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Abstract. Unlike the standard notion of pseudorandom functions
(PRF), a non-adaptive PRF is only required to be indistinguishable from
random in the eyes of a non-adaptive distinguisher (i.e., one that pre-
pares its oracle calls in advance). A recent line of research has studied the
possibility of a direct construction of adaptive PRFs from non-adaptive
ones, where direct means that the constructed adaptive PRF uses only
few (ideally, constant number of) calls to the underlying non-adaptive
PRF. Unfortunately, this study has only yielded negative results, show-
ing that “natural” such constructions are unlikely to exist (e.g., Myers
[EUROCRYPT ’04], Pietrzak [CRYPTO ’05, EUROCRYPT ’06]).
We give an affirmative answer to the above question, presenting a direct
construction of adaptive PRFs from non-adaptive ones. Our construction
is extremely simple, a composition of the non-adaptive PRF with an
appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser,
and Micali [11], cannot be distinguished from a family of truly random functions
by an efficient distinguisher who is given an oracle access to a random member
of the family. PRFs have an extremely important role in cryptography, allowing
parties, which share a common secret key, to send secure messages, identify them-
selves and to authenticate messages [10, 13]. In addition, they have many other
applications, essentially in any setting that requires random function provided
as black-box [2, 3, 6, 7, 14, 18]. Different PRF constructions are known in the
literature, whose security is based on different hardness assumption. Construc-
tions relevant to this work are those based on the existence of pseudorandom
generators [11] (and thus on the existence of one-way functions [12]), and on,
the so called, synthesizers [17].

In this work we study the question of constructing (adaptive) PRFs from
non-adaptive PRFs. The latter primitive is a (weaker) variant of the standard
PRF we mentioned above, whose security is only guaranteed to hold against
non-adaptive distinguishers (i.e., ones that “write” all their queries before the
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first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom
generator or as a synthesizer, [11, 17] tell us how to construct (adaptive) PRF
from a non-adaptive one. In both of these constructions, however, the resulting
(adaptive) PRF makes Θ(n) calls to the underlying non-adaptive PRF (where
n being the input length of the functions).1

A recent line of work has tried to figure out whether more efficient reductions
from adaptive to non-adaptive PRF’s are likely to exist. In a sequence of works
[16, 19, 20, 5], it was shown that several “natural” approaches (e.g., composition
or XORing members of the non-adaptive family with itself) are unlikely to work.
See more in Section 1.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate
pairwise independent hash function, yields an adaptive PRF. To state our result
more formally, we use the following definitions: a function family F is T =
T (n)-adaptive PRF, if no distinguisher of running time at most T , can tell a
random member of F from a random function with advantage larger than 1/T .
The family F is T -non-adaptive PRF, if the above is only guarantee to hold
against non-adaptive distinguishers. Given two function families F1 and F2, we
let F1 ◦ F2 [resp., F1

⊕
F2] be the function family whose members are all pairs

(f, g) ∈ F1×F2, and the action (f, g)(x) is defined as f(g(x)) [resp., f(x)⊕g(x)].
We prove the following statements (see Section 3 for the formal statements).

Theorem 1 (Informal). Let F be a (p(n) · T (n))-non-adaptive PRF, where
p ∈ poly is function of the evaluating time of F , and let H be an efficient
pairwise-independent function family mapping strings of length n to [T (n)]{0,1}n ,
where [T ]{0,1}n is the first T elements (in lexicographic order) of {0, 1}n. Then
F ◦ H is a

(
3
√
T (n)/2

)
-adaptive PRF.

For instance, assuming that F is a (p(n) · 2cn)-non-adaptive PRF and that H
maps strings of length n to [2cn]{0,1}n , Theorem 1 yields that F ◦H is a

(
2

cn
3 −1

)
-

adaptive PRF.
Theorem 1 is only useful, however, for polynomial-time computable T ’s (in

this case, the family H assumed by the theorem exists, see Definition 3). Un-
fortunately, in the important case where F is only assumed to be polynomially
secure non-adaptive PRF, no useful polynomial-time computable T is guaran-
teed to exists.2

We suggest two different solutions for handling polynomially secure PRFs.
In Section 4 we observe (following Bellare [1]) that a polynomially secure non-
adaptive PRF is a T -non-adaptive PRF for some T ∈ nω(1). Since this T can

1 We remark that if one is only interested in polynomial security (i.e., no adaptive
ppt distinguishes with more than negligible probability), then w(logn) calls are
sufficient (cf., [8, Sec. 3.8.4, Exe. 30]).

2 Clearly F is p-non-adaptive PRF for any p ∈ poly, but applying Theorem 1 with
T ∈ poly, does not yield a polynomially secure adaptive PRF.
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be assumed without loss of generality to be a power of two, Theorem 1 yields a
non-uniform (uses n-bit advice) polynomially secure adaptive PRF, that makes
a single call to the underlying non-adaptive PRF. Our second solution is to use
the following “combiner”, to construct a (uniform) adaptively secure PRF, which
makes ω(1) parallel calls to the underlying non-adaptive PRF.

Corollary 1 (Informal). Let F be a polynomially secure non-adaptive PRF,
let H = {Hn}n∈N be an efficient pairwise-independent length-preserving function
family and let k(n) ∈ ω(1) be polynomial-time computable function.

For n ∈ N and i ∈ [n], let Ĥn

i
be the function family Ĥn

i
= {ĥ : h ∈

H}, where ĥ(x) = 0n−i||h(x)1,...,i (‘||’ stands for string concatenation). Then

the ensemble {
⊕

i∈[k(n)]

(
Fn ◦ Ĥn

⌊i·logn⌋
)
}n∈N is a polynomially secure adaptive

PRF.

1.2 Proof Idea

To prove Theorem 1 we first show that F ◦ H is indistinguishable from Π ◦ H,
where Π being the set of all functions from {0, 1}n to {0, 1}ℓ(n) (letting ℓ(n)
be F ’s output length), and then conclude the proof by showing that Π ◦ H is
indistinguishable from Π.

F ◦ H is indistinguishable from Π ◦ H. Let D be (a possibly adaptive) al-
gorithm of running time T (n), which distinguishes F ◦ H from Π ◦ H with

advantage ε(n). We use D to build a non-adaptive distinguisher D̂ of running
time p(n) · T (n), which distinguishes F from Π with advantage ε(n). Given

an oracle access to a function ϕ, the distinguisher D̂ϕ(1n) first queries ϕ on
all the elements of [T (n)]{0,1}n . Next it chooses at uniform h ∈ H, and uses

the stored answers to its queries, to emulate Dϕ◦h(1n).

Since D̂ runs in time p(n) · T (n), for some large enough p ∈ poly, makes
non-adaptive queries, and distinguishes F from Π with advantage ε(n), the
assumed security of F yields that ε(n) < 1

p(n)·T (n) .

Π ◦ H is indistinguishable from Π. We prove that Π ◦ H is statistically in-
distinguishable from Π. Namely, even an unbounded distinguisher (that
makes bounded number of calls) cannot distinguish between the families.
The idea of the proof is fairly simple. Let D be an s-query algorithm trying
to distinguish between Π ◦ H and Π. We first note that the distinguish-
ing advantage of D is bounded by its probability of finding a collision in a
random ϕ ∈ Π ◦ H (in case no collision occurs, ϕ’s output is uniform). We
next argue that in order to find a collision in ϕ, the distinguisher D gains
nothing from being adaptive. Indeed, assuming that D found no collision
until the i’th call, then it has only learned that h does not collide on these
first i queries. Therefore, a random (or even a constant) query as the (i+1)
call, has the same chance to yield a collision, as any other query has. Hence,
we assume without loss of generality that D is non-adaptive, and use the
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pairwise independence of H to conclude that D’s probability in finding a
collision, and thus its distinguishing advantage, is bounded by s(n)2/T (n).

Combining the above two observations, we conclude that an adaptive dis-
tinguisher whose running time is bounded by 1

2
3
√

T (n), cannot distinguish
F ◦ H from Π (i.e., from a random function) with an advantage better than
T (n)

2
3 /4

T (n) + 1
p(n)T (n) ≤ 2/ 3

√
T (n). Namely, F ◦H is a

(
3
√

T (n)/2
)
-adaptive PRF.

1.3 Related Work

Maurer and Pietrzak [15] were the first to consider the question of building
adaptive PRFs from non-adaptive ones. They showed that in the information
theoretic model, a self composition of a non-adaptive PRF does yield an adaptive
PRF.3

In contrast, the situation in the computational model (which we consider
here) seems very different: Myers [16] proved that it is impossible to reprove the
result of [15] via fully-black-box reductions. Pietrzak [19] showed that under the
Decisional Diffie-Hellman (DDH) assumption, composition does not imply adap-
tive security. Where in [20] he showed that the existence of non-adaptive PRFs
whose composition is not adaptively secure, yields that key-agreement protocol
exists. Finally, Cho et al. [5] generalized [20] by proving that composition of two
non-adaptive PRFs is not adaptively secure, iff (uniform transcript) key agree-
ment protocol exists. We mention that [16, 19, 5], and in a sense also [15], hold
also with respect to XORing of the non-adaptive families.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let ‘||’ denote string con-
catenation. We use calligraphic letters to denote sets, uppercase for random
variables, and lowercase for values. For an integer t, we let [t] = {1, . . . , t}, and
for a set S ⊆ {0, 1}∗ with |S| ≥ t, we let [t]S be the first t elements (in in-
creasing lexicographic order) of S. A function µ : N→ [0, 1] is negligible, denoted
µ(n) = neg(n), if µ(n) = n−ω(1). We let poly denote the set all polynomials, and
let ppt denote the set of probabilistic algorithms (i.e., Turing machines) that
run in strictly polynomial time.

Given a random variable X, we write X(x) to denote Pr[X = x], and write
x ← X to indicate that x is selected according to X. Similarly, given a fi-
nite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. The statistical distance of two distributions P and Q over
a finite set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| =
1
2

∑
u∈U |P (u)−Q(u)|.

3 Specifically, assuming that the non-adaptive PRF is (Q, ε)-non-adaptively secure, no
Q-query non-adaptive algorithm distinguishes it from random with advantage larger
than ε, then the resulting PRF is (Q, ε(1 + ln 1

ε
))-adaptively secure.
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2.2 Ensemble of Function Families

Let F = {Fn : Dn 7→ Rn}n∈N stands for an ensemble of function families, where
each f ∈ Fn has domain Dn and its range contained in Rn. Such ensemble is
length preserving, if Dn = Rn = {0, 1}n for every n.

Definition 1 (efficient function family ensembles). A function family en-
semble F = {Fn}n∈N is efficient, if the following hold:

Samplable. F is samplable in polynomial-time: there exists a ppt that given
1n, outputs (the description of) a uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that given x ∈ {0, 1}n and
(a description of) f ∈ Fn, outputs f(x).

Operating on Function Families

Definition 2 (composition of function families). Let F1 = {F1
n : D1

n 7→
R1

n}n∈N and F2 = {F2
n : D2

n 7→ R2
n}n∈N be two ensembles of function families

with R1
n ⊆ D2

n for every n. We define the composition of F1 with F2 as F2 ◦
F1 = {F2

n ◦ F1
n : D1

n 7→ R2
n}n∈N, where F2

n ◦ F1
n = {(f2, f1) ∈ F2

n × F1
n}, and

(f2, f1)(x) := f2(f1(x)).

Definition 3 (XOR of function families). Let F1 = {F1
n : D1

n 7→ R1
n}n∈N

and F2 = {F2
n : D2

n 7→ R2
n}n∈N be two ensembles of function families with

R1
n,R2

n ⊆ {0, 1}ℓ(n) for every n. We define the XOR of F1 with F2 as
F2

⊕
F1 = {F2

n

⊕
F1

n : D1
n∩D2

n 7→ {0, 1}ℓ(n)}n∈N, where F2
n

⊕
F1

n = {(f2, f1) ∈
F2

n ×F1
n}, and (f2, f1)(x) := f2(x)⊕ f1(x).

Pairwise Independent Hashing

Definition 4 (pairwise independent families). A function family H =
{h : D 7→ R} is pairwise independent (with respect to D and R), if

Prh←H[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2
,

for every distinct x1, x2 ∈ D and every y1, y2 ∈ R.
For every ℓ ∈ poly, the existence of efficient pairwise-independent family en-
sembles mapping strings of length n to strings of length ℓ(n) is well known
([4]). In this paper we use efficient pairwise-independent function family en-
sembles mapping strings of length n to the set [T (n)]{0,1}n , where T (n) ≤ 2n

and is without loss of generality a power of two.4 Let H be an efficient length-
preserving, pairwise-independent function family ensemble and assume that
t(n) := log T (n) is polynomial-time computable. Then the function family

Ĥ = {Ĥn = {h′ : h ∈ Hn, h
′(x) = 0n−t(n)||h(x)1,...,t(n)}}, is an efficient pairwise-

independent function family ensemble, mapping strings of length n to the set
[T (n)]{0,1}n .

4 For our applications, see Section 3, we can always consider T ′(n) = 2⌊log(T (n))⌋,
which only causes us a factor of two loss in the resulting security.
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Pseudorandom Functions

Definition 5 (pseudorandom functions). An efficient function family en-
semble F = {Fn : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N is a (T (n), ε(n))-adaptive PRF, if for
every oracle-aided algorithm (distinguisher) D of running time T (n) and large
enough n, it holds that∣∣Prf←Fn [D

f (1n) = 1]− Prπ←Πn [D
π(1n) = 1]

∣∣ ≤ ε(n),

where Πn is the set of all functions from {0, 1}n to {0, 1}ℓ(n). If we limit D above
to be non-adaptive (i.e., it has to write all his oracle calls before making the first
call), then F is called (T (n), ε(n))-non-adaptive PRF.

The ensemble F is a t-adaptive PRF, if it is a (t, 1/t)-adaptive PRF according
to the above definition. It is polynomially secure adaptive PRF (for short, adaptive
PRF), if it is a p-adaptive PRF for every p ∈ poly. Finally, it is super-polynomial
secure adaptive PRF, if it T -adaptive PRF for some T (n) ∈ nω(1). The same
conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Section 4
we prove that the converse is also true: a polynomially secure PRF is also super-
polynomial secure PRF.

3 Our Construction

In this section we present the main contribution of this paper — a direct con-
struction of an adaptive pseudorandom function family from a non-adaptive one.

Theorem 2 (restatement of Theorem 1). Let T be a polynomial-time com-
putable integer function, let H = {Hn : {0, 1}n 7→ [T (n)]{0,1}n} be an efficient
pairwise independent function family ensemble, and let F = {Fn : {0, 1}n 7→
{0, 1}ℓ(n)} be a (p(n) · T (n), ε(n))-non-adaptive PRF, where p ∈ poly is
determined by the computation time of T , F and H. Then F ◦ H is a(
s(n), ε(n) + s(n)2

T (n)

)
-adaptive PRF for every s(n) < T (n).

Theorem 2 yields the following simpler statement.

Corollary 2. Let T , p and H be as in Theorem 2. Assuming F is a (p(n)T (n))-

non-adaptive PRF, then F ◦ H is a
(

3
√
T (n)/2

)
-adaptive PRF.

Proof. Applying Theorem 2 with respect to s(n) = 3
√
T (n)/2 and ε(n) =

1
p(n)T (n) , yields that F ◦ H is a

(
s(n), 1

p(n)T (n) +
s(n)2

T (n)

)
-adaptive PRF. Since

1
p(n)T (n) < 1

2s(n) and s(n)2

T (n) ≤
1

2s(n) , it follows that F ◦ H is a (s, 1/s)-adaptive

PRF. �
To prove Theorem 2, we use the (non efficient) function family ensemble

Π ◦ H, where Π = Πℓ (i.e., the ensemble of all functions from {0, 1}n to {0, 1}ℓ),
and ℓ = ℓ(n) is the output length of F . We first show that F ◦ H is computation-
ally indistinguishable from Π ◦ H, and complete the proof showing that Π ◦ H
is statistically indistinguishable from Π.
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3.1 F ◦ H is Computationally Indistinguishable From Π ◦ H

Lemma 1. Let T , F and H be as in Theorem 2. Then for every oracle-aided
distinguisher D of running time T , there exists a non-adaptive oracle-aided dis-
tinguisher D̂ of running time p(n) · T (n), for some p ∈ poly (determined by the
computation time of T , F and H), with∣∣Prg←Fn [D̂

g(1n) = 1]− Prg←Πn [D̂
g(1n) = 1]

∣∣ =∣∣Prg←Fn◦Hn [D
g(1n) = 1]− Prg←Πn◦Hn [D

g(1n) = 1]
∣∣

for every n ∈ N, where Πn is the set of all functions from {0, 1}n to {0, 1}ℓ(n).

In particular, the pseudorandomness of F yields that F ◦ H is computationally
indistinguishable from the ensemble {Πn ◦ Hn}n∈N by an adaptive distinguisher
of running time T .

Proof. The distinguisher D̂ is defined as follows:

Algorithm 3 (D̂)

Input: 1n.
Oracle: a function ϕ over {0, 1}n.

1. Compute ϕ(x) for every x ∈ [T (n)]{0,1}n .
2. Set g = ϕ ◦ h, where h is uniformly chosen in Hn.
3. Emulate Dg(1n): answer a query x to ϕ made by D with g(x), using the

information obtained in Step 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that D̂ makes T (n) non-adaptive queries to ϕ, and it can be implemented
to run in time p(n)T (n), for large enough p ∈ poly. We conclude the proof by
observing that in case ϕ is uniformly drawn from Fn, the emulation of D done
in D̂ϕ is identical to a random execution of Dg with g ← Fn ◦ Hn. Similarly,
in case ϕ is uniformly drawn from Πn, the emulation is identical to a random
execution of Dπ with π ← Πn. �

3.2 Π ◦ H is Statistically Indistinguishable From Π

The following lemma is commonly used for proving the security of hash based
MACs (cf., [9, Proposition 6.3.6]), yet for completeness we give it a full proof
below.

Lemma 2. Let n, T be integers with T ≤ 2n, and let H be a pairwise-
independent function family mapping string of length n to [T ]{0,1}n . Let D be
an (unbounded) s-query oracle-aided algorithm (i.e., making at most s queries),
then

|Pr g←Π◦H [Dg = 1]− Pr π←Π [Dπ = 1]| ≤ s2/T,

where Π is the set of all functions from {0, 1}n to {0, 1}ℓ (for some ℓ ∈ N).
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Proof. We assume for simplicity that D is deterministic (the reduction to the
randomized case is standard) and makes exactly s valid (i.e., inside {0, 1}n)
distinct queries, and let Ω = ({0, 1}ℓ)s. Consider the following random process:

Algorithm 4

1. Emulate D, while answering the i’th query qi with a uniformly chosen ai ∈
{0, 1}ℓ.
Set q = (q1, . . . , qs) and a = (a1, . . . , as).

2. Choose h← H.
3. Emulate D again, while answering the i’th query q′i with a′i = ai (the same

ai from Step 1), if h(q′i) /∈ {h(q′j)}j∈[i−1], and with a′i = aj, if h(q
′
i) = h(q′j)

for some j ∈ [i− 1].
Set q′ = (q′1, . . . , q

′
s) and a′ = (a′1, . . . , a

′
s).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let A, Q, A′, Q′ and H be the (jointly distributed) random variables induced by
the values of q, a, q′, a′ and h respectively, in a random execution of the above
process. It is not hard to verify that A is distributed the same as the oracle
answers in a random execution of Dπ with π ← Π, and that A′ is distributed
the same as the oracle answers in a random execution of Dg with g ← Π ◦ H.
Hence, for proving Lemma 2, it suffices to bound the statistical distance between
A and A′.

Let Coll be the event that H(Qi) = H(Qj) for some i ̸= j ∈ [s]. Since the
queries and answers in both emulations of Algorithm 4 are the same until a
collision with respect to H occurs, it follows that

Pr[A ̸= A′] ≤ Pr[Coll] (1)

On the other hand, since H is chosen after Q is set, the pairwise independent
of H yields that

Pr[Coll] ≤ s2/T, (2)

and therefore Pr[A ̸= A′] ≤ s2/T . It follows that Pr[A ∈ C] ≤ Pr[A′ ∈ C]+s2/T
for every C ⊆ Ω, yielding that SD(A,A′) ≤ s2/T . �

3.3 Putting It Together

We are now finally ready to prove Theorem 2.

Proof (of Theorem 2). Let D be an oracle-aided algo-
rithm of running time s with s(n) < T (n). Lemma 1
yields that |Prg←Fn◦Hn [D

g(1n) = 1]− Prg←Πn◦Hn [D
g(1n) = 1]| ≤

ε(n) for large enough n, where Lemma 2 yields that
|Pr g←Πn◦Hn [Dg(1n) = 1]− Pr π←Πn [Dπ(1n) = 1]| ≤ s(n)2/T (n)
for every n ∈ N. Hence, the triangle inequality yields that
|Prg←Fn◦Hn [D

g(1n) = 1]− Prπ←Πn [D
π(1n) = 1]| ≤ ε(n) + s(n)2/T (n) for

large enough n, as requested. �
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3.4 Handling Polynomial Security

Corollary 2 is only useful when the security of the underlying non-adaptive PRF
(i.e., T ) is efficiently computable (or when considering non-uniform PRF con-
structions, see Section 1.1). In this section we show how to handle the important
case of polynomially secure non-adaptive PRF. We use the following “combiner”.

Definition 6. Let H be a function family into {0, 1}n. For i ∈ [n], let Ĥi be the

function family Ĥi = {ĥ : h ∈ H}, where ĥ(x) = 0n−i||h(x)1,...,i.

Corollary 3. Let F be a T (n)-non-adaptive PRF, let H be an efficient length-
preserving pairwise-independent function family ensemble, and let I(n) ⊆ [n] be
polynomial-time computable (in n) index set. Define the function family ensemble

G = {Gn}n∈N, where Gn =
⊕

i∈I(n)

(
Fn ◦ Ĥn

i
)
.

There exists q ∈ poly such that G is a
(

3
√
2t(n)/2

)
-adaptive PRF, for every

polynomial-time computable integer function t, with t(n) ∈ I(n) and 2t(n) ≤
T (n)/q(n).

Before proving the corollary, let us first use it for constructing adaptive PRF
from non-adaptive polynomially secure one.

Corollary 4 (restatement of Corollary 1). Let F be a polynomially secure
non-adaptive PRF, let H be an efficient pairwise-independent length-preserving
function family ensemble and let k(n) ∈ ω(1) be polynomial-time computable

function. Then G := {
⊕

i∈[k(n)]

(
Fn ◦ Ĥn

⌊i·logn⌋
)
}n∈N is polynomially secure

adaptive PRF.

Proof. Let I(n) := {⌊log n⌋ , ⌊2 · log n⌋ . . . , ⌊k(n) · log n⌋}. Applying Corollary 3
with respect to F , H, I and t(n) = ⌊c · logn⌋, where c ∈ N, yields that G is a
O( 3
√
nc)-adaptive PRF. It follows that G is p-adaptive PRF for every p ∈ poly.

Namely, G is polynomially secure adaptive PRF. �

Remark 1 (unknown security). Corollary 3 is also useful when the security of
F is “not known” in the construction time. Taking I(n) = {1, 2, 4, . . . , 2⌊logn⌋}
(resulting in log n calls to F) and assuming that F is found to be T (n)-non-
adaptive PRF for some polynomial-time computable T , the resulting PRF is
guaranteed to be O( 6

√
T (n))-adaptive PRF (neglecting polynomial factors).

Proof (of Corollary 3). It is easy to see that G is efficient, so it is left to argue for
its security. Let q(n) = q′(n)p(n), where p is as in the statement of Corollary 2,
and q′ ∈ poly to be determined later. Let t be a polynomial-time computable
integer function with t(n) ∈ I(n) and 2t(n) ≤ T (n)/q(n). It follows that Ĥt =

{Ĥn

t(n)
}n∈N is an efficient pairwise-independent function family ensemble, and

Corollary 2 yields that F ◦ Ĥt is a
(

3
√
q′(n)2t(n)/2

)
-adaptive PRF.
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Assume towards a contradiction that there exists an oracle-aided distin-
guisher D that runs in time T ′(n) =

3
√
2t(n)/2 and

|Prg←Gn [D
g(1n) = 1]− Prπ←Πn [D

π(1n) = 1]| > 1/T ′(n) (3)

for infinitely many n’s. We use the following distinguisher for breaking the pseu-
dorandomness of F ◦ Ĥt:

Algorithm 5 (D̂)

Input: 1n.
Oracle: a function ϕ over {0, 1}n.

1. For every i ∈ I(n) \ {t(n)}, choose gi ← Fn ◦ Ĥn

i
.

2. Set g := ϕ⊕
⊕

i∈I(n)\{t(n)} g
i.

3. Emulate Dg(1n).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that D̂ can be implemented to run in time |I(n)| · r(n) ·T ′(n) for some r ∈
poly, which is smaller than 3

√
q′(n)2t(n)/2 for large enough q′. Also note that in

case ϕ is uniformly distributed over Πn, then g (selected by D̂ϕ(1n)) is uniformly

distributed in Πn, where in case ϕ is uniformly distributed in Fn ◦ Ĥn

t(n)
, then

g is uniformly distributed in Gn. It follows that∣∣∣Prg←(F◦Ĥt)n
[D̂g(1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣∣ =

|Prg←Gn [D
g(1n) = 1]− Prπ←Πn [D

π(1n) = 1]| (4)

for every n ∈ N. In particular, Equation (3) yields that∣∣∣Prg←(F◦Ĥt)n
[D̂g(1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣∣ > 2

3
√
2t(n)

>
2

3
√
q′(n)2t(n)

for infinitely many n’s, in contradiction to the pseudorandomness of F ◦ Ĥt we
proved above. �
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4 From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is polynomial se-
curity : any ppt trying to break the primitive has only negligible success proba-
bility. Bellare [1] showed that for any polynomially secure primitive there exists
a single negligible function µ, such that no ppt can break the primitive with
probability larger than µ. Here we take his approach a step further, showing that
for a polynomially secure primitive there exists a super-polynomial function T ,
such that no adversary of running time T breaks the primitive with probability
larger than 1/T .

In the following we identify algorithms with their string description. In par-
ticular, when considering algorithm A, we mean the algorithm defined by the
string A (according to some canonical representation). We prove the following
result.

Theorem 6. Let v : {0, 1}∗ × N 7→ [0, 1] be a function with the following prop-
erties: 1) v(A, n) ≤ 1/p(n) for every oracle-aided ppt A, p ∈ poly and large
enough n; and 2) if the distributions induced by random executions of Af (x) and
Bf (x) are the same for any input x ∈ {0, 1}n and function f (each distribution
describes the algorithm’s output and oracle queries), then v(A, n) = v(B, n).

Then there exists an integer function T (n) ∈ nω(1) such that following holds:
for any algorithm A of running time at most T (n), it holds that v(A, n) ≤ 1/T (n)
for large enough n.

Remark 2 (Applications). Let f be a polynomially secure OWF (i.e.,
Pr[A(f(Un)) ∈ f−1(f(Un))] = neg(n) for any ppt A). Applying Theorem 6 with
v(A, n) := Pr[A(f(Un)) ∈ f−1(f(Un))] (where if A expects to get an oracle, pro-
vide him with the constant function ϕ(x) = 1), yields that f is super-polynomial
secure OWF (i.e., exists T (n) ∈ nω(1) such that Pr[A(f(Un)) ∈ f−1(f(Un))] ≤
1/T (n) for any algorithm of running time T and large enough n).

Similarly, for a polynomially secure PRF F = {Fn}n∈N (see Definition 5), ap-
plying Theorem 6 with v(A, n) :=

∣∣Prf←Fn
[Af (1n) = 1]− Prπ←Πn

[Aπ(1n) = 1]
∣∣,

where Πn is the set of all functions with the same domain/range as Fn, yields
that F is super-polynomial secure PRF.

Proof (of Theorem 6). Given a probabilistic algorithm A and an integer i, let Ai

denote the variant of A that on input of length n, halts after ni steps (hence,
Ai is a ppt). Let Si be the first i strings in {0, 1}∗, according to some canonical
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order, viewed as descriptions of i algorithms. Let I(n) = {i ∈ [n] : ∀A ∈ Si, k ≥
n : v(Ai, k) < 1/ki} ∪ {1}, let t(n) = max I(n) and T (n) = nt(n).

Let A be an algorithm of running time T (n), and let iA be the first integer
such that A ∈ SiA . In Remark 2 we prove that t(n) ∈ ω(1), hence it follows that
t(n) > iA for any large enough n. For any such n, the definition of t guarantees
that v(At(n), n) < 1/nt(n) = 1/T (n). Since A is of running time T (n), the second
property of v yields that v(A, n) = v(At(n), n), and therefore v(A, n) < 1/T (n).

�

Claim. It holds that t(n) ∈ ω(1).

Proof. Fix i ∈ N. For each A ∈ Si, let nA be the first integer such that v(Ai, n) ≤
1/ni for every n ≥ nA (note that such nA exists by the first property of v), and
let ni = max{nA : A ∈ Si}. It follows that v(Ai, n) ≤ 1/ni for every n ≥ ni and
A ∈ Si, and therefore t(ni) ≥ i. �


