
From Non-Adaptive to Adaptive
Pseudorandom Functions

Itay Berman and Iftach Haitner⋆

School of Computer Science, Tel Aviv University
{itayberm@post.tau.ac.il, iftachh@cs.tau.ac.il}

Abstract. Unlike the standard notion of pseudorandom functions
(PRF), a non-adaptive PRF is only required to be indistinguishable from
random in the eyes of a non-adaptive distinguisher (i.e., one that pre-
pares its oracle calls in advance). A recent line of research has studied the
possibility of a direct construction of adaptive PRFs from non-adaptive
ones, where direct means that the constructed adaptive PRF uses only
few (ideally, constant number of) calls to the underlying non-adaptive
PRF. Unfortunately, this study has only yielded negative results, show-
ing that “natural” such constructions are unlikely to exist (e.g., Myers
[EUROCRYPT ’04], Pietrzak [CRYPTO ’05, EUROCRYPT ’06]).
We give an affirmative answer to the above question, presenting a direct
construction of adaptive PRFs from non-adaptive ones. Our construction
is extremely simple, a composition of the non-adaptive PRF with an
appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser,
and Micali [11], cannot be distinguished from a family of truly random functions
by an efficient distinguisher who is given an oracle access to a random member
of the family. PRFs have an extremely important role in cryptography, allowing
parties, which share a common secret key, to send secure messages, identify them-
selves and to authenticate messages [10, 13]. In addition, they have many other
applications, essentially in any setting that requires random function provided
as black-box [2, 3, 6, 7, 14, 18]. Different PRF constructions are known in the
literature, whose security is based on different hardness assumption. Construc-
tions relevant to this work are those based on the existence of pseudorandom
generators [11] (and thus on the existence of one-way functions [12]), and on,
the so called, synthesizers [17].

In this work we study the question of constructing (adaptive) PRFs from
non-adaptive PRFs. The latter primitive is a (weaker) variant of the standard
PRF we mentioned above, whose security is only guaranteed to hold against
non-adaptive distinguishers (i.e., ones that “write” all their queries before the

⋆ Research supported by Check Point Institute for Information Security and BSF grant
2010196.

2 Itay Berman and Iftach Haitner

first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom
generator or as a synthesizer, [11, 17] tell us how to construct (adaptive) PRF
from a non-adaptive one. In both of these constructions, however, the resulting
(adaptive) PRF makes Θ(n) calls to the underlying non-adaptive PRF (where
n being the input length of the functions).1

A recent line of work has tried to figure out whether more efficient reductions
from adaptive to non-adaptive PRF’s are likely to exist. In a sequence of works
[16, 19, 20, 5], it was shown that several “natural” approaches (e.g., composition
or XORing members of the non-adaptive family with itself) are unlikely to work.
See more in Section 1.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate
pairwise independent hash function, yields an adaptive PRF. To state our result
more formally, we use the following definitions: a function family F is T =
T (n)-adaptive PRF, if no distinguisher of running time at most T , can tell a
random member of F from a random function with advantage larger than 1/T .
The family F is T -non-adaptive PRF, if the above is only guarantee to hold
against non-adaptive distinguishers. Given two function families F1 and F2, we
let F1 ◦ F2 [resp., F1

⊕
F2] be the function family whose members are all pairs

(f, g) ∈ F1×F2, and the action (f, g)(x) is defined as f(g(x)) [resp., f(x)⊕g(x)].
We prove the following statements (see Section 3 for the formal statements).

Theorem 1 (Informal). Let F be a (p(n) · T (n))-non-adaptive PRF, where
p ∈ poly is function of the evaluating time of F , and let H be an efficient
pairwise-independent function family mapping strings of length n to [T (n)]{0,1}n ,
where [T]{0,1}n is the first T elements (in lexicographic order) of {0, 1}n. Then
F ◦ H is a

(
3
√
T (n)/2

)
-adaptive PRF.

For instance, assuming that F is a (p(n) · 2cn)-non-adaptive PRF and that H
maps strings of length n to [2cn]{0,1}n , Theorem 1 yields that F ◦H is a

(
2

cn
3 −1

)
-

adaptive PRF.
Theorem 1 is only useful, however, for polynomial-time computable T ’s (in

this case, the family H assumed by the theorem exists, see Definition 3). Un-
fortunately, in the important case where F is only assumed to be polynomially
secure non-adaptive PRF, no useful polynomial-time computable T is guaran-
teed to exists.2

We suggest two different solutions for handling polynomially secure PRFs.
In Section 4 we observe (following Bellare [1]) that a polynomially secure non-
adaptive PRF is a T -non-adaptive PRF for some T ∈ nω(1). Since this T can

1 We remark that if one is only interested in polynomial security (i.e., no adaptive
ppt distinguishes with more than negligible probability), then w(logn) calls are
sufficient (cf., [8, Sec. 3.8.4, Exe. 30]).

2 Clearly F is p-non-adaptive PRF for any p ∈ poly, but applying Theorem 1 with
T ∈ poly, does not yield a polynomially secure adaptive PRF.

From Non-Adaptive to Adaptive Pseudorandom Functions 3

be assumed without loss of generality to be a power of two, Theorem 1 yields a
non-uniform (uses n-bit advice) polynomially secure adaptive PRF, that makes
a single call to the underlying non-adaptive PRF. Our second solution is to use
the following “combiner”, to construct a (uniform) adaptively secure PRF, which
makes ω(1) parallel calls to the underlying non-adaptive PRF.

Corollary 1 (Informal). Let F be a polynomially secure non-adaptive PRF,
let H = {Hn}n∈N be an efficient pairwise-independent length-preserving function
family and let k(n) ∈ ω(1) be polynomial-time computable function.

For n ∈ N and i ∈ [n], let Ĥn

i
be the function family Ĥn

i
= {ĥ : h ∈

H}, where ĥ(x) = 0n−i||h(x)1,...,i (‘||’ stands for string concatenation). Then

the ensemble {
⊕

i∈[k(n)]

(
Fn ◦ Ĥn

⌊i·logn⌋
)
}n∈N is a polynomially secure adaptive

PRF.

1.2 Proof Idea

To prove Theorem 1 we first show that F ◦ H is indistinguishable from Π ◦ H,
where Π being the set of all functions from {0, 1}n to {0, 1}ℓ(n) (letting ℓ(n)
be F ’s output length), and then conclude the proof by showing that Π ◦ H is
indistinguishable from Π.

F ◦ H is indistinguishable from Π ◦ H. Let D be (a possibly adaptive) al-
gorithm of running time T (n), which distinguishes F ◦ H from Π ◦ H with

advantage ε(n). We use D to build a non-adaptive distinguisher D̂ of running
time p(n) · T (n), which distinguishes F from Π with advantage ε(n). Given

an oracle access to a function ϕ, the distinguisher D̂ϕ(1n) first queries ϕ on
all the elements of [T (n)]{0,1}n . Next it chooses at uniform h ∈ H, and uses

the stored answers to its queries, to emulate Dϕ◦h(1n).

Since D̂ runs in time p(n) · T (n), for some large enough p ∈ poly, makes
non-adaptive queries, and distinguishes F from Π with advantage ε(n), the
assumed security of F yields that ε(n) < 1

p(n)·T (n) .

Π ◦ H is indistinguishable from Π. We prove that Π ◦ H is statistically in-
distinguishable from Π. Namely, even an unbounded distinguisher (that
makes bounded number of calls) cannot distinguish between the families.
The idea of the proof is fairly simple. Let D be an s-query algorithm trying
to distinguish between Π ◦ H and Π. We first note that the distinguish-
ing advantage of D is bounded by its probability of finding a collision in a
random ϕ ∈ Π ◦ H (in case no collision occurs, ϕ’s output is uniform). We
next argue that in order to find a collision in ϕ, the distinguisher D gains
nothing from being adaptive. Indeed, assuming that D found no collision
until the i’th call, then it has only learned that h does not collide on these
first i queries. Therefore, a random (or even a constant) query as the (i+1)
call, has the same chance to yield a collision, as any other query has. Hence,
we assume without loss of generality that D is non-adaptive, and use the

4 Itay Berman and Iftach Haitner

pairwise independence of H to conclude that D’s probability in finding a
collision, and thus its distinguishing advantage, is bounded by s(n)2/T (n).

Combining the above two observations, we conclude that an adaptive dis-
tinguisher whose running time is bounded by 1

2
3
√

T (n), cannot distinguish
F ◦ H from Π (i.e., from a random function) with an advantage better than
T (n)

2
3 /4

T (n) + 1
p(n)T (n) ≤ 2/ 3

√
T (n). Namely, F ◦H is a

(
3
√

T (n)/2
)
-adaptive PRF.

1.3 Related Work

Maurer and Pietrzak [15] were the first to consider the question of building
adaptive PRFs from non-adaptive ones. They showed that in the information
theoretic model, a self composition of a non-adaptive PRF does yield an adaptive
PRF.3

In contrast, the situation in the computational model (which we consider
here) seems very different: Myers [16] proved that it is impossible to reprove the
result of [15] via fully-black-box reductions. Pietrzak [19] showed that under the
Decisional Diffie-Hellman (DDH) assumption, composition does not imply adap-
tive security. Where in [20] he showed that the existence of non-adaptive PRFs
whose composition is not adaptively secure, yields that key-agreement protocol
exists. Finally, Cho et al. [5] generalized [20] by proving that composition of two
non-adaptive PRFs is not adaptively secure, iff (uniform transcript) key agree-
ment protocol exists. We mention that [16, 19, 5], and in a sense also [15], hold
also with respect to XORing of the non-adaptive families.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let ‘||’ denote string con-
catenation. We use calligraphic letters to denote sets, uppercase for random
variables, and lowercase for values. For an integer t, we let [t] = {1, . . . , t}, and
for a set S ⊆ {0, 1}∗ with |S| ≥ t, we let [t]S be the first t elements (in in-
creasing lexicographic order) of S. A function µ : N→ [0, 1] is negligible, denoted
µ(n) = neg(n), if µ(n) = n−ω(1). We let poly denote the set all polynomials, and
let ppt denote the set of probabilistic algorithms (i.e., Turing machines) that
run in strictly polynomial time.

Given a random variable X, we write X(x) to denote Pr[X = x], and write
x ← X to indicate that x is selected according to X. Similarly, given a fi-
nite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. The statistical distance of two distributions P and Q over
a finite set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| =
1
2

∑
u∈U |P (u)−Q(u)|.

3 Specifically, assuming that the non-adaptive PRF is (Q, ε)-non-adaptively secure, no
Q-query non-adaptive algorithm distinguishes it from random with advantage larger
than ε, then the resulting PRF is (Q, ε(1 + ln 1

ε
))-adaptively secure.

From Non-Adaptive to Adaptive Pseudorandom Functions 5

2.2 Ensemble of Function Families

Let F = {Fn : Dn 7→ Rn}n∈N stands for an ensemble of function families, where
each f ∈ Fn has domain Dn and its range contained in Rn. Such ensemble is
length preserving, if Dn = Rn = {0, 1}n for every n.

Definition 1 (efficient function family ensembles). A function family en-
semble F = {Fn}n∈N is efficient, if the following hold:

Samplable. F is samplable in polynomial-time: there exists a ppt that given
1n, outputs (the description of) a uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that given x ∈ {0, 1}n and
(a description of) f ∈ Fn, outputs f(x).

Operating on Function Families

Definition 2 (composition of function families). Let F1 = {F1
n : D1

n 7→
R1

n}n∈N and F2 = {F2
n : D2

n 7→ R2
n}n∈N be two ensembles of function families

with R1
n ⊆ D2

n for every n. We define the composition of F1 with F2 as F2 ◦
F1 = {F2

n ◦ F1
n : D1

n 7→ R2
n}n∈N, where F2

n ◦ F1
n = {(f2, f1) ∈ F2

n × F1
n}, and

(f2, f1)(x) := f2(f1(x)).

Definition 3 (XOR of function families). Let F1 = {F1
n : D1

n 7→ R1
n}n∈N

and F2 = {F2
n : D2

n 7→ R2
n}n∈N be two ensembles of function families with

R1
n,R2

n ⊆ {0, 1}ℓ(n) for every n. We define the XOR of F1 with F2 as
F2

⊕
F1 = {F2

n

⊕
F1

n : D1
n∩D2

n 7→ {0, 1}ℓ(n)}n∈N, where F2
n

⊕
F1

n = {(f2, f1) ∈
F2

n ×F1
n}, and (f2, f1)(x) := f2(x)⊕ f1(x).

Pairwise Independent Hashing

Definition 4 (pairwise independent families). A function family H =
{h : D 7→ R} is pairwise independent (with respect to D and R), if

Prh←H[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2
,

for every distinct x1, x2 ∈ D and every y1, y2 ∈ R.
For every ℓ ∈ poly, the existence of efficient pairwise-independent family en-
sembles mapping strings of length n to strings of length ℓ(n) is well known
([4]). In this paper we use efficient pairwise-independent function family en-
sembles mapping strings of length n to the set [T (n)]{0,1}n , where T (n) ≤ 2n

and is without loss of generality a power of two.4 Let H be an efficient length-
preserving, pairwise-independent function family ensemble and assume that
t(n) := log T (n) is polynomial-time computable. Then the function family

Ĥ = {Ĥn = {h′ : h ∈ Hn, h
′(x) = 0n−t(n)||h(x)1,...,t(n)}}, is an efficient pairwise-

independent function family ensemble, mapping strings of length n to the set
[T (n)]{0,1}n .

4 For our applications, see Section 3, we can always consider T ′(n) = 2⌊log(T (n))⌋,
which only causes us a factor of two loss in the resulting security.

6 Itay Berman and Iftach Haitner

Pseudorandom Functions

Definition 5 (pseudorandom functions). An efficient function family en-
semble F = {Fn : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N is a (T (n), ε(n))-adaptive PRF, if for
every oracle-aided algorithm (distinguisher) D of running time T (n) and large
enough n, it holds that∣∣Prf←Fn [D

f (1n) = 1]− Prπ←Πn [D
π(1n) = 1]

∣∣ ≤ ε(n),

where Πn is the set of all functions from {0, 1}n to {0, 1}ℓ(n). If we limit D above
to be non-adaptive (i.e., it has to write all his oracle calls before making the first
call), then F is called (T (n), ε(n))-non-adaptive PRF.

The ensemble F is a t-adaptive PRF, if it is a (t, 1/t)-adaptive PRF according
to the above definition. It is polynomially secure adaptive PRF (for short, adaptive
PRF), if it is a p-adaptive PRF for every p ∈ poly. Finally, it is super-polynomial
secure adaptive PRF, if it T -adaptive PRF for some T (n) ∈ nω(1). The same
conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Section 4
we prove that the converse is also true: a polynomially secure PRF is also super-
polynomial secure PRF.

3 Our Construction

In this section we present the main contribution of this paper — a direct con-
struction of an adaptive pseudorandom function family from a non-adaptive one.

Theorem 2 (restatement of Theorem 1). Let T be a polynomial-time com-
putable integer function, let H = {Hn : {0, 1}n 7→ [T (n)]{0,1}n} be an efficient
pairwise independent function family ensemble, and let F = {Fn : {0, 1}n 7→
{0, 1}ℓ(n)} be a (p(n) · T (n), ε(n))-non-adaptive PRF, where p ∈ poly is
determined by the computation time of T , F and H. Then F ◦ H is a(
s(n), ε(n) + s(n)2

T (n)

)
-adaptive PRF for every s(n) < T (n).

Theorem 2 yields the following simpler statement.

Corollary 2. Let T , p and H be as in Theorem 2. Assuming F is a (p(n)T (n))-

non-adaptive PRF, then F ◦ H is a
(

3
√
T (n)/2

)
-adaptive PRF.

Proof. Applying Theorem 2 with respect to s(n) = 3
√
T (n)/2 and ε(n) =

1
p(n)T (n) , yields that F ◦ H is a

(
s(n), 1

p(n)T (n) +
s(n)2

T (n)

)
-adaptive PRF. Since

1
p(n)T (n) < 1

2s(n) and s(n)2

T (n) ≤
1

2s(n) , it follows that F ◦ H is a (s, 1/s)-adaptive

PRF. �
To prove Theorem 2, we use the (non efficient) function family ensemble

Π ◦ H, where Π = Πℓ (i.e., the ensemble of all functions from {0, 1}n to {0, 1}ℓ),
and ℓ = ℓ(n) is the output length of F . We first show that F ◦ H is computation-
ally indistinguishable from Π ◦ H, and complete the proof showing that Π ◦ H
is statistically indistinguishable from Π.

From Non-Adaptive to Adaptive Pseudorandom Functions 7

3.1 F ◦ H is Computationally Indistinguishable From Π ◦ H

Lemma 1. Let T , F and H be as in Theorem 2. Then for every oracle-aided
distinguisher D of running time T , there exists a non-adaptive oracle-aided dis-
tinguisher D̂ of running time p(n) · T (n), for some p ∈ poly (determined by the
computation time of T , F and H), with∣∣Prg←Fn [D̂

g(1n) = 1]− Prg←Πn [D̂
g(1n) = 1]

∣∣ =∣∣Prg←Fn◦Hn [D
g(1n) = 1]− Prg←Πn◦Hn [D

g(1n) = 1]
∣∣

for every n ∈ N, where Πn is the set of all functions from {0, 1}n to {0, 1}ℓ(n).

In particular, the pseudorandomness of F yields that F ◦ H is computationally
indistinguishable from the ensemble {Πn ◦ Hn}n∈N by an adaptive distinguisher
of running time T .

Proof. The distinguisher D̂ is defined as follows:

Algorithm 3 (D̂)

Input: 1n.
Oracle: a function ϕ over {0, 1}n.

1. Compute ϕ(x) for every x ∈ [T (n)]{0,1}n .
2. Set g = ϕ ◦ h, where h is uniformly chosen in Hn.
3. Emulate Dg(1n): answer a query x to ϕ made by D with g(x), using the

information obtained in Step 1.

. .

Note that D̂ makes T (n) non-adaptive queries to ϕ, and it can be implemented
to run in time p(n)T (n), for large enough p ∈ poly. We conclude the proof by
observing that in case ϕ is uniformly drawn from Fn, the emulation of D done
in D̂ϕ is identical to a random execution of Dg with g ← Fn ◦ Hn. Similarly,
in case ϕ is uniformly drawn from Πn, the emulation is identical to a random
execution of Dπ with π ← Πn. �

3.2 Π ◦ H is Statistically Indistinguishable From Π

The following lemma is commonly used for proving the security of hash based
MACs (cf., [9, Proposition 6.3.6]), yet for completeness we give it a full proof
below.

Lemma 2. Let n, T be integers with T ≤ 2n, and let H be a pairwise-
independent function family mapping string of length n to [T]{0,1}n . Let D be
an (unbounded) s-query oracle-aided algorithm (i.e., making at most s queries),
then

|Pr g←Π◦H [Dg = 1]− Pr π←Π [Dπ = 1]| ≤ s2/T,

where Π is the set of all functions from {0, 1}n to {0, 1}ℓ (for some ℓ ∈ N).

8 Itay Berman and Iftach Haitner

Proof. We assume for simplicity that D is deterministic (the reduction to the
randomized case is standard) and makes exactly s valid (i.e., inside {0, 1}n)
distinct queries, and let Ω = ({0, 1}ℓ)s. Consider the following random process:

Algorithm 4

1. Emulate D, while answering the i’th query qi with a uniformly chosen ai ∈
{0, 1}ℓ.
Set q = (q1, . . . , qs) and a = (a1, . . . , as).

2. Choose h← H.
3. Emulate D again, while answering the i’th query q′i with a′i = ai (the same

ai from Step 1), if h(q′i) /∈ {h(q′j)}j∈[i−1], and with a′i = aj, if h(q
′
i) = h(q′j)

for some j ∈ [i− 1].
Set q′ = (q′1, . . . , q

′
s) and a′ = (a′1, . . . , a

′
s).

. .

Let A, Q, A′, Q′ and H be the (jointly distributed) random variables induced by
the values of q, a, q′, a′ and h respectively, in a random execution of the above
process. It is not hard to verify that A is distributed the same as the oracle
answers in a random execution of Dπ with π ← Π, and that A′ is distributed
the same as the oracle answers in a random execution of Dg with g ← Π ◦ H.
Hence, for proving Lemma 2, it suffices to bound the statistical distance between
A and A′.

Let Coll be the event that H(Qi) = H(Qj) for some i ̸= j ∈ [s]. Since the
queries and answers in both emulations of Algorithm 4 are the same until a
collision with respect to H occurs, it follows that

Pr[A ̸= A′] ≤ Pr[Coll] (1)

On the other hand, since H is chosen after Q is set, the pairwise independent
of H yields that

Pr[Coll] ≤ s2/T, (2)

and therefore Pr[A ̸= A′] ≤ s2/T . It follows that Pr[A ∈ C] ≤ Pr[A′ ∈ C]+s2/T
for every C ⊆ Ω, yielding that SD(A,A′) ≤ s2/T . �

3.3 Putting It Together

We are now finally ready to prove Theorem 2.

Proof (of Theorem 2). Let D be an oracle-aided algo-
rithm of running time s with s(n) < T (n). Lemma 1
yields that |Prg←Fn◦Hn [D

g(1n) = 1]− Prg←Πn◦Hn [D
g(1n) = 1]| ≤

ε(n) for large enough n, where Lemma 2 yields that
|Pr g←Πn◦Hn [Dg(1n) = 1]− Pr π←Πn [Dπ(1n) = 1]| ≤ s(n)2/T (n)
for every n ∈ N. Hence, the triangle inequality yields that
|Prg←Fn◦Hn [D

g(1n) = 1]− Prπ←Πn [D
π(1n) = 1]| ≤ ε(n) + s(n)2/T (n) for

large enough n, as requested. �

From Non-Adaptive to Adaptive Pseudorandom Functions 9

3.4 Handling Polynomial Security

Corollary 2 is only useful when the security of the underlying non-adaptive PRF
(i.e., T) is efficiently computable (or when considering non-uniform PRF con-
structions, see Section 1.1). In this section we show how to handle the important
case of polynomially secure non-adaptive PRF. We use the following “combiner”.

Definition 6. Let H be a function family into {0, 1}n. For i ∈ [n], let Ĥi be the

function family Ĥi = {ĥ : h ∈ H}, where ĥ(x) = 0n−i||h(x)1,...,i.

Corollary 3. Let F be a T (n)-non-adaptive PRF, let H be an efficient length-
preserving pairwise-independent function family ensemble, and let I(n) ⊆ [n] be
polynomial-time computable (in n) index set. Define the function family ensemble

G = {Gn}n∈N, where Gn =
⊕

i∈I(n)

(
Fn ◦ Ĥn

i
)
.

There exists q ∈ poly such that G is a
(

3
√
2t(n)/2

)
-adaptive PRF, for every

polynomial-time computable integer function t, with t(n) ∈ I(n) and 2t(n) ≤
T (n)/q(n).

Before proving the corollary, let us first use it for constructing adaptive PRF
from non-adaptive polynomially secure one.

Corollary 4 (restatement of Corollary 1). Let F be a polynomially secure
non-adaptive PRF, let H be an efficient pairwise-independent length-preserving
function family ensemble and let k(n) ∈ ω(1) be polynomial-time computable

function. Then G := {
⊕

i∈[k(n)]

(
Fn ◦ Ĥn

⌊i·logn⌋
)
}n∈N is polynomially secure

adaptive PRF.

Proof. Let I(n) := {⌊log n⌋ , ⌊2 · log n⌋ . . . , ⌊k(n) · log n⌋}. Applying Corollary 3
with respect to F , H, I and t(n) = ⌊c · logn⌋, where c ∈ N, yields that G is a
O(3
√
nc)-adaptive PRF. It follows that G is p-adaptive PRF for every p ∈ poly.

Namely, G is polynomially secure adaptive PRF. �

Remark 1 (unknown security). Corollary 3 is also useful when the security of
F is “not known” in the construction time. Taking I(n) = {1, 2, 4, . . . , 2⌊logn⌋}
(resulting in log n calls to F) and assuming that F is found to be T (n)-non-
adaptive PRF for some polynomial-time computable T , the resulting PRF is
guaranteed to be O(6

√
T (n))-adaptive PRF (neglecting polynomial factors).

Proof (of Corollary 3). It is easy to see that G is efficient, so it is left to argue for
its security. Let q(n) = q′(n)p(n), where p is as in the statement of Corollary 2,
and q′ ∈ poly to be determined later. Let t be a polynomial-time computable
integer function with t(n) ∈ I(n) and 2t(n) ≤ T (n)/q(n). It follows that Ĥt =

{Ĥn

t(n)
}n∈N is an efficient pairwise-independent function family ensemble, and

Corollary 2 yields that F ◦ Ĥt is a
(

3
√
q′(n)2t(n)/2

)
-adaptive PRF.

10 Itay Berman and Iftach Haitner

Assume towards a contradiction that there exists an oracle-aided distin-
guisher D that runs in time T ′(n) =

3
√
2t(n)/2 and

|Prg←Gn [D
g(1n) = 1]− Prπ←Πn [D

π(1n) = 1]| > 1/T ′(n) (3)

for infinitely many n’s. We use the following distinguisher for breaking the pseu-
dorandomness of F ◦ Ĥt:

Algorithm 5 (D̂)

Input: 1n.
Oracle: a function ϕ over {0, 1}n.

1. For every i ∈ I(n) \ {t(n)}, choose gi ← Fn ◦ Ĥn

i
.

2. Set g := ϕ⊕
⊕

i∈I(n)\{t(n)} g
i.

3. Emulate Dg(1n).

. .

Note that D̂ can be implemented to run in time |I(n)| · r(n) ·T ′(n) for some r ∈
poly, which is smaller than 3

√
q′(n)2t(n)/2 for large enough q′. Also note that in

case ϕ is uniformly distributed over Πn, then g (selected by D̂ϕ(1n)) is uniformly

distributed in Πn, where in case ϕ is uniformly distributed in Fn ◦ Ĥn

t(n)
, then

g is uniformly distributed in Gn. It follows that∣∣∣Prg←(F◦Ĥt)n
[D̂g(1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣∣ =

|Prg←Gn [D
g(1n) = 1]− Prπ←Πn [D

π(1n) = 1]| (4)

for every n ∈ N. In particular, Equation (3) yields that∣∣∣Prg←(F◦Ĥt)n
[D̂g(1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣∣ > 2

3
√
2t(n)

>
2

3
√
q′(n)2t(n)

for infinitely many n’s, in contradiction to the pseudorandomness of F ◦ Ĥt we
proved above. �

Acknowledgment

We are very grateful to Omer Reingold for very useful discussions, and for chal-
lenging the second author with this research question a long while ago.

Bibliography

1. M. Bellare. A note on negligible functions. Journal of Cryptology, pages
271–284, 2002.

2. M. Bellare and S. Goldwasser. New paradigms for digital signatures and
message authentication based on non-interative zero knowledge proofs. In
Advances in Cryptology – CRYPTO ’89, pages 194–211, 1989.

3. M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the
correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

4. L. J. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, pages 143–154, 1979.

5. C. Cho, C.-K. Lee, and R. Ostrovsky. Equivalence of uniform key agreement
and composition insecurity. In Advances in Cryptology – CRYPTO 2010,
pages 447–464, 2010.

6. B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE Transac-
tions on Information Theory, 46(3):893–910, 2000.

7. O. Goldreich. Towards a theory of software protection. In Advances in
Cryptology – CRYPTO ’86, pages 426–439, 1986.

8. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, 2001.

9. O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applica-
tions. Cambridge University Press, 2004.

10. O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applica-
tions of random functions. pages 276–288, 1984.

11. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, pages 792–807, 1986.

12. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, pages
1364–1396, 1999.

13. M. Luby. Pseudorandomness and cryptographic applications. Princeton
computer science notes. Princeton University Press, 1996. ISBN 978-0-691-
02546-9.

14. M. Luby and C. Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing.

15. U. M. Maurer and K. Pietrzak. Composition of random systems: When
two weak make one strong. In Theory of Cryptography, First Theory of
Cryptography Conference, TCC 2004, pages 410–427, 2004.

16. S. Myers. Black-box composition does not imply adaptive security. In Ad-
vances in Cryptology – EUROCRYPT 2004, pages 189–206, 2004.

17. M. Naor and O. Reingold. Synthesizers and their application to the parallel
construction of psuedo-random functions. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science (FOCS), pages 170–181,
1995.

12 Itay Berman and Iftach Haitner

18. R. Ostrovsky. An efficient software protection scheme. In Advances in Cryp-
tology – CRYPTO ’89, 1989.

19. K. Pietrzak. Composition does not imply adaptive security. In Advances in
Cryptology – CRYPTO 2005, pages 55–65, 2005.

20. K. Pietrzak. Composition implies adaptive security in minicrypt. In Ad-
vances in Cryptology – EUROCRYPT 2006, pages 328–338, 2006.

4 From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is polynomial se-
curity : any ppt trying to break the primitive has only negligible success proba-
bility. Bellare [1] showed that for any polynomially secure primitive there exists
a single negligible function µ, such that no ppt can break the primitive with
probability larger than µ. Here we take his approach a step further, showing that
for a polynomially secure primitive there exists a super-polynomial function T ,
such that no adversary of running time T breaks the primitive with probability
larger than 1/T .

In the following we identify algorithms with their string description. In par-
ticular, when considering algorithm A, we mean the algorithm defined by the
string A (according to some canonical representation). We prove the following
result.

Theorem 6. Let v : {0, 1}∗ × N 7→ [0, 1] be a function with the following prop-
erties: 1) v(A, n) ≤ 1/p(n) for every oracle-aided ppt A, p ∈ poly and large
enough n; and 2) if the distributions induced by random executions of Af (x) and
Bf (x) are the same for any input x ∈ {0, 1}n and function f (each distribution
describes the algorithm’s output and oracle queries), then v(A, n) = v(B, n).

Then there exists an integer function T (n) ∈ nω(1) such that following holds:
for any algorithm A of running time at most T (n), it holds that v(A, n) ≤ 1/T (n)
for large enough n.

Remark 2 (Applications). Let f be a polynomially secure OWF (i.e.,
Pr[A(f(Un)) ∈ f−1(f(Un))] = neg(n) for any ppt A). Applying Theorem 6 with
v(A, n) := Pr[A(f(Un)) ∈ f−1(f(Un))] (where if A expects to get an oracle, pro-
vide him with the constant function ϕ(x) = 1), yields that f is super-polynomial
secure OWF (i.e., exists T (n) ∈ nω(1) such that Pr[A(f(Un)) ∈ f−1(f(Un))] ≤
1/T (n) for any algorithm of running time T and large enough n).

Similarly, for a polynomially secure PRF F = {Fn}n∈N (see Definition 5), ap-
plying Theorem 6 with v(A, n) :=

∣∣Prf←Fn
[Af (1n) = 1]− Prπ←Πn

[Aπ(1n) = 1]
∣∣,

where Πn is the set of all functions with the same domain/range as Fn, yields
that F is super-polynomial secure PRF.

Proof (of Theorem 6). Given a probabilistic algorithm A and an integer i, let Ai

denote the variant of A that on input of length n, halts after ni steps (hence,
Ai is a ppt). Let Si be the first i strings in {0, 1}∗, according to some canonical

From Non-Adaptive to Adaptive Pseudorandom Functions 13

order, viewed as descriptions of i algorithms. Let I(n) = {i ∈ [n] : ∀A ∈ Si, k ≥
n : v(Ai, k) < 1/ki} ∪ {1}, let t(n) = max I(n) and T (n) = nt(n).

Let A be an algorithm of running time T (n), and let iA be the first integer
such that A ∈ SiA . In Remark 2 we prove that t(n) ∈ ω(1), hence it follows that
t(n) > iA for any large enough n. For any such n, the definition of t guarantees
that v(At(n), n) < 1/nt(n) = 1/T (n). Since A is of running time T (n), the second
property of v yields that v(A, n) = v(At(n), n), and therefore v(A, n) < 1/T (n).

�

Claim. It holds that t(n) ∈ ω(1).

Proof. Fix i ∈ N. For each A ∈ Si, let nA be the first integer such that v(Ai, n) ≤
1/ni for every n ≥ nA (note that such nA exists by the first property of v), and
let ni = max{nA : A ∈ Si}. It follows that v(Ai, n) ≤ 1/ni for every n ≥ ni and
A ∈ Si, and therefore t(ni) ≥ i. �

