environmental
lead exposure on the cardiorespiratory and nervous systems. We show how various kinds of exposure
can lead to different toxicities, with various degrees of nefarious effects. The developmental period is
of utmost importance to the toxicity of environmental lead; however, we found that the duration of
exposure is the prime reason for stronger effects, even though the dual effect of intermittent exposure
causes greater molecular neuronal alterations.

Abstract: Lead is a heavy metal whose widespread use has resulted in environmental contamination
and significant health problems, particularly if the exposure occurs during developmental stages. It
is a cumulative toxicant that affects multiple systems of the body, including the cardiovascular and
nervous systems. Chronic lead exposure has been defined as a cause of behavioral changes, inflam-
mation, hypertension, and autonomic dysfunction. However, different environmental lead exposure
paradigms can occur, and the different effects of these have not been described in a broad compar-
ative study. In the present study, rats of both sexes were exposed to water containing lead acetate
(0.2% w/v), from the fetal period until adulthood. Developmental Pb-exposed (DevPb) pups were
exposed to lead until 12 weeks of age (n = 13); intermittent Pb exposure (IntPb) pups drank leaded
water until 12 weeks of age, tap water until 20 weeks, and leaded water for a second time from 20
to 28 weeks of age (n = 14); and the permanent (PerPb) exposure group were exposed to lead until
28 ‘weeks of age (n = 14). A control group (without exposure, Ctrl), matched in age and sex was
used. After exposure protocols, at 28 weeks of age, behavioral tests were performed for assessment
of anxiety (elevated plus maze test), locomotor activity (open-field test), and memory (novel object
recognition test). Metabolic parameters were evaluated for 24 h, and the acute experiment was carried
out. Blood pressure (BP), electrocardiogram, and heart (HR) and respiratory (RF) rates were recorded.
Baroreflex gain, chemoreflex sensitivity, and sympathovagal balance were calculated. Immunohisto-
chemistry protocol for NeuN, Syn, Iba-1, and GFAP staining was performed. All Pb-exposed groups
showed hypertension, concomitant with a decrease in baroreflex gain and chemoreceptor hyper-
sensitivity, without significant changes in HR and RF. Long-term memory impairment associated
with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus, indicating the
presence of neuroinflammation, was also observed. However, these alterations seemed to reverse
after lead abstinence for a certain period (DevPb) and were enhanced when a second exposure
occurred (IntPb), along with a synaptic loss. These results suggest that the duration of Pb exposure
is more relevant than the timing of exposure, since the PerPb group presented more pronounced
effects and a significant increase in the LF and HF bands and anxiety levels. In summary, this is the
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first study with the characterization and comparison of physiological, autonomic, behavioral, and
molecular changes caused by different low-level environmental lead exposures, from the fetal period
to adulthood, where the duration of exposure was the main factor for stronger adverse effects. These
kinds of studies are of immense importance, showing the importance of the surrounding environ-
ment in health from childhood until adulthood, leading to the creation of new policies for toxicant
usage control.

Keywords: environmental lead exposure; long-term memory impairment; hypertension;
baroreflex impairment

1. Introduction

Lead is one of the 10 chemicals of major public health concern [1], representing a
major neurotoxin due to its vast domestic, industrial, medical, and even technological
usage by the human population for more than 8000 years [2]. Even though strong public
policy strategies have been implemented already, and some applications of lead have been
banned—such as leaded gasoline—lead paint, for instance, is still widely used. As of
31 December 2021, only 43% of countries have confirmed that they have legally binding
controls on the production, import, sale, and use of lead paints, while 40% of countries
have no such laws [3]. Lead can enter the body by ingestion, inhalation, or absorption
through the skin, with ingestion via food or water intake being the most common [4,5].

Two types of exposure can be described: First, and less commonly, occupational lead
exposure can be defined as elevated levels of exposure to lead during a short period of
time, targeting a specific group of subjects—usually at their working premises—and syn-
onymous with acute lead exposure [5–7]. Second, environmental lead exposure involves
a long-lasting exposure of large populations to lower levels of lead from various sources
present in their living environment, which is a public health issue in non-developed coun-
tries with high levels of lead emissions and the usage of old working methods in industry
and agriculture [2,8–10]. The chronic exposure to low levels of lead is described as a “silent
epidemic”, as it causes serious cardiovascular and nervous dysfunctions, accounting for
more than a million deaths per year [1,11]. Lead toxicity is characterized by multiple effects
on the body, which are directly correlated with the most susceptible organs to lead accu-
mulation in the body—namely, the heart, brain, liver, and kidneys—causing long-lasting
health effects [9,12]. Lead toxicity also accounts for hematopoietic changes and effects
on the reproductive system [6,13–15]. However, the most nefarious are cardiorespiratory
changes, such as hypertension, autonomic dysfunction, and neurological effects [7,16–22].
Lead has the ability to cross the blood–brain barrier, first accumulating in the astrocytic
cells and then moving to the other cell types in the brain, causing several molecular and
functional alterations that can lead to neurodevelopmental disorders, cognitive impair-
ment, depression, anxiety and, later, neurodegenerative disorders, such as Alzheimer’s
disease [21–25].

Children are the most susceptible to lead poisoning, being more prone to environmen-
tal exposure as a result of their exploratory nature, and because they absorb 4−5 times
more lead than adults [26–29]. The developmental period has been described as the main
period for triggering lead’s nefarious health effects on the system throughout the lifetime
until adulthood [30–36]. Despite the Centers for Disease Control and Prevention (CDC)
having adopted a new upper limit of 5 µL/dL, the adverse effects on children’s health
caused by lead exposure have also been described below that limit, so no safe blood lead
level in children has been identified [37].

New guidelines for the prevention and management of human lead exposure are
being created every year, mostly focusing on the exposure of children [1,29,38]. Despite
wide scientific evidence of the long-term adverse health effects of lead, a comparative study
showing the effects of different types of lead exposure—such as chronic or permanent
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exposure, exposure only in the development period, or intermittent exposure to lead, the
latter of which has increased in recent years due to migration, exchange, and sabbatical
programs—would be important to better understand which adverse effects of lead may be
reversible. Additionally, few studies have been performed with a full characterization of
the cardiorespiratory and neurological effects of the diverse types of lead exposure from
the fetal period to adulthood. Previously, in our laboratory, we characterized some of
the cardiorespiratory, autonomic function, behavioral, and molecular changes caused by
intermittent lead exposure [39].

Consequently, our current, comparative study focuses on the characterization and
parallel assessment of the toxicological effects of different kinds of lead exposure, namely, in
animal behavior, long-term memory, metabolic parameters, basal physiological parameters,
autonomic function, and molecular changes within the brain.

2. Materials and Methods
2.1. Experimental Groups

Considering that ingestion is one of the three main intake routes for bodily lead ab-
sorption, an animal model of lead exposure was developed as described previously [40,41].
Briefly, seven-day-pregnant Wistar rats (Charles River Laboratories, Chatillon-sur-Chalaronne,
France) were divided into Pb-treated and control groups. In the Pb-treated group, the
tap drinking water was replaced with 0.2% (p/v) lead (II) acetate solution dissolved in
deionized water (Acros Organics, New Jersey, NJ, USA).

After weaning at 21 days, rat pups of both sexes were divided into 4 groups: lead
solution for long-term Pb-exposed pups (developmental (DevPb): exposure to lead until
12 weeks of age, no exposure until 28 weeks (n = 13); intermittent (IntPb): exposure to lead
until 12 weeks of age, no exposure (tap water) until 20 weeks, and second exposure from
20 to 28 weeks of age (n = 14); and permanent (PerPb): exposure to lead until 28 weeks of
age (n = 14)), and tap water for age-matched control pups (Ctrl rats (n = 18)). All animals
were subjected to the same experimental protocol to provide a comprehensive functional
and morphological assessment at the endpoint of exposure. The experimental protocol was
in accordance with European and national animal welfare legislation and was approved by
the Ethics Committee of the Academic Medical Centre of Lisbon (CAML), Portugal.

2.2. Behavioral Evaluation

Two weeks before functional evaluation, animals underwent a set of standard be-
havioral tests to assess (i) anxiety and stress levels [42] (elevated plus maze test), (ii)
spontaneous locomotor activity and exploratory behavior [43] (open-field test), and (iii)
episodic long-term memory [44] (novel object recognition test). Animals were brought into
the behavior testing room for at least 1 h prior to the commencement of the testing session
during the experimental days. All behavioral experiments were conducted between the
hours of 8 a.m. and 6 p.m. in a quiet room with dim lighting, and all animals had a four-day
handling time for the researcher and testing room habituation [45]. Between animals, all
behavior apparatus was cleaned with 70% ethanol. All studies were videotaped using a
UV camera (Chacon, Wavre, Belgium), and the movies were subsequently analyzed using
ANY-maze software (Stoelting Co., Wood Dale, IL, USA).

2.2.1. Elevated plus Maze

For anxiety evaluation, we performed the elevated plus maze test [39,42,46,47]. The
apparatus consists of an elevated maze with four arms (two open arms (50 × 10 cm)
perpendicular to two enclosed arms of 50 × 10 × 30 cm height) that form a plus shape,
elevated 50 cm from the ground. Each animal was left at the center of the maze to freely
explore the maze for 5 min without prior habituation to the maze, and the percentage of
time spent in open and closed arms was evaluated using the following ratio: (time spent in
open or closed arms/total time) × 100 [39,46,47].
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2.2.2. Open-Field Exploration Test

The open-field test (OFT) provides a unique opportunity to systematically assess
novel environment exploration and general locomotor activity and allows an initial indirect
screening for anxiety-related behavior in rodents [45]. This apparatus consists of a square
black box (measuring 67 × 67 × 57 cm in height) “virtually” divided into three concentric
squares: (1) the peripheral zone (near the walls), (2) the intermediate zone, and (3) the
center. We left the animals in the maze for 5 min, which was usually long enough for
evaluation of the established parameters. We calculated the total travelled distance and the
average velocity of the animals [32,39,43,47,48].

2.2.3. Novel Object Recognition Test

With a 24 h retention interval, the novel object recognition (NOR) test was utilized
to investigate long-term memory alterations in lead-exposed rats [44]. The open-field test
(OFT) arena was used to conduct this test. The objects were randomized and utilized inter-
changeably across trials and object types, with clear and brown glass shapes proportionate
to the animals’ size. In addition, their position in relation to the other objects was changed
to use each object as a source of familiarity or novelty. [39,44,47,49].

The evaluation procedure was divided into three stages: habituation, training, and
testing. Each animal could freely explore the open-field test (OFT) arena for 15 min in the
absence of objects during the habituation period (3 consecutive days). On the fourth day
of the training phase, the animal was given two to-be-familiarized items, dubbed sample
objects (S and S’ objects), for 5 min. The animal was returned to its own cage for 24 h after
being exposed to the sample objects. The animal was exposed to two objects for 5 min
on the fifth day (the test phase): one previously encountered sample object (S), and one
novel object (N) [44]. Training and testing days were recorded and analyzed by 3-point
analysis (head, torso, and tail of the animal) using ANY-maze® software, and only the data
from the head point analysis were relevant for the exploration of the objects. Exploratory
behavior was quantified as the amount of time animals spent around each object in both
the training and testing phases. The numbers of approaches that included sniffing the
object, rearing towards the object, or touching the object were counted. Sitting backwards
to the object or crossing in front of the object without pointing the snout in the object’s
direction was not considered exploration [44]. Exploration time was quantified as follows:
ET (%) = (time exploring the object/overall exploring time) × 100.

The novelty index was calculated from the data obtained on the NOR testing day,
as follows:

(ET% Novel − ET% Sample)/(ET% Novel + ET% Sample)

This index ranges from −1 to 1, where negative values to 0 represent the absence
of discrimination between the novel and familiar objects—i.e., more time exploring the
sample object, or equal time exploring both objects—and 1 corresponds to the exploration
of the novel object only [39,47,49].

2.3. Metabolic Evaluation

At 28 weeks, before the acute experiment, rats were housed for 24 h in metabolic cages
to evaluate their body weight, food and liquid intake, and urine and feces production.

2.4. Functional Evaluation
2.4.1. Acute Physiological Studies

At the end of the lead exposure protocols, at 28 weeks of age, each animal from
the experimental protocol was anesthetized with sodium pentobarbital (60 mg/kg, i.p.)
and maintained, when necessary and after testing the withdrawal reflex, with a 20%
solution (v/v) of the same anesthetic. A homoeothermic blanket attached to a rectal probe
kept the rectal temperature between 37.5 and 38.5 ◦C (Harvard Apparatus). For tracheal
pressure recording and artificial ventilation, the trachea was cannulated below the larynx.
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Blood pressure was monitored, and saline and medication injections were injected into the
femoral artery and vein, respectively. The electrocardiogram (ECG) was recorded using
subcutaneous electrodes in three of the four limbs, while the heart rate was calculated using
the ECG data (Neurolog, Digitimer). By retrograde cannulation of the external carotid
artery, the right carotid artery bifurcation was detected, and the tip of a catheter was placed
within the right carotid sinus. Lobeline (0.2 mL, 25 µg/mL, Sigma) was injected to stimulate
the carotid body receptors [40]. Baroreceptors were stimulated by intravenous injection of
phenylephrine (0.2 mL, 25 µg/mL, Sigma) [39,40,47]. Each provocation was separated by
at least 3 min to allow for recovery to baseline values. An identical volume of saline was
injected as a control at the start of the experiment and was proven to have no effect on the
recorded variables.

At the beginning of the experimental protocol, and upon the stabilization of the
physiological parameters, a basal recording of 10 min was taken for further autonomic
evaluation. Blood pressure, ECG, heart rate, tracheal pressure, and breathing rate were all
continually monitored and recorded throughout the test (PowerLab, AD Instruments).

Blood was drawn from the femoral artery at the end of the study to determine blood
lead levels (BLLs) using an atomic absorption spectrophotometer (Shimadzu,
Model no. AA 7000, Kyoto, Japan). After that, the animal was given an overdose of
anesthesia, and the brain was removed.

2.4.2. Data Acquisition and Analysis

All of the recorded variables were acquired at 1 kHz, amplified, and filtered (Neurolog,
Digitimer; PowerLab, AD Instruments, Dunedin, New Zealand).

2.4.3. Baro- and Chemoreceptor Reflex Analysis

To evaluate the baroreceptor reflex function, the baroreceptor reflex gain (BRG) was
quantified, calculating the variation of HR in relation to mean BP variation:

∆HR/∆BP

upon phenylephrine provocation. The evaluation of the chemoreceptor response elicited
by the intracarotid injection of lobeline was calculated through basal respiratory frequency
(RF, in cpm) before (average of 30 s) and during lobeline stimulation, or ∆ chemoreflex
(lob) = RFstimulation − RFbasal.

2.5. Immunohistochemistry (IHC)

The brains were maintained for post-fixation in 4% paraformaldehyde (PFA) in phos-
phate buffer (pH 7.4) solution at 4 ◦C overnight. After that, the brains were washed with
phosphate-buffered saline (PBS) and immersed in increasing concentra tions of sucrose
(15% and 30%), embedded in gelatin (7.5% gelatin in 15% sucrose solution), frozen with
liquid nitrogen and 2-metilbutane (Sigma-Aldrich, Dorset, UK), and stored at −80 ◦C for
further evaluation.

The hippocampus was identified (B = −2.92 to −5.04), and coronal slices (25 mm) were
cut using a cryostat (Leica CM 3050S, Leica Microsystems, Wetzler, Germany) and collected
in a 12-well plate for preservation at −20 ◦C in a cryoprotectant solution to assess neurode-
generation, synaptic alterations, astrogliosis, and microgliosis. The immunohistochemistry
protocol was performed as described previously [39]. Briefly, slices underwent an antigen
retrieval protocol [50], were permeabilized with 0.3% Triton X-100 (Sigma-Aldrich, UK),
and were blocked with 5% goat serum (BioWest, France) and 1% bovine serum (VWR,
USA). Tissues were immunoassayed with various primary rabbit polyclonal antibodies
diluted in blocking solution overnight at 4 ◦C: NeuN (1:500), Syn (1:200), GFAP (1:500),
and Iba-1 (1:250) (Abcam, UK). After washing with TBS, sections were incubated for 1 h at
room temperature with the secondary antibody diluted in TBS—goat anti-rabbit IgG Alexa
Fluor® 594 (1:1000; Thermo Fisher, USA) for NeuN-stained tissues, and goat anti-rabbit
IgG Alexa Fluor® 488 (1:1000; Thermo Fisher, USA) for Syn-, GFAP-, and Iba-1-stained
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tissues—rinsed three times, and mounted on SuperFrost® Microscope Slides. For nuclear
staining, we used ProLong Gold Antifade with DAPI (Sigma-Aldrich, UK).

A confocal point-scanning microscope (Zeiss LSM 880 with Airyscan) was used to
examine the dentate gyrus, and fluorescent images of GFAP, Iba-1, and synaptophysin were
processed and quantified using Fiji [51]. GFAP- and Iba-1-stained cells were morphologi-
cally classified into distinct categories of glial cells [52–55], and positive cells for GFAP and
Iba-1 were manually counted. Using the in-house program Multichannel Cell Counter RGB,
the number of NeuN-positive cells (i.e., mature neurons) was computed and quantified.

2.6. Statistical Analysis

Unless otherwise noted, data are expressed as the mean ± SEM and shown as a
composite of all subjects’ mean values. The D’Agostino–Pearson normality test was used
to assess the normality distribution of continuous data, and Levene’s test was used to
assess homogeneity of variance. The data comparing the four experimental groups were
analyzed using one-way ANOVA with Dunnett’s multiple comparisons test. Within each
group, Student’s t-test for paired observations was also employed to find the percentage of
exploration time between objects used in the NOR test. Due to the increase in the variability
with the increase in the mean, for blood lead levels, low frequencies, high frequencies, and
LF/HF ratio were first converted to natural logarithms and then statistically evaluated.
Data were analyzed using GraphPad Prism 9 (GraphPad Software Inc., USA). A value of
p < 0.05 was considered statistically significant.

3. Results
3.1. Lead Exposure from the Fetal Period until Adulthood Caused Anxiety and Cognitive Impairment
3.1.1. Permanent Exposure to Lead Caused Strong Anxiety without Locomotor Changes

The open-field test was performed to evaluate the locomotor and exploration ac-
tivities of the animals. We observed that neither the total travelled distance (Figure 1a:
Ctrl 2154 ± 197.3; DevPb 2553 ± 304.2; IntPb - 2430 ± 263.7; PerPb 2380 ± 232.5;
p > 0.05) nor the average velocity (Figure 1b: Ctrl 11.90 ± 1.39; DevPb 15.37 ± 1.55; IntPb
14.32 ± 1.02; PerPb 12.56 ± 1.19; p > 0.05) of the animals was significantly affected by the
presence of lead in the drinking water.

As for the anxiety behavior that was tested in the elevated plus maze test, we observed
a strong decrease in the % of time spent in the open arms by the permanent exposure group
of animals, as compared to controls (Figure 1c: Ctrl 14.43 ± 1.58 vs. PerPb 3.325 ± 0.84;
p < 0.05). Correspondingly, a significant increase in the % of time spent in the closed arms
was observed in the permanent exposure group (Figure 1d: Ctrl 26.15 ± 3.40 vs. PerPb
74.87 ± 1.06; p < 0.001). Interestingly, for the developmental and intermittent exposures,
even though no significant difference was observed in the % of time spent in the open
arms (Figure 1c: Ctrl 14.43 ± 1.576; DevPb 16.04 ± 3.33; IntPb 17.29 ± 2.979; p > 0.05), the
animals showed a significant increase in the % of time spent in the closed arms (Figure 1d:
Ctrl 26.15 ± 3.40 vs. DevPb 62.70 ± 4.70; p < 0.001; Ctrl 26.15 ± 3.40 vs. IntPb 52.23 ± 4.97;
p < 0.001).
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Figure 1. Locomotor and exploratory behaviors and anxiety assessed by the open-field test and
elevated plus maze test, respectively: (a) Total travelled distance of the animals in the open-field
test. (b) Average velocity in the open-field test. (c) Percentage of time spent in the open arms of the
elevated plus maze. (d) Percentage of time spent by the animals in the enclosed arms of the elevated
plus maze. Values are the mean ± SEM. The asterisks denote statistically significant differences
between groups; ns – not significant; * p < 0.05; *** p < 0.001; one-way ANOVA, with multiple
comparisons (Dunnett’s test); Ctrl n = 18; DevPb n = 13; IntPb n = 14; PerPb n = 14.

3.1.2. Permanent and Intermittent Lead Exposures Generated Strong Long-Term
Memory Impairment

The novel object recognition test is a very common test used for evaluation of memory
and learning. In our study, we used this protocol for evaluation of long-term memory
impairment by having a 24 h retention time between the training and testing days.

We observed that only the control group of animals recognized the novel objects as
novel, as there was a significant increase in the percentage of exploration time of the novel
object compared to the sample object by this group (Figure 2a: Ctrl S 39.31 ± 2.10 vs. Ctrl N
60.69 ± 2.10; p < 0.05), while all of the lead-exposed groups presented no time differences
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between the objects (Figure 2a: DevPb S 47.91 ± 3.89 vs. DevPb N 52.09 ± 3.89; IntPb S
50.25 ± 4.79 vs. IntPb N 49.75 ± 4.79; PerPb S 55.10 ± 2.86 vs. 44.90 ± 2.86, p > 0.05). As
for the novel object recognition index that was calculated, we observed that the IntPb and
PerPb groups showed a strong decrease in the values (Figure 2b: Ctrl 0.21 ± 0.04 vs. IntPb
− 0.06 ± 0.08, p < 0.05; Ctrl 0.21 ± 0.04 vs. PerPb 0.10 ± 0.06; p < 0.05) and, curiously, the
DevPb group did not show a significant difference when compared to the control group,
even though no recognition based on the percentage of the exploration time was observed
(Figure 2b: Ctrl 0.21 ± 0.04 vs. DevPb 0.04 ± 0.08, p > 0.05).
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Figure 2. Long-term memory and learning assessment by the novel object recognition test:
(a) Percentage of exploration time of sample (S) and novel (N) objects by each group. (b) Nov-
elty recognition index calculated by the equation presented above. Values are the mean ± SEM. The
asterisks denote statistically significant differences between groups; ns – not significant; * p < 0.05;
** p < 0.01; (a) paired Student’s t-test; (b) one-way ANOVA, with multiple comparisons
(Dunnett’s test). Ctrl n = 18; DevPb n = 13; IntPb n = 14; PerPb n = 14.

3.2. Lead Exposure from the Fetal Period until Adulthood Provoked Neuroinflammation and
Synaptic Alterations without Neurodegeneration in the Dentate Gyrus Region
3.2.1. All Types of Lead Exposures Caused Strong Astrocytic and Microglial Activation

The GFAP antibody is used to stain astrocytes and determine their activation. From
qualitative morphological analysis with the use of relevant papers [52–54], we observed
that all lead-exposed groups showed a significant increase in the activation of the as-
trocytic cells. The representative images (Figure 3a) show a higher density in the astro-
cytic cells, with hypertrophy of cellular processes and GFAP upregulation, which quali-
tatively shows the activation of these cells. These morphological changes are also com-
plemented by the quantitative data that we obtained. We observed that all lead-exposed
groups showed a significant increase in the number of GFAP-positive cells (Figure 3b:
Ctrl 133.7 ± 3.180 vs. DevPb 194.3 ± 3.3, p < 0.001; Ctrl 133.7 ± 3.2 vs. IntPb 192.0 ± 3.1,
p < 0.001; Ctrl 133.7 ± 3.2 vs. PerPb 195.0 ± 6.4; p < 0.001).

As for the Iba1 staining that marks the microglial cells (which are depicted in the
representative images in Figure 3c), we observed that, morphologically, the Ctrl, DevPb,
and PerPb groups showed ramified glial cells with small cell bodies and numerous long
branching processes. The IntPb group, however, showed a different cell pattern, where the
cells seemed to be in a reactive state without branches, and upregulation of Iba1 alluded
to the reactive state of the microglia in this group of animals. Regarding the quantitative
analysis, we observed that all groups also showed a significant increase in the number
of Iba-1-positive cells (Figure 3d: Ctrl 16.00 ± 2.1 vs. DevPb 28.00 ± 1.2, p < 0.05; Ctrl
16.00 ± 2.1 vs. IntPb 42.00 ± 3.2 p < 0.001; Ctrl 16.00 ± 2.1 vs. PerPb 39.33 ± 3.8; p < 0.001).
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Histogram of GFAP-positive cells’ quantification. (c) Representative images of the Iba1 (1:250)-
stained microglia. (d) Histogram of Iba1-positive cells quantification. Images were acquired on a 
confocal point scanning microscope, (Zeiss LSM 880 with Airyscan), with a 20× objective. The scale 
bar is 50 µm or 20 µm for stained images. Values are the mean ± SEM. The asterisks denote statisti-
cally significant differences between groups; * p < 0.05; *** p < 0.001; one-way ANOVA, with multiple 
comparisons (Dunnett’s test); n = 4/group. 

3.2.2. Intermittent Lead Exposure Caused Synaptic Loss, without Neuronal Degenera-
tion 

Synaptophysin was used as a synaptic marker. We observed from the qualitative 
evaluation (Figure 4a), that there seemed to be a decrease in the synaptic marker in the 
intermittent exposure group and an increase in the staining in the permanent exposure 
group. These observations were corroborated by the quantitative analysis of the fluores-
cence intensity of the staining. The intermittent exposure group showed a significant de-
crease in the fluorescence intensity when compared to the control group (Figure 4b: Ctrl 

Figure 3. Neuroinflammation evaluation through astrocytic (GFAP) and microglial (Iba1) mark-
ers by immunohistochemistry: (a) Representative images of the GFAP (1:500)-stained astrocytes.
(b) Histogram of GFAP-positive cells’ quantification. (c) Representative images of the Iba1 (1:250)-
stained microglia. (d) Histogram of Iba1-positive cells quantification. Images were acquired on
a confocal point scanning microscope, (Zeiss LSM 880 with Airyscan), with a 20× objective. The
scale bar is 50 µm or 20 µm for stained images. Values are the mean ± SEM. The asterisks denote
statistically significant differences between groups; * p < 0.05; *** p < 0.001; one-way ANOVA, with
multiple comparisons (Dunnett’s test); n = 4/group.

3.2.2. Intermittent Lead Exposure Caused Synaptic Loss, without Neuronal Degeneration

Synaptophysin was used as a synaptic marker. We observed from the qualitative
evaluation (Figure 4a), that there seemed to be a decrease in the synaptic marker in the
intermittent exposure group and an increase in the staining in the permanent exposure
group. These observations were corroborated by the quantitative analysis of the fluo-
rescence intensity of the staining. The intermittent exposure group showed a significant
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decrease in the fluorescence intensity when compared to the control group (Figure 4b: Ctrl
41.23 ± 4.25 vs. IntPb 18.35 ± 1.049, p < 0.001). Both the DevPb and PerPb groups showed
no significant difference in the fluorescence intensity levels, even though a small increase
was observed in both groups (Figure 4b: Ctrl 41.23 ± 4.25 vs. DevPb 51.23 ± 0.91; Ctrl
41.23 ± 4.25 vs. PerPb 57.56± 9.11, p > 0.05).
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Figure 4. Synaptic alterations (Syn) and neurodegeneration (NeuN) results from the immunohisto-
chemistry technique: (a) Representative images of the Syn (1:500)-stained pre-synapses. (b) Histogram
of the fluorescence intensity of the Syn staining. (c) Representative images of the NeuN (1:500)-stained
neurons. (d) Histogram of NeuN-positive cells’ quantification. Images were acquired using a confocal
point scanning microscope (Zeiss LSM 880 with Airyscan) with 20× objective. Scale bar is 50 µm
for stained images. Values are the mean ± SEM. The asterisks denote statistically significant differ-
ences between groups; *** p < 0.001; one-way ANOVA, with multiple comparisons (Dunnett’s test);
n = 4/group.

As for neurodegeneration that was assessed using the NeuN neuronal marker, we
observed no significant differences in the morphology (Figure 4c) or the number of NeuN-
positive cells, even though a small, insignificant decrease in the number was observed in
the IntPb and PerPb groups (Figure 4d: Ctrl 702.0 ± 122.8 vs. DevPb 627.3 ± 80.34 vs. IntPb
540.3 ± 53.17 vs. PerPb 556.7± 58.67; p > 0.05).
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3.3. Lead Exposure from the Fetal Period until Adulthood Caused an Increase in Blood Lead Levels,
with no Effects on Food and Liquid Intake or Feces and Urine Production

For the evaluation of blood lead levels (Table 1), atomic absorption spectrophotometry
was performed, and we observed that the IntPb and PerPb groups showed a significant
increase in the levels of lead in the blood after the experimental protocol. Interestingly, the
DevPb group showed a small increase, albeit a significant one, and not reaching the minimal
lead levels for concern established by the WHO (5 µg/dL). As for the metabolic evaluation
(Table 1) of the animals using metabolic cages for 24 h, we observed no differences in the
food and liquid intake or the feces and urine production of all groups.

Table 1. Blood lead levels and metabolic parameters of lead-exposed groups. Values are the mean ±
SEM. The asterisks denote statistically significant differences between groups; ns—not significant;
one-way ANOVA, with multiple comparisons (Dunnett’s test); n = 6/group.

Group Blood Lead
Levels (µg/dL) Weight (g) Food Intake (g) Liquid Intake

(mL)
Produced
Feces (g)

Produced
Urine (mL)

Ctrl 0.6 ± 0.1 333± 41.0 22.8 ± 2.0 26.2 ± 1.8 10.8 ± 1.5 8.0 ± 0.6
DevPb 3.6 ± 0.4 ns 445 ± 53.7 ns 23.2 ± 2.0 ns 31.2 ± 2.5 ns 16.8 ± 1.0 ns 8.7 ± 0.9 ns

IntPb 18.4 ± 1.7 ns 428 ± 50.2 ns 24.0 ± 1.6 ns 25.0 ± 2.2 ns 10.8 ± 0.4 ns 9.3 ± 2.2 ns

PerPb 26.9 ± 2.2 ns 434 ± 50.4 ns 23.5 ± 2.8 ns 29.6 ± 2.0 ns 16.4 ± 2.6 ns 7.5 ± 1.1 ns

3.4. Lead Exposure from the Fetal Period until Adulthood Caused Hypertension Concomitant with
Autonomic Dysfunction
3.4.1. All Types of Lead Exposure Caused Hypertension without Heart Rate or
Respiratory Alterations

Systolic, diastolic, and mean blood pressures were analyzed during a basal period
after the acute surgery was performed. In all lead-exposed groups, we observed an increase
in the systolic (Figure 5a: Ctrl 120.1 ± 10.8 vs. DevPb 156.7 ± 5.6, p < 0.01; Ctrl 120.1 ± 10.8
vs. IntPb 146.9 ± 6.7, p < 0.05; Ctrl 120.1 ± 10.8 vs. PerPb 171.1 ± 4.3, p < 0.001), diastolic
(Figure 5a: Ctrl 90.3 ± 7.9 vs. DevPb 121.2 ± 5.8, p < 0.001; Ctrl 90.3 ± 7.9 vs. IntPb
110.1 ± 2.7, p < 0.05; Ctrl 90.3 ± 7.9 vs. PerPb 148.3 ± 4.5, p < 0.001) and, consequently, mean
blood pressure (Figure 5a: Ctrl 104.3 ± 8.8 vs. DevPb 136.4 ± 5.2, p < 0.001; Ctrl 104.3 ± 8.8
vs. IntPb 124.2 ± 3.6, p < 0.05; Ctrl 104.3 ± 8.8 vs. PerPb 157.5 ± 4.3, p < 0.001). Heart
rate, evaluated by electrocardiogram during the basal period, did not differ statistically
(Figure 5b: Ctrl 433.5 ± 27.3 vs. DevPb 393.9 ± 11.1 vs. IntPb 404.0 ± 9.9 vs. PerPb
411.9 ± 9.7; p > 0.05). Respiratory frequency, evaluated from the tracheal pressure during
the basal period, showed no statistical evidence of differences based on the presence of
lead in all experimental groups when compared to the controls (Figure 5c: Ctrl 60.09 ± 3.6
vs. DevPb 71.87 ± 6.2 vs. IntPb 69.94 ± 2.8 vs. PerPb 71.30 ± 3.6; p > 0.05).
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Figure 5. Basal cardiorespiratory data evaluated during the acute experiment before autonomic
reflex stimulation: (a) Systolic, diastolic, and mean blood pressure assessed from the femoral artery.
(b) Heart rate values calculated from electrocardiogram. (c) Respiratory rate calculated from basal
tracheal pressure. Values are means ± SEM. The asterisks denote statistically significant differences
between groups; ns – not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; one-way ANOVA with
multiple comparisons (Dunnett’s test). Ctrl n = 10; DevPb n = 9; IntPb n = 12; PerPb n = 12.

3.4.2. All Lead Exposures Caused Increased Chemoreceptor Reflex Sensitivity,
Permanent Lead Exposure and Intermittent Lead Exposure Caused Strong Baroreflex
Impairment, and Only the Permanent Lead Exposure Triggered Sympathetic and
Parasympathetic Overexcitation

Following basal evaluation of the animals during acute experiments, the animals were
stimulated with phenylephrine injection in the femoral vein to evaluate their baroreceptor
reflex response. We observed a significant decrease in the baroreflex gain in both the
intermittent and permanent lead-exposed groups (Figure 6a: Ctrl 0.66 ± 0.07 vs. IntPb
0.38 ± 0.03, p < 0.001; Ctrl 0.66 ± 0.07 vs. PerPb 0.37 ± 0.03, p < 0.05). Interestingly,
the developmental exposure to lead caused no significant change in the baroreflex gain
(Figure 6a: Ctrl 0.66 ± 0.07 vs. DevPb 0.52 ± 0.04, p > 0.05). Regarding the chemoreceptor
reflex sensitivity, all lead-exposed groups showed a significant increase in this parameter
(Figure 6b: Ctrl 10.30 ± 1.48 vs. DevPb 26.85 ± 2.936, p < 0.01; Ctrl 10.30 ± 1.48 vs. IntPb
33.07 ± 5.03, p < 0.001; Ctrl 10.30 ± 1.48 vs. PerPb 24.69 ± 1.40, p < 0.05). Heart rate
variability was assessed to evaluate the autonomic function by calculation of low and
high frequencies. We observed that only the permanent lead exposure group of animals
showed a significant increase in low frequencies (Figure 6c: Ctrl 1.05 ± 0.24 vs. PerPb
2.03 ± 0.32, p < 0.05) and high frequencies (Figure 6c: Ctrl 0.97± 0.25 vs. PerPb 7.83 ± 2.67,
p < 0.05); however, no significant difference was observed in the LF/HF ratio (Figure 6c:
Ctrl 0.88 ± 0.25 vs. PerPb 0.65 ± 0.19, p < 0.05). As for the developmental and intermittent
lead exposure groups, we observed no significant alterations in the LF and HF bands, and
no changes in the LF/HF (Figure 6c: LF: Ctrl 1.05 ± 0.24 vs. DevPb 0.81 ± 0.06, p > 0.05;
Ctrl 1.05 ± 0.24 vs. IntPb 1.40 ± 0.24, p > 0.05; HF: Ctrl 0.97 ± 0.25 vs. DevPb 1.16 ± 0.17,
p > 0.05; Ctrl 0.97 ± 0.25 vs. IntPb 1.24 ± 0.34, p > 0.05; LF/HF: Ctrl 0.88 ± 0.25 vs. DevPb
0.94± 0.22, p > 0.05; Ctrl 0.88 ± 0.25 vs. IntPb 0.47± 0.15, p > 0.05).
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4. Discussion 
This comparative study provides additional insight into the associations between the 

physiological dynamics and different profiles of lead exposure. We provide experimental 
evidence that lead exposure has detrimental effects on animals’ behavior, cardiorespira-
tory control, and astrocytic and microglial functions. 

First, independently of the type of lead exposure profile, this study reveals a clear 
association between lead exposure, hypertension, and concomitant baroreflex gain im-
pairment with chemoreceptor reflex hypersensitivity, similar to other conditions, such as 
hypertension, acute heart ischemia, or heart failure, which could link the paraventricular 
nucleus solitary tract pathway to lower brainstem nuclei—in particular, the PVN–NTS 
axis ([56–61]. The hypertension observed in this study has been well documented in earlier 
studies using models of lead exposure [17,62]. Moreover, since blood pressure values are 
the product of cardiac output (set by heart rate and stroke volume) and total peripheral 
vascular resistance (also set by sympathetic vasoconstrictor activity), hypertension ob-
served in lead-exposed rats occurs through the increase in total peripheral vascular re-
sistance. Other possible mechanisms behind hypertension are thought to be renin–angio-
tensin and the sympathetic nervous system [63,64], oxidative stress [65], circulating cate-
cholamine levels [66], beta-adrenergic receptors [66], Na+/K+ ATPase [66], and endothelial 
factors [66], as well as renal dysfunction [67]. 

A higher chemoreceptor reflex sensitivity, observed in all lead-exposed groups, indi-
cates that lead can trigger an overall alert-like reaction, which could contribute to hyper-
tension and a tendency for a higher respiratory rate. In fact, in the permanent lead expo-
sure group, where the duration of Pb exposure was higher, this increased sensitivity to 
the chemoreceptor reflex also suggests the contribution of a protective 

Figure 6. Autonomic reflexes and sympathetic and parasympathetic activity: (a) Baroreflex gain
calculated from the variation in heart rate and blood pressure after phenylephrine stimulation
(b) Chemoreceptor reflex sensitivity calculated from the variation in respiratory rate upon lobeline
stimulation (c) Natural log of low frequency (LF), high frequency (HF), and ratio between LF and HF
bands analyzed by heart rate variability. Values are means ± SEM. The asterisks denote statistically
significant differences between groups; * p < 0.05; ** p < 0.01; *** p < 0.001; one-way ANOVA, with
multiple comparisons (Dunnett’s test). Ctrl n = 10; DevPb n = 9; IntPb n = 12; PerPb n = 12.

4. Discussion

This comparative study provides additional insight into the associations between the
physiological dynamics and different profiles of lead exposure. We provide experimental
evidence that lead exposure has detrimental effects on animals’ behavior, cardiorespiratory
control, and astrocytic and microglial functions.

First, independently of the type of lead exposure profile, this study reveals a clear
association between lead exposure, hypertension, and concomitant baroreflex gain im-
pairment with chemoreceptor reflex hypersensitivity, similar to other conditions, such as
hypertension, acute heart ischemia, or heart failure, which could link the paraventricular
nucleus solitary tract pathway to lower brainstem nuclei—in particular, the PVN–NTS
axis ([56–61]. The hypertension observed in this study has been well documented in earlier
studies using models of lead exposure [17,62]. Moreover, since blood pressure values are
the product of cardiac output (set by heart rate and stroke volume) and total peripheral vas-
cular resistance (also set by sympathetic vasoconstrictor activity), hypertension observed in
lead-exposed rats occurs through the increase in total peripheral vascular resistance. Other
possible mechanisms behind hypertension are thought to be renin–angiotensin and the
sympathetic nervous system [63,64], oxidative stress [65], circulating catecholamine lev-
els [66], beta-adrenergic receptors [66], Na+/K+ ATPase [66], and endothelial factors [66],
as well as renal dysfunction [67].

A higher chemoreceptor reflex sensitivity, observed in all lead-exposed groups, in-
dicates that lead can trigger an overall alert-like reaction, which could contribute to hy-
pertension and a tendency for a higher respiratory rate. In fact, in the permanent lead
exposure group, where the duration of Pb exposure was higher, this increased sensitivity to
the chemoreceptor reflex also suggests the contribution of a protective sympathoexcitatory
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reflex in the maintenance of oxygen homeostasis, and appears to be an important piece
of the internal defense mechanisms to manage the progression of lead toxicity [68–71].
We observed a concomitant baroreflex impairment—another defense reaction [57,72,73]—
suggesting that lead toxicity may impair central autonomic areas. Baroreflex impairment
occurs with a chronic increase in blood pressure that causes an inverse relationship between
baroreflex and resting blood pressure, and has been observed to be related to the duration of
exposure and the withdrawal of lead, due to its fast resetting and rearrangement, resulting
in the reversal of the impairment that occurs in the presence of lead [74–76].

Second, we showed an involvement of the sympathetic nervous system in the modula-
tion of the baroreceptor reflex responses or the development of hypertension as a result
of permanent exposure to lead. In fact, in this group, the overactivity of the sympathetic
nervous system was concomitant with baroreceptor reflex impairment and hypertension,
in accordance with previous studies that indicated sympathetic hyperactivity after chronic
lead exposure [39,40,64]

Third, different profiles of lead exposure caused long-term memory impairments asso-
ciated with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus,
indicating the presence of neuroinflammation. However, these alterations can be reversible
after abstinence from lead for a certain period (DevPb), and are boosted when a second
exposure occurs (IntPb), along with a synaptic loss. The influence of blood pressure values
on several aspects of cognition has been mostly studied under conditions of hyperten-
sion. In fact, untreated subjects with essential hypertension show reduced performance in
cognitive tasks, performing poorly in learning and memory tests compared to normoten-
sive control subjects, and treatment with antihypertensive drugs improves their cognitive
performance [77]. These findings suggest that behavioral deficits in lead exposure can
be attributable to elevated blood pressure, and can be reversible if the hypertension is
treated [77]. These neural mechanisms (i.e., central baroreceptor pathways and autonomic
outflow) that can be affected by lead exposure are also involved in cognitive modulation
via short-lasting changes in blood pressure and baroreceptor activation. The link between
baroreceptor function and cognitive processes is bidirectional. Cognitive–attentional pro-
cesses influence cardiovascular function through baroreceptor function changes that are
moderated by the type of cognitive process. Conversely, a difficult arithmetic task increases
heart rate and blood pressure by reducing baroreceptor reflex, leading to a rise in cerebral
blood flow velocity during the task [78].

Small blood vessels are highly vulnerable to heavy metals, as they are directly exposed
to the blood circulatory system, which has a comparatively higher concentration of heavy
metals than other organs, resulting in associated disorders, such as dementia, cognitive
disabilities, and stroke [79]. In our study, the cerebral blood flow velocities were not
evaluated, but the lead exposure, independent of the type of exposure, resulted in increases
in blood pressure by reducing the baroreceptor reflex. The normal heart rate found in these
animals, therefore, reflects either an adaptation of the baroreflex systems to the higher
pressure, or a primary dysfunction caused by lead exposure. Such diminished sensitivity
might also result from decreased compliance of the arterial walls in baroreceptor regions,
allowing less stretching of receptors per unit of rise in blood pressure, thus producing
the damped response that we found. Nevertheless, the neural mechanisms by which
baroreceptors modulate cognitive processes have not been clarified.

Lead exposure plays a key role in synaptic neurotoxicity, as shown by the permanent
and intermittent exposure resulting in long-term memory impairment, with these cog-
nitive alterations being related to its accumulation—mainly in the astroglia [80–82] and
microglia [81]. In fact, astrocytes, along with endothelial cells, make up the blood–brain
barrier, and perform homeostatic regulatory functions that are involved in the long-term
potentiation that is crucial for synaptic plasticity, learning, and memory [52,54]. In this
study, the morphological evaluation of astrocytes stained with GFAP in DG showed that
exposure to lead enhanced the astrocytic reactivity; more specifically, a persistent mal-
adaptive GFAP immunoreaction was enhanced within individual cells, and the density
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of the cells was much higher within the area, while the branching processes of the cells
were hypertrophic.

Consequently, overall, long-term memory effects were more severe in the permanent
exposure group and reversible in the developmental exposure group. This effect of Pb on
cognitive parameters has been widely reported in chronic exposure to lead—especially
in memory and learning [4,21,23,83,84]. This difference in NOR test performance could
be due to lead-induced impairments of the hippocampus, in part explained by the ex-
pression of synaptophysin, astrocytes, and microglia in the dentate gyrus region. The
animals intermittently exposed to lead had a decrease in the number of synapses in the
hippocampus/dentate gyrus region. Moreover, permanent exposure promotes an increase
in the number of synapses in the dentate gyrus. Hence, lead exposure disturbs synap-
togenesis of the dentate gyrus, which could lead to impairment of synaptic plasticity in
the hippocampus [20,34,85]. Interestingly, in the study presented here, blood lead con-
centrations in the permanent and intermittent exposure groups were much higher than
those in control rats. Despite the lower blood lead levels in the developmental Pb exposure
group—caused by a lead-free period of 16 weeks—the adverse cardiovascular effects were
not reversible, unlike the adverse memory effects. On the other hand, permanent exposure,
with higher levels of Pb in the blood, had a marked cardiovascular adverse effect, along
with sympathoexcitation.

5. Conclusions

To conclude, we showed that the physiological impacts induced by prenatal, pre-
weaning, and post-weaning Pb exposure persists until adulthood, with the permanent ex-
posure presenting more pronounced adverse effects, which might suggest that the duration
of Pb exposure is more relevant than the time of exposure. Regarding the neurobehavioral
deficits, our data confirm that they were reversible, suggesting that only a continuous
exposure to Pb during early life impacts cognitive performance in adulthood. This is the
first study to present the characterization and comparison of physiological, autonomic,
behavioral, and molecular changes caused by different degrees of environmental low-level
lead exposure, from the fetal period to adulthood, where the duration of exposure was the
main factor in the severity of the adverse effects observed.
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