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1 Introduction

The fluctuations of spacetime near a horizon can be described by a fluid equation, as first

found almost forty years ago [1, 2]. Further development of this idea led to the membrane

paradigm [3–9], in which the fluid lives on a stretched horizon. The advent of AdS-CFT

duality twenty years ago allowed for a version of fluid-gravity duality where the dual fluid

arises from the gauge theory living on the AdS boundary [10–19]; for reviews see [14, 20–23].

More recently, the cutoff surface approach to fluid-gravity duality, pioneered in [24, 25]

and extended in [25–33], built a precise version of the membrane paradigm which defines

the fluid via the extrinsic curvature of an intrinsically flat hyperbolic ‘cutoff’ surface held
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outside the horizon. In the formulation of cutoff surface fluid-gravity we follow in this

paper, [25], the Einstein constraint equations on the hyperbolic cutoff surface become the

nonlinear incompressible Navier-Stokes equations, while solving the remaining Einstein

equations defines the rest of the spacetime. We will work mostly with the low order terms

in the long-wavelength or hydrodynamic limit, which amounts to a gradient expansion; as

shown in [27], this procedure does allow a full perturbative expansion.

The classical double copy as first presented in [34] builds a map between classical

gravity solutions and classical Yang-Mills solutions, based on the color-kinematics duality

valid at the amplitude level (see [35] for a comprehensive review). Since the metric of

the gravitational solution is built out of two copies of the classical Yang-Mills solution,

the Yang-Mills solution is referred to as the ‘single copy’ of the corresponding metric, and

there is also a corresponding Klein-Gordon scalar solution termed the ‘zeroth copy’. As an

example, the single copy of the Schwarzschild black hole metric is the field arrangement due

to a color charge at the origin, when the dilaton expectation value is tuned to zero [36].

Many other examples of the classical double copy have been built [37–53], including to

some broad classes of spacetime [54]. Furthermore [55–64] have used this classical mapping

to improve the perturbative series used in analytic calculations of black hole collisions.

We build herein the single copy gauge fields which map to fluid-dual metrics, for two

different classes of Navier-Stokes solutions. We are able to accomplish this map by relying

on the algebraic speciality of these fluid-dual metrics. A spacetime is algebraically special

if its Weyl tensor exhibits extra symmetry; specifically, if two or more of its principal

null vectors coincide. In four dimensions, spacetimes of Petrov type D have two pairs of

coinciding principle null vectors, while spacetimes of type N have all four principal null

vectors coincident. Using the constrained form of the Weyl tensor for algebraically special

spacetimes, [54] exhibited a single copy gauge field (and zeroth copy scalar field) valid for

every type D vacuum solution to general relativity.

As [25, 30] note, the spacetime corresponding to the fluid metric is algebraically special;

for four dimensions, the spacetime has Petrov type II. As we will show, further restricting

the fluid results in higher algebraic speciality. We focus on two special fluid classes: con-

stant vorticity fluids and potential flows. Constant vorticity fluids are dual to spacetime

metrics with Petrov type D, while potential flow fluids are dual to metrics with Petrov

type N. Such fluids have also been studied in the context of holography, for instance for

flows with vorticity [65, 66]. Consequently, using the Weyl double copy proposed in [54],

we are able to exhibit the single copy gauge fields whose double copy metric is then dual to

either a constant vorticity fluid or a potential flow fluid. Since these gauge fields are in the

U(1) sector of the Yang-Mills theory, we have thus mapped two classes of Navier-Stokes

solutions to Maxwell solutions.

The gauge field corresponding to the constant vorticity fluid matches the constant

axial field within a large solenoid, while the zeroth copy is a constant. For the potential

flow fluids, the gauge field is the same for every potential flow; it corresponds to a static

Maxwell field with Poynting vector pointing towards the horizon. We find the scalar flow

potential maps to the zeroth copy scalar field. Thus, just as the nontrivial details of the

constant vorticity fluid map to the single copy field, the nontrivial details of the potential

flow fluid map instead on to the zeroth copy scalar potential.
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In section 2 we begin by reviewing the cutoff approach to fluid-gravity duality from [25].

In section 3, we briefly review the classical double copy story, focussing on the Weyl double

copy as developed in [54]. In section 4 we show that constant vorticity fluids map to type

D vacuum metrics, while potential flow fluids map to type N metrics. In sections 5 and 6

we build the single copy for the gauge fields associated with these metrics. In section 7 we

discuss the physical implications of our results and speculate on the viability of a classical

double copy picture for generic fluid-dual spacetimes.

2 The hydrodynamic limit and near-horizon expansion

In this section we review the cutoff surface formulation of fluid-gravity duality and reiterate

the equivalence between the hydrodynamic limit and the near horizon expansion explored

in [25]. In order to obtain Navier-Stokes equations from Einstein’s equations, we begin with

a background Rindler spacetime written in ingoing Eddington-Finkelstein coordinates:

ds2
0 = −rdτ2 + 2dτdr + dxidx

i. (2.1)

Here i, j will be the spacelike fluid directions; for a fluid in 2 + 1 dimensions, i, j run

over 1, 2 and the associated metric is four-dimensional. Constant r hypersurfaces in these

coordinates are intrinsically flat and foliate the spacetime metric into hyperbolic slices.

We then choose one such slice, r = rc, and perturb the spacetime there, generating

extrinsic curvature for the r = rc slice as embedded in the full spacetime. We identify this

extrinsic curvature κab with the fluid stress tensor Tab; here a, b run over the directions

along the rc slice (that is, a, b take values τ or i, j). The intrinsic metric of this slice γab
thus satisfies

γab = −rcdτ2 + dxjdxj , γabκ− κab ∼ TNSab . (2.2)

For these perturbations, we impose regularity and infalling boundary conditions at the null

horizon r = 0, thus generating the fluid-dual metric1

ds2 =− rdτ2 + 2dτdr + dxidx
i

− 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

− (r2 − r2
c )

rc
∂2vidx

idτ +O(ε3).

(2.3)

The ε here refers to the order in the hydrodynamic or long wavelength expansion, explicitly

∂i → ε, ∂τ → ε2, v → ε, P → ε2. (2.4)

1The flat space portion of this metric is written in ingoing Eddington-Finkelstein coordinates, which are

obtained from Minkoswki by setting , t+ ≡ (t + z)/
√

2 and t− ≡ (t − z)/
√

2. We then further transform

to r = t+t−/2 and τ = 2 log t+. In these coordinates, paths of constant τ correspond to ingoing light rays,

while surfaces of constant r correspond to the hyperbolae z2 − t2 = 4r.

– 3 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
7

The metric in (2.3) is arranged with background terms of order O(ε0) in the first line, O(ε)

terms in the second, and so on.

With these identifications, the r = rc constraint components of Einstein’s equations,

Gττ and Gτi, become incompressibility and the Navier-Stokes equation:

G00 = 0 =⇒ ∂ivi = 0,

G0i = 0 =⇒ ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0,
(2.5)

where the shear viscosity η is identified2 with rc.

As in [25], to relate the hydrodynamic limit to the near horizon limit, we introduce

hatted coordinates and variables:

xi =
rcx̂i
ε
, τ =

rcτ̂

ε2
, r = r̂rc, vi = εv̂i P = ε2P̂ . (2.6)

Next, we rescale the metric and define a new perturbative parameter λ:

ds2 → dŝ2 =
ε2

r2
c

ds2 z2 − t2 = 4rc → 4λ, λ ≡ ε2

rc
. (2.7)

This new expansion parameter λ controls the near horizon expansion. The limit λ → 0

sets the r = rc hypersurface to be null, just like the r = 0 Rindler horizon. In the near

horizon expansion the metric thus becomes

dŝ2 =− r̂

λ
dτ̂2

+
[
2dτ̂dr̂ + dx̂idx̂

i − 2(1− r̂)v̂idx̂idτ̂ + (1− r̂)(v̂2 + 2P̂ )dτ̂2
]

+ λ
[
(1− r̂)v̂iv̂jdx̂idx̂j − 2v̂idx̂

idr̂ + (v̂2 + 2P̂ )dτ̂dr̂

+ (r̂ − 1)[−(r̂ + 1)∂̂2v̂i + (v̂2 + 2P̂ )2v̂i + 4∂̂iP̂ ]dx̂dτ̂
]

+O(λ2).

(2.8)

In this sense [25] demonstrate that the near horizon expansion matches the long wavelength

limit, consistent with the perspective that horizons behave as incompressible fluids.

As discussed further in appendix C, the replacements

xi → εxi, τ → ε2τ, v → εv, P → ε2P. (2.9)

allow derivation of the incompressible Navier-Stokes equation starting from a solution of

more complicated equations; essentially, any other terms become higher order terms in the

ε expansion. Additionally, these replacements will bring a Navier-Stokes solution that is

not initially in the long wavelength limit (2.4) into that limit. The near horizon expansion

makes these replacements explicit, so it is valid for Navier-Stokes solutions that are not

naturally in the hydrodynamic limit, such as vortices. Consequently, although we mostly

use the hydrodynamic expansion ε below, we will return to the near horizon λ expansion

when necessary.

2Note that in the near horizon expansion η → 1.
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3 Classical double copy

In the past few decades, significant steps have been made towards a deeper understanding

of graviton scattering amplitudes and their relation to gauge scattering amplitudes. Most

relevant for this article is the double copy prescription (see [35] and references within for a

comprehensive review of the subject). Stated simply, the double copy obtains complicated

graviton scattering amplitudes from simpler gauge theory amplitudes. The gauge theory

amplitude AYM is written in a generalized gauge such that it takes the schematic form

AYM ∼
∑
k

nkck
propagators

, (3.1)

where the sum is over all three-point vertex graphs, the nk are the kinematic numerators

associated with each graph, and the ck are the color factors that satisfy a Jacobi identity of

the form ci + cj + ck = 0. The basic principle in obtaining the graviton amplitude relies on

a particularly simple duality between color and kinematics, the BCJ duality first presented

in [67], being made manifest.

The double copy prescription then provides the corresponding graviton amplitude,

Mgrav ∼
∑
k

nknk
propagators

, (3.2)

where the color factors ck have been replaced with a second set of kinematic numerators

nk that are organized to also satisfy a Jacobi identity of the same form. There is also a

‘zeroth copy’ in the amplitudes story, where starting with (3.1), replacing the kinematic

numerators ni with a second set of color factors c̃i builds scalar amplitudes of the form

Ascalar ∼
∑
k

ck c̃k
propagators

, (3.3)

for bi-adjoint scalars φaa
′
. As we will see below, a zeroth copy scalar can also be found in

the classical double copy story; it will play a significant role for the potential flow fluid class.

When the double copy procedure is applied to pure (non-supersymmetric) Yang-Mills

theory, the resulting theory on the gravity side is general relativity coupled to a two-

form field and a dilaton. Although these amplitude relations are perturbative quantum

statements, the authors of [34] used these relations to inspire a double copy mapping

between classical solutions in general relativity and classical solutions in the U(1) sector of

Yang-Mills.3 This relation is referred to as the classical double copy.

3.1 Kerr-Schild double copy

The key connection between the classical gravity and gauge theory solutions first presented

in [34] is the use of Kerr-Schild coordinates, where

gµν = ηµν + φkµkν . (3.4)

3Some nonabelian behavior is covered in e.g. [40, 53], but here we focus on only the abelian sector.
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Here, φ is a scalar function that plays the role of the zeroth copy, and satisfies the wave

equation over the flat background, ηµν∂µ∂νφ = 0. The vector kµ is null with respect to

both the full and background metrics,

gµνkµkν = ηµνkµkν = 0. (3.5)

This feature serves to truncate the inverse metric to gµν = ηµν − φkµkν , with the further

consequence that the null vector can be raised with either the background or full metric,

kµ = gµνkν = ηµνkν .

The classical double copy states that if gµν is a solution to the Einstein equations, then

the gauge field given by

Aaµ = caφkµ (3.6)

is a solution to Yang-Mills theory. Since the ca are just constant color factors in these

solutions, these solutions really live in a U(1) sector of the gauge theory; that is, Aµ = φkµ
will be a Maxwell solution. We refer to (3.6) as the single copy, in line with terminology

in the amplitudes story.

The connection between the classical story and amplitudes story can be seen by re-

placing the color vector ca in (3.6) with the null vector kµ in (3.4) to obtain hµν from the

gauge theory, akin to replacing ck → nk. Moreover, the zeroth copy analogy can be seen by

replacing kµ → ca
′

in (3.6) to get φaa
′

= caca
′
φ, in the same spirit as replacing ni → c̃i to

obtain (3.3) from (3.1). The mapping (3.6) has been extensively studied for various exact

solutions living on flat space [34, 37, 41, 42, 45–47, 57, 68–71] and extended to solutions

living on maximally-symmetric backgrounds [43, 44].

Some classical solutions that have been shown to exhibit a reasonable double copy

necessitate an extension to the ansatz (3.4); [37, 48, 54] write the full metric in double

Kerr-Schild form, where

gµν = ηµν + φkµkν + ψlµlν . (3.7)

Here the vectors k and l are individually null as well as orthogonal (orthonullity);

k2 = l2 = k · l = 0. (3.8)

Again, the indices for both vectors can be raised and lowered with either the full metric

gµν or the background metric ηµν . This form was necessary for the single copy study of the

Taub-NUT solution [37] as well as for the generic type D vacuum solutions in [54], where

the gauge field is given by

Aaµ = ca
(
φkµ + ψlµ

)
. (3.9)

3.2 Weyl double copy

In our work, we will utilize a different realization of the classical double copy, referred to as

the Weyl double copy [54]. This prescription for the double copy relies on the spinor for-

mulation of general relativity [72, 73] in conjunction with the Petrov classification (see [74]

chapters 3 and 4 for a review of both concepts) to build the map between the gravitational

– 6 –
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and gauge theories. This version of the double copy applies to four-dimensional space-

times, although [39] builds towards an extension to higher dimensions; for now we review

the four-dimensional picture.

The Petrov classification labels metrics by the multiplicities of the principle null direc-

tions of their Weyl tensors. A principle null direction kµ satisfies

kµk
µ = 0, k[σWµ]νρ[σkλ]k

νkρ = 0, (3.10)

where Wµνλγ is the Weyl tensor. All four-dimensional metrics will have four (not necessarily

unique) solutions kµ to these equations, but they can appear with different multiplicities. A

spacetime is algebraically special if any two or more of these principle null vectors coincide.

If only two coincide, the spacetime is Petrov type II; if two pairs coincide, then it is type

D. If all four principle null vectors coincide, then the spacetime is type N. The Weyl double

copy will apply to type D and type N spacetimes, essentially factoring their principle null

vector pairs.

Since a basic understanding of curved space spinor formalism is necessary to work with

the Weyl double copy, we review the essentials in appendix A. We rewrite the usual Weyl

tensor Wµνλγ in terms of the completely symmetric Weyl spinor CABCD using the formula

CABCD =
1

4
Wµνλγσ

µν
ABσ

λγ
CD, (3.11)

where σµνAB are defined in terms of the Pauli sigma matrices as in (A.7).

The form of the Weyl spinor CABCD is directly related to the Petrov classification of

spacetimes, since the Weyl spinor can be decomposed as

CABCD = α(AβBγCδD), (3.12)

where the four principle spinors {αA, βB, γC , δD} carry the information of the four principle

null directions of the spacetime. The principle spinors can be related to the principle null

vectors using the Pauli 4-vectors via (B.11).

Since the spinors composing CABCD are directly related to the principle null vectors,

their multiplicity also depends on the Petrov type. If all four spinors are unique, the

spacetime is algebraically general, of Petrov type I. Otherwise the spacetime is algebraically

special. We focus on Petrov type D, where there are two unique principle spinors with

multiplicity two, and Petrov type N, where there is one unique principle spinor. Their

Weyl spinors can be written

CD
ABCD ∼ α(AαBβCβD), CN

ABCD ∼ αAαBαCαD, (3.13)

where here α (and β, for type D) are the principle null spinors.

On the gauge theory side, the spinor field strength fAB is the key object, and can be

obtained from the field strength tensor Fµν directly using

fAB =
1

2
Fµνσ

µν
AB. (3.14)

– 7 –
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In the same sense as the Weyl spinor, the fAB corresponding to a type D spacetime can be

written as fD
AB ∼ α(AβB), whereas in the type N case we have fN

AB ∼ αAαB. Thus we find

CABCD =
1

S
f(ABfCD), (3.15)

where S is a complex scalar field satisfying the wave equation in the flat background on

which fAB lives, and whose real part coincides with the Kerr-Schild scalar φ up to an

overall constant. Therefore the scalar S plays the role of the zeroth copy in the Weyl

double copy map.

We will use the decomposition of the Weyl spinor CABCD in terms of a spinor ba-

sis {oA, ιB}:

CABCD = Ψ0ιAιBιCιD − 4Ψ1o(AιBιCιD) + 6Ψ2o(AoBιCιD)

− 4Ψ3o(AoBoCιD) + Ψ4oAoBoCoD. (3.16)

Here, the ΨI ∈ C, I = 0, 1, 2, 3, 4 are called Weyl scalars, and are also related to the Petrov

classification (see section 4). We will see that the ΨI , and the invariants built out of them,

play a significant role in the Weyl double copy.

As [54] shows, solutions built from this Weyl double copy picture match the expecta-

tions from the Kerr-Schild double copy as built in [34]. In addition to specific examples

like the Kerr metric, [54] also shows this matching for the most general type D vacuum

solution as written in Plebanski-Demianski coordinates [75] (see [76] and [77] for an ex-

tended treatment).

We next look to analyze solutions to Navier-Stokes from the fluid gravity perspective

that result in spacetimes that are candidates for the Weyl double copy. As we will now

show, by constraining the velocity fields in the fluid metric (2.3) in one of two ways, we

find that the resulting spacetime is either Petrov type N or type D, allowing for a double

copy treatment via the Weyl method.

4 Fluid solutions

The eigenbivectors of the Weyl tensor for the fluid metric reveal that it is algebraically

special [25, 30]; specifically it is a type II spacetime according to the Petrov classification,

with two coinciding principal null vectors. Below, we use the Newman-Penrose formalism

to find which fluids correspond to metrics with even higher algebraic speciality. Addi-

tional details pertaining to the formalism and our choice of conventions can be found in

appendix B or in [74].

Briefly, the Newman-Penrose formalism relies on rewriting the metric in terms of a

tetrad set l, n, m, m̄, as in (B.1). The tetrad set is then used to compute the Weyl scalars,

which then can be used to compute the invariants I, J, K, L, and N as in (4.2). While the

Weyl scalars depend on the tetrad choice, the invariants do not and thus we will look at

these invariants to classify our spacetimes.

– 8 –
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We work in the hydrodynamic limit of the metric (2.3), where the first terms we do

not write explicitly4 arise at O(ε3). Thus we only know our Weyl scalars up to the same

order, and our algebraic classification of the spacetime is perturbative as well. In this limit,

our tetrad choice (C.2) yields the following Weyl scalars up to O(ε3), which is where we

would start to see contributions from neglected higher terms in the metric (2.3):

Ψ0 = 0 +O(ε3),

Ψ1 = 0 +O(ε3),

Ψ2 = −i ε
2

4rc
(∂xvy − ∂yvx) +O(ε3), (4.1)

Ψ3 = 0 +O(ε3),

Ψ4 = − ε
2

2r
(∂xvx − ∂yvy + i(∂xvy + ∂yvx)) +O(ε3).

Ψ2 is proportional to the vorticity of the fluid, while Ψ4 is proportional to the derivative

of vx + ivy with respect to the complex coordinate z̄ ≡ x− iy.

In order to evaluate the algebraic speciality of our spacetimes, we compute the invari-

ants I, J, K, L and N, via the following relations:

I ≡ Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2,

J ≡

∣∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣ ,
K ≡ Ψ1Ψ2

4 − 3Ψ4Ψ3Ψ2 + 2Ψ3
3,

L ≡ Ψ2Ψ4 −Ψ2
3,

N ≡ 12L2 −Ψ2
4I.

(4.2)

For a generic fluid-dual metric, we find

I = 3ε4
[
i

(
∂xvy
4rc
− ∂yvx

4rc

)]2

+O(ε5),

J = ε6
[
i

(
∂xvy
4rc
− ∂yvx

4rc

)]3

+O(ε7).

(4.3)

4Ref. [30] show that algebraically special spacetimes can be obtained to arbitrary order in the context of

the fluid gravity duality in 5 or higher spacetime dimensions. [78] also consider similar spacetimes in d ≥ 5,

however posit that additional constraints may be needed in [30] at higher orders to maintain algebraic

speciailty. [27] construct a formulation that progresses to arbitrary order, however this construction deviates

from algebraic speciality and in doing so relates the higher order pieces in the metric to corrections to the

Navier-Stokes equations. Since our interest is primarily in making connection with the Weyl double copy

picture, we restrict ourselves to the first few nontrivial orders of this metric. For more on convergence of

the gradient expansion in a hydrodynamic and fluid gravity context, see [31, 79].

– 9 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
7

These I and J satisfy I3 − 27J2 = 0, or more precisely,

=⇒ I3 − 27J2 = 0 +O(ε13), (4.4)

which implies that the general fluid metric is Petrov type II up to this order.

Next we look at the invariants K, L, and N :

K = 0 +O(ε7),

L = ε4
[
− ∂xvx

2r
+
∂yvy
2r
− i∂yvx

2r
− i∂xvy

2r

][
i
∂yvx
4rc
− i ∂xvy

4rc

]
+O(ε5),

N = 9ε8
[
− ∂xvx

2r
+
∂yvy
2r
− i∂yvx

2r
− i∂xvy

2r

]2[
i
∂yvx
4rc
− i ∂xvy

4rc

]2

+O(ε9).

(4.5)

Although K is in fact 0 through this order, that is not enough for further algebraic speciality

(see figure 9.1 in [74]). The nonzero invariants L and N are proportional to both the

vorticity (from Ψ2) and ∂z̄(vx + ivy) (from Ψ4).

Before we begin an analysis of which special fluids have dual metrics with higher

algebraic speciality, we must mention briefly the perturbative nature of the metrics we use

in this paper. While [30] constructed fluid-dual spacetimes by requiring algebraic speciality

to hold at all orders, here we instead constrain ourselves only to the lowest orders necessary

in order to establish the incompressible Navier-Stokes equations. Accordingly, we only

establish the higher algebraic speciality of our spacetimes to lowest order.

To these orders discussed, the condition that the fluids spacetime is a type II metric,

I3 − 27J2 = 0, is satisfied in either the near-horizon or the hydrodynamic expansion:

I3
ε − 27J2

ε = 0 +O(ε13), I3
λ − 27J2

λ = 0 +O(λ). (4.6)

Note that the highest non-error order available in the near-horizon λ expansion differs from

the ε hydrodynamic expansions, but both spacetimes satisfy the type II constraint to at

least one nontrivial order.

Specifically, in the near-horizon expansion, we find

Iλ = − 3

16
(∂yvx − ∂xvy)2 +O(λ),

Jλ = − i

64
(∂yvx − ∂xvy)3 +O(λ),

(4.7)

which matches (4.3) except for the expansion order. Since the order of terms differs between

the two expansions, in the near-horizon expansion it turns out to be necessary to account

for terms of order O(λ2) in the metric (2.8), as was done in [25]. Accordingly we use the

generic form of the tetrad (C.3) to perform computations in this expansion.

Since the fluid constraints required to produce higher algebraic speciality are the same

at the lowest order of both expansions, we thus concentrate on only the ε hydrodynamic

expansion for the remainder of this section. As we show below, constant vorticity fluids

will correspond to type D spacetimes while potential flows correspond to type N metrics.
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4.1 Petrov type D fluid solutions

A Petrov type D spacetime satisfies the following conditions for the invariants:

I3 − 27J2 = 0; I, J 6= 0; K = N = 0. (4.8)

Based on the forms of L and N in (4.5) and I and J in (4.3), these conditions imply

∂xvy − ∂yvx 6= 0, −∂xvx + ∂yvy − i
(
∂yvx + ∂xvy

)
= 0. (4.9)

These constraints imply that each component of the velocity satisfies Laplace’s equation

∂2vi = 0, where i ∈ {x, y}.
These conditions are solved by the fluid velocities

vx(τ, y) = −ωy + hx(τ),

vy(τ, x) = ωx+ hy(τ),
(4.10)

with pressures

P (τ, x, y) =
ω2

2

(
x2 + y2

)
+
(
ωhy − ∂τhx

)
x−

(
ωhx + ∂τhy

)
y + c(τ). (4.11)

In this paper, we will concentrate on the steady state solution centered at the origin;

that is, we set hi(τ) = c(τ) = 0. Turning these functions on would correspond to a

vortex whose center follows the path (x0(τ), y0(τ)) = (
∫
hxdτ,

∫
hydτ) as time τ passes;

a diffeomorphism returning to coordinates centered on the moving vortex would tune the

effective time dependence back to zero.

Thus the fluid profile we study as representative of fluids dual to type D metrics satisfies

vx(τ, y) = −ωy, vy(τ, x) = ωx, P = ω2 (x2 + y2)

2
, (4.12)

consistent with vanishing pressure and velocity at the origin as would be expected for a

fluid rotating with constant vorticity, centered at the origin.

4.2 Petrov type N fluid solutions

To obtain a type N spacetime, the invariants must satisfy

I = 0, J = 0, K = 0, L = 0, N 6= 0. (4.13)

For the general fluid metric, we already have K = 0 and the invariants I, J (4.3) and

L (4.5) are each proportional to a positive power of the vorticity, so setting the fluid

vorticity ∂xvy − ∂yvx to zero leaves us with a type N dual metric.

The velocity and pressure profiles of vorticity-free fluids can be written in terms of a

scalar potential φ:

vi = ∂iφ, ∂iP = −∂i∂τφ− ∂jφ∂i∂jφ. (4.14)

For incompressible fluids, φ satisfies Laplace’s equation ∂2φ = ∂2
xφ+ ∂2

yφ = 0, so vorticity-

free incompressible fluids are referred to as potential flows.
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These potential flows can be written cleanly in complex coordinates, i.e. using z ≡
x+ iy. Since ∂2φ = 0, we can rewrite a general solution for the potential φ using the sum

of a holomorphic function f and an antiholomorphic function g:

∂z∂z̄φ = 0, φ = f(z) + g(z̄). (4.15)

Imposing reality conditions so as to obtain real velocity and pressure fields requires that

the antiholomorphic function g(z) must be the complex conjugate of the function f(z):

φ = f(z) + f̄(z̄), f̄(z̄) ≡ (f(z))∗. (4.16)

Returning to the dual fluid metric, the vorticity-free condition sets Ψ2 = 0, leaving

only Ψ4 nonzero. We can express this nonzero Weyl scalar compactly as

Ψ4 = −2

r
∂2
z̄φ = −2

r
∂2
z̄ f̄(z̄), (4.17)

while the Weyl tensor becomes

CABCD = Ψ4oAoBoCoD. (4.18)

Since the function f(z) is holomorphic, we can write a general fluid solution as a

Laurent series in z (and z̄ for f̄):

φ =

∞∑
n=−∞

αn+2z
n+2 + c.c., (4.19)

where αn are in general complex valued coefficients and the holomorphic function f(z) ≡∑∞
n=−∞ αn+2z

n+2. Consequently the Weyl scalar Ψ4 can also be written as a Laurent series.

It is instructive to look at the forms of the fluid potential and the Weyl scalars for a

few specific fluid solutions here5. We begin by turning on only the n = 0 term in (4.19).

For convenience we additionally choose α2 = −α/4, with α real, obtaining the potential

φ(z, z̄) = −α
4

(z2 + z̄2). (4.20)

The corresponding fluid velocity and pressure profiles become

vx = −αx, vy = αy, P = P0 − α2 x2 + y2

2
. (4.21)

This fluid profile is known as planar extensional flow; extensional flows have been well

studied in the fluid-mechanics/materials science community, see e.g. [80]. Our main interest

in this fluid will be its simplicity in terms of the double copy prescription, as we will

see below.

5Note as for the type D case, we neglect the time dependence that could be allowed in the α coefficients

of the fluid potential and instead consider only steady state flows. As before, time dependence here will

correspond to translating these steady state solutions.
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Type of fluid solution Fluid Potential φ(x, y) φ(z, z̄) Ψ4

Source/Sink α ln(x2 + y2) α ln(zz̄) 2 α r−1z̄−2

Source to Sink (dipole) αδx
x2+y2

αδ
2
z+z̄
zz̄ 2 r−1αδz̄−3

Line Vortex α arctan(y/x) α
2i ln

(
z
z̄

)
iα r−1z̄−2

Extensional flow −α2 (x2 − y2) −α4 (z2 + z̄2) α
r

Table 1. Some examples of standard fluid solutions and the corresponding non-vanishing scalar Ψ4

for type N solutions. For the dipole flow, δ refers to the distance between the source and the sink.

Using (4.17), for this fluid we find

Ψ4 =
α

r
. (4.22)

Due to its simplicity and utility as a physical example, we begin with this fluid when we

study the double copy prescription for the Type N fluid dual metrics in section 6.1.

Other potential flows can also be written compactly in terms of z and z̄, using the

form (4.19), as in table 1. We will study the double copy of type N metrics dual to the

generic potential flow fluid with potential (4.19) in section 6.2 below.

5 Type D double copy

5.1 Weyl double copy

Now that we’ve obtained velocity and pressure fields that correspond to either Petrov

type D or type N, we look to build the Weyl double copy (3.15) corresponding to the

particular fluid solutions. Accordingly, we use our results for the Weyl scalars (4.1) and

the expansion of the Weyl spinor CABCD, given by (3.16). As we showed in section 4.1, the

type D constraint leaves us with constant vorticity fluid solutions. The time-independent

solution (4.10) and (4.11) takes the form

vx = −ωy, vy = ωx, P = ω2 (x2 + y2)

2
. (5.1)

From the expression for the Weyl scalars ΨI for arbitrary velocity fields (4.1), we find that

the solution (5.1) leaves us with

Ψ2 = −iε2 ω

2rc
+O(ε3), (5.2)

while all other ΨI vanish to O(ε3). Consequently, the Weyl spinor is CABCD =

6Ψ2o(AoBιCιD).

Using the Weyl double copy as defined in (3.15), we find the zeroth copy scalar and

single copy gauge field are, to lowest order, at O(ε) for fAB and O(1) for S,

S =
iωrc

3
e2iθ, fAB = eiθω

(
1 0

0 −1

)
, (5.3)
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where θ is a constant (global) phase to be interpreted shortly. Since the double copy

relation (3.15) and the vanishing of all ΨI 6=2 force fAB ∝ oAιB, the matrix structure of

fAB here arises from the form of oA and ιB as in (B.11).

Next, we use the relation between the spacetime formalism and the spinor formalism as

reviewed in appendix A to obtain the tensor form of the field strength Fµν from the spinor

fAB. These relationships necessitate a vierbein for the background on which the gauge

fields live. As the perturbations about the Rindler background generate the correspondence

between the Einstein and Navier-Stokes equations, the gauge fields most naturally live on

the Rindler background as well. We will shortly see that choosing the Rindler background

also provides a straightforward interpretation of the gauge field solutions. The metric is of

the form

ds2
(0) = −rdτ2 + 2drdτ + dx2 + dy2, (5.4)

where the scalar satisfies the wave equation, ∇(0)µ∇(0)
µ S = �(0)S = 0. The ∇(0)

µ are the

covariant derivatives with respect to (5.4). From (B.10), we obtain the vierbeins

e(0),0
µ =

(
−
√
r,

1√
r
, 0, 0

)
,

e(0),1
µ =

(
0,− 1√

r
, 0, 0

)
, (5.5)

e(0),2
µ = (0, 0, 1, 0),

e(0),3
µ = (0, 0, 0, 1).

Using (A.13) to obtain Fµν in terms of fAB, the Pauli matrices, and the vierbeins, we find

the only nonzero components are

F τr = −ω cos θ, F xy = −ω sin θ. (5.6)

Recalling that the gauge field is in the U(1) sector of Yang-Mills, the Maxwell equations

∇(0)
ν Fµν = 0, ∇(0)

[µ Fρσ] = 0, (5.7)

indeed show that the field strength (5.6) is a vacuum solution. This is to be expected,

since the fluid solutions are obtained by demanding the Einstein equations are satisfied in

vacuum, Gµν = 0, so we expect the single copy to follow suit. In the classical double copy,

it is possible for the spacetime to have a singularity that maps to a gauge field source, as

the point mass maps to a point charge in the Schwarzschild solution [34] when parameters

are chosen to turn off the dilaton [36, 52]. Because Rindler space is free from singularities,

no sources will be found on the gauge theory side, consistent with (5.7).

5.2 Effective electric and magnetic fields

Interpreting the single copy gauge field strength (5.6) as a Maxwell solution allows us to

discuss the electric and magnetic fields whose double copy generates the metric dual to a
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constant vorticity fluid.6 These fields are defined covariantly by

Eν = Fνµξ
µ, Bν =

1

2
εµνρσF

ρσξµ, (5.8)

where ξ is the (timelike) Killing vector ξ = ∂τ . For the field strength under consideration,

we find

Eν = ω cos θδrν , Bν = −ω sin θδrν . (5.9)

We interpret these fields by choosing the global phase to be θ = 3π
2 , which leaves us

with a constant magnetic field pointing in the r direction, perpendicular to the x−y plane.

Under this choice of θ, the classical vector potential ~A, which constructs the magnetic field

by ~B = ∇× ~A, coincides with the velocity fields directly: ~A ∝ ~v. Since the magnetic field

is unchanged when the vector potential shifts by a constant, we see that the single copy

gauge fields will similarly be unchanged when we shift the velocity by a constant.

We also compute the electromagnetic stress tensor

T ρσ = F ρµF
σµ − 1

4
gρσFµνF

µν , (5.10)

finding the nonzero components

T τr = −ω
2

2
, T rr = −rω

2

2
, T xy =

ω2

2
. (5.11)

The associated energy with respect to the Killing vector ξ is given by

Tµνξµξν = ω2r/2, (5.12)

while the spatial components of the Poynting vector, from Tµνξµ, become zero.

Physically, we can understand the fluid (5.1) as the solution inside of a slowly rotating

cylinder with its axis along the r-direction and no-slip boundary conditions at the wall,

where we have taken the radius of the cylinder to be large (with respect to all other scales

in the problem). The corresponding single copy gauge field, ~B = ωr̂, matches the uniform

magnetic field along the axis of a solenoid with n turns per unit length whose current I

is proportional to ω/n. The axis of the solenoid is aligned with the axis of the cylinder

containing the fluid.7 The double copy mapping therefore associates the vorticity of the

fluid with the magnitude of the current sourcing the magnetic field. The field moreover has

energy dependent on the radial location r, but has vanishing Poynting vector as expected

for a pure magnetic field. In addition, we see from (5.3) that the zeroth copy S plays

a passive role in that it trivially solves the wave equation. We thus find that all of the

nontrivial information that is mapped through the double copy is contained in the field

strengths fAB or Fµν for the type D spacetime.

6Note that unlike references [45] and [50], which discuss gauge and gravity solutions with vorticity, we

are discussing metrics dual to fluids with vorticity.
7The velocity fields rotate counter-clockwise in the x − y plane. After exchanging the vorticity param-

eter with a current parameter, the resulting magnetic field then points along positive r̂, consistent with

choosing θ = 3π/2.
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5.3 Weyl double copy in the near horizon expansion

The hydrodynamic limit can be related to a near horizon expansion of the metric by

rescaling the metric as in (2.7) [25]. Since the full fluid solution (5.1) does not actually lie

in the hydrodynamic regime,8we repeat here the same analysis as in section 5.1, repeated

in the near horizon expansion (2.8). We again find the same results.

Using the tetrad (C.3), we find the Weyl scalars for the near horizon metric (2.8) with

the constant vorticity fluid (5.1). The only nonzero Weyl scalar is

Ψ2 =
iω

2
+O(λ). (5.13)

All other Weyl scalars vanish at O(1), and have contributions from neglected pieces of the

metric at O(λ) or higher. Following the method in section 5.1, we identify the zeroth copy

scalar and single copy gauge field spinor:

S =
1

3
ei(π+2θ), fAB = ωeiθ

(
1 0

0 −1

)
. (5.14)

As before, we obtain the appropriate flat space vierbien by setting the velocities and pres-

sures to zero in the full tetrad and using eq. (B.10); we find

e(0),a
µ =


r+λ
2λ

r−λ
2λ 0 0

−1 −1 0 0

0 0 1 0

0 0 0 1

 . (5.15)

Using this flat space vierbien the gauge field strength tensor in the λ expansion becomes

F τr = −ω cos θ, F xy = −ω sin θ, (5.16)

which should be thought of as living on a flat Rindler background. We then identify effective

electric and magnetic fields, which are identical to the previous result (5.9) obtained in the

hydrodynamic limit:

Eν = ω cos θ δ rν , Bν = −ω sin θ δ rν . (5.17)

6 Type N Weyl double copy

In this section we will analyze the single copy gauge fields and zeroth copy scalar fields

corresponding to the metrics dual to potential flow fluids. As we saw in section (4.2),

these potential flows are the most general solution whose dual metrics satisfy the Petrov

type N constraint. As potential flows, their velocity can be written as the gradient of a

8The fluid solution (5.1) is only in the hydrodynamic regime (2.4) for x, y ∼ ε−1 while the vorticity

satisfies ω ∼ ε2. For either small x, y or large vorticity, the solution exits the hydrodynamic regime,

although of course it still solves Navier-Stokes. Because of this technicality, the metric (2.3) is not trustable

for small x, y. However, in the near-horizon expansion, because of the rescaling (2.7), the fluid solution

does not need to be in the hydrodynamic regime, since this expansion is rewritten explicitly in terms of

the hatted coordinates in (2.6) that are of O(1). Here we explore an explicit realization of the near-horizon

expansion, for completeness, as provided in equation (2.8).
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scalar potential, vi = ∂iφ, where φ satisfies Laplace’s equation in R2. For convenience, we

defined z = x + iy and its conjugate z̄ so that we may write the Laplacian as ∂2 = ∂z∂z̄,

decomposing the scalar potential as φ(z, z̄) = f(z) + f̄(z̄). The resulting Weyl scalar, Ψ4,

is given by (4.17), and all others vanish. Therefore the Weyl double copy should satisfy

CABCD = −2

r
∂2
z̄ f̄(z̄)oAoBoCoD =

1

S
fABfCD. (6.1)

6.1 Planar extensional flows

Let us start with the simple case of planar extensional flow, where φ(z, z̄) = −α
4 (z2 + z̄2)

with α a real constant. The corresponding velocity fields are (4.21) vx = −αx and vy = αy.

We can satisfy the double copy relation (6.1) by choosing

S =
e2iθ

α
, fAB =

eiθ√
r

(
1 1

1 1

)
, (6.2)

where we again allow for a global phase θ. Here, since we have ΨI 6=4 = 0, we have fAB ∝
oAoB, therefore the matrix structure in (6.2) arises from (B.11). Although we could make

another choice for S, this constant choice trivially satisfies �(0)S = 0, and fAB is the only

choice which will satisfy the gauge field equations as we show below.

As for the type D case, we specify our background spacetime by using (B.10) to find the

vierbeins corresponding to the tetrads used to compute Ψ4, and then setting vi = P = 0.

The resulting vierbeins turn out to have the same form as (5.5). We then obtain the gauge

field strength tensor via (A.13), finding

F rx = − sin θ, F ry = − cos θ, F τx = −2 sin θ

r
. (6.3)

As in the type D case, since this field strength has no nontrivial color factor dependence,

we treat it as an effective Maxwell field; indeed it satisfies the vacuum Maxwell equations

over the Rindler background (5.4) for arbitrary θ.

We obtain the electric and magnetic fields using the covariant expressions (5.8), yielding

Eν = (0, 0, sin θ,− cos θ) (6.4)

and

Bν = (0, 0, cos θ,− sin θ). (6.5)

Again, as in the type D case, we choose θ = 3π/2 as a convenient parametrization; picking

another θ will just result in a rotation in the x, y plane. Computing the electromagnetic

stress tensor (5.10), we find

T ττ =
4

r2
, T τr =

2

r
, T rr = 1. (6.6)

The energy becomes

Tµνξµξν = 1, (6.7)
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while the spatial components of the Poynting vector become

Si = −δir. (6.8)

We interpret this gauge field as the single copy field necessary to build up any fluid which

has a potential component. Since any two-dimensional vector field can be decomposed, via

the two-dimensional version of Helmholtz decomposition, we can write the velocity field as

vi = ∂iφ+ εijk∂jAk, (6.9)

where the vector fluid potential for the two-dimensional case satisfies ~A = |A|(x̂× ŷ), and

i, j, k run over the directions x and y as well as the direction x̂× ŷ. For the potential flows

whose gravity duals are type N, we have only the first term; that is, |A| = 0. Most of the

information in φ will be carried instead by the scalar S, so the field profile (6.3) is only

building up the fluid-dual spacetime necessary to support a velocity field with a nonzero

∂iφ term.

The nonzero Poynting vector (6.8) indicates the dissipative nature of these flows. The

gravitational dual is carrying energy away from the r = rc hypersurface, towards the null

horizon, satisfying the infalling Rindler boundary conditions that underlie the derivation

of the fluid-dual metric (2.3). The same flow of energy towards the null horizon arises in

the Poynting vector aligned in the −r̂ direction.

6.2 General potential flows

As we will show, the analysis in section 6.1 will work very similarly for a potential flow

φ = f(z) + f̄(z̄) with generic holomorphic function f(z).

Since �(0) on the Rindler background (5.4) will give zero when acting on any function

which is a sum of holomorphic and antiholomorphic terms independent of τ and r, we can

satisfy the type N Weyl double copy relation (6.1) for the metric dual to a generic potential

flow with

S = − e2iθ

∂2
z̄ f̄(z̄)

, fAB =
eiθ√
r

(
1 1

1 1

)
. (6.10)

It is now the case that �(0)S = 0 is nontrivially satisfied, and the resulting gauge field

strength is unchanged from the analysis for the planar extensional flow. Thus for all

potential flow fluids, such as those in table 1, the Weyl double copy admits the same single

copy gauge field as in the extensional flow, (6.3). The information for a potential flow on the

fluid side resides entirely in the potential φ; similarly, under the double copy prescription,

we find that the information from the potential resides entirely in the zeroth copy scalar

field S, whereas the single copy gauge field is the same for all potential flows.

Since the single copy field profile is again (6.3), our interpretation of this field as

building the fluid-dual spacetime for fluids with nonzero potential terms holds again. We

do note that the fields (6.4) and (6.5) are constant; we expect that inclusion of higher order

terms in the ε expansion could alter this result, since here we are really considering only a

hydrodynamic expansion in small ε around the original r = rc cutoff surface.
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7 Discussion

We have used the Weyl double copy prescription to find the single copy gauge fields and

zeroth copy scalar fields arising from two classes of fluid-dual metrics. The first class,

fluids with constant vorticity, maps to spacetime metrics with Petrov type D. The second

class, potential flow fluids, maps to spacetime metrics with Petrov type N. For the type D

spacetimes dual to fluids with constant vorticity, we find an (effectively abelian) dual gauge

field with vanishing Poynting vector. For the type N spacetimes dual to potential flows, we

find a gauge field whose Poynting vector points in towards the Rindler horizon, indicating

that the dissipation in these fluids maps in the spacetime to energy flowing across the

horizon due to the infalling boundary conditions there.

We also saw that the single and zeroth copy fields mapping to the two sets of fluid-dual

metric classes store their information differently. In the type D case, the vector potential

for the magnetic field corresponds to the fluid velocity profile, while the zeroth-copy scalar

field is just a constant; only the single-copy gauge field is carrying nontrivial information

about the fluid. For type N spacetimes, the story is in some sense opposite: the nontrivial

components of the fluid are entirely due to the potential, which shows up only in the

zeroth-copy scalar field. Here, the gauge field is fixed and appears to be the field necessary

to build the fluid-dual spacetime for all potential flow fluids.

In fact, the two fluid classes we have studied fall into two simple classes under the

Helmholtz decomposition, which rewrites the fluid vector field in terms of its rotational

component and its irrotational or potential component, as in (6.9). The constant vorticity

solutions which map to type D spacetimes have φ = 0 while the potential flow solutions that

map to type N spacetimes have ~A = 0. Under the double copy prescription, solutions with

nonzero ~A map to a nontrivial gauge field whose behavior depends on the fluid velocity,

but to a constant (trivial) zeroth copy scalar. Similarly, solutions with nonzero φ all map

to the same gauge field (6.3), so instead the zeroth copy scalar carries the fluid information:

it is proportional to the second derivative of the fluid potential as in (6.10). Consequently,

we propose that any fluid-dual metric may be mapped to a single copy gauge field and

zeroth copy scalar, each of which is a sum of the corresponding pieces from the rotational

and irrotational components in the Helmholtz decomposition. We hope to explore this idea

in future work.

We should note throughout that we work only to the lowest order in a perturbative

expansion (mainly the hydrodynamic expansion). A more complete treatment may require

understanding of the double copy prescription beyond a linear order; all double Kerr-Schild

prescriptions are essentially linear due to the linearization of the equations of motion in

those coordinates. The Weyl double copy itself is not linear in nature, but is unclear how it

might relate to more advanced treatments that would go beyond a perturbative expansion

as in [38], such as the convolution prescription in [36, 52]. Further development of this

convolution prescription to include algebraically special spacetimes would be of interest.

The double-copy treatment in the fluid-gravity duality context may also be amenable

to analysis using solution generating techniques. For example, the Ehler’s transformations

as implemented in [81] for fluids and further studied in [82, 83] in the context of the double
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copy could allow access to a larger set of double-copy treatments for fluid-dual spacetimes.

Indeed, such an analysis could shed light on the nature of single and zeroth copies for such

spacetimes.

Since fluid-gravity duality itself can be understood from an AdS-CFT perspective

(including the cutoff-prescription formulation, whose relationship to AdS-CFT was first

understood in [26]), we hope the mapping here from fluid solutions to gravities and then

through the double copy prescription to gauge theories (and scalars) can provide perspective

both regarding the relationship of the double copy prescription to AdS-CFT duality, and

also the understanding of fluid-gravity duality itself, including a deeper understanding of

fluids as in [84].
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A Spinor formalism

In our notation, spacetime indices are given by {µ, ν, γ, . . .}, frame indices by {a, b, c, . . .}
and the spinor indices as {A,B,C, . . .} with their conjugates {Ȧ, Ḃ, Ċ, . . .}. The essential

objects that translate between the spinor and tensor formalisms are the Pauli 4-vectors

σa
AȦ

=
1√
2

(
1, ~σ
)
AȦ
, ~σ = (σx, σy, σz). (A.1)

The ~σ are the standard SU(2) generators,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (A.2)

A spacetime vector is obtained from a frame vector by Vµ = e a
µ Va, where the e a

µ

are vierbeins that construct the full metric as gµν = e a
µ e

b
ν ηab. Here, ηab = ηab =

diag(-1, 1, 1, 1). The frame indices are raised and lowered with the diagonal Minkowski

space ηab, while spinor indices are raised and lowered with a Levi-Civita symbol, which we

define as

εAB = −εAB =

(
0 1

-1 0

)
. (A.3)

A vector can be written in spinor indices or in frame indices using (A.1);

VAȦ = Vaσ
a
AȦ
, ⇔ Va = σaAȦV

AȦ, (A.4)

where σaAȦ = ηabσ
b
AȦ

and V AȦ = εABVBḂε
ḂȦ. The (inverse) vierbein constructs the Pauli

4-vector in spacetime indices σµ
AȦ

= eµaσaAȦ which, with its inverse σAȦµ = gµνε
ABσν

BḂ
εḂȦ,

satisfies

σµ
AȦ
σAȦν = δµν , σµ

AȦ
σBḂµ = δBAδ

Ḃ
Ȧ
. (A.5)
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Any tensor can be written as its spinor counterpart using the index doubling procedure.

The Weyl tensor Wµνλγ becomes

Wµνλγ → WAȦBḂCĊDḊ = CABCDεȦḂεĊḊ + C̄ȦḂĊḊεABεCD, (A.6)

where the CABCD and C̄ȦḂĊḊ are symmetric in their indices and related by complex

conjugation. The object9

σµνAB = σ
[µ

AĊ
σ̄ν] ĊCεCB, with σ̄µAȦ = eµaσ̄

aȦA, σ̄aȦA =
1√
2

(
1,−~σ

)ȦA
(A.7)

serves to directly obtain the spinor form of a given tensor. For the Weyl spinor,

CABCD =
1

4
Wµνλγσ

µν
ABσ

λγ
CD. (A.8)

For the field strength tensor Fµν , we write

Fµν → FAȦBḂ = fABεȦḂ + f̄ȦḂεAB, (A.9)

where the spinor field strength can be computed as

fAB =
1

2
Fµνσ

(0)µν
AB , (A.10)

which is also symmetric in its spinor indices. In the above expression, the zero superscript

is meant to remind that since Fµν lives on flat space, the vierbein that’s used to construct

the σµ
AȦ

in (A.10) is that which constructs the flat space,

σ
(0)µ

AȦ
= e(0)µ

a σ
a
AȦ
, e(0)a

µ e(0)b
ν ηab = g(0)

µν . (A.11)

For example in section 5.1, g
(0)
µν is Rindler space (5.4) and the e

(0)a
µ are (5.5). The vierbeins

that are used to build σµνAB in (A.8) instead construct the full spacetime. For conciseness

we will drop the 0-superscript in what follows.

To invert (A.10), it is tedious though straightforward to show

Fµν − i

2

εµναβ√
−g

Fαβ = σµAḊfABε
BDσ̄ν

ḊD
, (A.12)

where g = detgµν . Fµν can be obtained directly by adding the complex conjugate of the

right hand side in (A.12), yielding

Fµν =
1

2

[
σµAḊfABε

BDσ̄ν
ḊD

+ σ∗µȦDf̄ȦḂε
ḂḊσ̄∗ν

DḊ

]
. (A.13)

For the second term in (A.13), the σ∗ denotes standard complex conjugation, i.e.

σ∗a
ȦA

=
1√
2

(
1, σx,−σy, σz

)
ȦA
. (A.14)

9Brackets denote antisymmetrization, and we use the convention [A,B] = AB −BA.
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B Newman-Penrose formalism

We now briefly describe the Newman-Penrose (NP) formalism which we use to compute

geometric quantities of interest such as the Weyl spinor. The NP formalism utilizes spinor

language in order to simplify computations ([72–74]). There primarily are four sets of

objects of interest for us in the NP formalism. Briefly, one rewrites the metric in terms of

a tetrad set, this tetrad set then is used to compute spin coefficients,10

gµν = −l(µnν) +m(µmν). (B.1)

Bilinears of the spin coefficients then give the set of Weyl scalars {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4, },

Ψ0 = Dσ − δκ− (ρ+ ρ̄+ 3ε+ ε̄)σ + (τ − π̄ + ᾱ+ 3β)κ

Ψ1 = Dβ − δε− (α+ π)σ − (ρ̄− ε̄)β + (µ+ γ)κ+ (ᾱ− π̄)ε

Ψ2 = Dµ− δπ + (ε+ ε̄− ρ̄)µ+ (ᾱ− β − π̄)π + νκ− σλ−R/12

Ψ3 = δ̄γ −∆α+ (ρ+ ε)ν − (τ + β)λ+ (γ̄ − µ̄)α+ (β̄ − τ̄)γ

Ψ4 = δ̄ν −∆λ− (µ+ µ̄+ 3γ − γ̄)λ+ (3α+ β̄ + π − τ̄)ν,

(B.2)

where the following are directional derivatives,

D = lµ∇µ, ∆ = nµ∇µ, δ = mµ∇µ, δ̄ = m̄µ∇µ. (B.3)

Finally in terms of these Weyl scalars one can rewrite the Weyl Spinor.

CABCD = Ψ0ιAιBιCιD − 4Ψ1o(AιBιCιD) + 6Ψ2o(AoBιCιD)

− 4Ψ3o(AoBoCιD) + Ψ4oAoBoCoD (B.4)

Finally in order to test the algebraic speciality of the spacetime we compute tetrad invariant

combinations of the Weyl scalars; the equation below is equivalent to (4.2) in the main text

as included here for completeness:

I ≡ Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2,

J ≡

∣∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣ ,
K ≡ Ψ1Ψ2

4 − 3Ψ4Ψ3Ψ2 + 2Ψ3
3 ,

L ≡ Ψ2Ψ4 −Ψ2
3,

N ≡ 12L2 −Ψ2
4I.

(B.5)

The spinors oA, ιA are related to the frame metric choice one makes. We will make explicit

this connection now. The metric written in terms of vierbiens has the form,

gµν = e aµ e
b
ν ηab where ηab = diag{−1, 1, 1, 1}. (B.6)

10We utilize the method outlined in [85] to obtain spin-coefficients, this approach comes with the com-

putational benefit of replacing certain covariant derivatives with partial derivatives.

– 22 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
7

The frame metric ηab can itself be written as outer products of a tetrad set, this will allow

us to make identifications between the vierbiens and the tetrad set.

ηab = −l̂(an̂b) + m̂(am̂b)

=⇒ gµν = e aµ e
b
ν (−l̂(an̂b) + m̂(am̂b))

=⇒ gµν = −l(µnν) +m(µmν)

(B.7)

Where in the last step we have made the identifications,

e aµ l̂a = lµ e aµ n̂a = nµ e aµ m̂a = mµ e aµ m̂a = mµ (B.8)

Now the tetrad set that reproduces the Minkowski frame metric is,

l̂a =
1√
2
{1,−1, 0, 0}

n̂a =
1√
2
{1, 1, 0, 0}

m̂a =
1√
2
{0, 0, i, 1}

m̂a =
1√
2
{0, 0,−i, 1}

(B.9)

The expression B.8 can be inverted to go from tetrads to vierbiens via the following,

e 0
µ =

1√
2

(lµ + nµ) e 1
µ =

1√
2

(lµ − nµ)

e 2
µ =

i√
2

(m̄µ −mµ) e 3
µ =

1√
2

(mµ + m̄µ)

(B.10)

In order to obtain the spinors we write these four vectors in an SL(2,C) represen-

tation by contracting them with relevant σ matrices. Note in our conventions we have

σa
AȦ

= {I, ~σ}, while the curved space equivalents can be obtained by contracting these

with vierbiens (i.e. σµ
AȦ

= eµa σaAȦ). For eg., for {oA, ιA} we have,

oAoȦ ≡ l̂a σ
a
AȦ

=
1

2

(
1 1

1 1

)
=⇒ oA =

1√
2
{1, 1}

ιAιȦ ≡ n̂a σ
a
AȦ

=
1

2

(
1 −1

−1 1

)
=⇒ ιA =

1√
2
{1,−1}

(B.11)

Further noting that one can transform from SL(2,C) left to right by complex conjuga-

tion we use the convention,

(oA)∗ ≡ oȦ (B.12)
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This further verifies that the two remaining contractions will hold the following relations

correctly,

m̂a σ
a
AȦ

=
1

2

(
1 1

−1 −1

)
= ιAoȦ

m̂a σ
a
AȦ

=
1

2

(
1 −1

1 −1

)
= oAιȦ

(B.13)

C Tetrads in the hydrodynamic and the near horizon expansions

In the hydrodynamic limit as discussed in section 2 in the body of the paper, the velocities

and the pressure must satisfy the scaling (2.4), where i runs over x and y, the spacelike

coordinates on the cutoff surface r = rc. We can make this scaling of derivatives explicit

by making the following identifications to simplify keeping track of the ε orders:

vi → vi,ε ≡ vi(ε2τ, εxi), P → Pε ≡ P (ε2τ, εxi). (C.1)

With these identifications having been established we can now write out the tetrad set we

use for the computation in the hydrodynamic expansion:

lµ =

{
−
√
r√
2
, 0, 0, 0

}
+ ε2

{
−
√
r
(
4rcPε + (3r − 2rc)

(
v2
x,ε + v2

y,ε

))
4
√

2r2
c

,

√
r
(
v2
x,ε + v2

y,ε

)
2
√

2r2
c

, 0, 0

}
+O(ε3);

nµ =

{
−
√
r

2
,

√
2

r
, 0, 0

}
+ ε2

{
−

(r − 2rc)
(
4rcPε + r

(
v2
x,ε + v2

y,ε

))
4r2
c

√
2r

, 0, 0, 0

}
+O(ε3);

mµ =

{
0, 0,− i√

2
,

1√
2

}
+ ε2

{
0, 0,

i(r − rc)v2
x,ε

2
√

2r2
c

,
i(r − rc)vy,ε (2vx,ε + ivy,ε)

2
√

2r2
c

}
+O(ε3);

m̄µ = m∗µ. (C.2)

The mathematical equivalence between the hydrodynamic expansion and the near

horizon expansion involves a rescaling of the metric as was shown in [25]. In computations

we present in the near horizon expansion, we utilize the expansion parameter λ ≡ ε2

rc
.

Because the λ expansion has reorganized the series, we write below the tetrad set used

for the near horizon computation, in particular for the type D or rotational velocity and

pressure profiles in (5.1). Note that in this expansion, the coordinates we work with are

rescaled to be really x̂ and ŷ; for clarity in the expressions below we have dropped the hats.

The near horizon tetrad we use for the fluid metric dual to (5.1) is

lµ =

{
1√
2
, 0, 0, 0

}
+ λ

{
3rω2

(
x2 + y2

)
4
√

2
, 0, 0, 0

}
+ λ2

{
0,−

ω2
(
x2 + y2

)
2
√

2
, 0, 0

}
+ λ3

{
9r
(
r2 − 4

)
ω6
(
x2 + y2

)3
64
√

2
,−

rω4
(
x2 + y2

)2
2
√

2
, 0, 0

}
+O(λ4);
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nµ =λ−1

{
r√
2
, 0, 0, 0

}
+

{
−

((r − 2)r + 2)ω2
(
x2 + y2

)
2
√

2
,−
√

2,−ryω√
2
,
rxω√

2

}
+ λ

{
3rω4

(
x2 + y2

)2
4
√

2
,
rω2

(
x2 + y2

)
√

2
,−

(r − 1)
(
4qx + (r − 2)yω3

(
x2 + y2

))
2
√

2
,

(r − 1)
(
(r − 2)xω3

(
x2 + y2

)
− 4qy

)
2
√

2

}
+ λ2

{
0,
ω
(
2(r − 2)yg

(2)
rx − 2(r − 2)xg

(2)
ry + 3(r − 1)ω3

(
x2 + y2

)2 )
2
√

2
,

ω
(
4(r−2)yg

(2)
xx +(r−1)ω

(
x2+y2

)(
12rqx+(r−1)yω3

(
4(r+1)x2+(5r+2)y2

)))
8
√

2
,

−
ω
(
4(r−2)xg

(2)
yy +(r−1)ω

(
x2+y2

) (
(r−1)xω3

(
(5r+2)x2+6ry2

)
−12rqy

))
8
√

2

}
+O(λ3);

mµ =

{
−(r − 2)ω(x− iy)

2
√

2
, 0,

i√
2
,

1√
2

}
+ λ

{
3r2ω3(x− iy)

(
x2 + y2

)
8
√

2
,
ω(x− iy)√

2
,

(r − 1)yω2(x− iy)

2
√

2
,

− (r − 1)xω2(x− iy)

2
√

2

}
+ λ2

{
0,

4ig
(2)
rx + 4g

(2)
ry + (r − 2)ω3(x− iy)2(x+ iy)

4
√

2
,

4ig
(2)
xx + (r − 1)2yω4

(
2x3 − ix2y + 2xy2 − iy3

)
8
√

2
,

4g
(2)
yy − (r − 1)2x2ω4

(
x2 + y2

)
8
√

2

}
+O(λ3);

m̄µ =m∗µ. (C.3)

In the above expressions, the functions qi and g
(2)
ij refer to higher order terms necessary in

the λ expansion to ensure that Einstein’s equations are appropriately satisfied, as in [25].

These functions do not appear in the lowest order Petrov invariants. Note that this tetrad

has been chosen to ensure that Ψ2 is the only nonzero ΨI ; the invariants (B.5) do not

change under tetrad rotations, but the explicit form of the CABCD in terms of ι and o does

change. For simplicity, we thus choose a tetrad which preserves (5.2).
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