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From next-generation resequencing reads to a high-quality
variant data set

SP Pfeifer1,2,3

Sequencing has revolutionized biology by permitting the analysis of genomic variation at an unprecedented resolution. High-
throughput sequencing is fast and inexpensive, making it accessible for a wide range of research topics. However, the produced
data contain subtle but complex types of errors, biases and uncertainties that impose several statistical and computational
challenges to the reliable detection of variants. To tap the full potential of high-throughput sequencing, a thorough
understanding of the data produced as well as the available methodologies is required. Here, I review several commonly used
methods for generating and processing next-generation resequencing data, discuss the influence of errors and biases together
with their resulting implications for downstream analyses and provide general guidelines and recommendations for producing
high-quality single-nucleotide polymorphism data sets from raw reads by highlighting several sophisticated reference-based
methods representing the current state of the art.
Heredity (2017) 118, 111–124; doi:10.1038/hdy.2016.102; published online 19 October 2016

INTRODUCTION

Sequencing has entered the scientific zeitgeist and the demand for

novel sequences has never been greater, with applications spanning

comparative genomics, clinical diagnostics and metagenomics, as well

as agricultural, evolutionary, forensic and medical genetic studies.

Several hundred species have already been completely sequenced

(among them reference genomes for human and numerous major

model organisms) (Pagani et al., 2012), shifting the focus of many

scientific studies toward resequencing analyses in order to identify and

catalog genetic variation in different individuals of a population. These

population-scale studies permit insights into natural variation, infer-

ence on the demographic and selective history of a population, and

variants identified in phenotypically distinct individuals can be used to

dissect the relationship between genotype and phenotype.

Until 2005, Sanger sequencing was the dominant technology, but it

was prohibitively expensive and time consuming to routinely perform

sequencing on a scale required to reach the scientific goals of many

modern research projects. For these reasons, several massively parallel,

high-throughput ‘next-generation’ sequencing (NGS) technologies

have since been developed, permitting the analyses of genomes and

their variation by being hundreds of times faster and over a thousand

times cheaper than traditional Sanger sequencing (Metzker, 2010).

Whereas the major limiting factor in the Sanger sequencing era was

the experimental production of sequence data, data generation using

NGS platforms is straightforward, shifting the bottleneck to down-

stream analyses, with computational costs often surpassing those of

data production (Mardis, 2010). In fact, a multitude of bioinformatic

algorithms is necessary to efficiently analyze the generated data sets

and to answer biologically relevant questions. Thereby, the large

amount of data with shorter read lengths, higher per-base error rates

and nonuniform coverage, together with platform-specific read error

profiles and artifacts (Table 1), imposes several statistical and

computational challenges in the reliable detection of variants from

NGS data (Harismendy et al., 2009).

The correct identification of variation in genomes from resequen-

cing data strongly relies on both the precise alignment of sequenced

reads to a reference genome and reliable, accurate variant calling to

avoid errors produced by misaligned reads or sequencing issues.

Despite carefully chosen analytical methods, there is often a consider-

able amount of uncertainty associated with the results (particularly for

low coverage sequencing) that necessarily must be accounted for in

downstream population genomic analyses (see O’Rawe et al., 2015 for

a detailed review of uncertainty in NGS data). Here, I review several

commonly used reference-based methods for generating and proces-

sing population-scale next-generation resequencing data and provide a

general guideline for producing high-quality variant data sets from raw

reads, focusing on single-nucleotide polymorphisms (SNPs). It should

be noted that the detection of structural variation from NGS data will

not be discussed here, but is a topic that has been well reviewed

recently (see, for example, Tattini et al., 2015; Guan and Sung, 2016;

Ye et al., 2016). In the following sections, I will outline the different

stages of a typical workflow in a next-generation resequencing study

(Figure 1); namely, sequencing, read processing, alignment and genetic

variant detection. I conclude with a discussion on the influence of

errors and biases introduced in these steps in downstream data

analyses.

PREREQUISITE: DATA GENERATION (SEQUENCING)

NGS protocols commonly start with the preparation of libraries by

shearing the DNA (either randomly or systematically (for example,
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restriction site associated DNA sequencing)) into relatively short

sequence fragments to which platform-specific adapters, containing

primer sites for sequencing, are ligated. Optionally, samples can be

indexed by hybridization of additional sequencing primers, allowing

multiple samples to be sequenced simultaneously, computationally

separable by their barcode. These adapters are used to spatially

distribute the fragments by immobilizing them onto a solid surface

(usually either a micron-scale bead or a solid planar surface). In

contrast to traditional Sanger sequencing that requires a bacterial

cloning step, the fragments are amplified in vitro by PCR (usually

either emulsion PCR (Dressman et al., 2003) used by 454 and Ion

Torrent or bridge PCR (Adessi et al., 2000; Fedurco et al., 2006) used

by Illumina).

This step results in the presence of clusters (either ordered or

randomly dispersed) consisting of multiple identical copies of a DNA

sequence of interest, flanked by universal adapter sequences. The

presence of clusters ensures that the sequencing reaction produces a

signal sufficiently strong to be detected by an optical system.

Amplification is followed by a series of repeated steps, alternating

between enzymatic manipulation and image-based data acquisition.

Specifically, spatially separated clusters are simultaneously decoded by

applying a single reagent volume to the array, whereby a cyclic

enzymatic process interrogates the identity of one position or type of

nucleotide at a time for all clusters in parallel. This process is coupled

either to the measurement of H+ ion release (Ion Torrent), the

production of light (454) or the incorporation of a fluorescent group

(Illumina), the latter two of which are directly detectable using a

charge-coupled device. Thus, after multiple cycles, the continuous

sequence from each cluster can be obtained.

Platform-specific software is then used to translate these signals into

base calls, represented in FASTQ format (Cock et al., 2010) and

associated with ASCII-encoded PHRED-like quality scores (that is,

statistical measures of call certainty provided by the logarithm of the

expected error probability of the base call: QPHRED=− 10× log10
P(error)) (Ewing and Green, 1998). These quality scores can be used

together with the sequence information for subsequent analyses.

Depending on the platform, sequence information can be obtained

from one end of the fragment (that is, single-end sequencing) or from

both ends of either a linear fragment (that is, paired-end sequencing;

reads are usually separated by 300–500 bp) or a previously circularized

fragment (that is, mate pair sequencing; reads are usually separated by

1.5–20 kb) (Mardis, 2011).

Despite these commonalities of different NGS protocols, platforms

vary greatly in their specific characteristics (for example, DNA input

requirement, template preparation, throughput and average read

length). In fact, each platform is associated with unique biases

introduced during library construction, amplification and sequencing,

as well as systematic errors, resulting in average per-base error rates

(and the underlying reasons for the error) that differ strongly between

methods (Table 1). These biases can originate from the experimental

sample preparation, where, in addition to unintentional contamina-

tion, polymerases frequently introduce errors in fragments because of

imperfect in vitro amplification (Dohm et al., 2008). Polymerases may

also vary in speed and often reach different read lengths because of

photodamage, thus increasing background noise. Errors can also be

introduced during the sequencing step, where certain DNA sequence

characteristics, such as long homopolymer runs or extreme

GC-contents, increase error rates in reads (Laehnemann et al., 2016).

Table 1 Characteristics of several commercially available NGS platforms

Capillary Next generation

Sanger 454 Illumina Ion Torrent

Platform 3730xl GS FLX+ GS Jr.a HiSeq X

Ten

HiSeq

2500

MiSeqa PGM 318a

Template

preparation

Plasmid/PCR emPCR emPCR Solid

phase

Solid

phase

Solid

phase

emPCR

Run time ~3 h ~1 Day ~10 h ~3 Days ~6 Days ~65 h ~4–7 h

Output/run 0.08 Mb 700 Mb 35 Mb 1.8 Tb 1 Tb 15 Gb 2 Gb

Read length 1 kb 1 kb 700 b 2×150 b 2×125 b 2×300 b 400 b

No. of reads/run 96 (standard) up to

384 (rare)

1 M 0.1 M 6 B 4 B 25 M 5.5 M

Error rateb 0.1–1% ~1% ~1% ~0.1% ~0.1% ~0.1% ~1%

Primary errors Substitutions Indels Substitutionsc Indels

Advantages • Long reads

• High quality

• Long reads

• Fast run time

• Highest throughput

• Low per-base cost

• Unmodified nucleotides

• No optical scanning necessary, and thus no photo

damage

• Fast run time

Limitations • Low throughput

• High costs

• High error rates in homopolymer

regions

• Low throughput

• High costs

• Cumbersome emPCR

• Short reads

• Random dispersion of clusters can

cause poor sequence quality

• Underrepresentation of AT-rich

and GC-rich regions

• High error rates in homopolymer regions

• Cumbersome emPCR

Abbreviations: emPCR, emulsion PCR; NGS, next-generation sequencing.
Information based on company sources.
aInexpensive, compact bench-top sequencers with faster turnover rates but lower sequencing capacity.
bError rates between different platforms might not be exactly comparable.
cBiased toward Ao-4C and Go-4T transversions.
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For most platforms, errors increase towards the end of the read because

of reductions in signal intensity, caused by decreased enzyme activity

(Kircher et al., 2009). Incomplete read extension or nonreversible

termination desynchronizes clusters of the same template (referred to as

dephasing), elevating noise further (Kircher and Kelso, 2010). Dephas-

ing not only results in base calling errors, but it also limits achievable

read lengths. Random dispersion of clusters onto a solid surface coupled

with limited sensor resolution is an additional source of error,

introducing false reads when signals from nearby clusters interfere with

the readout (Kircher and Kelso, 2010). Furthermore, chemical crystals,

dust and other small particles can be mistaken as clusters in the images,

yielding low-quality base calls.

Given these different platform characteristics, a detailed knowledge

of the advantages and limitations of each method can help inform

decisions about the optimal sequencing technology for a particular

project. In general, large amounts of short reads are most appropriate

for whole-genome or targeted resequencing studies (as discussed

here), chromatin immunoprecipitation with subsequent sequencing

and expression analyses. In contrast, longer reads are better suited for

an initial characterization of the genome (that is, de novo assembly) as

well as the study of alternative splicing. An overview of the main

technical specifications of several current commercially available NGS

platforms is provided in Table 1.

STEP 1: QUALITY CONTROL AND DATA PREPROCESSING

Together with the DNA sequences of interest, raw read data often

contain biases (for example, through systematic effects such as Poisson

sampling) and complex artifacts arising from the experimental and

sequencing steps (Aird et al., 2011; Nakamura et al., 2011; Allhoff

et al., 2013). These biases and artifacts strongly interfere with accurate

raw reads
(fastq)

DNA

Library construction

Sequencing

Removal/Trimming of low quality sequences/bases

Demultiplexing

Removal of adapters/primers & contamination

Error correction

Detection of enrichment biases

preprocessed reads
(fastq)

Initial alignment of short reads to a reference genome

   Local realignment around indels or

   Calculation of per-base Base Alignment Quality (BAQ) scores

   Removal of duplications 

   Recalibration of base quality scores

Call variants

Filtering

aligned reads
(sam/bam)

postprocessed

aligned reads
(sam/bam)

variant data set
(vcf)

Prerequisite:

   Data generation

Step 1:

   Quality control &

   data preprocessing

Step 2:

   Alignment

Step 3:

   Alignment postprocessing

Step 4:

Refine alignment

Variant calling & filtering

Amplification

Figure 1 Steps in a typical next-generation resequencing workflow. De facto standard file formats are given in parentheses.
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read alignments that in turn influence variant calling and genotyping.

Thus, to increase the reliability of downstream analyses and to

simultaneously decrease the required computational resources (that

is, RAM, disk space and execution time), raw read data should be

preprocessed.

Quality assessment

In order to identify potential problems in the experimental setup and

to ensure that the correct samples have been sequenced with minimal

contamination and to sufficient coverage, summary statistics assessing

the overall quality of the data set—such as nucleotide and quality score

distributions, as well as sequence characteristics including GC-content,

levels of sequence ambiguity and PCR duplication—should be

generated from the raw read data before any analyses. Popular tools

for performing this initial quality check include FastQC, htSeqTools

(Planet et al., 2012), Kraken (Davis et al., 2013), NGSQC (Dai et al.,

2010), PRINSEQ (Schmieder and Edwards, 2011b), qrqc and SAMStat

(Lassmann et al., 2011). Subsequently, the results can aid the selection

of quality control parameters and thresholds in read processing to

circumvent potential problems in the later stages of data analyses.

Potential issue 1: low-quality data. High-quality sequence data are

characterized by a majority of reads exhibiting high PHRED-like

quality scores along their entire length (Figure 2a). However,

examination of overall sequence quality scores frequently indicates

some proportion of raw read data that contains sequences with

universally low-quality scores. A small number of these low-quality

reads might be caused by air bubbles, spot-specific signal noise or

problems with the readout during sequencing (for example, imaging

of reads on the edge of the flow cell; Kircher et al., 2011) and these

reads should be excluded from subsequent analyses. In contrast, a

substantial number of low-quality sequences might be indicative of a

more systematic problem with the run. Another indicator of a general

quality loss is a large proportion of positions without base calls (that is,

bases that cannot be accurately called and are indicated as N’s in

the reads).

For many sequencing platforms, the quality of the read decreases as

the run progresses (Figure 2b) because both signal decay and

dephasing elevate the background noise (Kircher et al., 2009;

Kircher and Kelso, 2010). Two different strategies can be employed

to handle these low-quality base calls: error correction or removal of

low-quality read regions. First, assuming that errors are both

infrequent and random, erroneous base calls in low-quality reads

may be corrected by superimposing multiple reads and modifying

low-frequency patterns by calling a high-frequency consensus

sequence. Sophisticated error-correction methods include:

(a) k-spectrum-based approaches that decompose the reads into a set

of all k-mer fragments (for example, BFC (Li, 2015), BLESS (Heo

et al., 2014), CUDA-EC (Shi et al., 2010), DecGPU (Liu et al.,

2011), Hammer (Medvedev et al., 2011), Lighter (Song et al.,

2014), Musket (Liu et al., 2013b), Quake (Kelley et al., 2010),

Reptile (Yang et al., 2010), SOAPec (Li et al., 2010) and

Trowel (Lim et al., 2014));

(b) suffix-tree/array-based methods (for example, Fiona (Schulz et al.,

2014), HiTEC (Ilie et al., 2011), Hybrid-SHREC (Salmela,

2010), RACER (Ilie and Molnar, 2013) and SHREC

(Schröder et al., 2009)); and

(c) multiple sequence alignment methods (for example, Coral

(Salmela and Schröder, 2011) and ECHO (Kao et al., 2011)).

See Yang et al. (2012) and Laehnemann et al. (2016) for reviews of

error-correction methods and their limitations, as well as

benchmarking data.

However, error-correction approaches require a high coverage

(see, for example, Kelley et al., 2010; Gnerre et al., 2011) and are

thus not suitable for low to medium coverage studies of most

nonmodel organisms. In addition, the correction method necessitates

a uniform read distribution, rendering it infeasible for several types of

studies (for example, transcriptomics or metagenomics). Therefore,

second, low-quality read regions can be removed by estimating error

rates and by identifying suitable thresholds, enabling the retention of

the longest high-quality sequence possible (referred to as read

trimming), inevitably leading to a loss of information. A large variety

of techniques have been proposed to trim low-quality regions from

NGS data (Table 2), most of which can be classified into (1) window-

based methods that locally scan a read using either non-overlapping or

sliding windows and (2) running-sum methods that globally scan a

read using a cumulative quality score to determine the best position

for trimming.

Because of air bubbles passing through the flow cell during

sequencing, reads might exhibit low-quality scores at their 5′-end that

recover to high-quality calls later in the run (Figure 2c). Under this

circumstance, error correction can be applied but trimming is

generally not advisable. An alternative to error correction is to mask

the low-quality sequence in the read before mapping it to a reference

genome. However, in the case of multiple samples having been

sequenced simultaneously, which are distinguishable from one another

by short, unique barcodes, these reads can cause more severe issues as

it becomes necessary to demultiplex the read data in the presence of

potential sequencing errors in these barcodes. To circumvent this

problem, several methods have been developed for designing barcodes

with an error-correction capability that aid correct sample identifica-

tion in the presence of sequence alterations introduced during

synthesis, primer ligation, amplification or sequencing (Buschmann

and Bystrykh, 2013). Popular error-correcting techniques include

methods based on false discovery rate statistics (see, for example,

Buschmann and Bystrykh, 2013) as well as adaptations of both

Hamming codes (see, for example, Hamady et al., 2008; Bystrykh,

2012) and Levenshtein codes (for example, implemented in the

software Sequence- Levenshtein (Buschmann and Bystrykh, 2013)

and TagGD (Costea et al., 2013)). Algorithms based on the latter are

capable of correcting not only substitution errors but also insertion

and deletion (indel) errors that is particularly important for sequen-

cing technologies where indels are the main source of error (that is,

454 and Ion Torrent).

Potential issue 2: presence of adapter sequences or contaminants. Reads

longer than the targeted DNA fragments result in the sequencing of

partial or complete adapter or primer sequences, present at either the

3′- or 5′-end depending on the protocol used to build the library.

These adapter/primer sequences will lead to mismatches between the

read and the reference sequence, either entirely inhibiting the

alignment or resulting in false positive variant calls. This is particularly

problematic when the adapter occurs at the 5′-end, as many

commonly used aligners require a high similarity within this region

—an issue that becomes more severe the shorter the fragment

(for example, for ancient DNA or forensic samples). As a result,

regions of nongenomic origin should be removed before mapping the

reads to a reference genome. However, the identification of known

library sequences is often a nontrivial task, complicated by errors

occurring during the PCR and sequencing steps that can alternate
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known adapter and primer sequences. Furthermore, genomic con-

tamination caused by nontarget DNA (both within species and

between species, as well as control DNA utilized in the experiment,

such as PhiX used in Illumina sequencing) introduced during the

experimental preparation should be eliminated before downstream

analyses.

Figure 2 Read quality assessment. Per-base sequence quality plots indicate the mean quality scores for each nucleotide position in all reads. Background
colors highlight the quality of the call (that is, green: high quality; yellow: reasonable quality; red: low quality). Examples: (a) Reads exhibit high base quality
scores at each position. (b) Sequenced nucleotides initially exhibit high-quality scores but the per-base read quality decreases with increasing read length,
reaching lower quality values toward the read end, necessitating read trimming. (c) Initial low per-base quality that recovers to a high quality later in the run.
Under this circumstance, error correction can be applied but trimming is generally not advisable. Per-base sequence content plots indicate the proportion of
each nucleotide for each read position. Examples: (d) A random library with little difference of base composition (colors indicate different nucleotides: green:
A; blue: C; black: G; red: T) between single read positions. (e) Imbalance of different bases, potentially caused by overrepresented sequences (for example,
adapters). Per sequence GC-content plots indicate the observed GC-content of all reads. Examples: (f) The GC-content of the reads is normally distributed
with a peak that corresponds to the overall genomic GC-content of the studied species. (g) The bimodal shape of the distribution of the reads’ GC-content
suggests that the sequenced library may have been contaminated or that adapter sequences may still be present. Sequence duplication plots indicate the
level of duplication among all reads in the library (reads with more than 10 duplicates are binned). Examples: (h) The low level of sequence duplication
suggests that a diverse library has been sequenced with a high coverage of target sequence. (i) A high level of sequence duplications often suggests either a
technical artifact (for example, because of PCR overamplification) or biological duplications. All examples were generated using FastQC and plotted using
MultiQC (Ewels et al., 2016).
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There are several ways to visually detect the presence of adapter

sequences or potential contaminations. First, the per-base sequence

content can be examined. As the relative proportion of each nucleotide

at each read position should reflect the overall sequence composition

of the genome, there should not be any significant difference in base

composition along the read in a random library (Figure 2d).

Imbalances of different bases could be caused by overrepresented

sequences such as adapters (Figure 2e). Second, the per-sequence GC-

content should be normally distributed with a peak corresponding to

the overall genomic GC-content of the studied species (Figure 2f). Any

deviation from the normal distribution suggests that the sequenced

library might either have been contaminated or adapter sequences

might still be present (Figure 2g). Unusually shaped distributions with

sharp peaks often suggest the presence of adapter sequences, whereas

broader or multiple peaks indicate a contamination with a different

species. In contrast, a shift in the distribution can suggest a systematic

bias. In addition, adapter sequences can be automatically detected and

removed from genomic data sets (often simultaneously with a quality

trimming of the data) using one of the software packages described in

Table 2. Different mitigation techniques also exist for the removal of

genomic contaminants, and some of the most popular ones include

ContEst (Cibulskis et al., 2011), DeconSeq (Schmieder and Edwards,

2011a), QC-Chain (Zhou et al., 2013) as well as the set of methods

developed by Jun et al., 2012 used in the 1000 Genomes Project.

Potential issue 3: enrichment bias. In a diverse library, low levels of

sequence duplication suggest that the library has been sequenced with

a high coverage of target sequence (Figure 2h). In contrast, high levels

of sequence duplications often arise from either a technical artifact

(for example, because of PCR overamplification) or biological

duplications (Figure 2i). Technical duplicates should be removed

during alignment postprocessing as they manifest themselves as high

read coverage support, potentially leading to erroneous variant calls.

STEP 2: ALIGNMENT

Fundamentally, the most important step, upon which any subsequent

next-generation resequencing data analysis is based, is the accurate

alignment of the generated reads to a reference genome. NGS

technologies have the capacity to yield billions of reads per experi-

ment—an amount of sequencing data orders of magnitude greater

than those produced by capillary-based techniques, rendering align-

ment tools developed in the Sanger sequencing era insufficient to

analyze the generated data. Importantly however, NGS reads are also

much shorter and less accurate than the reads obtained by traditional

Sanger sequencing and, as a consequence, experimentally induced

artifacts, sequencing errors as well as true polymorphisms have a larger

influence on the alignment.

Over the past decade, more than a hundred sophisticated alignment

algorithms have been specifically designed to handle the computa-

tional challenges imposed by modern NGS platforms (see Table 3 for a

summary of the characteristics of several popular NGS aligners; a

technical overview is provided by Reinert et al., 2015). These

algorithms are optimized for their efficiency (that is, speed), scalability

(that is, storage space) and accuracy (for example, by taking specific

technological biases of the different platforms and protocols into

account). At the time NGS platforms first entered the market, reads

were substantially shorter (~25 bp) and, thus, many of the earlier

proposed NGS mappers used ungapped alignments to avoid the

computational costs associated with allowing gaps (Li and Homer,

2010). However, even when mapping reads to the correct position in

Table 2 Characteristics of several popular tools for preprocessing NGS reads

Software Ability of the software to: Reference

Handle multiple adapter sequences Trim low-quality bases Demultiplex barcodes

AdapterRemoval − + − Lindgreen (2012)

AlienTrimmer + + − Criscuolo and Brisse (2013)

Btrim − + + Kong (2011)

CONDETRI − + − Smeds and Künstner (2011)

Cutadapt + + − NA

EA-Utils − + + NA

ERNE-FILTER − + − Del Fabbro et al. (2013)

FASTX-Toolkit − − + NA

Flexbar + + + Dodt et al. (2012)

Kraken + + + Davis et al. (2013)

NGSQC + + − Dai et al. (2010)

ngsShoRT + + − Chen et al. (2014)

PEAT + − − Li et al. (2015)

PRINSEQ − + − Schmieder and Edwards (2011b)

QC-Chain + + − Zhou et al. (2013)

QcReads + + − Ma et al. (2013)

Reaper + + + NA

SeqTrim + + − Falgueras et al. (2010)

Sickle − + − NA

Skewer + + + Jiang et al. (2014)

TrimGalore! − + − NA

Trimmomatic + + − Bolger et al. (2014)

Abbreviations: NA, no publication available; NGS, next-generation sequencing.
Popularity was assessed by the number of citations of the software.
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the reference, ungapped alignments can produce false positive SNP

calls when multiple reads support consecutive mismatches at a locus of

a true indel polymorphism (Li and Homer, 2010). These false positive

SNPs are difficult to detect, even with sophisticated filtering strategies

(Li and Homer, 2010). To circumvent this issue, modern NGS

mappers implement gapped alignments. In addition, many algorithms

enhance alignments in error-prone, low-quality regions by integrating

base quality scores emitted by the sequencing platform into their

algorithms (Smith et al., 2008). Resulting alignments are usually stored

in the sequence alignment/map (SAM) format, or its binary, com-

pressed version (BAM format) (Li et al., 2009b), containing informa-

tion about the location, orientation and quality of each read

alignment. Tools have been specifically designed to manipulate

SAM/BAM files (for example, to quickly sort, merge or retrieve

alignments), including the widely used SAMtools (Li et al., 2009b)

and Picard.

Several benchmarking studies have empirically compared short read

alignment methods with respect to various metrics (that is, runtime,

sensitivity and accuracy) using both simulated and real data sets from

different organisms (Holtgrewe et al., 2011; Ruffalo et al., 2011;

Fonseca et al., 2012; Lindner and Friedel, 2012; Schbath et al., 2012;

Hatem et al., 2013; Caboche et al., 2014; Shang et al., 2014; Highnam

et al., 2015). These analyses demonstrated that results depend strongly

on the properties of the input data, and thus there is no single method

best suited for all scenarios. In fact, most tools are highly configurable,

making them flexible to accommodate different research applications,

but parameter choice has been shown to have a large influence on

mapper performance (Lindner and Friedel, 2012). Currently, there are

no gold-standard test data sets available for different sequencing

technologies or applications, and determining the ideal parameter

settings is often nontrivial, requiring an in-depth understanding of

both the data and the alignment algorithm. Therefore, researchers

working with NGS data face the challenge of choosing a method that

best suits their specific requirements and research goals. Recently

developed dedicated software (for example, Teaser; Smolka et al.,

2015) can lend guidance when choosing an aligner or the parameters

suitable for a particular data set and application. In addition, there are

certain best practices that should be encouraged to prevent problems

in downstream analyses.

Potential issue 1: alignment in low-complexity or repetitive regions

A particularly challenging task is the alignment of a short read

originating from a repetitive or low-complexity genomic region that

is longer than the read itself. In this case, the read often maps equally

well to multiple locations in the genome, resulting in an ambiguous

alignment that potentially leads to biases and errors in the variant

calling. One way to aid read alignment in these regions is the

utilization of paired-end or mate pair reads. They provide information

about the relative position and orientation of a pair of reads in the

genome, allowing the approximately known physical chromosomal

distance between the read pair to be used to increase both the

sensitivity and specificity of an alignment (that is, a repetitive read that

cannot be confidently mapped on its own can often be placed using

the information provided by its partner originating from a nonrepe-

titive region). Although the incorporation of mate pair or paired-end

information aids the alignment, mapping to highly repetitive genomes

continues to present a serious challenge (not at last because repetitive

regions are often poorly resolved in the reference assembly). Focusing

on uniquely mapped reads addresses issues in the SNP discovery, but

biologically important variants might be missed and correctly resolving

copy number variations remains difficult. Longer reads with varying

insert sizes, sequenced using multiple technologies, can help to

overcome some of the problems posed by repeats. However, the need

for more sophisticated methods in both the de novo assembly and

alignment of repetitive reads is ongoing (see Treangen and Salzberg,

2012 for an in-depth discussion on the computational challenges and

potential solutions of handling repetitive DNA in NGS data analyses).

Potential issue 2: alignment in the presence of contamination or

missing information

The goal of any alignment algorithm is to map individual reads to the

position in the reference genome from which they most likely

Table 3 Characteristics of several popular open-source/binary NGS aligners

Software Sequencing platform Ability to perform gapped alignment Quality awareness Ability to align PE reads Reference

BFAST I,4 + − + Homer et al. (2009)

Bowtie I,4,Sa − + + Langmead et al. (2009)

Bowtie 2 I,4,Ion + + + Langmead and Salzberg (2012)

BWA I,4,Sa + + + Li and Durbin (2009)

CloudBurst non-specific + − − Schatz (2009)

GSNAP I,4,Sa,Ion + − + Wu and Nacu (2010)

MAQ I − + + Li et al. (2008)

MOSAIK I,4,Sa,Ion + + + NA

mrFAST I − + + Alkan et al. (2009)

mrsFAST I − + + Hach et al. (2010)

NextGenMap I,4,Ion + − + Sedlazeck et al. (2013)

PASS I,4 + + + Campagna et al. (2009)

RazerS I,4 + − + Weese et al. (2009)

segemehl I,4,Sa,Ion + − + Hoffmann et al. (2009)

SHRiMP I,4 + − + Rumble et al. (2009)

SHRiMP 2 I,4 − + + David et al. (2011)

SOAP2 I + − + Li et al. (2009b)

Stampy I + + + Lunter and Goodson (2011)

Abbreviations: I, Illumina; Ion, Ion Torrent; NA, no publication available; NGS, next-generation sequencing; PE, paired end; Sa, ABI Sanger; 4, Roche 454.
Information obtained from http://www.ebi.ac.uk/~ nf/hts_mappers/ (last accessed August 2016). Popularity was assessed by the number of citations of the software.
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originated. Unfortunately, even the highest quality reference assem-

blies have gaps and regions of uncertainty—missing sequence infor-

mation that will inevitably result in off-target alignments. In addition,

DNA sequences of interest are often contaminated (for example, with

human herpesvirus 4 type 1, also known as Epstein–Barr virus—a

DNA virus frequently used to immortalize cell lines). As a conse-

quence, including a decoy genome, which enables the absorption of

reads that do not originate from the reference, often improves

alignment accuracy. The usage of a decoy genome will not only

reduce false positive variant calls, but will also speed up the alignment

by eliminating long computation cycles where the algorithm tries to

identify an ideal position for a read in a reference genome from which

it did not originate.

Potential issue 3: alignment in species with high mutation rates

Mapping reads in species with high mutation rates or reads originated

from nonmodel organisms, for which only low-quality draft reference

assemblies are available, pose challenges. For species with a large

genetic diversity among individuals, the genome of a sequenced

individual might be considerably different from the available reference

assembly. As a consequence, reads containing multiple alternative

alleles might not be mapped correctly, causing an underrepresentation

of particular haplotypes. To tackle the problem of biasing the results to

a specific, arbitrarily chosen genome, previously cataloged information

about polymorphisms (for example, variant information obtained

from a previous study or freely available variant data from public

databases such as dbSNP; Sherry et al., 2001) can be integrated to

enable a simultaneous alignment against multiple genomes (referred to

as SNP-aware or SNP-tolerant alignment; see Schneeberger et al.,

2009; Wu and Nacu, 2010; Hach et al., 2014), allowing minor alleles to

be considered as matches rather than mismatches during mapping.

Quality assessment

Alignment quality can be assessed visually (in a small target region

using an alignment viewer such as BamView (Carver et al., 2010;

Carver et al., 2013), Gap5 (Bonfield and Whitwham, 2010), the Broad

Institute’s Integrative Genomics Viewer (IGV) (Robinson et al., 2011),

LookSeq (Manske and Kwiatkowski, 2009a), MapView (Boa et al.,

2009), SAMtools’ Text Alignment Viewer (tview) (Li et al., 2009a) or

Tablet (Milne et al., 2010)) as well as by using the information

provided in the SAM/BAM file (see specifications in Li et al., 2009a for

a format description). Thereby, mapping statistics will provide a first

overview of the fraction of reads that were successfully mapped to the

reference genome, and PHRED-scaled mapping quality scores indicate

whether or not the mapping is likely to be correct (Figure 3a).

In addition, the FLAG field in the SAM/BAM file (that is, a bitwise

encoded set of information describing the alignment) relays important

information such as whether the read is aligned properly (for example,

in paired-end mapping, the second read in the pair should map on the

same chromosome in the opposite strand direction), whether it passed

all quality control checks or whether the read is likely either a PCR or

optical duplicate (that is, the same fragment has been read twice).

CIGAR strings, indicating which bases align with the reference (either

match or mismatch), or are inserted/deleted compared with the

reference sequence, as well as the edit distance to the reference can

highlight regions with an unusual behavior (for example, a region

where short reads map with many small insertions and deletions

(Figure 3b) frequently hints toward a spurious alignment).

Another useful measurement of alignment quality is the number of

perfect hits of a read in the reference sequence. In case of an

ambiguous mapping where reads map equally well in multiple

locations in the genome, these reads might either be excluded or

one alignment chosen at random for further analyses. However, both

scenarios are associated with potential problems: in the first case, only

uniquely mapped reads will be included in the data set, thus

potentially missing biologically important variants, whereas systematic

misalignments in the latter case may lead to the erroneous inference of

polymorphisms.

STEP 3: ALIGNMENT POSTPROCESSING

Before variant calling, read alignments should be preprocessed to

detect and correct spurious alignments in order to minimize artifacts

in the downstream analyses.

Potential issue 1: high ambiguity in the local alignment

Because of the fact that alignment algorithms map reads individually

to the reference genome, reads spanning insertions or deletions are

often misaligned as most aligners have the tendency to introduce SNPs

rather than structural variants in the alignments, as they occur more

frequently in the genomes of most species. Thus, at positions of real

but unidentified indels, alignment artifacts result in spurious variant

calls (Homer and Nelson, 2010). One possibility to improve variant

calling is multiple sequence alignment that locally realigns reads such

that the number of mismatching bases is minimized across all reads.

These realignment methods (popular tools include the Genome

Analysis ToolKit (GATK) IndelRealigner (McKenna et al., 2010;

DePristo et al., 2011; Van der Auwera et al., 2013), and the Short

Read Micro re-Aligner (SRMA) (Homer and Nelson, 2010)) first

identify suspicious-looking intervals that might be in need of realign-

ment (for example, a site at which a cluster of mismatching

nucleotides exists and at least one of the aligned reads contains an

indel, or a site of a previously known indel; Figure 3c), before locally

realigning these reads in order to obtain a more concise consensus

alignment (Figure 3d). Unfortunately, current implementations are

computationally intense, rendering them infeasible for high coverage

sequencing (Ni and Stoneking, 2016). In addition, filtering SNPs

around predicted indels is hindered by the challenge of correctly

identifying indels initially. Another approach to avoid these artifacts is

calculating per-base Base Alignment Quality scores (Li, 2011b) that

decreases false positive calls in low complexity regions of the genome

by down weighting base qualities with high ambiguity in the local

alignment.

Potential issue 2: artificial high coverage read support

Overrepresentations of certain sequences, such as sequence duplica-

tions introduced during the PCR amplification step, substantially

influence variant discovery by skewing coverage distributions. Dupli-

cations manifest as high coverage read support (Figure 3e), thereby

often giving rise to false positive variant calls, as errors that occurred

during the sample and library preparation have been propagated to all

PCR duplicates. Because of the fact that PCR duplicates arise from the

same DNA fragment, their positions in the reference (and, depending

on the software, their sequence identity) can be used in shotgun

sequencing to readily identify and either mark or entirely remove these

duplicates (Figure 3f), retaining only the highest quality read

(commonly used software for this task include SAMtools (Li et al.,

2009b) and Picard). However, it is worth keeping in mind that this

duplicate removal strategy is not perfect: it neither accounts for

sequencing errors nor for biological duplications and nor for PCR

duplicates that align to different positions in the genome. Further-

more, it cannot be applied to restriction site associated DNA

sequencing or amplicon sequencing data, where reads begin and end
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at the same positions by design. In these cases, an alternative approach

has recently been proposed by Tin et al. (2015) that makes use of

degenerated bases in the adapter sequence to identify PCR duplicates.

Potential issue 3: poorly calibrated base quality scores

Most variant and genotype calling algorithms incorporate PHRED-

scaled base quality scores into their probabilistic framework to enable

an improved calling in low coverage regions and to decrease errors.

Unfortunately, because of quality variations (caused by, for example,

machine cycle and sequence context), raw base quality scores are often

systematically biased and inaccurately convey the actual probability of

mismatching the reference assembly (Li, 2011b; Liu et al., 2013a).

Therefore, in order to effectively utilize quality scores in the variant

calling step, they should be recalibrated to more accurately reflect true

error rates.

One of the most widely applied base recalibration techniques has

been implemented in the software GATK (McKenna et al., 2010;

DePristo et al., 2011; Van der Auwera et al., 2013), with others

including SOAPsnp (Li et al., 2009b) and ReQON (Cabanski et al.,

2012). The machine learning algorithm of GATK initially groups all

loci that are not known to vary within a population into different

categories with respect to several features (including their quality

score, their position within the read (that is, machine cycle) and their

dinucleotide sequence context). Next, an empirical mismatch rate is

calculated for each category that is subsequently used to recalibrate

base quality scores by adding the difference between the empirical

quality scores and the mismatch rate to the raw quality scores
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Figure 3 Alignment: quality assessment and postprocessing. Quality assessment: Examples: (a) A correctly aligned region (reads are shown as gray vertical
bars with SNPs indicated as colored letters). (b) A spurious alignment where reads exhibit many small insertions (indicated as purple Is), deletions (shown as
black horizontal lines) and SNPs. Local realignment: Examples: (c) Pre-realignment: suspicious-looking interval, covered by reads exhibiting both
mismatching nucleotides and small indels at different positions that would benefit from a local realignment. (d) Post-realignment: reads were locally realigned
such that the number of mismatching bases is minimized across all reads. Duplicate removal: Examples: (e) Pre-removal of duplications: duplicates
(blue boxes) manifest themselves as high coverage read support. (f) Post-removal of duplications: no excess coverage because of identical duplicates. Base
quality score recalibration: Examples: Reported versus empirical quality scores (g) before and (h) after recalibration. Empirical quality scores were calculated
by PHRED-scaling the observed rate of mismatches with the reference genome. Bases with a quality value of o5 (indicated in light blue) were ignored
during the recalibration. Residual error for each of the 16 genomic dinucleotide contexts (for example, the AC contexts refers to a site in a read where the
current nucleotide, a cytosine (C), is preceded by an adenine (A)) (i) before and (j) after recalibration. Residual error by machine cycle (with positive and
negative cycle numbers given for the first and second read in a pair) (k) before and (l) after recalibration. Examples (a–f) were plotted using IGV (Robinson
et al., 2011). Examples (g–l) were plotted using GATK (McKenna et al., 2010; DePristo et al., 2011; Van der Auwera et al., 2013).
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(Figures 3g–l). Thereby, the algorithm requires a set of known variants

as a control, limiting the ability to detect de novo minor alleles (Ni and

Stoneking, 2016). As a result, quality score recalibration strongly

depends on the quality of previously available polymorphism data,

restricting its usage to organisms with a public variant database. An

alternative for species without a comprehensive SNP database is the

utilization of highly confident candidate polymorphic sites from an

initial SNP call for recalibration, followed by a second round of variant

calling (Nielsen et al., 2011).

STEP 4: VARIANT CALLING AND FILTERING

Generating a high-quality variant call set is challenging because of

many subtle but complex types of errors, biases and uncertainties in

the data. The analysis workflow involves a multistep procedure,

utilizing advanced statistical models to capture features of library-,

machine- and run-dependent error structures. First, positions or

regions where at least one of the samples differs from the reference

sequence need to be identified (variant calling) and individual alleles at

all variant sites estimated (genotyping). Next, false positives should be

removed from the initial variant data set to improve specificity

(filtering). Here, I will focus on providing general guidelines for

variant calling, genotyping and filtering (the probabilistic background

for these methods is covered in detail in Nielsen et al., 2011).

Discovery and genotyping

A multitude of bioinformatic tools have been developed to facilitate

variant discovery from NGS read data (Table 4). Earlier proposed

methods call variants by counting high-quality alleles at each site and

applying simple cutoff rules—a technique that works well for high

coverage (420× ) sequencing data. However, this typically leads to

problems, such as an undercalling of heterozygous genotypes in

studies with a large number of individuals sequenced to low or

medium coverage (Nielsen et al., 2011)—a design that is frequently

used to detect rare variants (Le and Durbin, 2011). Better suited for

low to medium coverage data are more sophisticated approaches based

on Bayesian, likelihood or machine learning statistical methods. They

calculate the likelihood that a given locus is homozygous or hetero-

zygous for a variant allele, taking additional information (for example,

base and alignment quality scores, error profiles of NGS platforms and

read coverage) into account, leading to calls with associated uncer-

tainty information (Nielsen et al., 2011). In addition, several recent

techniques have been proposed that combine information from an

initial read alignment with local de novo assembly in small regions of

the genome (for example, GATK’s HaplotypeCaller (McKenna et al.,

2010; DePristo et al., 2011; Van der Auwera et al., 2013) or Platypus

(Rimmer et al., 2014)), resulting in both high sensitivity and high

specificity. Variant data are generally reported in the variant calling

format (Danecek et al., 2011).

Benchmarking studies indicate that a tool’s performance strongly

depends on the underlying study design, and thus no technique

outcompetes all others under all circumstances (see, for example,

O’Rawe et al., 2013; Park et al., 2014). In fact, no single method

captures all existing variation and many tools provide contrasting and

complementary information (Liu et al., 2013a; Neuman et al., 2013;

O’Rawe et al., 2013; Yu and Sun, 2013; Cheng et al., 2014; Pirooznia

et al., 2014). As a consequence, it is recommended to combine

independent data sets from multiple methods to achieve better

specificity or sensitivity. Several tools have recently been designed to

automatically merge variant call sets (see, for example, Cantarel et al.,

2014; Gao et al., 2015; Gézsi et al., 2015). However, these methods are

computationally intensive, currently limiting their usage to small

genomic regions.

In general, study design plays an important role in variant calling

and genotyping: more specific variant calls and more accurate

genotype estimations can be obtained by using high coverage sequence

data (Fumagalli, 2013). However, given a finite research budget,

sequencing samples to a high coverage often coincides with fewer

samples being sequenced. Because of the limited sample size, these

data sets are often a poor representation of a population’s true genetic

variation as many heterozygous individuals will be missed and many

rare mutations will not have been sequenced. In contrast, although

low coverage sequencing of a large number of individuals commonly

provides a better picture of the variation in an entire population, it

frequently results in a nonnegligible amount of genotype uncertainty

that is exacerbated by sequencing and alignment errors (Crawford and

Lazzaro, 2012).

Prior probabilities on the genotype can be improved and genotype

uncertainties decreased by simultaneously calling multiple individuals

of a population (based on allele frequency information and tests of

Hardy–Weinberg equilibrium; Nielsen et al., 2011). This joint calling

does not only allow the filtering of systematic errors, but also increases

the power to call poorly supported variants, provided sufficient

support in other samples is available (Liu et al., 2013a; Rimmer

et al., 2014). As a result, joint calling decreases the sampling bias and

leads to substantial increases in sensitivity and accuracy compared with

calls obtained from each individual independently. Another approach

to more reliably infer genotypes in low coverage samples is the

incorporation of information on haplotype structure (Nielsen et al.,

2011). However, it should be noted that this strategy may lead to

biases in population genetic inference, and no additional information

can be gained regarding the frequency of singletons (Li, 2011a).

The estimation of population genetic parameters strongly depends

on the study design, whereby the highest accuracy is achieved by

employing a large sample size, even if individuals are sequenced at a

low coverage (Fumagalli, 2013). In recent years, several methods have

been proposed that incorporate statistical uncertainty into their

models by utilizing genotype likelihoods to directly estimate

Table 4 Characteristics of several popular SNP callers for reference-

mapped data

Software Method Sample Reference

Atlas-SNP2 Bayesian Single Challis et al. (2012)

CRISP Testing Pooled Bansal (2010)

Dindel Hidden Markov model Pooled Albers et al. (2011)

FreeBayes Bayesian Multiple NA

GATK Bayesian Multiple McKenna et al, (2010)

DePristo et al. (2011) Van der

Auwera et al. (2013)

QCALL Bayesian Multiple Le and Durbin (2011)

SAMtools Bayesian Multiple Li et al. (2009a)

SeqEM Bayesian Multiple Martin et al. (2010)

SLIDERII Counting Single Malhis and Jones (2010)

SNP-o-matic Counting Single Manske and Kwiatkowski

(2009b)

SNVer Testing Single and

pooled

Wei et al. (2011)

SOAPsnp Bayesian Single Li et al. (2009b)

SYZYGY Bayesian Pooled NA

Abbreviations: NA, no publication available; SNP, single-nucleotide polymorphism.
Popularity was assessed by the number of citations of the software.
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population genetic parameters, such as allele frequencies at a single

loci (Lynch, 2009; Keightley and Halligan, 2011; Kim et al., 2011) or

jointly across many loci (Keightley and Halligan, 2011; Li, 2011a;

Nielsen et al., 2012), mutation rates (Kang and Marjoram, 2011) as

well as other summary statistics (Gompert and Buerkle, 2011; Li,

2011a; Nielsen et al., 2012; Fumagalli et al., 2013).

Filtering

Initial calls often contain many false positive variants caused by

sequencing errors and incorrect alignments. As a result, it is important

to apply filter criteria to achieve specificity in the data set. Thereby,

filter strategies can be classified into two main techniques: hard

filtering (for example, as implemented in GATK VariantFiltration

(McKenna et al., 2010; DePristo et al., 2011; Van der Auwera et al.,

2013) or VCFtools (Danecek et al., 2011)) and soft filtering

(for example, GATK VQRS).

Hard filtering is based on the assumption that false positives

frequently exhibit unusual variant properties. For example, variants

called in regions with exceptionally low or high coverage might result

from an incomplete reference sequence, unresolved collapsed copy

number variations or repeats—in general, regions where reads might

be poorly aligned to the reference assembly (Figure 4a). Additional

indicators of false positives include low-quality scores (for example, in

duplicated regions, leading to ambiguous alignments; Figure 4b),

imbalanced strand specificity (that is, true variants should have a

roughly equal coverage on both forward and reverse strands;

Figure 4c), skewed allelic imbalance and a high clustering with other

variants (Figure 4d). Hard filtering attempts to remove these false

positives by identifying variants with characteristics outside their

normal distributions. Specifically, it requires the setting of specific

thresholds on these different variant characteristics, excluding variants

that do not fulfill these criteria. Thereby, sex chromosomes will need

to be considered separately, requiring different thresholds in order to

deal with the different coverage patterns and rate of homozygous calls.

However, as many characteristics are interdependent, simultaneous

optimization of well-suited thresholds for sensitivity and specificity

using hard filters is nontrivial. Furthermore, hard filtering is often

complicated by uneven coverage, particularly in highly divergent

(for example, within the HLA or MHC in humans) and repetitive

regions (for example, centromeres and telomeres), where alignment is

difficult (Lunter et al., 2008).

Whereas simple hard filters have been shown to provide reliable

results for high coverage data sets, soft filtering using machine learning

methods has better specificity at low coverage (Cheng et al., 2014).

Soft filtering techniques initially build a statistical model based on a set

of known high-quality variant calls (along with variant error annota-

tions) that is subsequently used to evaluate the probability of each new

variant being real (DePristo et al., 2011). Unfortunately, because of the

Figure 4 Indicators of false positive variant calls. Examples: (a) Variants in a region with exceptionally high coverage that might result from an incomplete
reference sequence, unresolved collapsed copy number variations or repeats. Coverage is shown as vertical bars in the top panel. Alignments are provided in
the lower panel with reads indicated as gray horizontal bars, variants as colored ticks, insertions as purple Is and deletions as black horizontal lines.
(b) Variants only supported by low-quality reads (reads with a mapping quality of o5 are shown in red). (c) Variant supported by reads that show a strand
bias (that is, the variant is stronger supported by the forward strand (red) than the reverse strand (blue)). (d) Region with a high clustering of variants.
All examples were plotted using IGV (Robinson et al., 2011).

NGS data processing in population genetics
SP Pfeifer

121

Heredity



requirement of a large training data set of known high-quality variants

in the underlying model, these techniques are currently limited to

model organisms for which extensive variation databases are available.

Quality assessment

Individual variants can be checked either by visual inspection (using

dedicated software packages such as IGV (Robinson et al., 2011),

GenomeView (Abeel et al., 2012) or SAVANT (Fiume et al., 2010)),

or by conducting a follow-up validation experiment using an

independent technology, whereas the overall quality of the data set

can be assessed using several simple metrics. First, the number of

observed SNPs should be in line with the species’ expected diversity.

Second, the number of SNPs per chromosome should roughly

correspond to its length. Third, every diploid individual carrying a

SNP should (based on the mapped reads) exhibit an allele frequency of

either 0.5 (that is, a heterozygous individual) or 1.0 (that is, an

individual that is homozygous for the alternative allele) at the locus of

the SNP.

SUMMARY

Over the past years, advances in NGS technologies together with a

considerable decrease in costs has permitted high-throughput sequen-

cing to become accessible for a wide range of research topics,

including population-scale studies of genetic diversity in a multitude

of organisms. Generating high-quality variant and genotype call sets

from the obtained sequences is a nontrivial task, complicated by many

subtle but complex types of errors, biases and uncertainties in the data.

However, many statistical methods and computational tools have been

proposed to tackle these challenges. Here, I outlined the main analytic

steps of a SNP calling workflow required to optimize the accuracy of

variant and genotype calling from raw resequencing data. Because of

the fact that available software rapidly evolves in response to the

changing sequencing technologies and protocols, I pointed out

important factors to consider when choosing tools suitable for a

particular study design as a guideline for researchers interested in

generating their own variant data sets, rather than recommending a

single established variant calling pipeline.

Nevertheless, there are still challenges. In particular, the correct

identification of variants in highly diverse species or genomic regions,

or in repetitive low-complexity regions, remains difficult. Under these

circumstances, a valuable alternative is reference-free, assembly-based

variant calling (for example, Cortex (Iqbal et al., 2012)) that is agnostic

to both variant type and divergence from the reference sequence, at

the cost of a generally lower sensitivity and higher computational

requirements. In addition, single-molecule, real-time, third-generation

sequencing and mapping technologies can aid the detection of

variation in these cases. Although not yet as well established, they

have already been successfully applied to study genetic diversity

(see, for example; Chaisson et al., 2015; Gordon et al., 2016) and

indeed show great promise for future genomic research.
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