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It is believed that strong ferromagnetic interactions in some solids are generated by subtle 
interplay between quantum many-body effects and spin-independent Coulomb interactions 
between electrons. It is a challenging problem to verify this scenario in the Hubbard model, 
which is an idealized model for strongly interacting electrons in a solid. 

Nagaoka's ferromagnetism is a well-known rigorous example of ferromagnetism in the 
Hubbard model. It deals with the limiting situation in which there is one fewer electron 
than in the half-filling and the on-site Coulomb interaction is infinitely large. There are 
relatively new rigorous examples of ferromagnetism in Hubbard models called flat-band fer
romagnetism. Flat-band ferromagnetism takes place in carefully prepared models in which 
the lowest bands (in the single-electron spectra) are "flat." Usually, these two approaches 
are regarded as two complimentary routes to ferromagnetism in the Hubbard model. 

In the present paper we describe Nagaoka's ferromagnetism and flat-band ferromagnetism 
in detail, giving all the necessary background as well as complete (but elementary) mathe
matical proofs. By studying an intermediate model called the long-range hopping model, we 
also demonstrate that there is indeed a deep relation between these two seemingly different 
approaches to ferromagnetism. 

We further discuss some attempts to go beyond these approaches. We briefly discuss re
cent rigorous example of ferromagnetism in the Hubbard model which has neither infinitely 
large parameters nor completely flat bands. We give preliminary discussion regarding possi
ble experimental realizations of the (nearly-)flat-band ferromagnetism. Finally, we focus on 
some theoretical attempts to understand metallic ferromagnetism. We discuss three artifi
cial one-dimensional models in which the existence of metallic ferromagnetism can be easily 
proved. 

We have tried to make the present paper as self-contained as possible, keeping in mind 
readers who are new to the field. Although the present paper is written as a review, it 
contains some material which appears for the first time. 
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Prom Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 491 

§1. Introduction 

1.1. Hubbard model and the origin of ferromagnetism 

The origin of strong ferromagnetic ordering observed in some materials has been 

a mystery in physical science for a long time. Since quantum mechanical many

electron systems without interactions universally exhibit paramagnetism, the origin 

of ferromagnetism should be sought in electron-electron interactions. In most solids, 

however, the dominant part of the interaction between electrons is the Coulomb 

interaction, which is perfectly spin-independent. We are thus faced with a very 

interesting and fundamental problem in theoretical physics to determine whether 

spin-independent intemctions in an itinemnt electron system can be the origin of fer

romagnetic ordering. This problem is important not only because ferromagnetism is 

a very common (and useful) phenomenon, but because it focuses on the fundamental 

role of nonlinear interactions in many-body quantum mechanical systems. 

It was Heisenberg 1) who first realized that ferromagnetism is an intrinsically 

quantum mechanical phenomenon. In Heisenberg's approach to ferromagnetism, one 

starts from the picture that each electron (relevant to magnetism) is almost localized 

in an atomic orbit. By treating the effect of the Coulomb interaction and overlap 

between nearby atomic orbits in a perturbative manner as in the Heitler-London 

theory, Heisenberg concluded that there appears an "exchange interaction" between 

nearby electronic spins which determines the magnetic properties of the system. 

In a different approach to the problem of ferromagnetism, which was originated 

by Bloch,2) one starts from the quantum mechanical free electron gas, in which 

electrons are in plane-wave like states. One then treats the effect of the Coulomb 

interaction perturbatively, and tries to find instabilities against certain magnetic 

ordering. When combined with the Hartree-Fock approximation (or a mean-field 

theory), this approach leads to the picture that there is an instability with respect 

to ferromagnetism when the density of states at the fermi energy and the Coulomb 

interaction are sufficiently large. 

In spite of a considerable number of attempts to improve these ideas, neither 

of these two approaches has yet produced a truly convincing explanation about the 

origin of ferromagnetism. 

A modern version of the problem of the origin of ferromagnetism was formulated 
by Kanamori,3) Gutzwiller,4) and Hubbard 5) in the 1960's.*) They studied simple 

tight-binding models of electrons with on-site Coulomb interaction. This model is 

usually called the 'Hubbard model.' When there is no electron-electron interaction, 

the model exhibits paramagnetism as an inevitable consequence of the Pauli ex

clusion principle. Among other things, Kanamori, Gutzwiller and Hubbard asked 

whether the pammagnetism found for a non-intemcting system can be converted into 

ferromagnetism when there is a sufficiently large Coulomb intemction. This is a 

concrete formulation of the fundamental problem that we alluded to in the opening 

of the previous subsection. 
It is worth noting that the on-site Coulomb interaction itself is completely in-

0) A similar formulation was given earlier, for example, in Ref. 6). 
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492 H. Tasaki 

dependent of electronic spins, and it does not favor any magnetic ordering. One 

does not find any terms in the Hubbard Hamiltonian which explicitly favor ferro

magnetism (or any other ordering). Our theoretical goal is to show that magnetic 

ordering arises as a consequence of the subtle interplay between the kinetic motion of 

electrons and the short-ranged Coulomb interaction. It is interesting to compare this 

situation with that in spin systems, where one is often given a Hamiltonian which 

favors some kind of magnetic ordering, and the major task is to investigate if such 

ordering really takes place. We can say that the Hubbard model formulation goes 

deeper into fundamental mechanisms of magnetism than that of spin systems. It 

offers a challenging problem to theoretical physicists to derive magnetic interaction 

from models which do not explicitly contain such interactions. 

From a more global point of view, the importance of the Hubbard model may 

be understood from the philosophy of "universality", which, in our opinion, is at 

the very heart of contemporary physics. We believe that nontrivial physical phe

nomena or mechanisms found in a suitable idealized model can also be found in 

other systems in the same "universality class" as the idealized model. We expect 

that the universality class is often large and rich enough to contain various realistic 

systems with complicated details which are ignored in the idealized model. As for 

strongly interacting electron systems, the Hubbard model is regarded as one of the 

most promising candidates for an idealized model to be used in our search of possible 

universality classes. 

Perhaps the best justification of the Hubbard model as a standard model of 

itinerant electron systems comes from such theoretical considerations, rather than 

its accuracy in modeling narrow band electron systems. 

1.2. Rigorous results 

The problem of ferromagnetism in the Hubbard model was studied extensively 

using various heuristic methods. The Hartree-Fock approximation discussed above 

leads one to the so-called Stoner criterion. It states that the Hubbard model exhibits 

ferromagnetism when the condition U DF > 1 is satisfied, where U is the strength of 

the on-site Coulomb interaction and DF is the density of states of the correspond

ing single-electron problem measured at the fermi level (of the corresponding non

interacting system). Although the criterion cannot be trusted literally,*) it guides 

us to look for ferromagnetism in models in which U is large and/or the density of 

states is large. 

The first rigorous result about ferromagnetism in the Hubbard model, which is 

one of the main topics of the present paper, was provided by Nagaoka.**)' 10) It was 

proved that certain Hubbard models have ground states with saturated ferromag

netism when there is exactly one hole and the Coulomb repulsion U is infinite. 

In 1989, Lieb proved an important general theorem for the Hubbard model on 

a bipartite lattice at half-filling. 11) As a corollary of this theorem, Lieb showed that 

0) There are many systems which fully satisfy the criterion but do not exhibit ferromagnetism. 

Flat-band Hubbard models with low electron densities 7), 8) are typical examples . 

.. ) Thouless 9) reached a similar but slightly weaker conclusion. 
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From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 493 

a rather general class of Hubbard model exhibits ferrimagnetism.*) (See also Ref. 12).) 

In 1991, Mielke 13), 14) found a new class of rigorous examples of ferromagnetism 

in the Hubbard model. He showed that the Hubbard models on a general class of line 

graphs have ferromagnetic ground states. A special feature of Mielke's models is that 

the corresponding single-electron Schrodinger equation has highly degenerate ground 

states. In other words, Mielke's models have flat (or dispersionless) bands. Mielke's 

original results were for the case in which the number of electrons corresponds to 

the half-filling of the lowest flat band, but later it was extended to different electron 
densities in two-dimensional models. 15) 

A similar but different class of examples of ferromagnetism in Hubbard models, 

which we will discuss in detail in the present paper, were proposed in Refs. 7) and 

8). These models are defined on a class of decorated lattices with "cell structures", 

and are also characterized by flat bands at the bottom of the single-electron spec

trum. In a class of models in two and higher dimensions, it was proved that the 
ferromagnetism is stable against fluctuations in the electron number. 7),8) The ferro

magnetism in Mielke's models and those in Refs. 7) and 8) is now called "flat-band 

ferromagnetism", and regarded as one of reliable starting points for the problem of 

ferromagnetism. 

There are also rigorous results for ferromagnetism in 'nearly-flat-band models' 

obtained by perturbing the flat-band models of Refs. 7) and 8). In a general situation, 
local stability of ferromagnetism is known, 16), 17) and for a special class of models, 

global stability of ferromagnetism has been established. 18),19) We shall also briefly 

discuss the latter results in the present paper. 

Nagaoka's ferromagnetism takes place in models with U ~ 00, while (nearly-) 

flat-band ferromagnetism takes place in models characterized by large (or infinite) 

density of states D F • One might say that these two rigorous results realize the Stoner 

criterion U DF > 1 through complementary paths. 

1.3. About the present paper 

One of the main aims of the present paper is to give complete descriptions of 

Nagaoka's ferromagnetism and flat-band ferromagnetism of Refs. 7) and 8). In par

ticular, the proof of the generalized version of Nagaoka's theorem is described in 

complete detail for the first time. Another important aim is to show that there is a 

close relation between these two approaches which are usually regarded as comple

mentary. We demonstrate this fact by studying an artificial model which we call the 

'long range hopping model.' Our hope is that a clarification of the relation between 

the two approaches will lead us to a more global view of ferromagnetism in the Hub

bard model, and that this might lead us in the long run to a better understanding 

of the essence of the fascinating phenomenon of ferromagnetism. 

We also discuss three topics related to these results. First, we briefly discuss 

important attempts to go beyond flat-band ferromagnetism by treating non-singular 
Hubbard models. One of the main achievements in this direction is a proof of 

the existence of ferromagnetism in a Hubbard model which has a finite Coulomb 

*) Ferrimagnetism is a kind of antiferromagnetism on a bipartite lattice such that the numbers 

of sites in two sublattices are different. 
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494 H. Tasaki 

repulsion U and a finite density of states DF . Next, we give a preliminary discussion 

of some experimental results which may be relevant to flat-band ferromagnetism. 

The ferromagnetism seen in La4Ba2Cu201O, which was discovered back in 1990, 

shows some striking similarities with flat-band ferromagnetism. Finally we describe 

some attempts to obtain theoretical examples of metallic ferromagnetism. There 

are strong indications that some one-dimensional Hubbard models exhibit metallic 

ferromagnetism, but there are no rigorous results yet. We discuss three artificial 

models in one-dimension which are easily shown to exhibit metallic ferromagnetism. 

The results for the third model, the limiting U-V model, are perhaps new. 

We have tried to make the present paper as self-contained as possible. *) We 

carefully start from basic assumptions and definition of the Hubbard model, keeping 

in mind readers who are new to the field. We give complete proofs to all the theorems 

which are directly related to the main subjects of the paper. The proofs, however, 

may not be optimally organized from a mathematical point of view. Instead, we 

have tried to present "readable" proofs from which the readers can learn physical 

mechanisms underlying the theorems. (This comment applies even to the proof of 

purely mathematical theorems such as Theorem 4.3.) 

The present paper is organized as follows. In §2, we give a complete definition 

of the Hubbard model. We start from the description of the single-electron prob

lem, and proceed by defining fermion operators, many-body Hilbert space, and the 

Hubbard Hamiltonian. An expert can safely skip this entire section, provided that 

he/she takes a brief look at §§2.1 and 2.3 to note our notation in the coordinate-free 

formalism of fermion operators. 

Section 3 is also introductory and standard. We define the spin angular mo

menta of the model, and give a precise definition (Definition 3.1) of what we mean 

by ferromagnetism. We also present some results which rule out the possibility of 

ferromagnetism under several conditions. 

In §4, we present a complete description and a proof of Nagaoka's ferromagnetism 

in its most generalized form. 

In §5, we introduce and discuss an artificial model that we call the 'long-range 

hopping model.' Ferromagnetism in this model is first regarded as a special case 

of Nagaoka's ferromagnetism, but a different point of view is presented. This new 

picture naturally leads us to flat-band ferromagnetism. 

In §6, we introduce flat-band ferromagnetism as a natural generalization of the 

long-range hopping model. We also discuss some results for the nearly-flat-band 

models obtained by adding a perturbation to the flat-band models. 

In §7, we focus on experimental results which may be relevant to flat-band 

ferromagnetism. 

In §8, we present some results about the possibility of metallic ferromagnetism in 

the Hubbard model. Preliminary rigorous results for related models in one-dimension 

are discussed. 

*) For related reviews of mathematically rigorous results in the Hubbard model, see Refs. 20) 

and 21). Unfortunately there are many interesting related topics that we do not even mention in 

the present paper. For recent reviews of related topics from complementary points of view, see 

Refs. 22) '" 25). 
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From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 495 

Technical material is contained in the Appendices. In Appendices A and B, 

we discuss the gauge transformation and the hole-particle transformation, respec

tively. In Appendix C, we summarize some useful properties of positive semidefinite 

operators. In Appendix 0, we present (mainly for mathematicians) an explicit con

struction of the Hilbert space and fermion operators. In Appendix E, we explain (for 

readers without background in condensed matter physics) the elementary notion of 

band structures for a single-electron in a tight-binding description. In Appendix F, 

we present technical calculations required in the proof of Theorem 3.3. 

§2. Definition of the Hubbard model 

2.1. Tight-binding description of a single electron 

Before introducing the Hubbard model, we describe the corresponding single

electron problem. Let lattice A be a collection of Ns sites. Lattice sites x, y, . .. E A 

represent atomic sites in a solid. In the tight-binding description, which is a kind of 

low-energy effective theory, we declare that electrons can live only on lattice sites. 

In the single-orbital model that we study here, we further assume that each atomic 

site carries a single non-degenerate*) orbital state. Of course, actual atoms can have 

more than one orbit (or band). The philosophy behind the model building is that 

those electrons in other states do not play significant roles in determining the low

energy physics in which we are interested, and can be "forgotten" for the moment. 

(See Fig. 1.) 

Then, a quantum mechanical state of a single electron (with a fixed spin) is 

described by a vector state I.;' = ('PX)XEA with 'Px E C. We denote by ~ ~ eNs 
(~f2(A; C)) the Ns-dimensional Hilbert space formed by such 1.;'. The inner product 

of two states I.;' and 't./J = ('l/Jx)XEA E ~ is 

(1.;', 't./J) = L)'Px)*'l/Jx. (2·1) 
xEA 

For x, yEA with x i=- y, we denote by tx,y the quantum mechanical amplitude 

that an electron hops (i.e., tunnels) from the site y to x. We assume tx,y is real**) 

and symmetric as tx,y = ty,x' For x E A, we denote by tx,x the (real valued) potential 

energy***) (which we usually write Vx ) for the electron at site x. Then the Schrodinger 

equation for stationary states becomes 

E'Px = L tx,y 'Py for any x E A, 
yEA 

(2·2) 

*) In some solids, the degeneracy in the original atomic orbit is lifted by crystalline anisotropy . 

.. ) In a system under magnetic field, tx,y is generally complex and satisfies (t."y)* = ty,x . 

... ) We do not want to refer to Vx (= t x ,.,) as "site-dependent chemical potential." The notion of 

the chemical potential makes sense in the contexts of thermodynamics or statistical physics. This 

notion, in our opinion, should be distinguished from the purely quantum mechanical notion of the 

potential (although there is a relation between the two). 
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496 H. Tasaki 

(a) 

(b) 

(d) 

• • • • 
Fig. 1. Highly schematic figures which explain the philosophy of tight-binding descriptions. (a) A 

single atom which has multiple electrons in different orbits. (b) When atoms come together to 

form a solid, electrons in the black orbits become itinerant, while those in the light gray orbits 

are still localized at the original atomic sites. Electrons in the gray orbits are mostly localized 

around the atomic sites, but tunnel to nearby gray orbits with non-negligible probabilities. 

(c) We only consider the electrons in the gray orbits, which are expected to play essential roles 

in determining various aspects of low-energy physics of the system. (d) If the gray orbit is 

non-degenerate, we get a lattice model in which electrons live on lattice sites and hop from one 

site to another. 

where E is the energy eigenvalue:) By introducing the hopping matrix T 

= (tx,Y)X,YEA, which is a matrix on ~, this can be written in a coordinate free vector 

form as 
Ecp = Tcp. (2·3) 

Since T is real symmetric, the eigenvalue equation (2·3) has Ns eigenvalues 

El,'" ,ENs' The corresponding eigenstate**) 1jJ(j) = ('l/J~j))XEA satisfies 

(2·4) 

.) It is also common to put a minus sign in front of tx,y in (2·2). We note that the hopping 

amplitude tx,y depends on the delicate overlap between orbital wave functions, and there are no 

simple principles with which we can determine their magnitudes or signs. Also see Appendix A for 

discussion of the arbitrariness of the sign of tx,y . 

•• ) In notation like 'ljJ1j), the superscript j is the name of the state and the subscript x is the 

index for its component. 
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From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 497 

for each j = 1, ... , N s . We can assume that the energy eigenvalues are ordered as 

Cj ::; CHI. and eigenstates are orthonormal in the sense that (t/J(j) , 1///)) = 6j ,j" 

Let us consider a standard example. We take the one-dimensional lattice A 

= {1, 2, ... , Ns}, and set tx,x+! = tx+!,x = -t for all x E A, and tx,y = 0 otherwise. 
We impose a periodic boundary condition and identify Ns + 1 with 1. The eigenvalues 

and eigenstates can be most naturally indexed as l1(k) = (1]~k))XEA and c(k), respec

tively, by the wave number k = 21rn/Ns where n = 0, ±1, ±2, ... , ± {(Ns /2) - 1}, 

N s /2 (assuming Ns is even). Then we have 

-r/k) = _1_eikx 
'Ix y'lIT" (2·5) 

and c(k) = -2tcosk. Note that the eigenstates are described by plane waves. 

2.2. Fermion operators and Hilbert space 

We define the Hilbert space for many-electron problems using the fermion oper

ator formalism!) For each lattice site x E A and spin index (J = j, 1, we associate a 

fermion operator Cx,u' One can freely take the conjugate, **) products, and linear com

binations (with complex coefficients) of these operators (and the identity operator) 

to get new operators. We require that these operators satisfy the anticommutation 
relations*** ) 

(2·6) 

and 

(2·7) 

for any x, yEA and a, T = j,1, where {A, B} = AB + BA. Note that (2·7) implies 

(c )2 = (ct )2 = O. 
X,CT X,D" 

Physically, Cx,u and c~,u are interpreted as the operators which respectively an

nihilate and create an electron at site x with spin (J. The corresponding number 

operator is defined as 

nx u = cxt ~cx u' , ,v, (2·8) 

From (2·7), we find that number operators with different indices commute with 

each other. From (2·6) and (2·7), we see that (nx,u)2 = c1,ucx,uc1,ucx,u = c1,u(1 

-c1,ucx,u)cx,O" = c~,ucx,u = nx,l7' Thus we obtain nx,u(1-nx,u) = 0, which means that 

nx,O" can only have eigenvalues 0 and 1. This is a mathematical realization of the Pauli 

exclusion principle. The number operator for site x is defined as nx = nx,l + nx,l' 

We can now construct the Hilbert space for many-electron problems. We start 

from a single (vector) state P vac , which physically corresponds to a (fictitious) state 

0) The formalism is also called "second quantization." One should recall, however, that we are 

working with a many-body problem which is "quantized" only once. The explicit relation to the 

"first quantization" formalism can be found in Appendix D. Readers with background in fields like 

functional analysis are suggested to take a look at this appendix . 

.. ) We denote the conjugate of an operator A by At. We write ct" instead of (cx,,,)t. 

"0) The right-hand side of (2·6) means OX,yO",T times the identity operator. Throughout the 

present paper, we refrain from writing the identity operator explicitly. 
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• • 
Fig. 2. An allowed configuration in a tight-binding model with a single orbit per site. Each site in 

the lattice can be either empty, singly occupied by an electron with up or down spin, or doubly 

occupied by electrons with opposite spins. If we consider the Hubbard type interaction, we get 

an extra energy U > 0 whenever two electrons occupy a single site. (See §2.5.) The interaction 

energy for the above configuration is therefore 3U. 

with no electrons in the lattice. This property is mathematically represented as 

cx,urf>vac = 0 for any x E A and a = i, 1. (2·9) 

We fix a positive integer Ne such that 1 ::; Ne ::; 2Ns , which is the total number 

of electrons in the system. It is useful to express the electron number in terms 

of the filling factor 1/ = N e /(2Ns ), which takes a value in the range 0 < 1/ ::; l. 

Take Ne arbitrary sites Xl, X2, ... ,XNe E A (with possible overlaps) and spin indices 

aI, a2,' .. , aN. = i, L and define the state 

(2·10) 

We interpret (2·10) as the state in which there is an electron at site Xi with 

spin ai for i = 1, ... , N e . We allow all the possible states of the form (2·10), but 

make identifications according to the anticommutation relations (2·7). In particular, 

the state (2·10) is vanishing whenever (Xi> ai) = (Xj, aj) for some i f. j. This 
is nothing but the Pauli exclusion principle. *) In other words, each site in the 

lattice can be either empty, singly occupied by an electron with up or down spin, 

or doubly occupied by electrons with opposite spins (Fig. 2). Also note that the 

anticommutation relation (2·7) leads to relations like 

(2·11) 

which is the well-known rule that a state changes its sign when one exchanges the 

names of two fermions. 
The Hilbert space 'HN • for the given electron number Ne is generated by all the 

basis states of the form (2·10). The inner product,") which we again denote as (', .), 

is defined by (rf>vac, rf>vac) = 1 and the anticommutation relations. We denote the 

norm of a state P E 'HN • as 11rf>1I = (rf>, rf» 1/2. 

We remark that there can be no physical situations which are represented by 

linear combinations of states with different electron numbers. To see this, we take 

two states rf> E 'HN
e 

and rf>' E 'HN~ with Ne f. N~. Since the total charge in the 
universe is conserved (as far as we know), the only (physically) possible way to 

*) If we set Ne > 2Ns, then the state (2·10) always vanishes. 

**) We do not use Dirac notation since we encounter many non-hermitian operators. Try rewriting 

the equation (AcP, BlfF) = (cP, At BlfF) in the Dirac notation. 
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linearly combine ~ and ~' is to form a state like 5 = ~ @ r N +~' @ r N'. Here r N 

and r N~ are some states of the whole outside world with total charge Ne and N~~ 
respectively. Note that the states rNe and rN~ are inevitably orthogonal. Therefore 

if A is any operator of the electron system, its expectation value in 5 becomes 

(A)s = (5, (A @ 1),5) 

= (~, A~) (rNe , rNJ + (~', A~') (rN~' rNJ 
= w (~, A~) + w' (~', A~'), (2·12) 

where 1 is the identity operator for the outside world. This means that the state 

5 must be represented as a mixed state*) if we restrict ourselves to the electron 
system.**) 

2.3. Coordinate-free notation 

We introduce the standard coordinate-free notation for fermion operators. The 

systematic use of this notation simplifies some routine calculations. For a single

electron state c.p = (V'X)xEA E ~, we define 

(2·13) 
xEA xEA 

These operators satisfy the generalized canonical anticommutation relations 

and 

for any c.p, t/J E ~ and IJ, IJ' = i, 1. 
Again (2·15) implies (C!(c.p))2 

property. 

(2·14) 

(2·15) 

(Cu(c.p))2 = o. We also have the following 

Lemma 2.1 (Linear independence and the product of creation operators) 

Let c.p(l), ... ,c.p(n) be n arbitrary states in ~. The state 

(2·16) 

which is usually called the Slater determinant state (see Appendix D), is nonvanishing 

if and only if c.p(1), ... , c.p(n) are linearly independent. 

0) Note that the expectation value in the (unphysical) pure state 5' = atP + a'tP' becomes 

(A)s' = 10'.1 2 (tP,AtP) + 10'.'1 2 (tP',AtP') + {a"a' (tP,AtP') + (h.c.)}, which has extra cross terms . 

.. ) Although this remark might sound entirely trivial (and it indeed is), many beginners (and 

even some experts) are confused when they encounter BeS-type states which are linear combinations 

of states with different N e . One should always keep in mind that such linear combinations are 

introduced for purely mathematical (or theoretical) reasons (which are indeed deep and beautiful) 

and have nothing to do with realistic particle number fluctuations. When one has such a linear 

combination state, one always gets physically meaningful states with fixed electron numbers by 

taking suitable projections. 
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Proof: Let 0 = C!(",(l» ... c!(",(n»). Assume that the n states are linearly depen

dent. Then we can write ",(1) = L:j=2 Qj",(j) with some coefficients Qj E C, and hence 

C!(",(l» = L:j=2 QjC!(",W). The product 0 vanishes because (C!(",(j»)2 = o. 
Next we assume that the n states are linearly independent and show that OiPvae 

is nonvanishing. By repeatedly using (2·14), (2·15) and C"(,,,)iPvac = 0, we get 

IIOiPvac l1
2 

= (iPvac, otOiPvae> 

= ( iPvae , C" (",(n» ... C,,( ",(l»C~ (",(1» ... C~ (",(n) )iPvac) 

= L ( -l)P ( ",(1), ",(P(l») ... ( ",(n) , ",(p(n») , (2.17) 

p:(l, ... ,n)-+ (p(l) , .. . ,p(n» 

where p is summed over the n! permutations of (1,2, ... , n), and (-l)P denotes the 

parity of p. The Gramm matrix G is an n x n matrix defined by (G)i,j = (",(i), 

",(j». Then (2·17) implies 

IIOiPvac l1
2 

= det(G). (2·18) 

It is a well-known fact in linear algebra that G is regular (and hence det(G) i- 0) if 
and only if ",(1), ... ,,,,(n) are linearly independent .• 

The following lemma gives a basic characterization of the Slater determinant 

states (2·16). Although we do not use the lemma in the present paper, we state it 

here since it is enlightening. We encourage interested readers to prove the lemma. 

Lemma 2.2 (Slater determinant depends on a subspace) Suppose that two 

sets {",(l), ... , ",(n)} and {1/J(l), ... , 1/J(n)} of states in ~ span the same n-dimensional 

subspace of~. Then there is a nonvanishing constant c E C, and we have 

(2·19) 

The following lemma is elementary, but of fundamental importance. 

Lemma 2.3 (General basis of 1tNJ Let ",(l), ... , ",(Ns
) be Ns arbitrary states in 

~ which are linearly independent (but not necessarily orthogonal with each other). 

Then the states 

(2·20) 

for arbitrary subsets Sf, Sl of {I, 2, ... ,Ns} such that *) ISf I + lSi I = Ne span the 

Hilbert space 1tNe . 

Proof: Since the Ns vectors are linearly independent, we have 8x,y = L:;:1 ax,j'PV) 

with some regular matrix (ax,j)xEA,j=l, ... ,Ns • Thus we have 

N. 

ct = '" a ·Ct(II.,(j) 
:C,O' L...t X,} u y , (2·21) 

j=l 

*) Throughout the present paper, we denote by lSI the number of elements in the set S. 
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which means that the basis state (2·10) can be written as a linear combination of 
the states (2·20) .• 

Let A = (ax,y)x,YEA be a matrix on ~. We define the corresponding bilinear form 
of fermion operators 

B(A) = L C~'<7 ax,y Cy,<7' 
x,yEA 
<7=i,L 

(2·22) 

which is usually called the "second quantization" of A. The easily verified commu

tation relation 

[B(A), C!(cp)] = C!(Acp), (2·23) 

where [A, B] = AB - BA, sheds light on the relation between the single-particle 

quantum mechanics and the operator formalism. This will be useful later. A similar 

commutation relation for two bilinear forms 

[B(A), B(B)] = B([A, BJ) (2·24) 

is also easy to prove. 

We have so far treated the spin index (J separately from the coordinate x. It is of 

course possible to treat the combination (x, (J) as the coordinates of the system and 

consider the corresponding 2Ns-dimensional single-electron Hilbert space. *) We can 

then restate all of the above results in the new language with suitable modifications. 

Let us only mention the relation corresponding to (2·24), because it will be useful 

later. Let A be a 2Ns x 2Ns matrix indexed by (x, (J) with x E A and (J =i, 1, and 

define B(A) = LX,YEA L<7,T=u C~'<7(A)(x'<7)'(Y'T) Cy,T' Then for two such matrices A 
and B, we have 

[B(A), B(B)] = B([A, BJ), 

where [A, B] is the commutator as 2Ns x 2Ns matrices. 

2.4. Non-interacting system 

(2·25) 

Now that the Hilbert space has been prepared, we can introduce Hamiltonians. 

The Hamiltonian which describes the quantum mechanical hopping with the hopping 

matrix T = (tx,y)x,YEA is 

H hop = B(T) = L tx,y C~'<7Cy,l7" 
x,yEA 
<7=i ,L 

(2·26) 

To see that (2·26) describes the desired hopping, define the single-electron state PI(J 

= C!(cp)pvac for cp E ~. Then from the commutation relation (2·23), we immediately 

find that the Schrodinger equation EPI(J = HhopPI(J is equivalent to the single-electron 

SchrOdinger equation (2·2) or (2·3). 

When one has diagonalized the single-electron Schrodinger equation (2·2), it is 

easy to also diagonalize the many-body Hamiltonian (2·26). As in §2.1, we let t/J(j) 

0) We shall use such a formalism in Appendix D. 
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Fig. 3. Schematic picture of the ground state 

of a non-interacting many-electron system. 

The lowest N e /2 single-electron energy lev

els are "filled" by both up spin and down 

spin electrons. The state naturally exhibits 

paramagnetism known as 'Pauli paramag

netism.' 

This and Hhopcpvac = 0 immediately imply 

We have thus diagonalized H hop ' 

be the eigenstate satisfying (2·4) with 

energy Cj, for j = 1,2, ... , N s • Define 

the new fermion operator by 

at = Ct ("I.(j») 
},U (7 'Y (2·27) 

for j = 1,2, ... ,Ns and (J = i, 1. 
Let Sr and Sl be arbitrary subsets 

of {I, 2, ... , N s } such that ISrl + IS11 
= N e , and define 

IJrST,SL = (II a},r) (II a},l) CPvac· 
JEST JESL 

(2·28) 
Lemma 2.3 shows that these states form 

a basis of 'HN
e

• Note that the com

mutation relation (2·23) and the eigen

state equation (2·4) imply [Hhop , a},.,.l = 

[B(T), Ct(1jJ(j»)l = C![T1jJ(j)l = Cja},.,.. 

(2·29) 

By choosing subsets Sr, Sl which minimize the energy eigenvalue 2:jES
j 

Cj + 
2:

jESL 
Cj, we get ground state(s) of the present non-interacting model. In particular, 

if the corresponding single-electron energy eigenvalues are nondegenerate, i.e., Cj < 
CHI, and if Ne is even, the ground state of H hop is unique and written as 

(2·30) 

This is nothing but the state obtained by "filling up" the low energy levels with up 

and down spin electrons, as one learns in elementary quantum mechanics (Fig. 3). 

In a single-electron eigenstate of the one-dimensional example in §2.1, the elec

tron is in a plane wave state (2·5) with a definite wave number k. The same is 

true for any translation invariant model, as we see in Appendix E. The fact that 

the Hamiltonian H hop is diagonalized in the basis (2·28) implies that the electrons 

behave as "waves" in this non-interacting (Hubbard) model. 

2.5. Interaction 

It is believed that interactions between electrons in a solid mainly come from 

the electrostatic Coulomb force. Although the Coulomb force in vacuum is long

ranged, we consider an extremely short-range interaction which acts only when two 
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electrons occupy the same site (i.e., the same atomic orbit). A crude justification 

of such a short-range (Coulomb) interaction comes from the observation that the 

Coulomb force should be most dominant when two electrons approach within the 

minimum possible distance. In a slightly more sophisticated justification, one ar

gues that the long range Coulomb force is screened by electrons in different orbital 

states which we have decided to forget. Our point of view, however, is that models 

with artificial short-range interactions are worth studying because they are among 

the minimum models which can be studied to elicit universal properties of strongly 

interacting electron systems. 

The Hamiltonian for the short-range Coulomb repulsion is 

Hint = U L nx,jnx,l, 

xEA 

where U ~ 0 is the energy from the repulsive interaction. (See Fig. 2.) 

(2·31) 

The expression (2·31) is already diagonalized, and it is trivial to write down 

eigenstates of Hint. Let L j , Ll be arbitrary subsets of the lattice A such that ILjl 

+ ILll = N e , and define 

(2·32) 

Then by using the commutation relation [n x ,,,., C~f,"'f 1 = 8X,Xf8".,,,.fC1,,,., we find 

(2·33) 

The ground state for a given electron number Ne can be constructed by choosing 

subsets L j , Ll that minimize the energy eigenvalue UILj n Lli. When Ne ::; Ns, one 

can always choose L j and L 1 so that L j n L 1 = 0 holds. In this case, the ground 

states are highly degenerate and have energy equal to O. 

It is clear (from the beginning) that the interaction Hamiltonian Hint is most 

naturally treated if we regard electrons as (classical) "particles" which live on lattice 

sites. 

2.6. Hubbard model 

The Hubbard model describes a tight-binding electron model in which electrons 

hop around the lattice and interact with each other through short-range repulsive 

interactions. The full Hamiltonian of the single-orbital Hubbard model·) is simply 

(2·34) 

We have already seen that both H hop and Hint can be easily diagonalized. We 

have observed, however, that electrons behave as "waves" in H hop , while they behave 

as "particles" in Hint. How do they behave in a system whose Hamiltonian is a sum 

0) This model is often called the single-band Hubbard model. We find this terminology confusing 

since a single-orbital model can have multiple bands depending on the structure of the hopping 

matrix T. See Appendix E. 
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of these totally different Hamiltonians? This is indeed a fascinating problem which is 

deeply related to the wave-particle dualism in quantum physics. We might say that 

many of the important models in many-body problems, including the cp4 quantum 

field theory and the Kondo problem, are minimum models which take into account 

both the wave-like nature and the particle-like nature (through point-like nonlinear 

interactions) of matter. 

From a technical point of view, the wave-particle dualism implies that the Hamil

tonians Hint and Hhop do not commute with each other. Even when each Hamiltonian 

is diagonalized, it is still highly nontrivial (or impossible) to find the properties of 

their sum. Of course, mathematical difficulty does not automatically guarantee that 

the model is worth studying. A truly exciting characteristic of the Hubbard model is 

that, though the Hamiltonians Hhop and Hint do not favor any nontrivial order, their 

sum H = Hhop + Hint is believed to generate various types of nontrivial order in

cluding antiferromagnetism, ferromagnetism, and superconductivity. When we sum 

up the two innocent Hamiltonians Hhop and Hint, competition between their wave

like and particle-like characters (or between linearity and nonlinearity) takes place, 

and one gets various interesting "physics". To confirm this fascinating scenario is a 

challenging problem in theoretical and mathematical physics. 

§3. Magnetism in the Hubbard model 

3.1. Spin operators and SU(2) invariance 
ft ft(l) ft(2) ft(3) 

We introduce the total spin operators*) Stot = (Stot, Stot, Stot) of the system by 

S(OI.) _ 1 '" '" t ( (01.)) 
tot - "2 L...J L...J ex,a P (1,r CX ,(1 

xEA (1,T=t,! 

(3·1) 

for a = 1,2 and 3, where p(OI.) are the Pauli matrices. It is clear from the general 

commutation relation (2·25) that**) s;~l, si~l and s;~l satisfy the standard commu

tation relation for quantum mechanical angular momentum operators. We define 

h .. d I' t b S± Sft (I) ± '8
ft 

(2) t e raIsmg an owenng opera ors y tot = tot ~ tot· 

The operators Stot are the generators of the global SU(2) rotations in the spin 

space. We sayan operator A is SU(2) invariant if it commutes with s~:2 for a = 1,2 

and 3. Intuitively speaking, an SU(2) invariant operator does not change if we 

change the "quantization axis" of spins in an arbitrary manner. 

A typical SU(2) invariant operator is the number operator nx = nx,t + nx,!' 

The hopping Hamiltonian Hhop of (2·26) is also SU(2) invariant. These facts can be 

checked easily by using the general commutation relations (2·25). The interaction 

Hamiltonian Hint of (2·31) is also SU(2) invariant. This fact becomes evident if we 

note nx,tnx,! = {(nx)2 - n x}/2. 

Knowing that the Hamiltonian H = Hhop+Hint is SU(2) invariant, we can make 

use of the standard representation theory of quantum mechanical angular momenta. 

0) We use the index a = 1,2,3 to indicate the three axes, because the symbols x, y, z are already 

used as lattice sites. 

**) Note that s~::2 = B(p(o») with (p(o»)(x,,,),(y,r) = OX,y(p(o»)",r. 
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We note that the three operators H, si!l, and (Stot)2 = L:a=1,2,3(Si~j)2 commute 

with each other. We will always consider simultaneous eigenstates of these operators. 

We denote by si!l the eigenvalue of si!l, and by Stot(Stot+1) the eigenvalue of (Stot)2. 
We call Stot the total spin of the state. Let 

Smax = { Ne/2 ~f Ne ~ Ns; 
(2Ns - Ne)/2 If Ne ~ N s • 

(3·2) 

Then the allowed values of Stot are Stot = 0, 1, ... ,Smax if Ne is even, and Stot 
= 1/2,3/2, ... , Smax if Ne is odd. 

3.2. Ferromagnetism 

Ferromagnetism is probably the most intuitive among various magnetic phe

nomena exhibited by solids. Here we shall be rather restrictive and only consider 

the strongest form of ferromagnetism, namely, saturated ferromagnetism in ground 

states. 

Definition 3.1 A Hubbard model is said to exhibit ferromagnetism if any ground 

state of H has the total spin Stot = Smax. 

Recall that any state with Stot = Smax has its copies in the subspaces with si!l 
= -Smax, -Smax + 1, ... , Smax. Therefore the ground states are at least (2Smax + 1)

fold degenerate when there is ferromagnetism (in the above strong sense). Let <PGS 

be a ground state with si!l = Smax. Since <PGS contains only up spin electrons, we 

must have Hint<PGS = O. This means that <PGS is the lowest energy state of H hop 

within the subspace of Ne up spin electrons. Recalling the general eigenstates (2·28) 

of H hop , we find that the desired ferromagnetic ground state is 

with a},j defined in (2·27), which has the ground state energy 

Ne 

E ferro = L Ej. 

j=1 

(3·3) 

(3·4) 

When we have ENe < ENe+1' (3·3) is the unique ground state*) in the subspace with 

si!l = Smax· The ground state <PM with si!l = M can be obtained from this ground 

state by the standard relation 

(8- )Smax-M n. 
<PM = ~t ~GS . 

II (Stot)Smax- M 
<PGS II 

(3·5) 

The above elementary construction of the ground states (provided that the model 

exhibits ferromagnetism) is based on the fact that any state with Stot = Smax does 

0) When eNe is degenerate with en, ... ,e", (where n :S Ne < m), we can replace the states 

j = n, ... ,Ne with arbitrary states from j = n . .. ,m to get other ground states. The ground states 

are degenerate even in the subspace with S;!£ = Sma><' 
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not feel the on-site Coulomb repulsion. This reduces the problem to that of non

interacting spinless fermions. We stress that this is a very special feature of the 

Hubbard model, which has only on-site interactions. 

3.3. Instability of ferromagnetism 

To see that ferromagnetism is indeed a delicate phenomenon, we discuss some 

results which show that the Hubbard model with certain conditions does not exhibit 

ferromagnetism. 

We first look at the non-interacting model with the Hamiltonian H = H hop that 

we studied in §2.4. Assuming that the single-electron energy eigenvalues are non

degenerate, we found that the ground state is uniquely given by (2·30). By noting 

that the operator aj,jaL is SU(2) invariant and si~(Pvac = 0, we immediately find 

S~~(PGS = O. Thus the ground state has the total spin·) Stot = 0, and there is no 

ferromagnetism. This is nothing but the well-known Pauli paramagnetism. (See 

Fig. 3.) 

It is also trivial that the non-hopping model with H = Hint we studied in §2.5 

does not exhibit ferromagnetism. In this case any state (2·32) for L j , L1 with mini

mum ILj n L11 is a ground state. Thus the ground states are highly degenerate and 

exhibit a kind of paramagnetism. 

Therefore neither H hop nor Hint alone favor ferromagnetism. As we have stressed 

in §2.6, our hope is that, when these two Hamiltonians are added into a single 

Hubbard Hamiltonian H = H hop + Hint, their "competition" generates totally new 

phenomena, including ferromagnetism. 

Next we consider the situation in which the Coulomb interaction U is finite but 

small. We find here that there cannot be (saturated) ferromagnetism. 

Theorem 3.2 (Impossibility of ferromagnetism for small U) Suppose 0 ~ U 

< CNe - Cl' Then the ground state of the Hubbard model does not have Stot = Smax, 

i.e., the model does not exhibit ferromagnetism. Note that the fermi energy CNe - Cl 

is usually independent of the system size for a fixed filling factor v. 

Proof: One of the lowest energy states with Stot = Smax is given by (3·3) and has the 

energy (3·4). Consider a normalized trial state 

(3·6) 

which is obtained from (3·3) by removing the up spin electron with the highest 

energy and then adding a down spin electron with the lowest energy. Noting the 

SU(2) invariance of aLaI,j, one finds that 1ft has Stot = Smax - 1. We want to 

evaluate the energy expectation value (1ft, HIft). For the kinetic energy, we have 

(1ft, Hhoplft) = Cl + I:f~~l Cj. As for Hint, we note that the inequality**) nx,j ~ 1 

implies Hint ~ U I:XEA nx,l to get (1ft, Hintlft) ~ (1ft, U I:xEA nx,llft) = U. Therefore 

.) That Stot = 0 also follows from the uniqueness of the ground state . 

.. ) See Definition C.l for the definition of inequalities for operators. 
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we have 

(W, HW) - E ferro ::; EI - ENe + U < 0, (3·7) 

where E ferro is defined in (3·4), and the final bound follows from the condition of the 

theorem. From the variational principle, we see that Eferro is not the ground state 

energy of H .• 

Although the above theorem ensures that the ground state cannot be ferromag

netic, it does not provide any information about the nature of the true ground state 

of the model. To study the latter explicitly is in general a very difficult problem 

which (for the moment) is possible only in the simplest one-dimensional model. 

Finally, we discuss the situation in which the interaction may be large but the 

density of electrons is very low. It is expected that the chance of electrons to collide 

with each other in this case becomes very small. It is likely that the model is close 

to an ideal gas, and there is no ferromagnetism. 

This naive guess is easily justified for "healthy" models in dimensions three 

. (or higher). The dimensionality of the lattice is taken into account by assuming 

that there are positive constants·) c, no, Po and d, and the single electron energy 

eigenvalues satisfy 

En - EI :2: c (n ~sno ) 2/d (3.8) 

for any n such that nlNs ::; Po. Note that the right-hand side represents the n 

dependence of energy levels in a usual d-dimensional quantum mechanical system. 

Then we have the following theorem due to Pieri, Daul, Baeriswyl, Dzierzawa and 
Fazekas. 26) 

Theorem 3.3 (Impossibility of ferromagnetism at low densities) Take a 

Hhop which has translation invariance (as in Appendix E) and satisfies (3·8) with 

positive c, no, Po and d > 2. Then there exists a constant PI > 0, and the correspond

ing Hubbard model does not exhibit ferromagnetism for any U :2: 0 if Nel Ns ::; PI 

holds. 

Outline of proof: The naive trial state (3·6) does not work for large U. We follow 

Ref. 27), and consider the Roth state 28) 

$ = Potff, (3·9) 

where tff is defined in (3·6), and 

Po = II (1 - nx,rnx,t) (3·10) 
xEA 

is the orthogonal projection (called the 'Gutzwiller projection') onto the space with 
no doubly occupied sites. Because of the projection, the state (3·9) minimizes the 

Coulomb interaction as Hinttff = O. Thus we only need to evaluate the expectation 

.) no and d are the degeneracy of the single-electron ground states and the dimension of the 

system, respectively. 
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508 H. Tasaki 

value of H hop ' After a tedious but straightforward calculation whose details can be 

found in Appendix F, we find 

(lit, Hlit) , 

( 

__ ) - Eferro ::; Cl - CNe + C p, 
1[/,1[/ 

(3·11) 

where p = Ne/ Ns is the electron density and c' > 0 is a constant. From the assump

tion (3·8), we find that the right-hand side becomes strictly negative for sufficiently 

small p provided that d > 2 .• 

That we have a restriction on dimensionality in Theorem 3.3 is not merely tech

nical. In a one-dimensional system, moving electrons must eventually collide with 

each other for an obvious geometric reason. Thus a one-dimensional model cannot 

be regarded as close to ideal no matter how low the electron density is. We do 

not know whether the inapplicability of the theorem to two-dimensional systems is 

physically meaningful or not. 

3.4. Two more theorems for the absence of ferromagnetism 

We briefly discuss (without proofs) two strong theorems which also rule out 

ferromagnetism. 

The classical Lieb-Mattis theorem 29) states (among other things) that one can 

never have ferromagnetism in the one-dimensional Hubbard model with only nearest

neighbor hoppings.*) One-dimensional Hubbard models with next-nearest-neighbor 

hoppings may exhibit ferromagnetism as we explicitly see in §§6 and 8. 

Theorem 3.4 (Lieb-Mattis theorem) Consider a Hubbard model with even Ne 

on a one-dimensional lattice A = {I, 2, ... , N.} with open boundary conditions. We 

assume that the hopping matrix elements satisfy Itx,yl < 00 when x = y, 0 < Itx,yl 

< 00 when Ix-yl = 1, and are vanishing otherwise. Then for any real U, the ground 

state of the model is unique and has Stot = O. 

The next important theorem is due to Lieb. 11) 

Theorem 3.5 (Lieb's theorem, special case) Suppose that the lattice A is de

composed into two sub lattices as A = AU B with IAI = IBI, and we have tx,y = 0 
when x, yEA or x, y E B. We also assume that the entire lattice is connected by 

nonvanishing tx,y' When Ne = N s, the ground state of the model is unique and has 

Stot = 0 for any U :::: o. 

The electron number Ne = Ns is usually referred to as "half-filling", since 2Ns 

is the maximum possible number for N e . The low energy properties of a Hubbard 

model at half-filling is believed to be described by the antiferromagnetic Heisenberg 

model. Lieb's theorem stated above gives a partial justification to this belief. This 

theorem applies to models on lattices with IAI i= IBI as well. In this case, it implies 

the existence of ferrimagnetism, as is explicitly stated in Ref. 12). 

0) The present theorem appears in the Appendix of Ref. 29). The main body of Ref. 29) treats 

interacting electron systems in continuous spaces. 
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§4. Nagaoka's ferromagnetism 

4.1. Weak version of Nagaoka's theorem 

We are now ready to discuss 
Nagaoka's ferromagnetism.*)' 10) Briefly 

speaking, Nagaoka's theorem establishes 

that some Hubbard models exhibit sat

urated ferromagnetism when the num

ber of electrons is one less than the 

half-filling (Le., Ne = Ns - 1) and the 

Coulomb repulsion U is infinitely large. 

Given the general fact that a half-filled 

system never exhibits ferromagnetism, 

this is a rather striking result, which 

demonstrates that strongly interacting 

electron systems can produce very rich 

and sometimes surprising phenomena. 

When U = 00 and Ne = Ns -

1, states with finite energies have no 

doubly occupied sites, and there is ex

actly one empty site which we call 

"hole." The basic mechanism of N a

gaoka's ferromagnetism is that the hole 

t t t 

t 
Fig. 4. Schematic picture of the origin of Na

gaoka's ferromagnetism. When the hole 

hops around the lattice, the spin configura

tion is changed. For a model with tx,y 2: 0, 

the hole motion produces a precise linear 

combination of various spin configurations 

which leads to a ferromagnetic state. 

hops around the lattice and generates a suitable linear combination of the basis 

states, in such a way that the resulting state exhibits ferromagnetism. (See Fig. 4.) 
Thouless 9) also discussed the same mechanism of ferromagnetism in slightly more 

restricted situations. (Also see Ref. 31).) 

We start from the following weaker result which is easy to state and prove. 

Theorem 4.1 (Weak version of Nagaoka's theorem) Consider an arbitrary 

Hubbard model with tx,y ~ 0 for any x, yEA, Ne = Ns -1, and U = 00. Then among 

the ground states there are (28tot + 1) states with total spin 8tot = 8max (= N e /2). 

Note that the theorem does not establish the existence of ferromagnetism since it 

does not state ferromagnetic states are the only ground states. *.) Stronger statement 

will be proved in the next section as Theorem 4.5. 

• J As for the presentation of the results and the proofs, we follow Ref. 30), where a generalization 

of Nagaoka's theorem was discussed. The proof briefly described in Ref. 30) is now presented in its 

full detail. 

.. J Note that the statement of the theorem is valid in the trivial model with tx,y = ° for all 

x, y, where all the possible spin states are degenerate. We must remark that some of the published 

"proofs" of Nagaoka's theorem and its extensions only prove such weak statements. (See also 

footnote .J on p. 516.) 
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510 H. Tasaki 

Let us prove Theorem 4.1. We first consider the treatment of the U ---t 00 limit. 

Let us decompose the Hilbert space HN~ as 

'l.J _ 'l.J( 0) 'l.J I 
1LNe - 1LNe EEl ILNe ' (4·1) 

where H~; consists of the states*) satisfying HintrJ> = O. We denote by Po (see (3·10)) 

the orthogonal projection onto H~;. Then we have the following. 

Lemma 4.2 (Characterization of the U ---t 00 limit) The U ---t 00 limit of the 

Hubbard model is equivalent to studying the Hamiltonian**) if = POHhop on the 

Hilbert space H~; . 

Proof: By continuity, the eigenstates of H = Hhop + Hint can be classified into those 

with energies diverging as U ---t 00 and those with finite energies in the U ---t 00 limit. 

We are only interested in the latter. Let rJ> be an eigenstate with energy E which 

has a finite limit. We can assume both rJ> and E are continuously parameterized 

by U. Nbte that we have PorJ> ---t rJ> in the U ---t 00 limit, because otherwise E 

diverges in this limit. By applying the projection Po onto the Schrodinger equation 

ErJ> = (Hhop + Hint)rJ>, we get EPorJ> = POHhoprJ> because PoHintrJ> = O. In the U ---t 00 

limit, this becomes ErJ> = if rJ> for rJ> E H~; .• 

We now prepare a basis for the Hilbert space H~~. We use the basis states char

acterized by the position x of the hole and the spin configuration***) 0' = (O"Y)YEA\x E 

SA \x, defined as 

(4·2) 

Here the product is taken over all the sites in A with an arbitrary but fixed order. 

We gave two equivalent expressions for rJ>x,tT. The spin configurations (O"~)YEA and 

(O"~)YEA are essentially the same as 0' = (O"Y)YEA\x, and defined by O"~ = O"~ = O"y for 
all y E A\x. As for the missing site x, we set O"~ = i and O"~ = 1. In the definition 

(4·2), we are simply supplying an electron at the hole site x, and then annihilating 

the electron by Cx,t or cx ,l' This may sound meaningless, but we get fermion signs 

appropriate for our purpose in this way. 

We wish to examine the action of if = POHhop on the states (4·2). In order 

to get a finite contribution, an electron must hop into the hole site x from other 

sites. So we examine the action of 2:o-=t,l ct,o-cz,o- on rJ>x,tT. Using the two equivalent 

*) We are assuming Ne ::; N s. If Ne > N s, the relevant condition is replaced by Hintif> = U(Ne 

- Ns)if>, and Lemma 4.2 is still valid . 

.. ) In the present case, we will eventually find that the ground states in the U --> <Xl limit are 

eigenstates of Hhop' This is of course an accidental situation for the ferromagnetic states. Examples 

of exact ground states in the U --> 00 limit which are not eigenstates of H hop can be found in 

Refs. 32) and 33). 

***) By A\x we mean the lattice obtained by removing x from A. 
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expressions (4·2) for ~x,cr, we get 

L c~,O"cz,O"~x,cr = -Cz,jnx,j (II ct,O"~) ~vac - Cz,ln x,l (II ct,O"~) ~vac 
0"=1,1 yEA yEA 

= -Cz,j (II ct,O"~) ~vac - cz,l (II ct,,,~) ~vac 
yEA yEA 

--~ - Z,tTz_re' (4·3) 

where U z.-x E SA\z is the new spin configuration on A\z obtained from U by moving 

C7z to x. Note that in the second line of (4·3), only one of the two terms survive 

depending on the value of C7z . Therefore the matrix elements of the effective Hamil

tonian H are given by 

/~ H~ )={-tx,y ifT=uy.-x; 
\ y,.... x,cr 0 otherwise. 

(4·4) 

Let ~GS be a ground state of H. Since it has a finite energy, it is expanded as 

~GS = L L i.p(x, u)~x,cr. (4·5) 
xEA crESA\x 

Since the matrix elements (4·4) of H are real, we can assume that the coefficients 

i.p(x, u) are real.·) We define 

~x = 

and a ferromagnetic state 

xEA 

where (i) denotes the spin configuration with all spins up. 

By using (4·5) and (4·4), we find 

(~Gs,H~Gs)= L L i.p(y,T)i.p(x,u)(~y, .... H~x,cr) 
x,yEAcrESA\x 

TESA\y 

x,yEA 

(4·6) 

(4·7) 

(4·8) 

*) If this is not the case, we redefine {cp(x, u) + cp(x, u)*} /2 as cp(x, u). The corresponding 4>GS 

is also a ground state. 
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512 H. Tasaki 

where we have used the Schwartz inequality (with the assumption tx,y ~ 0) to get 

the third line. This bound shows that Pr is also a ground state. This completes the 

proof of Theorem 4.1. 

4.2. Nagaoka's theorem 

We now state a stronger and the most general version of N agaoka's theorem. 

Under an additional condition (which can be easily verified in some typical cases), 

we will prove that the ferromagnetic states are the only possible ground states. To 

determine the additional conditions, it is better to start from mathematics. 

Let us recall the Perron-Frobenius theorem, which is standard in linear algebra. 

The following is the simplest version of the theorem:) 

Theorem 4.3 (Perron-Frobenius theorem for a real symmetric matrix) 

Let M = (mi,jkj=l, ... ,N be an N x N real symmetric matrix (i.e., mi,j = mj,i E IR ) 
with the properties that 

i) mi,j ~ 0 for any i =I j. 
ii) All i =I j are connected via nonvanishing matrix elements of M. More precisely, **) 

for any i =I j, we can take a sequence (i1, ... ,iK) such that i 1 = i, iK = j, and 

mikoik+l =I 0 for all k < K. 

Then the lowest eigenvalue of M is nondegenerate and the corresponding eigen

vector v = (Vdi=l, ... ,N can be taken to satisfy Vi > 0 for all i. 

Proof: Let us present a standard elementary proof based on a variational argument. 

The essence of the argument is that a state without "nodes" has low energy. This 

idea is familiar in quantum mechanics.***) 

1) We first prove that if an eigenvector u = (Ui)i=l, ... ,N of M satisfies Ui ~ 0 for 
any i, then it inevitably satisfies 'Ui > 0 for any i. To do this, we assume the converse, 

Le., Ui ~ 0 for all i, and Uj = 0 for some j. Then from the eigenvalue equation, we 

see that Li mj,iUi = f.1.Uj = O. Since mj,iUi ~ 0, this means Ui = 0 for all i with 
mj,i =I o. Because we have the connectivity ii), we can repeat this argument until 

we see Ui = 0 for all i, which is a contradiction. 

2) We then prove that a normalized eigenvector v = (Vi)i=l, ... ,N for the lowest 

eigenvalue f.1.o can be chosen to satisfy Vi > 0 for all i. Since all mi,j and f.1.o are real, 

we can assume that the Vi are all real. With 1) in mind, we assume the converse, 

Le., Vj > 0 and Vk < 0 hold for some j and k. Define u = (Ui)i=l, ... ,N by Ui = IVil. 
Then from i), we see 

N N 

f.1.o = L Vimi,jVj ~ L Uimi,jUj' (4·9) 
i,j=l i,j=l 

Since f.1.o is the lowest eigenvalue, the right-hand side must also be equal to f.1.o, which 

means that u is an eigenvector of M. Then the above 1) implies Ui >0, and hence 

*) The full version of the theorem applies to non-symmetric matrices as well. See, for example, 

p. 130 of Ref. 34). 

**) Another way of stating the condition is that, for any i -=I- j, there is K such that (MK)i,j -=I- O. 

***) See, for example, Section 20 of Ref. 35). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

9
/4

/4
8
9
/1

8
4
0
8
9
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 513 

Vi i- 0 for all i. Recalling the connectivity ii), the latter property implies we can 

find i and j such that Vimi,jVj > O. Then we have Uimi,jUj < 0 for the same i 

and j, which means (4·9) is valid with ~ replaced by>. This contradicts with the 

assumption that flo is the lowest eigenvalue. 

3) Finally suppose that the lowest eigenvalue of M is degenerate. Then we can 

find two mutually orthogonal eigenvectors u and v. But from 2), we must have 
u . v i- 0, which is a contradiction. _ 

We wish to apply this theorem to the present problem of the U = 00 Hubbard 

model with a single hole. As for the matrix M, we take the matrix representation 

(4·4) of the Hamiltonian for the basis states (4·2) with a fixed s;!i = LYEA\x lJy' 

Because of (4·4) and the assumption tx,y ~ 0, the condition i) of Theorem 4.3 is 

satisfied. The condition ii), on the other hand, is not always valid. This motivates 

us to consider the following connectivity condition. 

Definition 4.4 (Connectivity condition) A Hubbard model with U = 00 and Ne = 
Ns - 1 (or more precisely the hopping matrix T) is said to satisfy the connectivity 

condition if all the basis states PX,tT with common S;!f = LYEA\x lJy are connected 

with each other through non vanishing matrix elements of H. 

As we shall see in the next section, the connectivity condition can be easily 

verified in the Hubbard model with nearest neighbor hoppings on most standard 

lattices including triangular, square, simple cubic, fcc and bcc. 

Consider a model which satisfies the connectivity condition. Then we can readily 

apply the Perron-Frobenius theorem to see that the ground state in each subspace 

with a fixed S~!f is unique. Then Theorem 4.1 implies that this ground state must 

be ferromagnetic. So we have proved the following, which is the full (and most 

generalized) version of Nagaoka's famous theorem. 

Theorem 4.5 (Generalized Nagaoka theorem) Consider an arbitmry Hubbard 

model with tx,y ~ 0 for any x, YEA, Ne = Ns - 1, and U = 00, and further 

assume that the model satisfies the connectivity condition. Then the ground states 

have total spin Stot = Smax( = Ne/2), and are non-degenemte apart from the trivial 

(2Smax + I)-fold degenemcy. 

As stressed earlier, the knowledge that all the ground states are ferromagnetic is 

of fundamental importance. The theorem is of course no longer valid for the trivial 

model with tx,y = 0 for all x and y. Since the theorem asserts the nondegeneracy of 

the ferromagnetic ground state for U = 00, the continuity of energy eigenvalues in 

U implies that the statement of the theorem is valid also for sufficiently large but 

finite U. However, we have no meaningful estimates of how large U should be. 

4.3. Connectivity condition 

We still have to verify the connectivity condition for some systems to make 

Theorem 4.5 meaningful. It seems, however, that to write down a simple necessary 

and sufficient condition for the connectivity condition is a nontrivial problem. We 

here follow Nagaoka's original spirit, and provide a constructive criterion (i.e., a 
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z 

~ 
X Y 

z 

• 

~ 
y 

Fig. 5. Exchange bonds in the "delta-chain." The horizontal bond {x, y} is not an exchange bond 

since the site z is disconnected from the rest when x and yare removed. The bond {x, z} is an 

exchange bond since the lattice remains connected after the removal of x and y provided that 

we use periodic boundary conditions. 

sufficient condition) for the connectivity condition. 

Let us introduce some terminology. By a loop of length m, we mean an ordered 

set (Xl,"" xm ) of sites such that txi,Xi+l "# 0 for all i = 1, ... , m - 1, and tXm,Xl "# o. 
We say that a pair {x, y} of lattice sites is an exchange bond if they belong to a loop 

of length three or four, and the whole lattice remains connected via nonvanishing 

tx,y when the sites X and yare removed. (See Fig. 5.) 

Then we have the following sufficient condition for the connectivity. 

Lemma 4.6 (A sufficient condition for the connectivity) If the whole lattice 

is connected by exchange bonds, then the model satisfies the connectivity condition. 

This sufficient condition can be easily verified in various systems. In models 

defined on regular lattices like triangular, square, simple cubic, fcc or bcc lattices 

with nonvanishing hopping amplitudes between nearest neighbor sites, it is obvious 

that all the nearest neighbor bonds are exchange bonds. Thus they trivially satisfy 

the condition. A less trivial example is the delta chain with periodic boundary 

conditions in Fig. 5. Although the horizontal bonds are not exchange bonds, the 

whole lattice is connected via non-horizontal bonds, which are exchange bonds. 

Proof of Lemma 4.6: Suppose that we are given an arbitrary configuration of Ne 

= Ns - 1 electrons on A. Our goal is to show that we can get an arbitrary configu

ration with the same S~~f by moving the single hole along nonvanishing tx,y' 

Let {x, y} be an exchange bond. We show below that we can exchange the spins 

at sites X and y without changing the configuration outside {x, y}. Since the whole 

lattice is connected via exchange bonds, this means we can generate any permutation 
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From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 515 

Fig. 6. The two spins are exchanged when the hole hops around the loop once. Such an "exchange 

process along a triangle" appears repeatedly in various examples of ferromagnetism, and is 

regarded as a universal and fundamental mechanism leading to ferromagnetism. 21) 

x x 

y z y z y z 
Fig. 7. The spins at x and z are exchanged when the hole hops around the loop once. The spins 

at y and z are exchanged when the hole hops around the loop twice (or once in the opposite 

orientation) . 

of spin configurations by successive exchanges on the exchange bonds. This proves 

the connectivity condition. 

We now prove the desired property of exchange bonds. Let {x, y} be an exchange 

bond, and assume that x and yare occupied by electrons with opposite spins. We 

first bring the hole (by successive hops outside {x, y}) to a site other than x or y on 

the loop (of length three or four) that contains {x, y}. Next we let the hole move 

along the loop until the spins at x and yare exchanged. In a loop of length three, this 

is realized after the hole goes around the loop once, as in Fig. 6. In a loop of length 

four,·) we have to move the hole along the loop once or twice, depending on the spin 

configuration, as in Fig. 7. Finally, we bring the hole back to the original location. 

By following the same path as in the first step backwards, we recover exactly the 

same configuration, except on sites x and y .• 

4.4. Stability of Nagaoka's ferromagnetism 

It is desirable to extend Nagaoka's ferromagnetism to systems with finite U and 

with finite densities of holes. Unfortunately, the Perron-Frobenius argument which 

works for the one-hole case fails even for models with two holes. There is a con

siderable number of rigorous works (including that in Nagaoka's original work 10)) 

which establish that saturated ferromagnetism does not take place in certain situ

ations. See, for example, Refs. 36), 27), 37) ,...., 39) and 24). Most of these works 

are essentially based on variational arguments where one constructs sophisticated 

0) The exchange on a length four loop is possible because electronic spins take (only) two values. 
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516 H. Tasaki 

variational states which have lower energies than the ferromagnetic state. (We have 

seen the most elementary versions of the argument in §3.3.) As far as we know, 

there are no rigorous results about the stability of Nagaoka's ferromagnetism·) in the 

Hubbard model. 

There is also a considerable number of numerical and theoretical works 

which indicate stability or instability of Nagaoka's ferromagnetism in various 
situations. 42) - 45) 

In spite of all these efforts, it is still not known if straightforward extensions of 

Nagaoka's ferromagnetism to finite U and finite hole density are possible. It seems 

that a recent dominant opinion is that the possibility of extension depends strongly 

on lattice structures, where the triangular lattice is regarded as one of the most 

promising candidates. The importance of lattice structures is closely related to the 

approach from flat-band models that we discuss in §6. 

§5. Ferromagnetism in the Hubbard model with long-range hopping 

5.1. Main statement and preliminary results 

There is at least one situation in which the extension of Nagaoka's ferromag

netism to finite U is possible. This is an artificial model with long range hopping 

that we shall now define. 

We associate with each site x a constant Ax > 0, and define the hopping matrix 

T = (tx,y)x,YEA with long range hopping amplitudes by") 

(5·1) 

where t > 0 is a constant (which does not play any essential role). Note that an 

electron can hop from any site in the lattice to any other site (Fig. 8). Then we have 

the following extension of Nagaoka's theorem. 

Theorem 5.1 (Ferromagnetism in the long-range hopping model) 

Consider the Hubbard model with the hopping (5·1) with electron number Ne = Ns-l. 

For any U > 0, the ground states have total spin Stot = Smax(= Ne /2), and are non

degenerate apart from the trivial (2Smax + I)-fold degeneracy. 

At first glance, the theorem looks surprising and attractive since the precise 

statement of Nagaoka's theorem is extended to an arbitrary positive value of U. As 

we shall see below, this is indeed a consequence of a very special property of the 

present model. 

With the hopping (5·1), the action of T onto any c.p E ~ becomes Tc.p = tA (A, c.p), 

where A = (Ax)xEA E ~. Thus we find (c.p, Tc.p) = t (c.p, A) (A, c.p) = 1 (A, c.p) 12 ~ 0, 

.) Interesting lower bounds for the ground state energy of the U = 00 model with multiple holes 

are proved in Refs. 40) and 41). We do not, however, interpret these bounds as "proofs of stability 

of Nagaoka's ferromagnetism" since the bounds do not rule out paramagnetism (e.g., in the trivial 

model with tx,y = 0 for any x,y). (See also footnote **) on p. 509.) 

•• ) In coordinate-free notation, this becomes T = t>. ® >., where ® is understood as a Kronecker 

product, and>' = (Ax)XEA. As for this construction, the Dirac notation T = tl>') (>'1 may be more 

informative. 
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which means that T 2:: O. On the other 

hand, the single-electron Schrodinger 

equation (2·2) becomes 

fCP = tA (A, 11') . (5·2) 

This means that any II' orthogonal to 

A is an eigenstate of (5·2) with f = 0, 

which is the minimum possible eigen

value. Clearly, there are (Ns - I)-fold 

degenerate eigenstates with f = O. The 

remaining eigenstate is A itself, and it 

has the eigenvalue f = t 2:xEA (..\x)2 > O. 

It is crucial for the electron num

ber Ne to be set equal to the dimen

sion Ns - 1 of the above degeneracy. 

We see from (3·4) that the lowest en

ergy among ferromagnetic states is Eferro 

""N -1 0 = L.",j~1 fj = . 

Fig. 8. In the long-range hopping model, hop

ping between two arbitrary sites in the lat

tice is possible. The model serves as an 

intermediate step in our attempt to relate 

Nagaoka's ferromagnetism and fiat-band 

ferromagnetism. 

On the other hand, it is clear from (2·29) that the lowest eigenvalue of H hop is 0 

if Ne ~ 2(Ns -1). Hence we can write H hop 2:: 0 for Ne = Ns -1. (See Definition C.1 

and Lemma C.2.) We also have Hint 2:: 0 in general. Thus (by using Lemma C.4) 

we get H = H hop + Hint 2:: O. This, along with the fact that there is a ferromagnetic 

state with energy zero, implies that the ground state energy of H is O. We have thus 

found that there are ferromagnetic states among the ground states. 

Let U > 0, and let «PGS be an arbitrary ground state. Then (from Lemma C.6) 

H hop 2:: 0, Hint 2:: 0, and H«PGS = (Hhop + Hind«PGS = 0 imply 

(5·3) 

In other words, the ground state happens to be a simultaneous ground state *) of H hop 

and Hint. This is of course a very special property of the present model with singular 

degeneracy in the single-electron eigenstates. Since U i= 0, the second relation in 

(5·3) implies 

5.2. First proof 

L nx,rnx,l = O. 
xEA 

(5·4) 

We give a proof of Theorem 5.1 which makes explicit use of Nagaoka's theorem. 

Since we have seen that there are ferromagnetic states among the ground states for 

U 2:: 0, we only have to show that they are the only ground states for U > O. 

The ground states for any U > 0 are fully characterized by Hhop«PGS = 0 and 

(5·4). Noting that (5·4) implies Hint«PGS = 0 for any U > 0, we see that the ground 

0) Of course the existence of one simultaneous eigenstate does not imply Hhop and Hint are 

simultaneously diagonalizable. Recall that quantum mechanical angular momenta have simultaneous 

eigenstates with vanishing eigenvalue. 
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518 H. Tasaki 

states of a given U > 0 remain as ground states for any values of U > 0, and hence in 

the limit U ---t 00. Since the ground states for U ---t 00 are completely characterized 

by Nagaoka's theorem (Theorem 4.5), we have proved Theorem 5.1. 

5.3. Second proof 

We describe another proof of Theorem 5.1. This proof is certainly more involved 

than the first one, but provides us with an entirely different physical picture of the 

problem. In the new picture, ferromagnetism in this model is generated by an 

"exchange interaction" among the spins of electrons which are "frozen" in certain 

single-electron states. We recall that the first proof is based on Nagaoka's theorem, 

which suggests a dynamical picture that ferromagnetism is generated by the motion 

of the hole. It is interesting that the two totally different pictures apply equally to 

the present model. As we shall investigate in the next sections, the new picture will 

lead us to a new class of ferromagnetism now known as 'flat-band ferromagnetism.' 

We start by constructing a (non-orthonormal) basis for the space of degenerate 

single-electron ground states. Fix an arbitrary site Xo E A, and denote by A' = A\xo 

the lattice obtained by removing Xo from A. For each y E A', we define a single

electron state t.p(Y) = (<p~y) )xEA E I:J by 

if x = Yj 

if x = Xoj 

otherwise. 

(5·5) 

This state satisfies (.x, t.p(Y)) = 0, and hence it is a single-electron ground state. Since 

the states t.p(Y) with Y E A' are linearly independent, they span the entire space of 

the single-electron ground states. We define the corresponding fermion operators by 

bt,u = CZ(t.p(Y)) for y E A' and 0" = j, L which satisfies [Hhop , bt,ul = 0 because of 

the general commutation rule (2·23) and the definition (2·26) of H hop ' 

Let us characterize an arbitrary ground state <Pas for U > 0 in a constructive 

manner. Because Hhop<Pas = 0, the ground state <Pas should consist only of the 

(single-electron) zero energy states. Therefore it is written as·) 

<Pas = L f(Lr, L1) ( II bt,r) (II bt'l) <Pvae , 

Lr ,Ll eN yELr yELl 

(5·6) 

s.t·ILr 1+ILll=Ne 

where the f(Lr, L1) are coefficients, and Lr, L! are summed over all the subsets of A' 

such that ILrl + IL!I = Ne = Ns - 1. Each state in the sum of (5·6) is nonvanishing 

because of Lemma 2.1. 

Since nx,jnx,! 2: 0, the condition (5·4) (and Lemma C.6) indeed implies a 

stronger statement that nx,jnx,!<pas = 0 for any x E A. By further rewriting this re

lation as (Cx,lCx,j )t(Cx,lCx,j )<pas = 0 (and using Lemma C.7), we find that the ground 

0) In a more careful proof, one uses Lemma 2.3 with Ns linearly independent states<p(Y) (y 

E A') and .oX to construct a basis of the entire Hilbert space "fiNe' formally writes PGS as a linear 

combination of all the basis states, and finally uses the condition HhopPGS = 0 to see that the terms 

including C! (.oX) must be vanishing. 
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state must satisfy 

for each x E A. 

We take x E A' and examine what (5·7) implies about (5·6). Using the anticom

mutation relation {ex,a, bt,a'} = Ax/5x,y8a,a" we obtain 

(5·8) 

where x[true] = 1, x [false] = 0, and the factor sgn[x, L j , L 1] = ±1 comes from the 

exchange of fermion operators. Since all the terms in the sum of (5·8) are linearly 

independent, the condition (5·7) implies I(L j , L1) = 0 for any L j , L1 such that 

x E L j n L1. Using this for all x E A', we finally see that I(L j , L1) = 0 unless 

L j n L1 = 0. Since ILjl + IL1I = IA'I, the condition L j n L1 = 0 implies L j U L1 = A'. 
This means that we can reorganize the sum (5·6) as 

PGS = L g[o-] (II b~,all) Pvac , 

trESA, yEA' 

(5·9) 

where the sum is over all the spin configurations 0- = (O"Y)YEA on A', and g[o-] is a 

new coefficient. The representation (5·9) suggests a new physical picture that the 

motion of the electrons is "frozen", and only spin degrees of freedom are left. Note, 

however, that this interpretation is somewhat arbitrary since the site Xo is chosen 

arbitrarily. 

Now we consider the condition (5·7) with x = Xo. By using (5·9) and the 

anticommutation relation {exo,a,bt,a'} = -Ay 8a,a' for any y E A', we get 

=L L sgn[x, y] tAxAy (g[o-] - g[o-x .... y]) ( II b;,a
z

) P vae , 

x,yEA' trESA' zE,1'\{x,y} 

s.t. x>y s.t. ax=i, a ll=l 

(5·10) 

where we have introduced arbitrary ordering in A', and sgn[x, y] = ±1 is again the 

fermion sign. *) The spin configuration 0-x .... y is obtained by switching 0" x and 0" y in 

the original configuration 0-. 

Since all the states in the sum (5·10) are linearly independent, the condition 

(5·7) is satisfied only when 

(5·11) 

*) A \ {y, z} is the set obtained by removing y and z from A. 
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520 H. Tasaki 

holds for all 0- and all x, y E A'. Note that we have deduced a kind of "exchange 

interaction" (5·11) among "localized spins" from the no-double-occupancy condition 

(5·7). 

The exchange relation (5·11) implies that all the g[o-] with common s~!l 
= LyEA' CTy assume exactly the same values:) This means that the lowest energy 

state in the space with a fixed s~!l is unique. Since we already know that there are 

ferromagnetic ground states, this completes the second proof of Theorem 5.1. 

§6. Flat-band ferromagnetism 

6.1. Definition 

We have seen that the Hubbard model with artificial long-range hopping exhibits 

ferromagnetism for arbitrary U > o. As we shall see in the present section, it is 

possible to assemble many (identical) copies of the long-range model to get Hubbard 

models with only short range hoppings which still exhibit ferromagnetism. 7),8) Unlike 

Nagaoka's ferromagnetism, the electron density is away from half-filling, and U need 

only to be nonvanishing. On the other hand, these models have very singular band 

structure which is expressed by the name "flat-band models." 

Let us define our model by means of a "cell construction" .**) Our lattice A can 

be written as 

A= C1 U···UCM , (6·1) 

where each Cj is called a cell. Each cell consists of a single internal site and n external 

sites, where n ~ 2 is a constant. The simplest cell is a triangle with n = 2. The 

models to be constructed will again involve "exchange processes along a triangle." 

This seems to be a universal and fundamental mechanism of ferromagnetism. 21) (See 

Fig. 6.) 

When assembling M cells to form A in (6·1), we identify some external sites 

from different cells***) to regard them as a single site in A. (See Fig. 9.) The lattice 

A is naturally decomposed as A = I U £, where I is the set of internal sites, and £ 
is the set of external sites. 

We define the hopping amplitudes for the j-th cell by 

where 

t(j) = t).. (j) A (j) 
x,y x y' 

if x is the internal site of Cj; 

if x is one of the external sites of Cj ; 

otherwise . 

(6·2) 

(6·3) 

• ) Although it is not necessary in the present proof, one can show directly that such a state has 

Stot = Smax. (See proof of Theorem 8.1.) 
**) A class of exactly solvable Hubbard models with very similar cell structures (with param

agnetic ground states) was discovered by Brandt and Giesekus 32
) before the present model for 

flat-band ferromagnetism was introduced. See also Refs. 33) and 46) and references therein for 

further results concerning this model. 

••• ) There can be external sites left unidentified. 
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(A) (a) 

6~ 
(b) 

(B) (c) 

Fig. 9. Examples of cells and lattices. Gray dots represent internal sites. From the triangular cell 

with three sites (A), one can form (a) the delta-chain by identifying two external sites, or (b) a 

decorated square lattice by identifying four. From the cell with five sites (B), one can form 

(c) another decorated square lattice. There are many similar examples in higher dimensions. 

The flat-band Hubbard model on these lattices exhibits ferromagnetism for any U > 0 when the 

filling factor v = N e /(2Ns ) is equal to (a) 1/4, (b) 1/6, or (c) 1/4. 

Here t > 0 and A > 0 are constants. Note that this is the same as the hopping 

amplitudes (5·1) of the long-range model. An essential difference, which makes the 

present model less artificial, is that we have this type of hopping only within each 
cell. The total hopping is defined as . 

M 

t - '"' t(j) 
X,Y - L.-J x,y· (6·4) 

j=1 
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522 H. Tasaki 

We finally assume that the whole lattice is connected via nonvanishing tx,y. We then 

define the Hubbard model on A with the hopping matrix given by (6·4). 

Theorem 6.1 (Flat-band ferromagnetism) Consider the above Hubbard model 

with the electron number Ne = lEI. For any U > 0, the ground states have total spin 

Stot = Smax(= Ne/2), and are non-degenerate apart from the trivial (2Smax + I)-fold 

degeneracy. 

Note that the existence of ferromagnetism has been established in models with 

finite U, finite-range hoppings, and electron densities away from half-filling. As one 

might guess, the straightforward (and general) methods using the Perron-Frobenius 

theorem (as in the proof of Nagaoka's theorem) do not work for this problem. The 

proof will make use of very special properties of the model. This ferromagnetism is 

closely related to Nagaoka's ferromagnetism (at least) via the ferromagnetism in the 

long-range hopping model, but it certainly belongs to a new class of ferromagnetism. 

This new class is now known as "flat-band ferromagnetism" for a reason which we 

shall explain in §6.3. 

6.2. Examples 

Clearly the cell construction leads to a wide variety of models.·) Let us discuss 

a class of examples which is constructed from the most elementary triangular cell 

with n = 2. 

We construct the d-dimensional Lx ... x L hypercubic lattice with periodic 

boundary conditions by assembling together the triangular cell (A) of Fig. 9 regarding 

it as a basic bond (with length 1). The resulting lattice A is the decorated hypercubic 

lattice with (d + I)Ld sites. The set E of external sites can be identified with the 

d-dimensional Lx . .. xL hypercubic lattice with Ld sites. The internal sites in I are 

the decorating sites at the center of every bond. The lattices (a) and (b) in Fig. 9 

represent parts of A for d = 1 and 2, respectively. 

Then the hopping amplitude of (6·4) becomes 

1 

At 

tx,y = ~2t 
2dt 

o 

if Ix - yl = 1/2j 

if x, y E E and Ix - yl = Ij 

if x = y E Ij 

if x = y E Ej 

otherwise. 

(6·5) 

Note that there are next-nearest-neighbor hoppings between nearby external sites. 

The electron number specified in Theorem 6.1 is Ne = Ld. In terms of the filling 

factor, this corresponds to v = N e /(2Ns ) = {2(d + 1)}-I. 

6.3. Single-electron problem 

The present models have peculiar degeneracy in their single-electron ground 

states which are quite similar to that in the long-range hopping model of the previous 

section. 

We first note that the hopping matrix T defined by (6·4) satisfies T 2: o. This 

0) It is not necessary to have the same n or >. for all the cells. This further extends the possibility 

of models. 
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is because each (t~DX,YEA determined 
by (6·2) is positive semidefinite (which 

fact is clear from the discussion in §5.1), 

and the sum of positive semidefinite 

matrices is positive semidefinite (as in 

Lemma C.4). 

We define for each y E E the single

electron state c.p(Y) = (<P~Y»)XEA by 

1

.\ 
-1 

'1'':')= 0 

if x = y; 

if x is the internal 

site of one of the cells 

containing y; 

otherwise. 
(6·6) 

(See Fig. 10.) Observe that we have 
(>.. (j), c.p(Y» =0 for any j = 1, ... ,M and 

y E E, where >..(j) = (.\~»)XEA E I), and hence 

M 

o o o o o 

Fig. 10. The components ofthe single-electron 

ground state cp(Y) in the model b) of Fig. 9. 

The state is localized around the site y, 

which is at the center of the figure. 

T c.p(Y) = t L >.. (j) \ >.. (j), c.p(Y») = O. 
j=l 

(6·7) 

Since c.p(Y) with y E E are linearly independent, the single-electron Schrodinger equa

tion (2·2) has lEI-fold degenerate ground states*) with E = O. It is needless to say 

that such a huge degeneracy is accidental, and makes the present models very spe

cial. We also stress that such a degeneracy is lifted by an arbitrarily small generic 

perturbation applied to the hopping matrix. 

In models with translational invariance, the degeneracy in the single-electron 

ground states corresponds to the lowest band being completely dispersion less , or 

"flat." For example, in the models on the d-dimensional hypercubic lattice of §6.2, 

we find that there are d + 1 bands with dispersion relations 

{ 

~2t 
Ej(k) = d 

(.\2 + 2d)t + t ~ cos k,.. 

if j = 1; 

if j = 2, ... , d; 
(6·8) 

ifj=d+l. 

Note that the lowest band and the (d - 1) middle bands are completely flat, while 

the upper band is dispersive. For definitions of bands and dispersion relations as 

well as an explicit calculation for the d = 1 case, see Appendix E. 

6.4. Proof 

We now prove Theorem 6.1. Interestingly, the proof is completely analogous to 

and not more difficult than the second proof of the (less attractive) Theorem 5.1 for 

the long-range hopping model. 

.) It is not hard to prove that .x(j) with j = 1, ... , M span the remaining space with E > O. 
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524 H. Tasaki 

Since the single-electron ground states of the model are lei-fold degenerate, and 

the electron number is set to Ne = lei, all the preliminary considerations in §§5.1 and 

5.3 apply to the present model as well. Any ground state qlGS satisfies the conditions 

(5·3), and (5·7) for any x E A. 

Again, introducing bL,. = C!(/f'(Y») for y E e, and using HhopqlGS = 0, we can 
represent any ground state as 

qlGS = L I(L1, Ld ( II bt'l) (II bt'l) qlvac, (6·9) 
Lj ,L. Ce yELj yEL. 

s.t·ILj I+IL. I=Ne 

where I(L1, Ll ) are coefficients, and L1, Ll are summed over all the subsets of e 
such that ILll + ILll = Ne = lei. 

Exactly as before, the condition (5·7) for x E e shows that there can be no 

"double occupancies" in bt , i.e., I(L1, Ll ) = 0 whenever Ll U L1 i= 0. We again 

reorganize the sum to get a spin system representation 

qlGS = L g[O'] (II b~,u(y») qlvac, 

trESe yEe 

(6·10) 

where the sum is over all the spin configuration 0' = (O'Y)YEt: on e, and g[O'] is a new 

coefficient. 

Next we examine the implication of the condition (5·7) for x E I on the ground 

state (6·10). Unlike in the long-range hopping model, there are still many relations 

to use. Let ex be the set of external sites contained in the cell which contains 

an internal site x. By using (6·10) and the anticommutation relation {cx,u, bt,u'} 

= -ou,u'X[y E ex] for any x E T and y E e, we get 

Cx .1Cx ,1q1GS = L 
y,zEe", 

s.t. y>z 

L sgn[x, y](g[O'] - g[O' y+->z]) ( II bt.uu ) qlvac· 

trESe uEt:\ {y,z} 
s.t. uy =l, u.=l 

(6·11) 

Since this quantity vanishes for all x E T, we finally find that 

g[O'] = g[O' y+->z] (6·12) 

for any y, z E e which belong to a common celL Note that the "exchange interaction" 

is short range because we are treating models with short range hoppings. Since the 

entire lattice is connected, (6·12) ensures that the lowest energy state is unique in 

each sector with a fixed s~~l. This completes the proof of Theorem 6.1. 

6.5. Mielke's flat-band ferromagnetism 

A slightly different class of Hubbard models which have highly degenerate single
electron ground states and exhibit ferromagnetism was discovered by Mielke 14), 15) 

before the above models were introduced. Here we briefly summarize Mielke's beau

tiful construction based on graph theoretic notion. For a general theory of flat-band 

ferromagnetism obtained by Mielke, see Ref. 47). 
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From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 525 

We start from abstract notation. 

Let G = (V, E) be an abstract 

graph, where V is the set of vertices 

(sites) a, (3,... E V, and E is the 

set of edges (bonds) which are noth

ing but pairs of vertices like {a, (3}. 
Given a graph G, one can construct 

the corresponding line graph L( G) 

= (VL' EL) by the following procedure. 
The set of vertices (sites) VL (whose el

ements are denoted as x, y, . .. E Vd is 

taken to be identical to the set E. This 

means that we identify edges in G with 

the vertices (sites) in L(G) as, for exam

ple, x = {a,(3}, y = {a,'Y}, etc. Next 
we declare that two vertices x, y E VL 

are adjacent to each other if the corre

sponding two edges in E share a com

mon vertex in V. The vertices x and 

y in the above example are adjacent to 

Fig. 11. The kagome lattice is the line graph 

of the hexagonal lattice. Mielke showed 

that the Hubbard model on the kagome lat

tice exhibits ferromagnetism when the fill

ing factor is II = 1/6 for any U > O. This 

is the most beautiful example of flat-band 

ferromagnetism. 

each other since the corresponding edges in E have a common vertex a. EL is the 

set of edges (bonds) in L(G), which consists of all the adjacent pairs (like {x, y}) of 

vertices (sites) in VL • Finally we set M(G) = lEI - IVI + 1 if G is bipartite,*} and 

M( G) = lEI - IVI if G is non-bipartite. 
We define the Hubbard model on the line graph L(G). With each site x E VL , 

we associate the fermion operator Cx,(n and consider the Hamiltonian 

H = t L (c~,uCy,U + ct.ucx,u) + U L nx,jnx,l, (6·13) 
{x,y}EEL XEVL 

u=j,l 

where t > 0 is a constant. Then the main result of Ref. 14) is the following. 

Theorem 6.2 (Mielke's flat-band ferromagnetism) Suppose that the graph G 

is twofold connected.**} Consider the above Hubbard model with Ne = M(G). Then 

for any U > 0, the ground states of the model have total spin Stot = Smax( = N e /2), 

and are nondegenerate apart from the trivial (2Smax + I)-fold degeneracy. 

This theorem applies to the Hubbard model defined on various line graphs, a 

typical one being the kagome lattice of Fig. 11. 

.) G is bipartite if it can be decomposed into two disjoint sublattices as G = Au B with the 

property that any edge in Ejoins a vertex in A with a vertex in B . 

.. ) A graph is twofold connected if and only if one cannot make it disconnected by the removal 

of a single vertex. 
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526 H. Tasaki 

6.6. Beyond flat-band ferromagnetism 

Let us once again take a look at the mechanism by which ferromagnetism is 

generated in a flat-band model. Reflecting the bulk degeneracy in the single-electron 

ground states, the ground states of the non-interacting model with H = H hop are 

highly degenerate. There are ground states for any possible values of total spin Stot, 

including the smallest Stot = 0 or 1/2 and the maximum Stot = Smax( = Ne/2). 

When we introduce the Hubbard interaction Hint, the energy of the ferromagnetic 

ground states (of H hop ) do not change since ferromagnetic states do not feel on-site 

repulsion. These observations are indeed trivial. A truly nontrivial point (which is 

proved by imposing some conditions on models) is that all the other ground states 

of H hop receive extra energy from Hint. and the ferromagnetic ground states become 

the only ground states of H = H hop + Hint. 

In this sense, the flat-band ferromagnetism certainly takes into account nontrivial 

interplay of H hop and Hint. However, there is no true "competition" between H hop 

and Hint. The ferromagnetic ground states are already present in the U = 0 model 

among highly degenerate ground states. The only role of the interaction is to lift the 

degeneracy, and "select" the ferromagnetic ground states as the only ground states. 

This is why flat-band ferromagnetism takes place for any U > O. 

As we have seen in Theorem 3.2, we never realize saturated ferromagnetism for 

values of U which are too small in a system without bulk degeneracy in the single

electron ground states. Of course, the bulk degeneracy in a flat-band model is far 

from being robust, and it is easily destroyed by adding to the hopping matrix T 

an arbitrarily small generic perturbation. Then, an essential question is whether 

ferromagnetism found in a flat-band model remains stable after adding a small per

turbation to T which makes the lowest band "nearly flat." If the ferromagnetism 

were unstable against perturbations, we would have to conclude that flat-band fer

romagnetism is a mere mathematical game. 

It was conjectured 7), 8) that the flat-band ferromagnetism is stable against small 

perturbations to the hopping Hamiltonian. Among the main arguments used in that 

discussion was that an approximate low-energy effective Hamiltonian of the flat-band 

model has the precise form of the ferromagnetic Heisenberg spin system. Kusakabe 
and Aoki 48), 49) made the first systematic study about stability of flat-band ferromag

netism. They argued that the flat-band models possess spin-wave excitations which 

have healthy dispersions, and this fact guarantees the robustness of the flat-band 

ferromagnetism. They also found numerical evidence that ferromagnetism remains 

stable if we add sufficiently small perturbations to the hopping matrix, thus making 

the lowest flat band "nearly flat" . 

As for rigorous results, stability of ferromagnetism under a single-spin flip is 

proved in Refs. 16) and 17) for the model obtained by adding an arbitrary small 

translation invariant perturbation to the hopping matrix of the translation invariant 

flat-band Hubbard model of §6.1. Although this only establishes the local stability 

of flat-band ferromagnetism, it is a remarkable nonperturbative result which applies 

to a robust class of models. Given the global stability of ferromagnetism in the 

original flat-band model, the local stability of ferromagnetism in a nearly-flat-band 
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From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond 527 

model provides very strong evidence that the nearly-flat-band model indeed exhibits 

globally stable ferromagnetism. 

Finally, the problem of stability of ferromagnetism was completely solved in 

Refs. 18) and 19) for a special class of models. Let us explain the results briefly. 

Take the same lattice A as in §6.2, i.e., the d-dimensional decorated hypercubic 

lattice. We define special perturbations to the hopping amplitudes as follows. For 

each Z E £, we let 

where 

s(Z) = _Sl/(z) I/(z) 
X,Y f""x """Y , 

if x = z; 

if x is an internal site adjacent to Zj 

otherwise. 

Here s > 0 is a new constant, and ..\ > 0 is the same as in §6.1. 

(6·14) 

(6·15) 

Then the hopping matrix T = (tx,y)x,YEA of the perturbed models is defined by*) 

M 

tx,y = L t~~ + L s~~~ + (..\2S - 2dt)8x,y, (6·16) 
j=l zEe 

where tn is the same as in (6·2). This tx,y can be written more explicitly as 

J 'x(t+s) 

t." = l ~~ -2d)t + (A' - 2), 

if Ix - yl = 1/2; 

if x, y E £ and Ix - yl = 1; 

if X,y E I and Ix - yl = 1 or 1/v'2j 
if x = y E I; 

otherwise. 

(6·17) 

As can be seen also from Fig. 12, this model contains nearest-neighbor hoppings and 

some next-nearest-neighbor hoppings (but not more than that). The amplitudes for 

the different hoppings and the on-site potential must satisfy special relations because 

there are only three controllable parameters, t > 0, s > 0 and ..\ > O. 

The single-electron energy bands of the model can be easily obtained. There are 

(d + 1) bands with dispersion relations 

d 

-2d(t + s) - 2s L cosk/-, if j = 1; 
/-,=1 

Ej(k) = ..\2(t + s) - 2dt if j = 2,,,' ,d; (6·18) 
d 

..\2(t+s)+2tLcosk/-, ifj=d+l. 
/-,=1 

If d > 1, the middle bands with j = 2, ... ,d have constant values (i.e., are flat and 

degenerate), reflecting the geometry of the decorated hypercubic lattice.**) For us it 

is crucial that the most important lowest band has a healthy non-constant dispersion. 

*) The term with the Kronecker delta is included only to make the expression (6·17) simpler 

and is not essential. 

**) It is possible to design short range perturbations to T which make these bands non-flat and 

non-degenerate, while allowing Theorem 6.3 to hold. 
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528 H. TasOO 

Fig. 12. The d-dimensional decorated hypercubic lattice with the nearest-neighbor and the next

nearest-neighbor hoppings for d = 1 and 2. These models is obtained by adding special per

turbations to the models (a) and (b) in Fig. 9, respectively. In a range of parameters, we 

can prove that the corresponding Hubbard model with sufficiently large but finite U exhibits 

ferromagnetism even when the lowest band is not flat. 

We consider the Hubbard model on A with the above tx,y and electron num

ber Ne = 1£1 = Ld. If s = 0, the model exhibits the fiat-band ferromagnetism of 

Theorem 6.1 for any U > O. When s > 0 and the lowest band is no longer fiat, 

the model exhibits Pauli paramagnetism for U = O. Moreover, from the elementary 

variational estimate of Theorem 3.2, we find that the model does not exhibit ferro

magnetism when U < 4ds. We can say that there is a true "competition" between 

H hop and Hint in this model. If the model exhibits ferromagnetism, it must be in a 

non-perturbative region with sufficiently large U. The following theorem establishes 

such a non-perturbative statement in the case that the lowest band is sufficiently 

fiat. 

Theorem 6.3 (Ferromagnetism in non-singular Hubbard models) 

Consider the above Hubbard model with electron number Ne = 1£1 = L d
, and let") 

..\ > O. If sit is sufficiently small, and U It is sufficiently large, the ground states 

have total spin Stot = Smax(= Ne/2}, and are non-degenemte apart from the trivial 

(2Smax + 1}-fold degenemcy. 

*) In Ref. 18), we presented a complete proof for d = 1 which, however, assumed .A > .Ac > O. 

The improved proof in Ref. 19) applies to general d and only requires .A > O. 
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For given d 2: 1 and ..\ > 0, the range of sit and U It in which the theorem holds 

can be determined by finite calculations which can be (in principle) executed by a 

computer. This means that one can construct a computer-aided proof if one desires. 

We have only performed very elementary calculations for d = 1 with a personal 

computer. When we set ..\ = v'2 (in which case tx,x = 0 for all x), the theorem is 

valid, for example,*) if sit:::; 0.4 and Ult 2: 40. 

Although the model is rather artificial, this is the first rigorous example of 

saturated ferromagnetism in a non-singular Hubbard model in which we must deal 

with the competition between Hint and H hop ' If we further have sit « 1, U It» 1 

and ..\ » 1, it has also been proved that low-lying excitation above the ground 

state has a normal dispersion relation of spin-wave excitations. 18), 17) Starting from 

a Hubbard model of itinerant electrons, the existence of a "healthy" ferromagnetism 

has been established rigorously. 

Recently, Penc, Shiba, Mila and Tsukagoshi 50) made a systematic study of re

lated one-dimensional Hubbard models and found various pieces of evidence suggest

ing that the ferromagnetism in these models is indeed robust. 

§7. Possible experimental realizations of (nearly- ) flat-band 

ferromagnetism 

7.1. Ferromagnetism in La4 B ~ C'l1l2 010 

In 1990 (when the only example of saturated ferromagnetism in the Hubbard 

model was that of Nagaoka), Mizuno, Masuda, Hirabayashi, Tanaka, Hasegawa 

and Mizutani 51), 52) reported that the tetragonal cuprate La4Ba2Cu201O (also called 

La2BaCu05), which we shall abbreviate as La422, exhibits ferromagnetism!·) A se

ries of experiments 51) - 53) has revealed that La422 is an ideal insulating ferromagnet 

with Curie temperature 5.2 K, where most of the magnetic moment comes from the 

spin 1/2 moments of the Cu2+ ions. 

The origin of the ferromagnetic coupling between Cu-ions within the ab-plane of 

La422 is expected to be described by the GKA rules, 52), 54) which involve exchange 

interactions between excited orbital states and ground orbital states. Ferromagnetic 

coupling along the c-axis seems to require more careful treatment. Along the c

axis, La422 forms a characteristic chain structure consisting of Cu, 0 and La. This 

is shown in Fig. 13. Interestingly enough, we see La and 0 forming a triangular 

structure similar to those in the (nearly-)flat-band models of §6. We stress that 

there are experimental results which strongly indicate that the existence of La is 

essential for the occurrence of ferromagnetism. One such result is the observation 

that the cuprate Nd2BaCu05, which has the same crystal structure as La422, exhibits 
antiferromagnetic ordering. 55), 56) It is pointed out that the essential difference is 

0) For sufficiently large U, the theorem is valid for t = 1.68, in which case the lower band 

occupies more than 1/4 of the whole range of the single-electron energy spectrum (including the 

gap). In this case the lower band may not even be "nearly-fiat" . 

.. ) Ferromagnetism was discovered while investigating the superconductor LaBa2 Cu3 07-y. 
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530 H. Tasaki 

that Nd has a magnetic moment, while La does not. This point is supported by 

the result 57) that ferromagnetism remains stable upon partial replacement of La in 

La422 by Eu, which has no magnetic moment. Another such result is from NMR 

measurement in La422 that there is a large hyperfine field at La sites. 58) This suggests 

that the magnetic moments are not sharply localized at eu-sites, but partially exist 

on La-sites as well (exactly as in the (nearly-) fiat-band models). 

On the other hand, a band calculation based on the Local Density Approxi

mation (LDA) 59) revealed that two bands of La422 near the fermi level are almost 
fiat.*) 

These observations about the lattice structure and the band structure may be 

regarded as clues that the ferromagnetism in La422 is related to the ferromagnetism 

in the Hubbard model with (nearly- )fiat-band. As far as the present author knows, 

this possible relation was first realized by Hirabayashi. 60) 

In fact it is not hard to construct a fiat-band Hubbard model on the lattice of 

Fig. 13 where hopping amplitudes are nonvanishing only on the bonds in the figure. 

We can prove that the model exhibits ferromagnetism when the number of electrons 

is identical to the number of eu-sites in the lattice. 

This theoretical result, however, seems to be almost irrelevant to the ferromag

netism in La422. Analysis of the orbital structures of La422 54
) suggests that a 

simplified **) but reasonable tight-binding description of the system is given by the 

lattice structure of Fig. 13 with one non-degenerate orbit per each site, and with 

the electron number equal to the number of eu-sites plus the twice the number 

of O-sites. (In other words, originally eu orbits are singly occupied, 0 orbits are 

doubly occupied, and La orbits are empty.) Then the resulting ferromagnetism is 

expected to be a "partial ferromagnetism" in which only spins from eu-sites align 

ferromagnetically. Unfortunately, we still do not know how to treat such partial 

ferromagnetism theoretically. 

Nevertheless we believe that there is a deep relation between the ferromagnetism 

.eu .La 00 c-aXlS 

Fig. 13. A chain of Cu, ° and La formed along the c-axis of La422. One finds a triangular structure 

formed by La and 0, which reminds us of the (nearly-)flat-band models of §6 . 

• ) In LDA calculations, the Coulomb interaction between electrons is supposed to be taken 

into account in a certain self-consistent manner. Therefore the flatness of two bands in the LDA 

calculation does not directly indicate that the corresponding tight-binding model has a flat band . 

.. ) This model is a slight simplification of the tight-binding model discussed in Ref. 54). 
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Fig. 14. In the second order perturbation in l/fo, the model of Fig. 13 reduces to a Hubbard model 

on the Cu-La chain in the figure with the electron number equal to the number of the Cu-sites. 

The new model falls into the class of (nearly- ) fiat-band ferromagnetism for suitable hopping 

amplitudes. This observation provides a crude link between the ferromagnetism in La422 and 

the (nearly-) fiat-band ferromagnetism. 

in La422 and that in Hubbard models with (nearly-)fiat-bands. It is a challenging 

problem to further investigate this relation both from the above described tight

binding model*) and from a continuum model. 

If one wishes to see a more direct connection between the ferromagnetism in 

La422 and the (nearly-)fiat-band ferromagnetism, one may try reducing the above 

Hubbard model to a simpler one by relying on some approximate argument. For ex

ample, one can consider the limit in which the on-site potential EO for O-sites (which 

is tx,x, with x being an O-site) is negative, and its absolute value is much larger than 

other Itx,yl. In this limit, all the O-sites are doubly occupied, and electrons (including 

those on Cu- and La-sites) cannot move on the lattice. If we consider a perturbation 

expansion in 1/100 up to second order, there arise effective hoppings between Cu-sites 

and La-sites, and between nearby Cu-sites. The model then reduces to an effective 

model with Cu-sites and La-sites, as in Fig. 14, with the electron number equal to 

the number of the Cu-sites. For suitable values of hopping amplitudes, the model 

falls into the class of (nearly-)fiat-band ferromagnetism of §6. This observation pro

vides a crude link between the ferromagnetism in La422 and the (nearly-)fiat-band 

ferromagnetism. 

0) Apart from numerical experiments (which are always possible), systematic perturbative cal

culations of "effective Hamiltonian" along the line of Refs. 50) and 54) are also possible and may 

be enlightening. 
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7.2. Possible ferromagnetism in quantum wires 

Recent developments in nanotechnology are making it possible to design var

ious atomic scale structures which should show nontrivial quantum behavior. In 

Ref. 61), Watanabe, Ichimura, Onogi, Ono, Hashizume, and Wada made a theoreti

cal study of the electronic properties of Ga adsorbates around dangling-bond wires 

on an H-terminated Si surface, and pointed out the possibility of ferromagnetism. 

The effective tight-binding model (which is not quite faithful to the actual lattice 

structure) used in Ref. 61) has the lattice and hopping structure shown in Fig. 15 

and has electron number*) Ne = N s/3. 

It is possible to construct Hubbard models with exactly the same hop
ping structure so that the models have flat lowest bands. 62) Let the lattice be 

A = {I, 2, ... , N s}, where Ns is a multiple of three, and impose periodic bound

ary conditions. The Hamiltonian is then 

N./3 

H = tEE ('\C3j-l,u + C3j-2,u + C3j,u)t('\C3j-l,U + C3j-2,u + C3j,u) 

j=1 u=j,l 

N./3 

+s E E (C3j,u + C3j+l,U)t(C3j,U + C3j+l,u) 

j=1 u=j,l 

~~ ~~ 

+u E (n3j-2,j n 3j-2,1 + n3j,j n 3j,1) + u' E n3j-l,jn3j-l,1, (7·1) 
j=1 j=1 

with t, s, U, U' > 0 and ,\ =1= o. This model has a flat lowest band with en

ergy O. For electron number Ne = N s/3, one can prove that the model exhibits 
ferromagnetism. 62) Since the discussion about the robustness of the flat-band ferro

magnetism applies to the present models as well, the present ferromagnetism is also 

expected to be stable against perturbations. 

1 2 3 4 5 6 7 8 9 

Fig. 15. The effective tight-binding model for the "quantum wire." It is possible to design Hubbard 

model with the same structure which shows flat-band ferromagnetism. 62) 

*) To be precise, 51B-filling with Ne = 5Ns/3 was considered in Ref. 61). This electron number 

is changed into Ne = Naj3 by using the hole-particle transformation. (See Appendix B.) One should 

note that the hole-particle transformation does not only change the signs of the hopping amplitudes, 

but it also introduces a difference in on-site potentials when U f- U' in the Hamiltonian (7·1). 
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§8. Towards metallic ferromagnetism 

8.1. Conjectures and some evidence 

Metallic ferromagnetism is a fascinating phenomenon in which electrons exhibit

ing ferromagnetism contribute to electric conductivity as well. Whether such simple 

models as the single-orbital Hubbard model can describe metallic ferromagnetism is 

an unsolved and intriguing problem. 

Nagaoka's ferromagnetism is certainly motivated by metallic ferromagnetism, 

and we believe it reveals some important aspects of a possible mechanism of metallic 

ferromagnetism. But for the models where the theorem is proved, the only dynamical 

freedom comes form the motion of the single "hole." We cannot expect the single 

hole to contribute to appreciable electric current in a bulk system. 

In the fiat-band models of §6.1 and the related nearly-fiat band models of §6.6, 

the existence of ferromagnetism is proved for special electron numbers. These elec

tron numbers correspond to the half-filling of the lowest bands, but since the ground 

states are ferromagnetic, the lowest bands become effectively fully filled. Then the 

systems should behave as (Mott) insulators. 

In the fiat-band models of §6.2 defined in dimensions greater than one, the ex

istence of ferromagnetism is proved 7), 8) for (not too small) electron numbers less 

than lEI. There is a similar rigorous result for Mielke's model in two dimensions. 15) 

We expect the models to describe a kind of metallic ferromagnetism, but the sit

uation is not clear because of pathological degeneracy in the (many-body) ground 

states. In any case, the fiat-band models, which are quite useful in describing the 

origin of exchange interaction in certain systems, are too singular to discuss electric 

cond uctivity. 

Promising candidates of simple models exhibiting metallic ferromagnetism are 

the nearly-fiat-band models (obtained by adding perturbations to the fiat-band mod

els) at filling factor v = N e /(2Ns ) different from vo = IEI/(2Ns ). For the case v < vo, 

the approximate projection method (similar to those described in Refs. 8) and 17), 

but based on a local Wannier basis) indicates that the low energy effective theory 

of these models is represented by the ferromagnetic t-J models in any dimension. 19) 

(The definition of the ferromagnetic t-J model can be found in §8.2.) This observa

tion leads us to the conjecture that these models exhibit metallic ferromagnetism at 

least when v < Vo is not too small and the model is sufficiently close to a fiat-band 

model. 
Penc, Shiba, Mila and Tsukagoshi 50) made a detailed study of related problems 

in one dimension, and found both theoretical and numerical evidences that the model 

exhibits metallic ferromagnetism for arbitrary filling factor within the range 0 < v 

< Vo = 1/4. That the ferromagnetism is stable for an arbitrarily small density refiects 

the special character of one-dimensional systems as noted in §3.3. Sakamoto and 
Kubo 63) also found strong numerical evidence that related one-dimensional models 

exhibit metallic ferromagnetism for 0 < v < Vo. 

Watanabe and Miyashita 64),65) treated the one-dimensional fiat-band Hubbard 

model of §6.2 for a filling factor v in the range 1/2 > v > Vo = 1/4. Since the 
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534 H. Tasaki 

lower band is totally filled for such electron densities, the flatness of the lower band 

is regarded as irrelevant. Note that the case with Ne = Ns - 1 is nothing but Na

gaoka's ferromagnetism; we have come back to Nagaoka's ferromagnetism following 

a different path! Watanabe and Miyashita found numerical evidence that the model 

exhibits metallic ferromagnetism for all densities they considered. 

A different (but in some sense related) candidate for a model with metallic fer

romagnetism is the so-called t-t' model. It is defined on the one-dimensional lattice 

A = {I, ... , N s }, and its hopping amplitudes are defined by tx,xH = txH,x = -t, 

tx ,x+2 = tx+2,x = t' for all x E A and tx,y = 0 otherwise. From a first order per
turbation theory, it was suggested 66), 67) that the model with U = 00 exhibits ferro

magnetism if t' > O. By considering a continuum limit theory, Muller-Hartmann 68) 

argued that the model exhibits metallic ferromagnetism when 4t' > It I > 0, U = 00, 

and the electron density is sufficiently low. There is numerical evidence that the t-t' 
model exhibits ferromagnetism. 26),69) 

Kohno 70) discussed the possibility of metallic ferromagnetism in the Hubbard 

model on a ladder. Both perturbation theory and numerical calculations suggest that 

metallic ferromagnetism appears for electron numbers satisfying N s/2 < Ne < N s. 

It is interesting that, in this model, itinerant electrons in upper bands play essential 

roles in generating ferromagnetism . 

. Unfortunately, none of the above conjectures have yet been confirmed 
rigorously. *) 

8.2. Ferromagnetic t-J model 

In the present and following sections, we discuss some rigorous results concern

ing (metallic) ferromagnetism in one-dimensional models with U -t 00 related to 

the Hubbard model. Thanks to the special nature of one-dimensional models, all 

the results can be obtained by straightforward applications of the Perron-Frobenius 

theorem. As far as we know, such an application of the Perron-Frobenius theorem 

to metallic ferromagnetism in one dimension was developed in the pioneering work 

of Kubo, 72) where he studied the double exchange model. Although the results we 

shall discuss appear to be somewhat similar to the conjectures in the previous sec

tion, we still have no idea if they shed light on the truly fascinating problem of 

metallic ferromagnetism in the Hubbard model. 

We first discuss the ferromagnetic t-J model. This is not an interesting model 

(in one dimension), but helps us in illustrating the basic structure of the proof that 

we use for other models. Unlike the Hubbard model, this model contains spin-

*) In a fermion system on a finite lattice, a formal perturbation series alway converges because 

the operators are finite dimensional. Then one might think that the first order perturbation theories 

of Refs. 66), 67) and 70) imply weak rigorous results that a finite model exhibits ferromagnetism for 

sufficiently small t' / t (or til / t 1. ) . However, this is not the case since there are no estimates of the 

energy difference between the ground state and the first excited state, and there remains a possibility 

that the higher order perturbations change the nature of the ground state for any small values of the 

expansion parameter. The situation is different from that of Nagaoka's ferromagnetism, where the 

result for U = 00 automatically implies the same result for sufficiently large U (in a finite system). 

For an example of rigorous (and general) perturbation theory for quantum many-body systems, see 

Ref. 71). 
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spin interactions which explicitly favor ferromagnetism. The problem is whether 

ferromagnetism is realized in the presence of hopping. As we shall see (and is well

known), the problem is trivial in one dimension. 

Consider the one-dimensional lattice A = {I, ... , N s }. The Hamiltonian of the 

ferromagnetic t-J model is 

Ns Ns ( ) N. _ t ~ ~ nxnx+l 
H - -t ~ ~ (cx,,,.CX+l,,,. + h.c.) - J ~ Sx' Sx+l - 4 + U ~ n x, rnx,!, 

x-l"._ T,! x-l x-l 

(8·1) 
with t > 0, J > O. Here h.c. represents the hermitian conjugate. We let U ---t 00 to 

inhibit double occupancies. We use periodic boundary conditions and identify the 

site N s+ 1 with 1. The spin operator at site x is defined as Sx = E".,r ct".(p(a))".,r cx,,,.. 

(See (3·1).) 

Theorem 8.1 (Ferromagnetism in the one-dimensional ferromagnetic t-J 

model) Assume that the electron number Ne satisfies Ne :::; Ns and is odd:) Then 

the ground states of the present t-J model have total spin Stat = Smax( = N e/2), and 

are non-degenerate apart from the trivial (2Smax + I)-fold degeneracy. 

Proof: The proof is based on an elementary observation which one may call a rigorous 

"spin-charge separation" argument. (See Ref. 50) and references therein.) To take 

into account the U ---t 00 limit (with the help of Lemma 4.2), we use as our basis 

the collection of the states (2·10) with Xl < X2 < ... < XNe and (Jj = j,l such that 

s1!l = E~l (Jj = 1/2. The theory of angular momenta ensures that any eigenstate of 

H has its copy in the sector with the lowest I s1!ll. This sector is spanned by this basis. 

We first claim that all the matrix elements of H in the present basis are non positive. 

As for the hopping term, this is trivial since there is no exchange in electron ordering 

and one does not have to worry about fermion signs.**) As for the exchange term, this 

is easily verified by using the identity Sx,SX+l = (8: 8;+l +8; 8:+l)/2+8~3) 8~~1. It is 

also verified that all the basis states are connected via nonvanishing matrix elements 

of H. Note that the existence of the exchange term is essential for this property. 

Therefore we can readily apply the Perron-Frobenius theorem (Theorem 4.3) to 

conclude that the ground state tPGS is unique (in this sector), and it is a linear 

combination of all the basis states with positive coefficients. 

This fact indeed implies that for tPGS , Stat = Smax. To see this, we first note 

that uniqueness of the ground state implies that tPGS is an eigenstate of (Stat)2. We 

( 
~ )(Ne-

l
)/2 ( Nt) 

then take a reference state tP = Stat nx~l cx,r tPvac , which obviously has 

s1!l = 1/2 and Stat = Smax. Clearly tP is written as a linear combination of basis 

*) We can allow any Ne ~ Ns if we use open boundary conditions. Peculiar dependence of the 

nature of the ground states on the parity of the electron number and boundary conditions is related 

to the appearance of spiral states. (See Refs. 72), 73), 50) and 65).) 

**) Hops between sites 1 and Ne are exceptional, but these do not produce any signs if Ne is 

odd. When Ne is even, such hops generate a "wrong" sign for the Perron-F'robenius theorem. This 
"frustration" can be regarded as the origin of the spiral states. 72),73),50),65) 
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536 H. Tasaki 

states (2·10) with nonnegative coefficients. Thus we see (q), q)Gs) -# 0, which implies 

that Stot = Smax also holds for !l>Gs .• 

Once knowing that the ground states have Stot = Smax, we can look at the ground 

state with s~~l = Smax· Then it is apparent that the term (Sx . SX+l - nxnx+l/4) 

always vanishes, and hence the ground state is identical to that of H hop ' Then we 

have the exact expression for the ground state 

(8·2) 

where'l1(k) is the plane wave state (2·5), and kF = rr(Ne - 1)/(2£) is the fermi mo

mentum. The ground state allows gap less (charge) excitations, and hence describes 

a metallic system. 

Unfortunately, the above theorem and proof do not shed any light on the cor

responding problems in higher dimensions, which are much more important and 

interesting. The proof for the one-dimensional case relies heavily on the fact that 

essentially no nontrivial spin exchanges take place when U = 00 and J = O. The 

system suddenly becomes ferromagnetic when we turn on arbitrarily small J > O. 

In the corresponding problem in higher dimensional lattices (or even on slightly 

more complicated one-dimensional lattices, like a ladder), there are highly nontrivial 

exchange processes even for J = O. There is no guarantee that one gets ferromag

netism when introducing an explicit ferromagnetic interaction, J> O. We of course 

believe that the ferromagnetic t-J models in higher dimensions also exhibit ferro

magnetism for sufficiently large J/t and p = Ne/Ns, but we have no idea how one 

can prove such a statement. Although "proving ferromagnetism in the ferromagnetic 

t-J models" might sound like a tautology at first glance, it is indeed a very difficult 

and deep problem, whose solution should shed light on various aspects of strongly 

interacting itinerant electron systems. 

8.3. Hubbard model with correlated hopping 

In this section, we discuss an artificial model which (like the Hubbard model, 

and unlike the t-J model) have no interactions explicitly favoring ferromagnetism, 

but in which we can still prove the appearance of (probably metallic) ferromagnetism 

in a wide range of parameters and electron density. 

Take the one-dimensional lattice A = {I, ... , N s} with even N s, and impose peri

odic boundary conditions by identifying Ns+x with x. We consider the Hamiltonian 

~ ~~ 

H =-t L L (c~,O'cX+l,O' + h.c.) + t' L L (C~j,O'c2j+2,O'n2j+l + h.c.) 
x=IO'=i,~ j=IO'=i,! 

Ns 

+ ULnx,inx,~, (8·3) 
x=1 

where we set t > 0, t' > O. We will take the U ~ 00 limit. 
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This resembles the Hubbard model with next-nearest-neighbor hopping, but 

the hopping term with t
f has an extra number operator n2j+1 = n2j+l,1 + n2j+1,!' 

Thus a hop between 2j and 2j + 2 is possible only when 2j + 1 is occupied by an 

electron. Note, however, that such density-dependent hopping terms themselves are 

completely spin-independent, and do not prefer ferromagnetism. Nevertheless we 

have the following. 

Theorem 8.2 (Ferromagnetism in the model with correlated hopping) 

Consider the model (8·3) in the limit U --+ 00 with any odd electron number N e • 

Then the ground states have total spin Stot = Smax (= N e / 2), and are non-degenerate 

apart from the trivial (2Smax + I)-fold degeneracy. 

Proof: Exactly as in the proof of Theorem 8.1, we take account of the U --+ 00 limit 

by using the basis states (2·10) with Xl < X2 < ... < XNe and (Jj = j, t such that 

S~!f = Ef~l (Jj = 1/2. It is again trivial to check that the nearest-neighbor hopping 

terms in (8·3) have nonpositive matrix elements. By definition, an electron hops 

between even sites X and X + 2 only when x + 1 is occupied. Then, such a hop is 

always associated with a change of ordering in electrons. (See Fig. 16.) This yields 

a minus sign, resulting again in nonpositive matrix elements. 

It remains to prove that all the basis states (with S~!f = 1/2) are connected with 

each other by nonvanishing matrix elements. However, this is already proved in the 

one hole case in §4.3, and extensions to the multiple holes are trivial. Thus we can 

apply the Perron-Frobenius theorem exactly as in the proof of Theorem 8.1. • 

We believe that the ferromagnetic ground states of the present model have a 

metallic character. But this is not as obvious as in the case of the t-J model. The 

model remains strongly interacting in the sector with s~!l = Smax, and it is not easy 

to investigate the properties of the ground states. 

It is clear that the above theorem extends to much more general models with 

additional density-density interactions and on-site potential provided that there are 

nearest-neighbor and next-nearest-neighbor (possibly site-dependent) hoppings with 

the correct signs. An interesting extension is obtained by replacing the second sum 

in (8·3) over even sites with a sum over all the sites as 

~ ~ ~ 

HI = -t L L (c~,uCX+1,U + h.c.) + t' L L (c~,uCX+2,u n x+1 + h.c.) + U L n x , 1nx ,!' 

x=l u=l ,! x=l u=l,! x=l 

(8·4) 

This defines a translation invariant model which resembles the t-t' model. Of course 

the same proof as above shows that the model exhibits ferromagnetism for U = 00. 

To see the relation between the model (8·4) and the t-t' model, consider the 

Hamiltonian 
Ns 

H2 = HI + til L L {c~,uCX+2,u(1- nx+l) + h.c.}. (8·5) 
x=l u=l,! 

When til = t', this becomes the Hamiltonian of the t-t' model, while it defines a 

controllable model (8·4) when til = O. One finds that the til-term in (8·5) (along 
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with other terms) generates an antiferromagnetic interaction. Therefore in order to 

control the possible ferromagnetism in the t-t' model, one has to deal with the com

petition between the t'-term and the til-term in (8·5), which seems to be a nontrivial 
task.*) 

8.4. Limiting U -V model 

We consider another toy model (which perhaps is slightly less artificial than the 

one in the previous section) obtained by adding a strong nearest-neighbor repulsion to 

the Hubbard model. Again we can prove the existence of (metallic) ferromagnetism 

easily. 

Take the one-dimensional lattice A = {1, ... , N s } with even N s , and impose 

periodic boundary conditions. We consider a model with electron number Ne in the 

range Ns > Ne > N s/2, and with the Hamiltonian 

Ns N s/2 

H = -t L L (c!"uCX+l,u + h.c.) + t' L L (~j,UC2j+2,u + h.c.) 
x=l u=j,! j=l u=j,! 

(8·6) 

where we require t > 0 and t' > O. We will consider the U, V -+ 00 limits. The new 

nearest neighbor repulsion term is normalized so that the minimum energy for this 

term is zero. Note that the hopping amplitudes in the above model can be gauge 

transformed**) to satisfy the condition for Nagaoka's theorem. 

As in the Hubbard model, none of the terms in (8·6) explicitly favor ferromag

netism. Nevertheless we can prove that they together generate ferromagnetism. 

Theorem 8.3 (Ferromagnetism in the limiting U-V model) 

Consider the model (8·6) in the limits U -+ 00 and V -+ 00 with odd Ne such 

that Ns > Ne > Ns/2. Then the ground states have total spin Stot = Smax(= Ne/2), 

and are non-degenerate apart from the trivial (2Smax + 1)-fold degeneracy. 

Proof: We take into account the V -+ 00 limit exactly as in Lemma 4.2. Now 

our basis states are (2·10) with Xl < X2 < ... < XNe and (Jj =j, 1, where Xl"'" XNe 

must further satisfy the condition that the nearest-neighbor repulsion term in (8·6) is 

minimized. When Ne > Ns/2, this condition implies that there can be no neighboring 

holes in the relevant basis states. This guarantees that an electron hops between even 

sites X and X + 2 only when X + 1 is occupied. (See Fig. 16.) The remainder of the 

proof is the same as that of Theorem 8.2 .• 

Again, this result can be extended to various more complicated models. 

Note that the nature of the model is quite different for electron numbers Ne 

~ Ns/2 (in which case we drop -(2Ne - Ns) from the Hamiltonian (8·6)). In the 

limits U -+ 00 and V -+ 00, configurations with neighboring electrons are inhibited, 

.) One does not face this competition in first order perturbation theory. 66), 67) 

.. ) Take A' in Appendix A as the set of even sites. 
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x x+l x+2 

Fig. 16. The essential electron exchange process in the correlated hopping model and the limiting 

U-V model. In the limiting U-V model with Ne > Ns/2, sites x -1 and x+ 1 must be occupied 

when x is empty. Then the ordering of electrons always changes when an electron hops from 

x + 2 to x. In the model with correlated hopping, the same fact is guaranteed by the definition. 

and hence exchange processes never take place. In this case the model should exhibit 

paramagnetism. This is consistent with a numerical work 74) where a shift in the 

ferromagnetic region as a result of finite V is reported for Ne ::; N s/2. We expect 

that a finite value of V enlarges the region of ferromagnetism for N s/2 < Ne < N s. 

Appendix A 
-- Gauge Transformation--

The signs of the hopping amplitude tx,y can be partially changed by means of 

gauge transformations. Let A' be an arbitrary subset of A. We define the new 

operators ex,u by ex,u = -cx,u if x E A' and ex,u = cx,u if x ¢ A'. Since ex,u also 
satisfy the canonical anticommtitation relations (2·6) and (2·7), we can use these 

operators to describe the system. Then the hopping Hamiltonian (2·26) is written 

as 

H _"t'-t-
hop - ~ x,yCx,uCy,u, (A· 1) 

x,yEA 
u=i ,1 

with t~,y = tx,y if both x and y are in A' or if neither x nor y is in A', and t~,y = -tx,y 

if exactly one of x and y is in A'. 
The model is said to be bipartite when there is a subset A' with the property 

that tx,y = 0 if both x and y are in A' or if neither x nor y is in A'. In a bipartite 

system, we can use the above gauge transformation to change the signs of all the 

hopping amplitudes. A typical example is the model on the simple cubic lattice with 

only nearest-neighbor hoppings. 

Appendix B 
-- Hole-Particle Transformation--

Let us discuss a simple and standard transformation which maps a Hubbard 

model onto a different Hubbard model with (usually) different electron number. 

We define the new operators ex,u by ex,u = ct,u. This simply means that we 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

9
/4

/4
8
9
/1

8
4
0
8
9
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



540 H. Tasaki 

switch the creation and the annihilation operators. Since the cx,u also satisfy the 

canonical anticommutation relations (2·6) and (2·7), we can use these operators 

to describe the system. From (2·6), the new number operator nx,u = ctucx,u is 

related to the original number operator by nx u = 1 - nx u. Therefore the new 

total electron number ire (which is an eigenvalu~ of LXEA,u=r',l nx,u) is related to the 

original electron number by ire = 2Ns - N e. 

The hopping Hamiltonian (2·26) is written as 

Hhop = L (-tx,y)c~,uCy,U + 2 L tx,x, (B·1) 
x~EA xEA 
u=j,l 

and the interaction Hamiltonian (2·31) as 

xEA 

= U L nx,jnx,l - U L nx,u + NsU. (B·2) 
xEA xEA 

u=i.1 

Note that (B·2) has exactly the same form as the original interaction Hamiltonian 

(2·31), apart from the constant term and the term proportional to the total electron 

number, which simply shift the total energy. 

Appendix C 
-- Positive Semidefinite Operators--

We summarize the definition and elementary properties of positive semidefinite 

operators (or matrices) which we used in the main body of the paper. They should 

be well-known to readers with a mathematical background. 

Let H be a finite dimensional Hilbert space with inner product (., .). In the 

paper, H may be HN
e 

or ~. 

Definition C.l (Positive semidefiniteness) For an operator (or matrix) on H, 

we write A 2:: 0 and say A is positive semidefinite if A is self-adjoint (or hermitian) 

and we have (qJ, AqJ) 2:: 0 for any qJ E H. For two self-adjoint operators A and B, 

we write A 2:: B if A - B 2:: o. 

The following statement is easily proved by diagonalizing A. 

Lemma C.2 (Positive semidefiniteness and eigenvalues) A self-adjoint oper

ator (or a hermitian matrix) A is positive semidefinite if and only if all the eigen

values of A are nonnegative. 

The following lemma provides a standard way of constructing a positive semidef

inite operator. 

Lemma C.3 Let B be an arbitrary operator (or matrix) on H. Then A = BtB is 

positive semidefinite. 
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Proof: Observe that for any IP, we have (IP, BtBIP) = (BIP, BIP) ~ O .• 

Conversely, any A ~ 0 can be expressed as A = B2 with some B ~ O. This is 
most easily verified by diagonalizing A. 

The following lemma is used repeatedly in the main body of the paper. 

Lemma C.4 (The sum of positive semidefinite operators) If A ~ 0 and 

B ~ 0, we have A + B ~ O. 

Proof: Assume that A + B has an eigenstate IP with a negative eigenvalue. Then we 

get 0 > (IP, (A + B)IP) = (IP, AlP) + (IP, BIP) ~ 0, which is a contradiction .• 

The following is trivial if we expand IP into eigenstates of A. 

Lemma C.S Let A ~ O. Then (IP, AlP) = 0 is equivalent to AlP = O. 

The following lemma is also useful. 

Lemma C.6 Let Ai ~ 0 for i = 1, ... , n. Then L:~=l AiIP = 0 implies AiIP = 0 for 

each i = 1, ... , n. 

Proof: Since L:~=l AiIP = 0, we have 0 = (IP, L:~=l AiIP) = L:~l (IP, AiIP). By noting 
that (IP, AiIP) ~ 0, this means (IP, AlP) = 0 for each i = 1, ... , n. We then use 

Lemma C.5 .• 

We finally state the following lemma, which sometimes provides us with a pow

erful information. 

Lemma C.7 Assume that A ~ 0 is expressed as A = Bt B where B is not necessarily 

self-adjoint. Then AlP = 0 implies BIP = O. 

Proof: Since Bt BIP = 0, we have 0 = (IP, Bt BIP) = (BIP, BIP) which means BIP = O .• 

Appendix D 
-- Explicit Construction of the Hilbert Space and Fermion Opemtors--

In §2.2, we first introduced the algebra of fermion operators, and then defined the 

Hilbert space by operating (a representation of) the algebra onto a single state IPvac. 
There is no problem in making the discussion mathematically rigorous since both 

the algebra and the Hilbert space are finite dimensional. However, readers familiar 

with fields like functional analysis might feel more comfortable if the Hilbert space is 

first defined explicitly and then the operators are defined. Here we explicitly define 

the Hilbert space and the fermion operators following the standard approach. *) 

Let A = A x {i, n be the configuration space for a single electron. We denote its 

elements as**) u, Ul, U2,' .. E A. The Hilbert space for a single electron is £2(..1; C). 

0) For more details, see, for example, §5.2 of Ref. 75) . 

.. ) Of course u = (x,D') with x E A and 0' = i,l. 
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For n = 0,1, ... , 2Ns , we define the n-electron Hilbert space 1in by 1io = C, and 

1in = P_ £2(A; C) ® ... ® £2(A; C), (D·1) 
, f 

n 

where P_ is the projection operator onto functions which are antisymmetric under 

exchanges of any two variables. More precisely, it is defined as 

1 
P-'Ij;(Ull ... , un) = , L (-l)P'lj;(Up(l)' ... ' Up(n»), (D·2) 

n. p:(l, ... ,n)-+(p(l), ... ,p(n» 

where p is summed over all permutations of (1, ... , n), and (-l)P denotes the parity 

of p. 

We now define the fermion operators. For 'Ij; E 1io, we let cu'Ij; = o. For 'Ij; E 1in 
with n ~ 1, we let 

(D·3) 

where cu'lj; E 'Hn- 1· On 'Ij; E 1in with n < 2Ns , the adjoint operator ct acts as 

1 n+1 
(C~'Ij;)(Ub ... ' Un+1) = v'11+1 L( -1)j+18u,uj'lj;(U1, ... , Uj-1, Uj+ll···, Un+1) , 

n + 1 j=l 

(D·4) 

where ct'lj; E 'Hn+1. For 'IjJ E 1i2Ns ' we let ct'IjJ = O. 

It is natural to regard the operators Cu : 1tn ---t 1in- 1 and ct : 1in ---t 1in+1 as 

acting on the Fock space 

(D·5) 
n=O 

Finally, we take a basis state (say 1) of the Hilbert space 1-£0 = C, and identify 

it with ~vac. Then it is not difficult to check that states of the form (2·10) form a 

basis of the Hilbert space 1iNe . 

As examples, let us calculate f = (ct~vac) E 1i1 and 9 = (ctf) = (ctct~vac) 
E 1-£2, where we understand that ~vac = 1. From (D·4), we have f(ud = (Ct1)(U1) 

= 8V ,Ul' Similarly we get 

g(U1' U2) = (Ctf)(U1' U2) 

1 
= J2 {8w,uJ(U2) - 8w,uJ(Ul)} 

1 
= J2 (8W,Ul 8V,U2 - 8W,U2 8V,Ul) . (D·6) 

Note that 9 is antisymmetric under the exchange of the names of the two particles. 

This is a special case of more general states 

(D·7) 

which are known as the Slater determinant states. 
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Appendix E 
-- Band Structures in Single-Electron Energy Spectra--

Here we explain (for readers without background in condensed matter physics) 

the notion of band structure in a single-electron problem. The readers will find the 

notion quite elementary,*) especially in a tight-binding model. 

We realize the lattice A as a subset of the d-dimensional Lx· .. x L torus 

(E·l) 

where the identification f"V is defined by x f"V Y {::::=} X - Y E L7lf Here L is a positive 

integer. Let the unit cell U C [0, l)d be a set of finite points (sites). The number 

of sites lUI in the unit cell will determine the number of bands. Assume that the 

lattice A can be written as 

A = {x + z I x E U, Z E {O, 1, ... , L - l}d}. (E-2) 

We then assume that the hopping matrix T = (t x ,y)x,YEI1 has translational 
invariance**) 

(E·3) 

for any x, yEA and Z E tlf We note that perfect translational invariance is never 

possible in real physical systems which always have boundaries.***) We often take 

artificial periodic boundary conditions because we want to concentrate on universal 

behavior taking place in the bulk of the system. 

We are interested in the eigenvalue problem Ei.p = T i.p or 

(E·4) 

for a single electron. The translational invariance (E·3) suggests that we look for 

eigenstates in the form 
ik·x 

'Px = e vu(x), (E·5) 

where k E K is a wave vector, u(x) is the unique element in U such that x-u(x) E 7ld , 

and v = (Vu)uEU is a lUI-dimensional vector. The set of wave vectors K consists of 

k = «2rr/L)nl, ... ,(2rr/L)nd) with nj = 0,±I, ... ,±{(L/2) -1},L/2 (where we 

assume L to be even). By substituting (E-5) into (E-4), we get 

EVu = L T~~2, Vu" 
(E·6) 

u'EU 

*) In the band theory of electrons in solids, one usually talks about band structures in an 

"effective single-electron problem" (defined through complicated self-consistency arguments) in in

teracting many-electron problems. To explain this theory is beyond the scope of the present article 

(and the ability of the author). 

**) We of course identify x + z and y + z as elements in TL by using the identification ~ if 

necessary. 

-**) The presence of boundaries does not change the band structure drastically, but introduces 

extra eigenstates which mainly live on the boundaries. Analysis of single-particle eigenstates may 

not be easy. 
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E\k) 

4t 

-L--------~------~k 
1t 

Fig. 17. The dispersion relations and the corresponding band structure of the simple one

dimensional model with next-nearest-neighbor hoppings with t = t'/2 > 0 and V = O. The 

spectrum consists of the two bands separated by a finite band gap. 

with 
T~~2, = L: tu,y eik.(y-u). (E·7) 

yEA s.t. u(y)=u' 

For each k E K, (E·6) has lUI eigenvalues that we denote as cj(k) with j = 1, ... , lUI. 
We can choose cj(k) so that cj(k) is an analytic function of k E (-71", 7I"jd for each j. 

Consequently, the spectrum of the hopping matrix T is decomposed as 

lUI 

O"(T) = U O"j(T), (E·8) 
j=1 

with O"j(T) = {cj(k) IkE K}. Each O"j(T) is called an energy band. The function 

C j (k) is called the dispersion relation of the j-th band. 

Let us discuss a simple example with two bands. Let d = 1, and take U 

= {O,1/2}. The resulting lattice is A = {O, 1/2, 1,3/2, ... , L - (1/2)}. We de

fine the hopping matrix T = (tx,y)x,YEA by tx,y = t' if Ix - yl = 1/2, tx,y = t if 

x, y E Z and Ix - yl = 1, tx,x = V if x + 1/2 E Z, and tx,y = 0 otherwise. Then the 
eigenvalue equation (E·6) becomes 

( vo) (2tcosk 2t' cOs(k/2)) ( Vo ) . 
C V1/2 = 2t' cos(k/2) V Vl/2-

The two eigenvalues of (E·g) define two dispersion relations 

C1,2(k) = ~ { V + 2t cos k =F V (V - 2t cos k)2 + (4t' cos(k/2))2 } . 

(See Fig. 17.) 

(E·g) 

(E·lO) 

Consider special cases where the parameters t' and V can be written as t' = )..t 

and V = ()..2 - 2)t with the parameter).. > O. Then (E·lO) becomes c1(k) = -2t and 

c2(k) = )..2t + 2tcosk. The model becomes the flat-band model*) discussed in §6.3. 

*) We recover the dispersion relation at the end of §6.3 if we shift the energy by 2t. 
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Appendix F 
-- Proof of Theorem 3.3 --

We describe estimates required for the proof of Theorem 3.3. Although the cal

culations are straightforward, they illustrate some standard techniques we encounter 

in many-fermion problems and may serve as a good exercise for beginners. 

First note that the sate I[! defined in (3·6) satisfies nx,LnY,LI[! = 0 for any x =1= y 

since there is only one 1 electron. Then the definition (3·9) of the variational state 

¥ simplifies as 

¥ = Pol[! = (1 - v)l[!, (F·1) 

with v = 2:xE A nx,tnx,L. To evaluate the energy expectation value of (3·U), we 

observe that 

(¥, ¥) = (Pol[!, Pol[!) = (I[!, Pol[!) = 1 - (I[!, vtIt) , (F·2) 

and 

(¥, HhOP¥) = (tIt, (1 - v)Hhop(l - v)l[!) 

= (tIt, HhoptIt) - (tIt, v Hhopl[!) - (I[!, HhopvtIt) + (I[!, v HhopvtIt) 

= E~(l - 2 (tIt, vl[!)) + (I[!, vHhopvtIt) , (F·3) 

where we used Hhopl[! = E~I[! and (I[!, I[!) = 1. Thus we need to estimate the quanti

ties (tIt, vI[!) and (I[!, VHhopVtIt). 
The best way to evaluate these quantities is to go into a Fourier representa

tion and express everything in terms of the aj,~ operators of (2·27). By using the 

completeness relation 2:f~1 ('I/J~~»)*'I/J;':;) = 8X ,x" we find the inverse of (2·27) is 

N. 

C -" ol,(j)a· 
x,u - L.-J'+'x J,lT" (F·4) 

j=1 

This leads us to the representations 

N. 

v= "v. at a at a L...J p,q,r,s p, t q, t r,L s,L, (F·5) 
p,q,r,s=l 

with 
v. = "(ol.(P»)*.I.(q)(.,.(r»)*.I.(S) 

p,q,r,s L..J 'fix o/x 'fix 't'x' (F·6) 
xEA 

and 
N. 

Hhop = L L Cj a~,~aj,~. (F·7) 
j=1 ~=t,L 

All we have to do now is to substitute (F·5) ,and (F·7) into the desired quantities, 

and use the anticommutation relations {aj,~, ak,T} = 0, {aj,~, ak,T} = 8j,k8~,Tl the 
definition (3·6) of I[!, and the fact that aj,~qJvac = o. Then we obtain 

Ne- 1 

(tIt, vI[!) = L Vp,p,1,1 

p=1 
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(>p, v Hiopv>p) = (~' €;) (>P, P>P) - ~ (1)1>;'' I' 1:;' €.I>I>~' I') 

+ ~ (tx,xl>l>;"I'1:;' I>I>~'I') , (F·9) 

and 

(>p, P Ht."iJ>P) = X~A {tx" (1:;' I>I>~' I') (~' l>I>i" I') (>1>;")'>1>;" } 

+ X~A {tx" (1:;' (>1>~')'>I>i") (.~. >1>;"(>1>;")') (>1>;")'>I>i" } 

= L {tx,x (1:111jJ~)12) 11jJ~1)12} + R, (P·lO) 
xEA p=l 

with 

s.t. xf.y 

s.t. xf.y 

(P·ll) 

where we have used the fact that ",N:'.. C (o/,(p))*o/,(p) = t and ",N:'.. (o/,(p))*o/,(p) 
L...,p_l p 'Vx 'Vy x,y L...,p_l 'Vx 'Vy 

= 8x ,y. We also made the obvious decomposition H hop = H~op + H~op. 
By collecting all the estimates, we get 

2([ - Cl) (w, Dw) R 
= Cl - CNe + 1 _ (W, Dw) + 1 _ (W, Dw) , (P·12) 

with 

t = ~ (tx,xl>l>;"I' 1:;' I>I>~'I') 

~ (11jJ~1)121:;1 11jJ~)12) 
(P·13) 
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To proceed further, we assume that there is a constant a > 0 independent of x, 

Ns and p = 1, ... ,Ns, and we have*) 

i ·,,(p)i<~. o/x - VNs (F·14) 

Note that if the model possesses translational invariance as in Appendix E, then the 

bound is true with a = v1Uf. We also assume that maxxEA tx,x, maxxEA E yEA itx,yi, 
and Cl converge to finite quantities as Ns ~ 00, which is again trivially valid in 

translation invariant models. With the requirement (F·14), we obtain iRi :S const p2, 

which means that R gives only negligible contributions for small p. Since we also 

find (If/, vlf/) ex: p, the bound (F·12) implies the desired estimate (3·11). 

It is a pleasure to thank Izumi Hirabayashi and Koichi Kusakabe for valuable 

discussions related to the material in §7.1, and Shun-Qing Shen for valuable discus

sions about the t_tf model. I also thank Fumihiko Nakano and Yuuki Watanabe for 

various useful comments on the manuscript. 
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