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I. INTRODUCTION

A human being starts to develop from the time of conception. At that time, a single cell called a zygote

is formed. In biology, the term genotype refers to all or part of the genetic constitution of an organism.

The term phenotype refers to all or part of the visible properties of an organism that are produced through

the interaction between the genotype and the environment. In the zygote, all the genetic constitution is

called genome. At the conception of a new human life, a biological program starts to run. Let us call it

the developmental program. The goal of an artificial developmental program is to simulate all or part of the

functions of biological development.

CALL OUT: The biological developmental program resides in the genome of the zygot.

The biological developmental program handles two types of development, body development and mental

development. The former is the development of everything in the body excluding the brain. The latter is

the development of the brain (or the central nervous system CNS). Through the body development, a normal

child grows in size and weight, along with many other physical changes. Through the mental development,

a normal child develops a series of mental capabilities through interactions with the environment. Mental

capabilities refer to all known brain capabilities, which include, but not limited to, perceptual, cognitive,

behavioral and motivational capabilities. In this paper, the term development refers to mental development

unless stated otherwise. The biological mental development takes place in concurrence with the body devel-

opment and they are closely related. For example, if the eyes are not normally developed, the development of

the visual capabilities is greatly affected. In the development of an artificial agent, the body can be designed

and fixed, which helps to reduce the complexity of the autonomous mental development.

CALL OUT: For the development of an artificial agent, the body can be designed and fixed, which helps to

reduce the complexity of the autonomous mental development.

Much progress has been made in neuroscience and developmental psychology. However, providing a

detailed computational model of human mental development is still a holly grail. Computational models of

mental development in the computational intelligence community can not only benefit from neuroscience and

psychology, but also contribute to modeling and understanding how the brain works.

Past research in robot and machine learning has been informed by models of human development and learn-

ing to various degrees. BAIRN is a symbolic self-modifying information processing system in simulation for

modeling a theory of cognitive development [36]. Also in simulation, Drescher [11] utilized the schema, a

symbolic tripartite structure in the form of “context-action-result,” to model a form of child sensory-motor

learning in Piaget’s constructivist theory of cognitive development. The explanation-based neural network
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by Thrun [31] was motivated by “life-long learning.” Some well-known animal learning models were im-

plemented on robots, such as classical conditioning by Darwin IV [35] and instrumental conditioning by

Skinnerbots [32]. The research effort at Michigan State University aims at engineering capable online de-

velopmental robots. It has been evolved four systems: Cresceptron (1991 - 1997) [45], SHOSLIF (1993 -

2000) [46], SAIL (1996 - present) [39] [48] [49] and Dav (1999 - present) [16]. The SAIL robot [39] and

the Darwin V robot [1] are two robot prototypes that were developed independently around the same time

for simulating cognitive development but with very different goals. Darwin V was designed to provide a

concrete example of how the computational weights of neural circuits are determined by the behavioral and

environmental interactions of an autonomous device. The goal of SAIL was to autonomously generate rep-

resentations for scaling up to more complex capabilities in unconstrained, unknown human environments for

potential engineering applications.

Recently, there has been a significant growth of research on computational modeling of mental develop-

ment. As reviewed by the article in the Historic Perspective Column of this issue, the Workshop on Devel-

opment and Learning (WDL) 2000 was the first multi-disciplinary gathering on computational modeling of

mental development — both natural and artificial [50] [51]. Currently, there are at least two regularly sched-

uled gatherings on computational development, the International Conferences on Development and Learning

and the International Workshops on Epigenetic Robotics, where much computational modeling work was

been published in recent years. In the large volume of published computational modeling work of devel-

opment, much work intends to study some related characteristics or component of development, which is

of course useful for understanding development. However, the usefulness of component techniques has not

been demonstrated fully until the techniques have been tested in a end-to-end developmental system capa-

ble of open-ended, task-nonspecific, autonomous mental development. A major benefit of developmental

learning, compared to non-developmental machine learning, is the task non-specificity [50] in learning many

simple to complex skills needed for carrying out any complex task. This paper emphasizes such developmen-

tal systems.

Section II discusses the necessity of autonomous mental development, the paradigm of biologically in-

spired autonomous mental development and some associated basic concepts. In Section III, we describe

a series of mental architectures and an example. Section IV presents the computation requirements for au-

tonomous development and some regression methods motivated by neural networks. Section V presents some

experimental results for applications. To address the scalability, the space and time complexity is discussed

in Section VI. Section VII provides some concluding remarks.
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II. AUTONOMOUS ONLINE DEVELOPMENT

Why do we need autonomous mental development? Why is the traditional machine learning very limited

in dealing with tasks that we think require intelligence? To understand these issues better, let us consider the

concept of task muddiness.

A. Task muddiness

Despite the power of modern computers, whose basic principle known as the Turing Machine was first

introduced in 1936 by Alan M. Turing [33], we have seen a paradoxical picture of artificial intelligence (AI):

Computers have done very well in areas that are typically considered very difficult (by humans), such as

playing chess games. But they have done poorly in areas that are commonly considered easy (by humans),

such as visual and language understanding. For example, it is extremely difficult for a computer to understand

a movie or, for that matter, to recognize the objects in a movie. What kind of tasks that requires intelligence?

The term “muddy” is often used in psychology to informally describe concepts that cannot be clearly

defined or specified. Let us use it as a general term to measure how much intelligence is required to execute

a task [43]. The composite muddiness of a task is a multiplicative product of many individual muddiness

measures. There are many possible individual muddiness measures. Those individual muddiness measures

are not necessarily mutually independent or at the same level of abstraction, since such a requirement is not

practical nor necessary for describing the muddiness of a task. They fall into five categories: (1) external

environment, (2) input, (3) internal environment, (4) output and (5) goal, as shown in Table I. The term

“external” means external with respect to the brain and “internal” means internal to the brain.

The composite muddiness of a task can be considered as a product of all individual muddiness measures.

In other words, a task is extremely muddy when all the five categories have a high measure. A chess playing

task with symbolic input and output is a clean problem because it is low in categories (1) through (5). A

symbolic language translation problem is low in (1), (2) and (4), moderate in (3) but high in (5). A vision-

guided navigation task for natural human environment is high in (1), (2), (3) and (5), but moderate in (4). A

human adult handles extremely muddy tasks that are high in all the five categories.

Howard Gardner [14] proposed the concept of “multiple intelligences,” in the sense that human intelligence

is displayed not only in logical-mathematical reasoning or emotional aspects, but also through other aspects

such as bodily-kinesthetic and spatial skills. From the muddiness table Table I we have a more detailed appre-

ciation what a human adult deals with even in a daily task, e.g., navigating or driving in a city environment.

The composite muddiness of many tasks that a human or a machine can execute is proposed as a metric for

measuring required intelligence.
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TABLE I

A LIST OF MUDDINESS FACTORS FOR A TASK

Category Factor Clean ←→ Muddy

Awareness Known Unknown

External Complexity Simple Complex

Env. Controlledness Controlled Uncontrolled

Variation Fixed Changing

Foreseeability Foreseeable Nonforeseeable

Rawness Symbolic Real sensor

Size Small Large

Background None Complex

Input Variation Simple Complex

Occlusion None Severe

Activeness Passive Active

Modality Simple Complex

Multi-modality Single Multiple

Size Small Large

Internal Representation Given Not given

Env. Observability Observable Unobservable

Imposability Imposable Nonimposable

Time coverage Simple Complex

Terminalness Low High

Output Size Small Large

Modality Simple Complex

Multimodality Single Multiple

Richness Low High

Goal Variability Fixed Variable

Availability Given Unknown

Telling-mode Text Multimodal

Conveying-mode Simple Complex
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CALL OUT: The composite muddiness of many tasks that a human or a machine can execute is proposed as

a metric for measuring required intelligence.

It is clear that a human infant is not able to perform those muddy tasks that a human adult performs

everyday. The process of mental development is necessary to develop such a wide array of mental skills.

Much evidence in developmental psychology has demonstrated that not only a process of development is

necessary for human intelligence, the environment of the development is also critical for normal development.

CALL OUT: Much evidence in developmental psychology has demonstrated that not only a process of devel-

opment is necessary for human intelligence, the environment of the development is also critical for normal

development.

B. Manual development

The traditional machine learning is as follows. Given a task T that the machine needs to perform, along

with ecological conditions Ec under which the machine will run, a human being H constructs the machine

agent A based on the ecological conditions Ec and the task T . After system fabrication, programming,

machine learning and task testing, the machine is a function A(0) = H(Ec, T ) at the time of machine

completion t = 0, where H denotes the human constructor as the very complex function that constructs the

agent A. During the machine execution phase, A(t) is run for t > 0 by interacting with the environment

through its sensors and effectors, during which A(t) may adapt and change with time t. Since A(0) is

completed after the task T is given, it is the human being who understands the task, chooses a representation,

and maps the task to the representation.

For example, if the task is navigation in a city environment, the programmer decides that the concept of

location is necessary and, thus, he assign a set of nodes, each representing a different location in the driving

environment. Although the programmer does not necessarily rigidly specify which node representing which

location, he decides the meaning of each node and he program rules for how to use these nodes (how to

feed data into these nodes and how to use the value from the nodes) based on the programmed-in concept

“location.” Although such a representation framework can be general (e.g., Markov decision process or

neural networks), the mapping between the task and an actual instance of the model is performed by a human

and, thus, it requires a human to understand the task, not the machine. This process of task-specific human

understanding and task-specific programming has proven to be a great hurdle to overcome.

This traditional manual development paradigm has created impressive man-made devices, from calculators

to space shuttles. However, it has not been doing very well for constructing machines to perform muddy tasks.

The main reasons include (1) the human designer cannot predict everything up-front (e.g., perception), (2) a

hand-designed representation cannot account for major required information in changing environments (e.g.,
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ceiling lights vs. wall posters).

In contrast, a human child can learn to perform new tasks that his ancestors have never learned, such as

performing new gymnastic somersaults, reading about a new subject, or learning a new language. Thus, it is

unlikely that the task-specific architecture and representation of these tasks are “hard wired” into the human

genome. Many highly muddy tasks, such as driving, require so many simple to complex mental skills that

task-specific programming is not very effective. The autonomous development paradigm is motivated by the

above observation. Further, it also serves to computationally model human mental development.

C. Autonomous development

The paradigm of autonomous development for humans and machines is as follows. The tasks that the

robot will learn to execute are unknown to the programmer during the programming time. Only given rough

ecological conditions Ec (e.g., city environment or under sea), a human being H constructs a machine agent

A(t) based on the ecological conditions Ec: A(0) = H(Ec), at the time of birth t = 0. After the birth, the

machine agent A(t) starts to interact with the environment (including its own body and humans) online in

real-time through its sensors and effectors. Many muddy tasks T1, T2, ... Tn, ... that the robot ends up learning

to perform are determined by human teachers, depending on the need at time t > 0 and on the performance

of the agent A(t) at that time.

CALL OUT: When writing a developmental program for a developmental machine, the tasks that the machine

will learn to execute are unknown to the programmer during the programming time.

Biologically, the human zygote’s genome A(0) is the result of evolution, instead of being designed by any

human programmer. As explained earlier, the human genome deals with not only mental development, but

also body development. Therefore, the developmental approach can be employed by genetic algorithms. In

fact, biological development is necessary within each generation to carry out evolution across generations.

We still use the navigation task as an example here. Since the navigation task is unknown, the concept

“location” does not exist during the time of machine programming and, thus, no data structure is dedicated to

this type of concept. A developmental program for autonomous development must generate vector clusters

from sensory inputs as a (distributed) representation, but none of the clusters exclusively represent the concept

of “location.” It is the desired cognitive and behavioral capabilities that we are aiming at.

Biologically, this means that no hard-wired neurons are specified completely by the genome to handle a

specific environment-dependent concept such as location. Wang & Merzenich [37] demonstrated that the

skin areas from which a neuron in the somatosensory cortex of the adult monkey receives signals change

significantly in weeks of training. Cells that have reached a cortical area have a genetically pre-positioned

sensory modality (e.g., vision or touch), but what meaning it represents (e.g., which finger in the hand)
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depends on experience. This is true not only in the young monkey, but also in the adult monkey.

In the above paradigm, the brain interacts with the environment through only the agent’s sensors and

effectors. In other words, the brain itself is closed during the development. In other words, the autonomous

mental development should not require the human programmer to examine the internal representation and to

directly alter the internal representation. Why should the brain be closed from the birth time? If the mother of

a child must “see” and “understand” the internal representation of her child’s brain as a necessary condition

to teach her child successfully, the teaching duty is too hard for the mother. For robots, the purpose of the

closed brain is to eliminate direct access to internal representation by humans after the task is known.

Some artificial cognitive frameworks (e.g., Soar [24] [25] and ACT-R [2]), and some statistical models

(e.g., the Partially Observable Markov Decision Process (POMDP) [22]) are widely used as general frame-

works for an agent. However, they are computational frameworks, not developmental frameworks because

such a framework itself does not provide a mechanism about how an actual instance of representation can

be autonomously generated directly from experience of sensors and effectors without human program-level

intervention. For example, Soar, ACT-R and POMDP all require a human programmer to manually provide

a concrete instance of representation from the supplied framework by (a) hand providing a representation-

to-task mapping — the mapping between elements in the representation and the concepts of the given task

(e.g., what task-specific concept a node represents) and (b) hand setting constraints to the parameters of the

model (e.g., setting as many transition probabilities in POMDP permanently to zero according to the impos-

sible transitions in the navigation environment, and make all the corners in the known environment share the

same sub-network). Thus, the robot is still unable to generate representation autonomously from interactions

with the environment. In contrast, a human child does not need his mother to establish representation-to-task

mapping, since the mother does not know the internal brain representation of the child.

D. Innateness

The next issue is what should be programmed into such a program, or namely, what is “innate” for robots?

It is beyond the scope of this paper to fully discuss biological evidence about what might be innate. There

are some inborn reflexes that are exhibited during infancy [9] [13]. For example, when the cheek is touched,

the infant turns the head toward the touched side. This is known as the rooting reflex. These inborn behaviors

do not need to be learned and are present early in life. These inborn reflexes are crucial for early survival but

they can be overridden by later learned behaviors. However, they are not task-specific skills. For example,

if a finger touches the infant’s cheek instead of a nipple, his head still turns. Therefore, the rooting reflex

facilitates nipple finding, not a task-specific skill only for the nipple-finding task.

Anything that is biologically innate (in the human genome) should be reasonable to be programmed into
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such a developmental program. Therefore, it is not true that the robot developmental program starts from tab-

ula rasa. The entire developmental program is “innate,” along with some innate reflexes. The developmental

program is not “bias-free” either.

CALL OUT: Anything that is biologically innate (in the human genome) should be reasonable to be pro-

grammed into such a developmental program. The entire developmental program is “innate,” along with

some innate reflexes.

A biological brain is both a signal processor and a processor developer (autonomous online learner) at the

same time. In an autonomously developing robot, the processor and the developer are conceptually different

but are accomplished by the same developmental program.

III. MENTAL ARCHITECTURES

To avoid a common misconception, it is necessary to discuss how the brain represents sensory world before

we discuss mental architectures.

A. Representation

A central characteristic of open-ended development is to avoid a human hand-programmed world- or

object-representation (e.g., a monolithic 3D map) for better environmental adaptation in learning. This char-

acteristic is familiar to the neural network community. In the robotics community, this characteristic is

supported by what is now called the behavior-based approach [6] [3]; while in the computer vision commu-

nity it is consistent with what is called the appearance-based approach [21][34]. When the appearance-based

approach for computer vision is used for mobile robots, these two approaches are combined [46] [8].

Biologically, the brain runs by sending signals of discrete spikes. To simulate by digital computers, we

model brain samples in discrete time.

The brain has a finite memory. Therefore, it is conceptually useful to model the brain as an adaptive finite

state machine. By adaptive, we mean that the number of states of the brain and the states are all adaptive. We

will use the term “observation driven” to capture the nature of adaptation.

B. Markov decision process

To facilitate understanding, we start with the Markov decision process (MDP), which is a framework

originated from mathematics and statistics and has been studied and used widely in the machine learning

community [28], [20], [30]. The Markov decision process (MDP) has been used to model a part of the world

that the agent is interested in.

Suppose S = {1, 2, ..., n} is a set of n predefined symbolic states that is used to model a part of the world.
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The state st at time t is a random variable taking one of the values in S. Its prior probability distribution is

P (s0). The action at is the action of the agent at time t. Let Ht be the random history from time t = 0 up to

time t− 1:

Ht = (st−1, st−2, ..., s0, at−1, at−2, ..., a0).

The process is called the k-th order MDP [28], [20], [30] if its conditional state transitional probability

P (st | Ht) satisfies

P (st | Ht) = P (st | lt)

where lt is the short last k frames of the history

lt = (st−1, st−2, ..., st−k, at−1, at−2, ..., at−k).

MDP assumes that the state is directly observable (given). In many applications, the state of the world is

not directly observable by the agent, or is partially observable (with noise). A partially observable MDP or

POMDP [20], [30] (or HMM [29]) is one whose state st is not totally observable to the agent. Instead, there

is an observation xt at time t that depends on the state st by an observation probability P (xt | st).

MDP and POMDP have been widely used to model the part of the world that is of interest. Since it is a

human designed model of the world, it needs a human programmer to establish the correspondence between

the task that the robot learns about and the hand-crafted internal representation, e.g., the meaning of each node

of the MDP and the meaning related to the task (e.g., a corner that the node represents). Therefore, MDP and

POMDP are not suited for modeling the mental process in the central nervous system (CNS) and especially

not suited for modeling developmental architecture. Therefore, we consider the following observation driven

Markov Decision Process.

C. Type-1: Observation driven Markov decision process

Let xt ∈ X and pt ∈ P be the random observations (context) and predicted (primed) action at time t,

respectively. Let Ht be the random vector of the entire history:

Ht = (xt,xt−1, ...,x0,pt−1, ...,p0).

We call the process the k-th order Observation-driven MDP (ODMDP) [10], if its transitional probability

P (pt | Ht) satisfies

P (pt | Ht) = P (pt | lt) (1)

where lk is the last k observations:

lt = (xt,xt−1, ...,xt−k,pt−1, ...,pt−k) (2)
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Fig. 1. Observation-driven Markov decision process: The architecture of a multi-sensor multi-effector online learning agent. In

the temporal sensory and effector streams, each square denotes a receptor (e.g., pixel) or motor and vertically aligned squares

form a time frame. The block marked with L is a set of context states (prototypes), which are clusters of all observed context

vectors lt. V is the motivational (value) system.

as shown in Fig. 1.

This architecture is called Type-1 architecture. Note that numeric vectors in a high dimensional space are

used as observation driven representation, instead of the hand-defined symbolic representation in MPD in the

previous subsection.

The last k observations lt are called the last context. The online processing problem using the architecture

in Fig. 1 is then to estimate and realize the prediction pt from the last context lt, where pt is the desired

action (vector) output at time t.

In practice, internally, multiple predictions for pt are necessary to evaluate the value of each prediction.

This is because multiple actions exist given the same context (e.g., left and right turns at a Y junction).

Different actions lead to contexts of different values.

To denote multiple predictions, we add time variable explicitly to lt and pt, to become l(t) and p(t),

respectively. Thus, each context l(t) may correspond to multiple action possibilities p1(t), ...,pk(t). This is

accomplished by a mapping, simulating a major role of the association cortex:

{p1(t), ...,pk(t)} = R(l(t)), (3)

where k ≥ 0 varies according to experience. Note that this k does not need to be the same as the context

length k for the last context l(t). Thus, the mapping R is a mapping from the space of the last context L to

the power set of the predicted outcome space P , namely, R : L 7→ 2P .

R is developed incrementally through experience. For any t > 0 (after the machine “birth”), it is a total

function since it is defined for all elements in L, but it does not do well for most elements in L that are far
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from those experienced. It is not an onto function since its range covers only to a very small part of 2P .

Therefore, we need a value system that selects desirable contexts from multiple primed ones. The value

system V (t) takes a set of (e.g., k) contexts from the mapping R and selects a single action:

V (R(l(t))) = V ({p1(t),p2(t), ...,pk(t)}) = pi(t) (4)

where 1 ≤ i ≤ k. In terms of mapping between input and output spaces, the value system is a mapping from

the power set of P to the space of P , that is, V : 2P 7→ P .

In summary, the two mappings, R and V , accomplish a composite mapping from the space of last contexts

L to the space of primed action P

L
R
7→ 2P

V
7→ P. (5)

The mapping R is not static, since it is updated at every time instant t.

D. Simpler regressors

What the cortex does is regression, from the input vector space to the vector output space.

The simplest implementation of such a mental architecture is a multi-value lookup table. The static map-

ping of R is a large lookup table. It digitizes the input space L into c number of cells (artificial neurons).

The prediction space P is digitized into m cells, a1, a2, ..., am, each corresponding to a candidate action.

Each cell, represented by a vector v ∈ L in the lookup table is linked to m candidate actions, ai, each being

associated with an estimated value qi. The simplest value system is to pick up the action aj that is associated

with the highest value qj = max1≤i≤m{qi}.

A more efficient adaptation of R can use the Self-Organization Map (SOM) [23], Competitive Learning

(CL) [15], Neural Gas [26], or Hierarchical Feature Map [27]. However, these unsupervised methods do

not generalize well for high-dimensional inputs because of the lack of a capability to extract discriminant

features. Supervised networks can also be used. Feed forward neural networks with incremental back-

propagation learning do not have a systematically organized long-term memory, and thus, early samples

will be forgotten in later training. Cascade-Correlation Learning Architecture [12] improves them by adding

hidden units incrementally and fixing their weights to become permanent feature detectors in the network.

Thus, it adds long-term memory. Major problems for them include the high-dimensional inputs and local

minima. We will describe the Incremental Hierarchical Discriminant Regression (IHDR) after we present the

regression requirements for autonomous mental development.
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E. A simple value system

To complete the modeling of the Type-1 mental architecture, we need to model the value system V in

Eq. (4). The value system is a selector of multiple predicted contexts according to estimated values.

The most basic innate value system in a new born is characterized by pleasure seeking and pain avoidance.

Pleasure is denoted by a positive reward and pain is denoted by a negative reward. However, an immediate

reward is typically delayed by a few milliseconds to a few seconds (e.g., from reaching a hot pot to feeling

the pain).

Just negative and positive rewards are not sufficient for effective development. When punishment and

rewards are absent, novelty is an important component of the value system. Habituation and sensitization in

animal learning are examples of novelty in the value system. Typically, punishment (aversive stimuli) and

rewards (appetitive stimuli) are temporally sparse and novelty is temporally dense. Huang & Weng [17] [18]

formulated novelty is the failure of predicted context and integrated punishment, reward, and novelty in a

developmental value system. In their model, sensed value at any time is a combination of weighted sum of

aversive stimuli, appetitive stimuli and novelty. Aversive stimuli are counted as negative value, but appetitive

stimuli and novelty are counted as positive value. The weights they contribute into the current sensed value

are different: aversive stimuli highest, appetitive stimuli second highest and novelty the third.

It seems other non-sensor driven information, such as a desire to learn, is not a part of the developmental

program. A desire to learn is a learned behavior, if learning is novel or receiving proper rewards from the

environments.

Sensed value at time with short delays can be dealt with by the well-known Q-learning algorithm [38]

which uses a time discount model to handle delayed sensed values. The major limitations in the application

of Q-algorithm for autonomous development include (1) much delayed values should be avoided due to the

time discount model favor small immediate values to large far values, (2) the predicted value of a new action

must be well estimated before the next execution. During application experiments, we used rewards that

immediately follow the corresponding actions, and the architecture keeps a first-in-first-out queue, called

state-update-queue [41] to update the Q-values along the so called eligible trace (the last few visited states,

i.e., quantized context states) multiple times before each state goes out of the state-update-queue.

Sensed values that are very much delayed cannot be effectively dealt with by the simple Q-learning al-

gorithm alone. For example, in animal training, there is a significant delay between starting following the

instruction of the human trainer to receiving a food reward because of a successful practice. An effective

trainer designs a training schedule that involves many short-delayed rewards, rewarding every small step in-

stead of just a single big reward at the end without any small rewards in between. Therefore, a well designed
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training procedure is very important to train a developmental machine.

Other longer delays of rewards and more sophisticated value associated with the type of rewards need the

mechanism of autonomous thinking, similar to the reasoning mechanism in [52].

F. Mental architectures Types 2 to 6

Other more sophisticated architectures are closer models of human mental architecture, but their au-

tonomous learning is more complicated. The following presents mental architectures 2 through 6 which

appeared in Weng 2004 [42] with more detail available in [44].

A Type-2 Observation-driven Selective MDP is a Type-1 architecture, with the addition of an attention

selector T , more generally called sensory mapping a biological equivalent of early sensory processing as

shown in Fig. 2. The control signal for attention selection is internal actions generated from the action end.

A Type-3 Observation-driven Selective Rehearsable MDP is a Type-2 mental architecture, with the

addition of an action releaser M , a biological equivalent of pre-motor and motor cortex, as shown in Fig. 2.

It enables the agent to internally rehearse an action without actually executing it, important for reasoning,

planning and autonomous thinking.

A Type-4 Observation-driven Self-Aware Self-Effecting (SASE) MDP is a type-4 architecture but is

further SASE. The term “self” here means the brain, instead of the body of the agent. A self-aware and self-

effecting (SASE) agent has internal sensors Si and internal effectors Ei for this internal (brain) environment,

in addition to its external sensors Se and external effectors Ee for its external environment (outside brain), as
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Fig. 3. (a) The brain is a SASE Agent. It interacts with not only the external environment but also its own internal (brain)

environment: the representation of the brain itself. The afferent (out-going) projections from the motor area and the value

area correspond to equivalent internal sensors. The efferent (receiving) projections from the motor area to the sensory area

correspond to equivalent internal effectors. (b) The equivalent internal sensors and internal effectors of a SASE agent.

shown in Fig. 3. The regressor R takes signals from Si and Se and generates internal and external actions for

Ei and Ee, respectively, as shown in Fig.2.

A Type-5 Developmental Observation-driven SASE MDP (DOSASE MDP) architecture is a Type-4

architecture but further it satisfies the following requirements:

1. During the programming time, the tasks that the agent will learn are unknown to the programmer.

2. The agent A(t) starts to run at t = 0 under the guidance of its developmental program Pd. After the ”birth,”

the brain of the agent is not accessible to humans.

3. Human teachers can only affect the agent A(t) as a part of its environment through its sensors and effectors

recursively. A(t− 1) is updated to A(t), including T , R (and L), M , and V , as shown in Fig. 2.

A Type-6 Multi-level DOSASE MDP architecture is composed of several (sensorimotor) levels of Type-5

architecture. The primed contexts from a lower-level system are fed into the sensory input of the higher-level



16

t

Time

S 2e

S 1e

1e
E

2e
E

S

Sensors:

Effectors:

   Last

context

Primed

context

MR

D

T MR

D

T

VL VL

Fig. 4. The Type-6 architecture: multi-level DOSASE MDP.

system, as shown in Fig. 4.

In the above systematically introduced six types of architectures, the order at which new capabilities are

added to the previous type is primarily a design choice. The order used here is motivated by a relatively large

payoff in capability with a minimal addition to the architecture complexity. The higher the architecture type,

typically the agent will able to generalize better given the same environment.

In summary, the major characteristics of mental architectures include: observation driven, selective, re-

hearsable, self-aware, self-effecting, multi-level and developmental. The above definition of Types 1 through

6 only gives a particular order in which these features are incorporated in an increasing complete sequence of

mental architectures. Other combinations of these architecture features are also possible. For example, the de-

velopmental feature can be incorporated without adding all other features, like the SAIL-2 robot architecture

explained later in the paper.

CALL OUT: The major characteristics of mental architectures include: observation driven, selective, re-

hearsable, self-aware, self-effecting, multi-level and developmental.

Of course, the added capabilities require training, but the mental skills from the training will be used for

better generalization in future training, although there is no guarantee that the generalization will always be

correct, a well known phenomena in child learning.

G. Learning types

In the machine learning literature, there have been widely accepted definitions of learning types, such

as supervised, unsupervised, and reinforcement learning. However, these conventional definitions are too

coarse to describe computational learning through autonomous development. For example, it is difficult to
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identify any type of learning that is completely unsupervised. Further, the traditional classification of animal

learning models, such as classical conditioning and instrumental conditioning, is not sufficient to address

computational considerations of every time instant of learning. A definition of a refined classification of

learning types is necessary.

We use a variable i to indicate internal task-specific representation imposed by human programmer (called

internal-state imposed i = 1) or not (called internal-state autonomous i = 0).

We use e to denote autonomy of effector. If the concerned effector is directly guided by the human teacher

or other teaching mechanisms for the desired action, we call the situation action imposed (e = 1). Otherwise,

the learning is effector autonomous (e = 0).

We need to distinguish the channels of reward (e.g., sweet and pain sensors) that are available at the birth

time, and other channels of reward that are not ready to be used as reward at the birth time (e.g., auditory

input “good” or “bad”) but implies a value after a certain amount of development. We define (inborn) biased

sensors:

If the machine has a predefined preference pattern to the signals from a sensor at the birth time, this sensor

is an (inborn) biased sensor. Otherwise, it is an (inborn) unbiased sensor.

In fact, all the sensors become biased gradually through postnatal experience — the development of the

value system. For example, the image of a flower does not give a newborn baby much reward, but the same

image becomes pleasant to look at (high value) after the baby has gown up.

We use the third variable b to denote whether a biased sensor is used. If any biased sensor is activated

(sensed) during the learning, we called the situation reinforcement (b = 1). Otherwise, the learning is called

communicative (b = 0).

Using these three key factors, any type of learning can be represented by a 3-tuple (i, e, b), which contains

three components i, e, and b, each of which can be either represented by 0 or 1. Thus, there are a total of 8

different 3-tuples, representing a total of 8 different learning types. If we consider ieb as three binary bits of

the type index number of learning type, we have 8 types of learning defined in Table II. We can also name

each type. For example, Type 0 is state-autonomous, effector-autonomous, communicative learning. Type 7

is state-imposable, effector-imposed, reinforcement learning, but it has not been included in the traditional

definition of either supervised learning or reinforcement learning. However, this learning is useful when

teaching a positive or negative lesson through supervision.

CALL OUT: Using three key features, state-imposed, effector-imposed and reinforcement, eight learning

types are defined. This refined definition is necessary to understanding various modes of developmental and

nondevelopmental learning.
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TABLE II

EIGHT TYPES OF LEARNING

Type (binary) Internal state Effector Biased sensor

0 (000) Autonomous Autonomous Communicative

1 (001) Autonomous Autonomous Reinforcement

2 (010) Autonomous Imposed Communicative

3 (011) Autonomous Imposed Reinforcement

4 (100) Imposable Autonomous Communicative

5 (101) Imposable Autonomous Reinforcement

6 (110) Imposable Imposed Communicative

7 (111) Imposable Imposed Reinforcement

All learning types using a non-developmental learning method corresponding to Types 7 to 4, this is be-

cause the task-specific representation is at least partially handcrafted after the task is given. Autonomous

mental development uses Types 0 to 3.

IV. A CORTICAL DEVELOPMENT ENGINE: IHDR

Let us examine some requirements for the regressor R for autonomous development.

A. Regression requirements

It is desirable for the regression engine R to have the following 7 properties, called 7 regression require-

ments. We discuss how the IHDR address each requirement.

1. The regression engine must deal with high-dimensional inputs with very complex correlation between

components in the input vector (e.g., an image vector has over 5000 dimensions). Some input components

are not related to output at all (e.g., the posters on the wall is not related to navigation). In other words,

it must automatically derive the most relevant, discriminating features for superior generalization. IHDR

automatically derive the most discriminant features subspaces in every node of the tree.

2. It must perform one-instance learning. An event represented by only one input sensory frame needs to

be learned and recalled. The lookup-table regression satisfies this requirement. IHDR stores clusters as

prototypes, but not all the learned samples. Thus, one-instance learning is realized by either a new prototype,

or a similar prototype.

3. It must adapt to increasing complexity dynamically. It cannot have a fixed number of parameters, like

a traditional neural network, since such a program must dynamically create system parameters to adapt to

regions where increased complexity is needed due to, e.g., increased practice for some tasks. The lookup-
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table regression satisfies this requirement, since it does not have internally designed parameters that restrict

the degree of freedoms. IHDR dynamically grows subtrees to adapt to the increased complexity.

4. It must deal with the local minima problem. In methods that use traditional feed-forward neural networks

with back-propagation learning, there is no guarantee to find the best match. The lookup table method satisfies

this requirement since it exhaustively search for the nearest neighbor. IHDR uses a data-driven coarse-to-fine

search tree to contain the local minima problem.

5. It must be incremental. The input must be discarded as soon as it is used for updating the memory. It is

impossible to keep all the training samples during open-ended incremental development. The lookup table

method keeps all the samples, thus, it is incremental but the space needed is too large to be practical. IHDR

incrementally updates.

6. It must be able to retain most of the information of the long-term memory without catastrophic memory

loss. However, it must also forget and neglect unrelated details for memory efficiency and generalization.

With an artificial network with back-propagation learning, the effect of old samples will be lost if these

samples do not appear later. The lookup table method keeps every learned sample, thus, it does not suffer

from catastrophic memory loss. In IHDR, the long term memory stored as tree structure and micro-prototypes

prevent catastrophic memory loss.

7. It must have a very low time complexity in computing and update so that the response time is within a

fraction of second, even if the memory size has grown very large. Thus, any slow learning algorithm is not

applicable here. The time complexity of the lookup table method is linear in the total size of the tree size,

which increase linearly in time until it reaches the soft limit. Therefore, it is impossible for the lookup table

method to be real-time when the memory size has grown the very large. Given a input vector l(t), the time

complexity for IHDR to find a match and updating the IHDR tree with n leaf nodes is O(d log(n)) where d is

the constant dimension of l(t). Thus, when n is very large, the time complexity for update is still small (very

slow logarithmic growth).

CALL OUT: The seven regression requirements for cortical mapping and development are: high-dimension,

one-instance learning, adaptation to complexity, freedom of local minima, incremental learning, long-term

memory, and low time complexity.

B. Incremental Hierarchical Discriminant Regression

Taking all of these requirements into account is very challenging. Existing regressors were not designed for

all 7 requirements, including the Self-Organization Map (SOM) [23], Competitive Learning (CL) [15], Neural

Gas [26], Hierarchical Feature Map [27], feed forward neural networks with incremental back-propagation

learning, the Cascade-Correlation Learning Architecture [12] and the Support Vector Machines (SVM). For
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example, the support vector machine SVM has problems with requirements 3 (because of batch learning) and

5 (because of batch learning). Of course, some are better than others in those 7 regression requirements.

These 7 requirements have been taken into account in the Incremental Hierarchical Discriminant Regres-

sion (IHDR) mapping engine as shown in Fig. 5.
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Fig. 5. Illustration of an IHDR tree incrementally developed (self-organized) from learning experience. The sensory space is

represented by sensory input vectors, denoted by “+”. The sensory space is repeatedly partitioned in a coarse-to-fine way. The

upper level and lower level represent the same sensory space, but the lower level partitions the space finer than the upper level

does. An ellipse indicates the space for which the neuron at the center is responsible. Each node (cortical region) has q feature

detectors (neurons) (q = 4 in the figure), which collectively determine to which child node (cortical region) the current sensory

input belongs (excites). An arrow indicates a possible path of the signal flow. In every leaf node, prototypes (marked by “+”)

are kept, each of which is associated with the desired motor output.

Given any input x, IHDR uses a supervised learning to update the tree if the desired output y is available.

Otherwise, it retrieves the last updated tree using the current input x from the root. The most discriminating

subspaces at each level of the tree guide the search only along a single path (multiple paths corresponding

to an option) down the tree until the best matched leaf node is reached. In this leaf node, the best matched
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Fig. 6. A schematic illustration of the architecture of the SAIL-2 robot.

prototype x′ is associated with multiple action clusters each with an estimated value. These action-value pairs

are the corresponding output of the input x.

IHDR is a model for cortical learning and cortical development. To deal with a high-dimensional input,

IHDR automatically derive the most discriminating feature subspaces using virtual labels from the incremen-

tal clustering in the output space. To deal with one-instance learning, it spawn a new prototype in the best

matched leaf node whenever the current input is sufficient different from the best-matched existing proto-

types. To adapt to increasing complexity dynamically, IHDR has dynamic set of parameters, represented by

the adaptive clusters in every internal node and the increasing clusters in the leaf nodes. To deal with the local

minima problem, IHDR uses data-driven coarse-to-fine approximation of the input distribution. Therefore,

there is an approximation precision, limited by the observations, but not the gross local minima problem in a

global fitting method (e.g., batch propagation algorithm). To deal with incremental learning, the entire tree of

IHDR is built incrementally by updating the related part of the tree using each input and output vector pair.

IHDR has long-term memory as the tree structure, and the cluster parameters in the shallow nodes. IHDR

has a very low time complexity O(d log(n)) for computing response and update the tree from each input,

where d is the input dimension and n is the number of nodes in the tree. More detailed description of IHDR

is available in [19] [47].

C. SAIL-2 online learning architecture

Fig. 6 gives a schematic illustration of the implemented SAIL-2 architecture. The block marked by dashed

lines realizes the mapping R followed by R in Eq. 5. The left incoming arrows denote the composition of the

last context vector l(t). The right outgoing arrows denote the action output vector p(t).

Based our discussion of mental architecture, we can see that the SAIL-2 architecture is a developmental,

observation driven, Markov decision process. It is not selective, rehearsable, or SASE (e.g., it does not

self-sensed internal actions). Although it has two pathways of sensorimotor systems (IHDR mapping and
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Innate behavior pathways), these two pathways do not feed the prediction into another. Therefore, it is not a

multilevel architecture as defined for Type-6.

Although actual sensors and effectors are marked in Fig. 6, the SAIL-2 architecture is general. Any robot

can use this architecture as long as the appropriate sensors and effectors are filled in.

It is important to note that every effector that the brain needs to actively control must have the correspond-

ing sensor input in x(t). For example, if the robot controls the wheel action, it must have a dedicated virtual

sensor that senses the wheel action. Otherwise, its context vector does not contain the information about the

wheel. When the sensory inputs are very similar around a corner, the wheel heading can tell whether the turn

has started or not. In the architecture in Fig. 6, there are three effectors, pan-tilt units (PTU) for the eyes, the

arm, and the wheels, each having corresponding sensors which tell, at the next time instant, what the robot

does through a delay unit.

D. Innate and learned behaviors

An innate behavior is programmed prior to the “birth” of the robot. The current implemented built-in

innate behavior is the motion detection and tracking mechanisms for vision. When an object is moving in

the scene, the absolute difference of each pixel between two consecutive image frames records the amount of

intensity change for the pixel. The absolute intensity changes of all the pixels constitute another image called

the intensity-change image, which is directly mapped to the control of the PTU of each eye, also using the

IHDR mapping technique. However, this mapping was generated by a “prenatal” offline learning process. In

other words, this offline learning generates innate behaviors in robot “newborns.” Our experience indicated

that it is computationally much faster and more reliable to generate innate behaviors this way than explicitly

finding the regions of moved objects through direct hand programming.

The online generated IHDR mapping and the innate behavior may generate PTU motion signals at the

same time. The resolution of such a conflict is performed by the gate system. In the current implementation,

the gate system performs subsumption [6]. Namely, the learned behavior takes higher priority. Only when

the learned behavior does not produce actions, can the innate behavior be executed. A more resilient way of

conducting subsumption is to use the confidence of each action source, as indicated in Fig. 6, but we did not

find it was necessary in the experiments conducted. This confidence-based action arbitration may be needed

when the number of tasks learned becomes large, but this subject is beyond the scope of the reported work.

V. EXPERIMENTS

The purpose of this section is to provide a concrete example of application. We first describe the SAIL

robot which was used as the developmental platform of this example.
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A. SAIL robot

Fig. 7. The SAIL robot.

The human-size SAIL robot, house built at Michigan State University, is shown in Fig. 7. It is equipped

with two CCD color cameras, each with a wide-angle lens. Its “neck” can turn. Each of its two “eyes” is

controlled by a fast pan-tilt unit. Its torso has 4 pressure sensors to sense push actions and force. It has 32

touch sensors on its arm, neck, head, and bumper to allow humans to teach it how to act by direct touch.

A six-joint robot arm is the robot’s manipulator. Its drive-base is driven by two independent drive wheels,

one on each side. The base is adapted from a wheel-chair and, thus, the SAIL robot can operate both indoor

and outdoor. The main computer is a high-end dual-processor, dual-bus Pentium II 333Mhz PC workstation

with 512MB RAM and an internal 27GB three-drive disk array for real-time sensory information processing,

real-time memory recall and update as well as real-time effector controls. This platform was used to test the

SAIL-2 program.

At the “birth” time of the SAIL robot, its program starts to run. This algorithm runs in real-time, through

the “life span” of the robot. The robot learns while performing simultaneously. The innate reflexive be-

haviors enable it to explore the environment while improving its skills. Human trainers educate the robot

by interacting with it, very much like how human parents interact with their infants, letting it look around,

demonstrating how to reach objects, teaching commands with the required responses, delivering reward or

punishment (pressing “good” or “bad” buttons on the robot), etc.

The SAIL robot has been trained for four tasks, (1) vision-guided navigation using supervised and rein-

forcement teaching methods, (2) object-finding, (3), object-based attention (eye-pan), and (4) attention-guide

arm pre-reaching. The first task is to test the power and limit of perception-based behavior learning, with an

emphasis on the complexity of perceptual capability. The tasks (2) - (4) were trained in the same setting, but

different from that of task (1), with an emphasis on demonstrating earlier skills serving as “scaffold” for the

later ones: Recognizing object guides turning the eyes toward the object, which in turn provides the context
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for arm pre-reaching. Within tasks (2) to (4), it is much harder to learn the later tasks without accomplishing

the earlier ones.

B. Task 1: Vision-guided autonomous navigation

At the birth time, the “baby” robot does not “know” how to move around. We took it out of the laboratory

for a “walk.”

At first we taught the robot using a supervised learning technique: pushing it around the corridors of

MSU’s Engineering Building, shown in Fig. 8, as it learns online. The human teacher pushes the pressure

12

4

3

5 6

10 m

Fig. 8. The long navigation path along the corridors of the Engineering Building at Michigan State University.

sensors, one on each shoulder of the robot. The pressure is translated into the speed of the driving wheel

on the corresponding side. The difference of the two readings gives the heading direction of the robot. The

corridors exhibit various posters, doors (including a glass fire door), floor tiles, ceiling patterns, and “moving”

floor reflections. Figs. 9 and 10 show some views at one straight section around one corner. The complex

scene changes gradually when the robot is pushed along. If the human does not push the robot, it navigates

on its own based on what it has learned so far. The SAIL baby robot associates what it sees with what it does

in real-time. This is very challenging. First, no range-sensor, whatsoever, is used. The mapping from the

intensity images to what it does is extremely complex. Second, the robot never sees exactly the same image

twice. It must generalize from its experience. When the robot does well, the human teacher lets it go free

more often. We found that it took about 10 trips for the robot to learn to navigate reliably around a corner, but



25

0 10 20 -10 -20

Fig. 9. The SAIL robot is at a straight section: a subset of corridor images that it sees. The number below the images shows the

needed heading direction (in degrees) associated with that image. The first row shows the images from the right camera while

the second row shows those from the left camera. Notice the doors and posters on the sides and “moving” reflections on the

floor.

Fig. 10. The SAIL robot is at a corner: A subset of images it sees. Rows one and three show the images from the left camera.

Rows two and four show the images taken from the right camera. Notice the posters on the wall and the glass fire door.

one trip is mostly sufficient to learn along a straight section. When the robot does better, the trainer lets it go

free completely. Fig. 11 shows the SAIL robot autonomously navigating on its own around a corner, before

going through a glass fire door.

What happens inside the SAIL-2 program is as follows. At each time instance, the SAIL-2 program accepts

a pair of stereo images, updates its states, which contains past sensory inputs and actions, and then outputs

the control signal C to update the heading direction and speed. The resolution of each image is 30× 40. The

input dimensionality of the IHDR algorithm is 30 × 40 × 3 × 2 = 7200, where 3 is the length of history in

state (context). This is a very challenging approximation problem since the function to be approximated is for

a very high dimensional input space and the real application requires the navigator to perform in real-time.

The SAIL robot was trained through 10 laps on the second floor of the Engineering Building. The test

showed that the SAIL robot can successfully navigate after the interactive training, except for occasional
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Fig. 11. The SAIL robot navigating around the corner of the Engineering Building at MSU, on its way to circle the entire floor.

mistakes at five locations. At these locations, there are extensive wall-height windows which caused strong

ambient outdoor lighting. The fixed exposure cameras became over-saturated and the navigation at these

points were sometimes unreliable. Due to the unavailability, at the time of the robot’s construction, of micro-

cameras with auto exposure, the microcameras on the SAIL robot can only use a fixed exposure. We plan to

acquire auto-iris cameras for the SAIL robot. The SHOSLIF robot, the predecessor of SAIL, equipped with

an automatic exposure camera, has also used the appearance-based approach. However it did not make mis-

takes at these locations [46] [8]. As demonstrated in face recognition under different lighting conditions [19],

HDR can deal with lighting variations if they are well included in the training samples. However, the SAIL

robot demonstrated flawless navigation along the very long navigation path, as long as the cameras were

not over-saturated, although many of the sections of the corridors take outdoor light in through classroom

windows.

It is impossible to measure error in the heading direction from a real-time system, since the exact desired

heading direction is not available. For performance evaluation, we recorded the training experience and run

in simulation. Some of the recorded sample input images are shown in Fig 10. A total of 3533 color stereo

images with the corresponding heading directions were used for simulated training. A set of remaining 3386

stereo images, labeled with desired heading directions were used to measure the error in heading. Fig 12

shows the error rate versus the number of training epochs, where each epoch corresponds to the feeding of

the entire training sensory sequence once (one lap around the building). As shown, even after the first epoch,

the performance of the IHDR tree is already reasonably good. With the increase in the number of epochs, we

observed the improvements of the error rate. Fig. 13 shows a more detailed error histogram after 16 epochs.

A part of the automatically generated IHDR tree is plotted in Fig 14. During the training, the IHDR

algorithm receives both the color stereo images as input and the heading direction as output. It rejects samples
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Fig. 12. Heading error rates vs. epochs in vision-guided navigation.
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Fig. 13. The error histogram of the testing set after 16 epochs.

(not used for learning) if the input images are similar to samples already learned. The visualization of the

IHDR tree provides us an example about the concepts of Information Levels discussed in Section II:

1. The coarse architecture of the SAIL’s CNS is designed, as shown in Fig. 6, but the fine architecture,

corresponding to the IHDR mapping (a network), is developed automatically from the experience, guided by

the SAIL-2 program, including IHDR.

2. The representation level corresponds to the clusters in the nodes of the IHDR tree. The IHDR represen-

tation depends on the designed and developed architecture, but also depends very much on the experience.

Different experience results in a different tree. Hand-designed features such as Gabor wavelets are not task-

adaptive, but the discriminant feature vectors shown in Fig. 14 are architecture-adaptive (growing according

to the current fine architecture) and task-adaptive. That is why the former is applicable to only early pre-

processing, but the latter is applicable to everywhere from early to later processing. Further, the former does

not have a discrimination optimality, but the latter does.

3. Different branches of the tree may be considered, in some sense, as function-specific regions (modules) of

the “brain.”

4. The representation is very much distributed all over the tree. For example, a physical corner may not

necessarily be represented by a single monolithic form. Instead, it may be represented by different nodes at

different locations with different degrees of specificity.
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Fig. 14. An illustration of the IHDR tree automatically developed from real-time experience, guided by the SAIL-2 developmental

program. For conciseness, only training images from the left camera are shown. Each block indicates a tree node. The first

row of each node shows the x-cluster centers presented as images. The first image of the second row is the grand mean of all

the x-clusters. The remaining images of the second row are the discriminating features represented as images. See text for

discussion.

5. The actual representation used to generate behaviors changes very fast through time. Within 100 millisec-

onds, the retrieval search path changes from one to another through the tree, each time using a very different

sequence of nodes together with their specialized subspaces. There does not seem to exist a practical way to

hand-design such a complex representation, even if the scene is known beforehand.

6. “Scaffolding” occurs automatically: the current network enables the following action and newer cognitive

and behavioral capabilities. For example, the capability of making a turn around the first corner provides a

“scaffold” for turning the second time around the same corner and turning around the second corner. In fact,

at the high dimensional space, every view of a corner is different. Generalization is observed at the response

level: the observed behaviors. Very complex changes: posters, doors, floors are automatically disregarded.

The invariance is achieved through a mapping from many different corresponding leaf nodes to the desired

behavior output (e.g., heading direction). Invariance is learned through experience instead of relying on

human selected intermediate features, which is hopeless for complex tasks like the one above. E.g., floor

edges are often not clear (see Fig. 10) and they are mixed with the edges of the wall tiles and floor tiles. Thus,
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navigation relying on floor edges is doomed to fail.

7. At the timing level, internal nodes are frozen so that the samples that are channeled into deeper nodes

come from a steady partition (or distribution). Further, the IHDR program monitors the percentage of the

physical memory used and it adjusts the speed of the node-deleting (forgetting) process to guarantee that the

robot performs well without memory overflow. Therefore, the timing level is still experience-dependent.

In order to teach the robot for more experiences, we allowed it to try on its own. We moved the robot

to the third floor of the Engineering Building and trained it further using a combination of supervised and

reinforcement teaching techniques. If the robot’s actions show a danger of making an error, a negative reward

is given by pressing its “bad” button and a push corrects its heading, if needed. If the robot does well, a

“good” button is pressed, or it is simply allowed to go ahead without reward. The reward pattern from the

trainer discourages changes toward the wrong direction and encourages those toward a better one. While

the robot’s performance is being improved, the trainer gave fewer and fewer rewards. The robot experiment

showed that the reinforcement learning was effective. The developed “brain” size is under 300 MB.

To accurately evaluate the effect of reinforcement learning in the SAIL-2 program, we have developed

a simulation environment whose graphical user interface is shown in Fig. 15. If the robot navigates well

within the navigation path, human intervention is not necessary. If the robot is heading off the road, the

human teacher will press the “bad” button. If the robot is correcting its heading direction toward a desired

direction, a “good” button is pressed. If the robot does well, no human intervention is given. Fig. 16 shows

the improvement of navigation through the laps around the navigation loop, using exclusively reinforcement

learning.

C. Tasks 2 through 4: Object finding, eye-pan, and pre-reaching

The teacher now has three more tasks in mind: Task (2) object-finding: find object in the field of view.

Task (3) vision-guided attention: eyes pan together with the arm to make the eyes aim toward a familiar

object. Task (4) attention-based pre-reaching: After the above is done, the arm is aiming at the object. The

arm reaches forward to the object. The later tasks cannot be learned effectively without the help of skills in

the earlier ones. Thus, the earlier skills provide scaffolds for the later ones. These three tasks were learned in

a laboratory environment, which is very different from the navigation environment outside the laboratory for

Task 1.

Existing studies on visual attention selection are typically based on low-level saliency measures, such as

edges and texture [4]. In Birnbaum’s work [5], the visual attention is based on the need to explore geometrical

structure in the scene. In our case, the visual attention selection is a result of past learning experience.

Thus, we do not need to define any task-specific saliency features. As we know, it is the SAIL robot that
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Fig. 15. The SAIL simulator for autonomous navigation, allowing supervised and reinforcement learning. The large window

shows the top view of the navigation environment, where a needle marks the position and heading direction of the robot, and

the small window shows what the robot sees.
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Fig. 16. The simulation results with reinforcement learning. The x-axis shows the number of laps the robot went through along the

navigation path. The y-axis indicates the number of rewards the robot received due to the need of human intervention, which

decreases while the robot’s performance improves.

automatically derives the most discriminating features for the tasks being learned. At the time of learning,

the object was presented in the Region Of Interest (ROI) inside the stereo images (the concept of ROI is

only in the mind of the trainer but is not used for programming the SAIL-2 program). The human trainer

interactively “pulls” the robot’s eyes toward the object (through the touch sensors for the pan-tilt heads) so

that the object is located on the center of the region of ROI — fovea (fixating the eyes on the object)1. The

inputs to the algorithm are the continuous sequence of stereo images and the sequence of the pan-tilt head

control signal. The arm pans with the head so that it aims at the object when the eyes stop. Three actions are

defined for the pan-tilt head in pan direction: 0 (stop), 1 (move to the left), or -1 (move to the right). The size

1This is not done with human infants, since we cannot pull an infant’s eye. However, this makes robot learning faster than that of a human

baby. This is in fact an advantage of robots over humans in that the robot can be built to fascinate training.
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of ROI is defined as 120× 320. When the object moves again within the field of view, the learned robot will

pan the eyes and arm again to bring it into the fovea. When running continuously in time, the robot appears

to be interested in the object, since it keeps tracking it. Fig. 17 shows some example images seen by the robot

during the training session for Tasks 2 through 4.

-66 -35 -3 -30 63

95 128 160 194 225

259 291 324 357 389

Fig. 17. A subset of image stream observed during training for Tasks 2 through 4. The number below the image shows the PTU

position associated with that image.

The training session was run in the following way:

1. When the robot sees a scene that does not contain an object of interest, it does not do anything (default,

innate action).

2. An object of interest is presented to the robot as any position within its ROI.

3. The human teacher imposes an appropriate pan action (constant absolute speed) to the eyes and the arm,

by pressing a pressure sensor. The two images from the two eyes change due to the eye pan.

4. When the eye pan has reached an appropriate position so that the object of interest is at the center of the

fovea, the imposed action disappears so that the pan action stops (innate action takes place) for both the eyes

and the arm. Therefore, the arm is taught to synchronize with the eyes’ orientation.

5. As soon as the pan action stops, the human teacher presses another pressure sensor to bring the arm forward

to the object (which is just in front of it after a proper pan).

6. A press on a “home” sensor triggers an “innate” programmed action sequence for all of the effectors

involved to move to their default home location. Another practice session can begin if the teacher desires.

Similarly, the testing session was run as follows:

1. The human tester presents an object that the robot has seen so that it falls into the ROI.

2. Since no action is imposed from the environment, the robot derives the behavior for this context, which is

the pan for the eyes and the arm in the learned direction.

3. The images change during the pan, but the learned experience enables the robot to continue to pan, as long
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as the object is not at the fovea.

4. When the object is at the fovea, the derived action is to stop (zero pan for the eyes and the arm).

5. The current context brings up the following action: the arm reaches toward the object.

6. A press on the “home” sensor triggers the innate homing action.

What the robot learns is the mapping between context (x(t), w(t)) and the action a(t+1) using the updated

long term memory l(t). The context state w(t) in the working memory provides crucial information about

the recent history. Otherwise, the mapping to be learned is often ambiguous: The same input x(t) requires

different action outputs. In the above example, the context state w(t) keeps information about the previous

pan action (as a part of last context). If w(t) is not used, only x(t) is the input to the IHDR mapping. The

images and the pan position will be very similar near the point where the action should stop. Thus, very

similar inputs x(t) require very different action outputs: continue to pan to finish if the object is judged by

humans as having not been centered yet, or stop if otherwise. This will make the action output unpredictable

near the position for the pan action to stop. The context w(t) tells the direction from which the arm is from

(left, right or static), and, thus, resolves such an ambiguity. This example explains why it is difficult to deal

with raw signal inputs, much harder than symbolic inputs.

The online training and testing were performed successfully and the robot can perform Tasks 2 through

4 effectively, after interactive training, although the SAIL-2 algorithm was not written for these tasks in

particular. Multiple objects have been trained for these three tasks. Note that even if the same object is used,

the changes in the position and apparent size of the object are significant. The SAIL-2 program was able

to deal with such a large number of changes. The current study aims at feasibility for an early-age robot.

A larger number of objects and the associated high performance requires the robot to “live” longer and to

mature further.

To quantitatively evaluate the performance of online learning and performance, we recorded the sensory

data and studied the performance off-line. Since the online learning algorithm runs indefinitely, does its

memory grow without bound? Fig. 18(a) shows the memory usage by the “brain.” In the first stage, the tree

grows, since the samples are accumulated in the shallow nodes. When the performance of the updated tree is

consistent to the desired action, the tree does not grow and, thus, the memory curve becomes flat. The tree will

grow only when the imposed action is significantly different from what the tree comes up with. Otherwise, the

new inputs only participate in the average of the corresponding cluster, simulating sensorimotor refinement

of repeated practice, but there is no need for additional memory. This is a kind of forgetting — without

remembering every detail of repeated practice.

How fast does the online program learn? Fig. 18(b) shows the accuracy of the PTU action in terms of the
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percentage of field of view. After the third epoch (repeated training), the robot can reliably move the eyes so

that the object is at the fovea. Does the algorithm slow down when it has learned more? Fig. 18(c) gives the

profile of the average CPU time for each sensory-action update, through a large number of training sequences.

The average CPU time for update is within 100 millisecond, meaning that the system runs at about 10 Hz,

10 refresh of sensory input and 10 updated actions per second. Since the IHDR tree is dynamically updated,

all of the updating and forgetting are completed within each cycle. This relatively stable time profile is due

to the use of the tree structure by IHDR, which results in a logarithmic time complexity. In other words, the

depth of the tree is stable.
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Fig. 18. (a) The memory usage for the off-line simulation of Tasks 2 through 4. (b) The accuracy of object-finding versus the

number of training cases. (c) The CPU time for each update.

VI. SCALE UP: SPACE AND TIME COMPLEXITIES

Development is meant for scaling up. Although we have addressed the time and speed issues of the SAIL-

2 program along with actual experimental data, we would like to further comment on the computational

scale-up issue for more general settings.

First, an important issue is the demand on storage space by such online learning. The program presented

here does not use human designed task-specific tricks but instead autonomously derives task-specific repre-

sentation using statistical properties of the data. It is possible that such an autonomously generated represen-

tation takes larger space than a traditional, human designed representation for a particular constrained, known

environment. The SAIL-2 “brain” size for the four tasks is well below 400 MB running in RAM. A RAM of

400MB costs about US$100 at today’s street price. Compared with a system that cannot work in an unknown

complex human environment, the space storage required by such online learning is a cost that is worth paying

for. It is estimated that the storage size of a human adult brain is approximately 1014 bytes. This size can be

reached by an internal hard disk system at the street price of about US$75,000 by 2004, down 13 times from

6 years before. If the disk price continues to drop at this rate, the hard disk of a human brain size could be
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purchased with $6,000 by the year 2008. In other words, many desk-top computers could afford a human

brain size storage at that time.

The speed of the computer is another important issue. The SAIL robot’s computer engine is a Micron

Powerdigm PC with dual 333MHz Pentium II, a fast machine in March 1998 but now considered slow. The

logarithmic time complexity of the IHDR mapping engine implies that when the processor speed increases,

the number of cases that the IHDR can process in the same time period exponentially explodes. For this

matter, we perform a simple exercise which gives a rough estimate but is not very realistic. Our experimental

result showed that the SAIL robot ran at a refreshing rate of 10 Hz for a memory of 10 MB = 107 bytes, as

shown in Fig. 18. Recall that the time requirement for one retrieval is O(loga(m)) ≈ O(loga(n)), where m

is the number of leaf nodes and n is the total size of the IHDR tree. Suppose that the IHDR tree has grown

from 10M bytes to our human brain size of n = 1014 but it still wants to keep a refreshing rate of 10 Hz. The

required computer speed-up is approximately:

speed-up ≈
O(loga(1014))

O(loga(107))
≈

14

7
= 2, (6)

which is a moderate number. This shows the power of logarithmic time complexity of a coarse-to-fine mem-

ory structure, such as that of the IHDR. Of course, when more modalities are added, the base cost will also

increase, contributing to an increase in the constant factor of the time complexity. It is expected that the speed

up of computers can be well used by an increased number of sensing modalities and their integration.

VII. CONCLUSIONS AND DISCUSSIONS

The four tasks that the SAIL-2 robot has demonstrated do not seem very difficult judged by a human

layman, but they mark a significant methodological and technical advance. First, the environment and the

tasks are all muddy. Second, the same online learning program can be continuously used to train other tasks

without any re-programming. Third, each individual task has not been achieved by a traditional approach

in such a muddy environment. Real-time vision-guided navigation in such an extensive complex indoor

environment has not been achieved by other traditional methods so far (see a survey in [46] [8]). Detecting

an arbitrary object from an arbitrary background is one of the most challenging tasks for a robot. Note the

perception part of these tasks. No traditional robot that we know of can do these tasks without predesigning

task-specific representation, let alone real time incremental learning. The main reason for these successes is

that the SAIL-2 online learning algorithm does not need a human to design a representation, a holy grail in

AI.

Of course, the autonomously developed representation in the SAIL’s CNS is not one of the traditional rep-

resentations which Brooks is against [7]. For example, there is no monolithic “models” in the autonomously
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developed representation (see, e.g., [7] [40] for reasons.) The new kind of distributed representation is able to

use context intimately. Every action is tightly dependent on the rich information available in the sensory con-

text. The complexity of the rules of such context dependence is also beyond human direct hand programming.

A human-designed representation is not able to keep track of such very rich information.

The mental capability of a developmental robot (as well as a human being) in its muddy living environment

depends on five factors: (1) its sensors, (2) its effectors, (3) its computational resources, (4) its developmental

program, and (5) how the robot is taught. A discussion of the online development paradigm for robots as

well as a comparison with traditional approaches is available in [39] [50] [40]. The arrival of early online

developmental robots and current knowledge about their associated properties seem to encourage various

related research communities to pursue further research in this direction. As recently demonstrated in [52],

the architecture with internal actions is able to perform “logical reasoning” without using a logic internal

representation.

CALL OUT: The mental capability of a developmental robot (as well as a human being) in its muddy living

environment depends on five factors: (1) its sensors, (2) its effectors, (3) its computational resources, (4) its

developmental program, and (5) how the robot is taught.
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