
Lawrence Berkeley National Laboratory
Recent Work

Title
From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape.

Permalink
https://escholarship.org/uc/item/4sm897jh

Journal
Chemical reviews, 121(8)

ISSN
0009-2665

Authors
Kowalski, Karol
Bair, Raymond
Bauman, Nicholas P
et al.

Publication Date
2021-04-01

DOI
10.1021/acs.chemrev.0c00998

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sm897jh
https://escholarship.org/uc/item/4sm897jh#author
https://escholarship.org
http://www.cdlib.org/

From NWChem to NWChemEx: Evolving with the computational

chemistry landscape

Karol Kowalski,† Raymond Bair,‡ Nicholas P. Bauman,† Jeffery S. Boschen,¶ Eric J.

Bylaska,† Jeff Daily,† Wibe A. de Jong,§ Thom Dunning, Jr,† Niranjan Govind,†

Robert J. Harrison,‖ Murat Keçeli,‡ Kristopher Keipert,⊥ Sriram Krishnamoorthy,†

Suraj Kumar,† Erdal Mutlu,† Bruce Palmer,† Ajay Panyala,† Bo Peng,† Ryan M.

Richard,¶ T. P. Straatsma,# Peter Sushko,† Edward F. Valeev,@ Marat Valiev,†

Hubertus J. J. van Dam,4 Jonathan M. Waldrop,¶ David B. Williams-Young,§

Chao Yang,§ Marcin Zalewski,† and Theresa L. Windus∗,∇

†Pacific Northwest National Laboratory, Richland, WA 99352

‡Argonne National Laboratory, Lemont, IL 60439

¶Ames Laboratory, Ames, IA 50011

§Lawrence Berkeley National Laboratory, Berkeley, 94720

‖Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY

11794

⊥NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439

#National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge,

TN 37831-6373

@Department of Chemistry, Virginia Tech, Blacksburg, VA 24061

4Brookhaven National Laboratory, Upton, NY 11973

∇Department of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011

E-mail: twindus@iastate.edu

1

twindus@iastate.edu

Abstract

Since the advent of the first computers, chemists have been at the forefront of using

computers to understand and solve complex chemical problems. As the hardware and

software have evolved, so have the theoretical and computational chemistry methods

and algorithms. Parallel computers clearly changed the common computing paradigm

in the late 1970s and 80s, and the field has again seen a paradigm shift with the advent

of graphical processing units. This review explores the challenges and some of the

solutions in transforming software from the terascale to the petascale and now to the

upcoming exascale computers. While discussing the field in general, NWChem and

its redesign, NWChemEx, will be highlighted as one of the early co-design projects

to take advantage of massively parallel computers and emerging software standards to

enable large scientific challenges to be tackled.

2

Contents

1 Introduction 5

2 Hardware and Software Evolution Challenges 7

3 Design Challenges and Principles 12

4 Software Engineering Practices 16

5 Tools and Runtime Environments 23

6 Tensor Methods 29

6.1 TCE . 30

6.2 Tensor Algebra for Many-body Methods (TAMM) 32

6.3 TiledArray . 35

7 Solvers 37

7.1 Eigensolver for HF and DFT . 38

7.2 Newton–Krylov Solver for Coupled-Cluster Equations 40

8 Gaussian Basis Hartree–Fock and Density Functional Theory 42

9 Plane-Wave DFT 45

10 Coupled-Cluster 52

10.1 Cholesky-decomposition-based CC formulations 53

10.2 Reduced-Scaling CC methods based on Pair Natural Orbitals 55

10.3 Explicitly correlated CC methods . 58

11 Classical Molecular Dynamics 59

12 Embedding Methods 61

3

13 Conclusions and Future Directions 63

Acknowledgement 65

References 66

4

1 Introduction

In 2015, the government of the United States of America launched the National Strategic

Computing Initiative (NSCI)1 to take advantage of and advance the nation’s use of high

performance computing (HPC), especially toward exascale computing. In particular, this

multi-agency initiative invested significant funds in one of the largest efforts to date to

enable the scientific computational community to advance hardware and software efforts

in HPC. As part of this launch, the Department of Energy (DOE) initiated the Exascale

Computing Project (ECP)2,3 that is promoting a very forward-looking approach to software

development — the ECP is ultimately concerned with software for the first generation of

exascale systems and in laying the foundation for the new era of computational science over

the coming decade(s). As part of the NSCI, the ECP is jointly funded by both the DOE

Office of Science (SC) and the DOE National Nuclear Security Administration (NNSA). The

ECP’s goal is to accelerate the delivery of an exascale capable computing ecosystem that

delivers 50 times more computational science and data analytic application power than is

available on current DOE architectures to address challenges in scientific discovery, energy

assurance, economic competitiveness, and national security.

ECP has three main focus areas: (1) Application Development to deliver the science-based

applications, (2) Software Technology to deliver a comprehensive and coherent software

stack to enable productive highly parallel application development that can portably target

diverse exascale architectures, and (3) Hardware and Integration that supports vendor and lab

hardware research and development activities. In addition to having a very broad participation

in the ECP from multiple labs and academic partners, there is a wide representation of

computational scientists, mathematicians, and computer scientists. This leads to a very

exciting environment for the development of new software for the exascale era.

Fortunately, NWChem4–11, along with GAMESS12, LAMMPS13, and QMCPACK14, was

selected to be part of the ECP effort. After extensive consideration, the NWChem team

decided to design and implement a new software program, NWChemEx, to realize the full

scientific potential of exascale. While NWChem was based on Fortran, NWChemEx will be

based on C++ and Python. While NWChem was based mostly on conventional electronic

5

structure theory (EST) algorithms, NWChemEx will be based on modern reduced-scaling

methods. In addition, new software engineering techniques will be used to facilitate the

development of NWChemEx by a broad community and integration of software from other

parts of the ECP will be adopted, as appropriate, to facilitate portability and performance of

the software.

As with most, if not all, chemistry codes, the software development is motivated by

particular types of science goals. The development of NWChemEx is driven by a decadal

computational science challenge important to the mission of the DOE – the development of

advanced biofuels, the national need for which has both energy security and climate change

considerations. The goal of DOE’s advanced biofuels program is to develop fuels that can

use the existing fueling infrastructure and replace existing fuels on a gallon-for-gallon basis.

However, producing biofuels with these characteristics in a sustainable and economically

competitive way is technically challenging, especially in a changing global climate.15

NWChemEx is being developed to address two interrelated science challenges in the

advanced biofuels program: (i) development of a molecular understanding of proton con-

trolled membrane transport processes driving stress responses in plants suitable for biomass

production, and (ii) development of catalysts for the efficient conversion of biomass-derived

intermediates into biofuels, hydrogen, and other bioproducts. Both of these problems involve

multi-faceted chemical transformations that occur in complex and dynamic molecular environ-

ments, where a complete physical description of both the active site and its environment is

essential for achieving the needed predictive capability. These science challenges are closely

related and require a computational chemistry capability that can take full advantage of

exascale computing systems. Truly predictive modeling of both of these molecular sys-

tems requires use of high-level quantum mechanical methods describing O(103) atoms with

coupled-cluster (CC) methods embedded in an environment of O(105) atoms described by

density functional theory (DFT) as well as the inclusion of thermal effects by using dynamical

and/or statistical methods to sample the potential energy surface. In combination with

exascale computers, NWChemEx will provide a major advance in our ability to calculate

the structures and energetics of the very large molecules that represent the active sites in

these decadal challenges.

6

This paper discusses challenges and some of the solutions toward moving software to

the exascale. While the examplar will be the NWChem and NWChemEx software, this

development will be placed in the broader context of the computational chemistry ecosystem.

The next Section will describe the hardware and software evolutionary challenges in a

chronological manner, providing context for the different computational chemistry software

programs. After that, the design principles will be discussed to show the complexity involved

in the hardware and software changes and the difficulties in designing for future architectures.

This will be followed by a discussion of the general evolution of software engineering in the

computational chemistry community. Following this is a discussion on various middle-ware

tools that the computational chemistry community has come to rely on: tools and runtime

environments, tensor methods, and mathematical solvers. The subsequent Sections will

discuss the general progress made in the field for the various workhorse methods of chemistry,

especially those that are a focus of NWChemEx: Gaussian basis Hartree–Fock (HF) and

DFT, plane-wave DFT, CC, classical molecular dynamics (MD), and embedding methods.

Since each of these methods could easily be a review paper on their own, existing reviews

will be given for reference, and only salient points concerning HPC will be given. Also, other

methods such as those to address strong correlation and molecular properties will not be

included in this review. Finally, a conclusions and future directions Section will wrap up the

paper.

2 Hardware and Software Evolution Challenges

NWChem was born in an era of extensive change in computing hardware. In the early 1990s,

we were exiting the era of vector supercomputers, super minicomputers, and parallel main-

frames. The dominant quantum chemistry approaches were based on HF, many-body pertur-

bation theory, configuration interaction, generalized valence bond16, and multi-configuration

self-consistent field (MCSCF) and were implemented in various electronic structure programs

such as Columbus17, GAMESS12, GAMESS UK18, Hondo19, Gaussian20, Molcas21, MOL-

PRO22, and Turbomole23. Coupled-cluster methods were gaining traction (e.g., ACES24).

Density functional methods were in their infancy in codes such as ADF25, CASTEP26,

7

CPMD27, deMon28, and VASP29. Multiple molecular mechanics and MD codes were also in

extensive use at the time, including Amber30, Charmm31, and Tinker32. Most, if not all, of

these codes evolved from serial ancestors, some with extensive rework for vector computers

and more modest efforts made to achieve small scale parallelism. (The authors have tried

to list the major software packages of the time, but it is quite likely that some have been

missed. The reader is referred to the Molecular Sciences Software Institute (MolSSI) Software

Database33 and the Wikipedia Computational Chemistry Software page34.)

In the late 1980s a new kind of processor had emerged, Reduced Instruction Set Computer

(RISC). RISC processors were fast and cheap, and people quickly envisioned supercomputers

built from massive arrays of RISC processors. The problem was that none of the quantum

codes was primed for this transition. For fast RISC code, cache reuse is paramount, which

called for substantial changes to vector codes, e.g., inverting and blocking loops. In addition,

none of the codes were designed to achieve the scaling efficiencies needed for large-scale

parallelism for the emerging supercomputers with hundreds (and conceivably millions) of

processor cores. It became clear that a new code was needed, designed expressly for massively

parallel computers and RISC processors. This became the premise of NWChem. Several

other codes were developed around this time – some to take advantage of the architecture

changes and others based on novel algorithms. These codes include CP2K35, Desmond36,

GROMACS37, LAMMPS13, Massively Parallel Quantum Chemistry (MPQC)38, Q-Chem39,

and SIESTA40.

NWChem was originally designed and implemented as part of the initiation of the

construction project associated with the Environmental Molecular Sciences Laboratory

(EMSL) at Pacific Northwest National Laboratory (PNNL) in 1992. At the time, the

development of software before the hardware was available was a very forward way of thinking

about software development. Of course, this raised challenges for the software developers,

such as prognosticating about future architectures and how to obtain high performance on

these architectures while maintaining programmer productivity. Overcoming these challenges

led to a code design that sought for flexibility and extensibility, as well as high-level interfaces

to functionality that hid some of the hardware issues from the chemistry software developer.

Over the years, this design and implementation has successfully advanced multiple science

8

agendas, and NWChem has grown to be an over two-million line, high-performance, scalable

software code with advanced scientific capabilities that are used throughout the molecular

sciences community. After a successful quarter of a century, the NWChem software design

now faces significant challenges (discussed below) to obtain high performance with the

projected exascale computers.

Much has changed about computer hardware and scientific software architecture since

NWChem was first conceived, around 1990. The change in computers has been dramatic,

across the board. In the early 1990s, it was becoming clear that the era of the large,

shared-memory vector systems was over, and that arrays of simpler, distributed-memory

processors would become the workhorses of NWChem. Commodity processors, versus custom

vector processors, drove down costs as did eliminating expensive shared-memory capabilities.

Furthermore, adding nodes systematically increased processing power, memory capacity, and

bandwidth. Early distributed-memory computers (e.g., Intel ipsc 286, 386, Paragon and

i860; FPS T-series; nCUBE; etc.) all had single-processor nodes with limited memory, and

some had local disks and/or shared parallel file systems. In 1996/7 EMSL/PNNL installed

what was then the largest IBM RS/6000 SP cluster, and this machine, along with the Intel

Touchstone Delta, drove much of the early design of NWChem.

The most powerful computers became proprietary networks of serial (single-core) proces-

sors. Processor architectures dictated careful use of cache memory, and blocking operations

like matrix multiply were critical to good performance. Compilers and software tools pro-

vided little assistance, with Fortran being the choice for generating optimized code. These

distributed-memory systems required explicit data transport. Most codes used Message

Passing Interface (MPI) and its send-receive paradigm, but NWChem adopted Global Ar-

rays (GA)41, where one-sided remote data access was better suited to quantum chemistry

methods. GA also helped to mitigate the relatively high network latencies. A "massively

parallel" computer of the early 1990s had dozens to hundreds of nodes, and hence dozens to

hundreds of threads of execution. When necessary, NWChem design trade-offs were made in

favor of good performance for large computations on large computers.

The first decade of the 21st century saw the growth of "massively parallel" high-performance

computers toward clusters consisting of tens of thousands of nodes, connected via high-

9

performance networks with various levels of connectivity. During this decade, we were also

introduced to novel processor architectures that challenged the programming paradigm of

NWChem that was not designed with large numbers of execution threads in mind. The

energy-efficient but low clock speed BlueGene42 and Cell43 chips were introduced by IBM

and powered some of the TOP-500 supercomputers. Efficiently programming these chips

required significant rewriting of chemistry codes to take advantage of the large number of

execution threads and memory hierarchy. Within the realm of chemistry, IBM’s BlueGene

processors have found some success with molecular dynamics44 and plane-wave DFT45. Later

in the decade, Intel introduced a Cell inspired many-core Xeon Phi46 processor architecture

with >80 integrated cores. NWChem and other chemistry codes were able to successfully

adapted to use the OpenMP programming model47 and take advantage of Intel’s Xeon

Phi48–53. Another version of the many-core computing paradigm arrived with the adoption

of Graphical Processing Units (GPUs) in general-purpose supercomputers. Programming

GPUs to efficiently run chemistry codes is not trivial. GPUs tend to organize cores into

warps that act much like vector units. High throughput is achieved by operating many warps

simultaneously. For example, the current V100 GPUs group 32 cores into a warp, and there

are 160 warps to a GPU54,55. Various existing computational chemistry codes have been

adapted53,56–67 or designed from the outset (e.g., TeraChem)67,68 to use GPUs.

The current decade has seen accelerating rates of change in computer hardware architecture,

driving new code architecture at every level. The design of NWChemEx must efficiently

use a much more complex set of exascale computer capabilities. GPUs are currently the

most widely used hardware accelerators in large supercomputers because of their lower

power requirements and high compute capability. GPU developments have reached a stage

where nodes may have multiple GPUs per node – as many as 6 GPUs per node on current

leadership class computers and more projected for the future – with special communication

links between them. Unfortunately, due to the diversity of GPU hardware and vendors, no

ubiquitous GPU code development tool has emerged. For NWChemEx, we primarily develop

code using CUDA,69 OpenMP, and OpenCL (and derivatives),70 with different languages

needed for different leadership computers. We also count on conversion tools to enable the

transformation of code to software such as HIP71 that is used for the AMD GPUs. We are

10

studying the potential roles of more performance-portable tools like Kokkos72 and RAJA73,

but so far, none addresses all our needs.

At the processor level, we now have large numbers of multi-threaded cores in a node, each

vying for a share of cache, memory, and network bandwidth. Memory architectures are more

complex, with additional levels of cache (often three in all), fast in-package DRAM memory

(e.g., HBM), plus DDR DRAM, and perhaps storage class memory on the network fabric.

Orchestrating efficient movement of data through this NUMA (non-uniform memory access)

hierarchy is the predominant challenge in software design. However, our arsenal of software

development tools is much better. The expressiveness of languages such as C++ and Python

now suits chemistry well, allowing us to create high-level, composable capabilities with efficient

implementations underneath. More recent codes such as Bagel74, HOOMD75, NAMD76,

OpenMM77, Orca78, PLUMED79, Psi480, PySCF81, Qbox82 and Quantum Espresso83 take

advantage of these languages to build software that is flexible for users and developers and

still performant. On the other hand, the more complex processor architectures increase the

complexity of the compiler’s job, and the promise of super-smart compiler code optimization

remains a dream.

Within each core, the arithmetic units are ganged into SIMD units to enable fast and

orderly operations. In their first incarnation, these vector units tended to operate on long

registers holding 64 double-precision floating-point numbers, such as in the Cray-1 computer.

In more recent years, vector units are making a comeback but the units tend to operate on

shorter vectors of up to 8 double-precision floating-point numbers, such as in the AVX-512

instruction set. These shorter vector units suffer less from branch divergences that could

severely impact the performance of early vector machines.

In addition to the increases in cores, modern hardware architectures offer further oppor-

tunities for increased performance by allowing floating-point units to be used in multiple

ways. For example, a vector unit may support the execution of 8 double-precision floating-

point operations simultaneously, alternatively it can execute 16 single-precision floating-point

operations in the same time. Hence, there is a direct path for trading precision for speed.

This provides a significant incentive for developing mixed-precision codes that perform as

much computation as possible at low precision and as little as possible at high precision.

11

Simultaneously these codes need to ensure that the final computational results still meet the

requirements of the science domain. In the latest accelerators, mixed-precision strategies

have been taken even further by providing half-precision hardware. The latter is mainly in

response to the ongoing growth of machine learning applications.

Filling up an exascale computer with a large NWChemEx computation will require

coordination of perhaps a billion concurrent threads of execution. At the same time, it

requires managing multiple complex memory hierarchies, multiple processor architectures,

and multiple instances of each component while coordinating and combining work done at

multiple precisions. Addressing this level of complexity effectively remains a challenge.

3 Design Challenges and Principles

Software design has become an increasingly important part of developing and sustaining any

large software stack – even for small software projects, especially if it is to be a reusable

library or component in a larger software ecosystem. While software design did not always

garner the attention that it deserved, most modern computational chemistry codes have some

design criteria or objectives and programming guidelines. However, even if the design criteria

are not explicit, each computational chemistry code has at least implicit assumptions about

the software. For example, some of the design choices include various levels of parallelism,

minimal memory usage, amount of disk usage, ease of composition, and access to data. Each

of these design choices will affect how the software is developed and how easy it is to maintain

that software.

With the emergence of exascale computers imminent84, there are many factors a new

computational chemistry software development effort needs to consider in order to fully

exploit these platforms:

• Increased scale of parallelism — Exascale will require developers to exploit over a

1000-fold more parallelism compared to the petascale platforms of today. This will

require a much finer-grain parallelism to ensure parallel scalability;

• Greater heterogeneity — Exascale computers will consist of a mix of multi-core, many-

12

core and hybrid processors (such as GPUs, FPGAs), each with very different performance

characteristics. Optimized code will be needed for each computational chemistry

algorithm on each type of processor. One pathway to maximize programmer productivity

is to employ extensive automated code generation;

• Floating-point operations per second (flops) are now nearly free — We now need

the balance of recomputing data with storing and moving data. To get scaling and

performance, the focus has to be on designing algorithms that exploit the memory-

hierarchy and data movements with maximum efficiency;

• Complex memory-hierarchy — Exascale computers will have a much deeper and more

heterogeneous memory-hierarchy. Algorithmic design choices will have to be made to

minimize memory induced latencies.

• Limited ability to hide latency — Data movement will have to be as asynchronous as

possible. As such, memory models need to be an integral part of the execution model,

and data/computation locality is essential85;

• Data abstraction — In contrast to dense algorithms, fast/sparse algorithms and applica-

tions such as reduced scaling DFT and coupled cluster methods, or molecular dynamics

will have to be designed with more complex data structures and finer granularity;

• Persistent data — Persistence of information such as wave functions is key in com-

putational chemistry code. An explicit tie to external storage can make it hard to

compose/nest calculations (e.g., perform a parameter sweep in parallel). Petascale and

exascale platforms will have intermediate storage facilities using non-volatile random-

access memory (NVRAM) or solid-state disks (SSD);

• Resilience, energy, and power — These exascale concerns86–89 are rarely represented in

the toolchains of today’s computational chemistry codes.

In the exascale era, as we seek performance portability to future machines while maintaining

scientific productivity, much greater separation of concerns is needed. The Tensor Contraction

Engine (TCE), Tensor Algebra for Many-body Methods (TAMM), and TiledArray (TA),

13

which will be discussed in section 6, are complementary approaches to turning high-level

statements of many-body physics into executable code.

The resulting computation then needs to be expressed as tasks managed by an intelligent

runtime that understands the algorithmic and data dependencies as well as the machine

resources and memory/communication sub-systems. Such an approach facilitates over-

decomposition to enhance load balance and tolerate latency (whether algorithmic or from

hardware/software) as well as approaches to automating resilience. One such runtime is

Charm++, which has been used by codes such as NAMD90 and OpenAtom91, and will be

discussed in section 5.

The irregularity of electronic structure computations (e.g., arising from sparsity, symmetry,

and widely varying costs of evaluating integral shell quartets)92 make it hard to use just

message passing to write fully-distributed chemistry applications with good parallel load

balance. Alternatively, one can use one-sided message passing93,94. In this approach, a process

that needs to access remote data or perform a remote operation can send a message directly

to a remote procedure that is invoked without the explicit participation of the remote process.

However, there were (and still are) significant performance and correctness concerns with this

approach, and it was not portable to shared-memory machines and many distributed-memory

machines. Instead, remote memory access (i.e., a distributed shared-memory programming

model) was identified to more closely match the capabilities of both distributed computer

networks and shared-memory computers.

Many algorithms were developed to be distribution agnostic using a simple NUMA

performance model95. Under the ideal assumption that there are no communication or

computational hot spots, the execution time is simply the perfectly parallel computation time

plus an overhead that is the amount of data being communicated per processor divided by the

effective bandwidth. For many electronic structure algorithms, the volume of computation

grows super-linearly with the volume of data; thus it is in principle possible to increase the

local problem size and have the computation dominate (e.g., matrix multiplication). If the

communication intensity is low, the effective bandwidth approaches the link speed of the

network; however, with intense communication it degrades to the bisection bandwidth divided

by the number of processors (P). For a hypercube, this average worst-case bandwidth is half

14

the link speed, but for a 2-D mesh, it is O
(
P−1/2

)
. Thus, topology plays a very important

role in scalable algorithms. The assumptions of no hot spots/links can be at least partially

realized by over-decomposition and randomization.

NWChemEx applies many of the design principles discussed with a focus on performance

and flexibility. The two principles are interconnected since typical performance modifications,

e.g., architecture-specific code, or new algorithms, tends to require the code to be refactored.

The easiest way to achieve the desired flexibility is by ensuring the software infrastructure

is as decoupled as possible. This, in turn, ensures that if an algorithm is modified, it does

not affect the surrounding code. Within the NWChemEx project, the decision was made

to achieve this decoupling through the use of “modules”. Following typical object-oriented

programming (OOP) conventions, each module is a self-contained, opaque, callable object

adhering to one of many possible standardized application programming interfaces (APIs).

Each standardized API is associated with a particular property — e.g., an energy derivative,

the Fock matrix, or a molecular orbital (MO) space — called its “property type”. The

property type APIs are solidified via a series of corresponding abstract base classes. When

the package needs to compute a property, it does so through the abstract base class, thus

allowing any module that inherits from that base class to be used interchangeably at that

point. Despite the module system conceptually relying on a relatively basic OOP design, the

actual implementation is quite a bit more complicated. The additional complexity arises from

the fact that NWChemEx must not be restricted to a predefined set of modules (or property

types) as it would be if NWChemEx had to instantiate the modules. The module system

developed for NWChemEx is the simulation development environment (SDE) framework96

and will be discussed in more detail in Section 5.

Fault tolerance design fall into three major categories: algorithmic error correction, in-

memory redundancy methods, and checkpointing at runtime. Algorithmic error detection

and subsequent correction is difficult97. In-memory redundancy methods are designed to

undercut the performance overhead of traditional disk-based checkpointing methods by storing

redundant copies of data in the memory of separate nodes98. In the case of a node failure,

the backup copy of the node data can be redistributed along with a task load-balancing event

if necessary. In-memory redundancy methods have been implemented in NWChem99 and

15

Charm++100. Lossy compression and differenced/truncated checkpointing techniques101 can

be promising avenues for reducing checkpointing performance overhead. The final component

of the fault tolerance design is the runtime, which guides the execution policy and frequency

of checkpoints. The current checkpointing runtime in NWChemEx is a relatively spartan

placeholder. Each Cache holds a handle to a checkpoint archive on disk, and a single

parameter that defines the checkpointing frequency for the entire Cache. Development efforts

are underway to integrate NWChemEx with the VeloC framework102,103 developed under

the ECP. VeloC is a scalable checkpoint/restart runtime with a high-level API that exposes

functionality for asynchronous and multi-level checkpointing on complex storage hierarchies.

VeloC will provide NWChemEx with a baseline of checkpointing support and performance

optimization for a diverse range of hardware architectures.

Performance is a challenging design goal given the complications of multiple accelerator

types and languages/compilers associated with them. While no one solution has yet emerged,

best practices include localizing these kernels as much as possible to ensure minimal intrusions

into the software. Of course, this is not always possible when performance on a particular

platform is required. One of the ways to mitigate some of these issues is to rely on a tensor-

based framework where possible and ensure that the framework is portable and performant

across multiple architectures. Performance is discussed, as appropriate, in each of the following

Sections.

4 Software Engineering Practices

Software engineering practices have been slowly making their way into computational chem-

istry codes. In addition to the design issues discussed above – a significant part of software

engineering – other aspects involve the software and developer management life cycle. Early

codes usually relied on one person to be the gatekeeper of the software – deciding on the

overall architecture of the code (perhaps implicitly), enforcing any existing coding rules,

merging changes into the code, adding any appropriate documentation, developing methods

for testing the code, performing the tests, preparing any software releases, tracking any bugs,

and communicating with users. This meant that while one (or perhaps up to a handful)

16

of people were experts in the whole code, getting new functionality or bug fixes into the

software could take time due to the bottleneck of the gatekeeper. This model has significantly

changed over the last 10 years, with many of the software codes now using more advanced

tools and approaches to their development process. As computational chemistry development

teams in their publications tend to focus on the scientific aspects of their efforts rather than

the software development aspects it is difficult to extract insights from the literature. As

an alternative approach we have looked at the repositories and documentation of a variety

of mainly open source computational chemistry packages to distill insights about the tools

and processes used. As a first observation, it is clear that the development models have

been refined considerably, in the sense that every aspect has become much more fine grained.

To illustrate this the evaluation showed a large number of categories including the software

license, the revision control technology, the source code hosting, continuous integration (CI)

testing and technology, the CI status hosting, code coverage, code coverage hosting, code

quality tools, documentation generators, documentation hosting, application distribution,

and even application deployment. With this many categories there is considerable variability

between codes as to how many and which ones they use. In the following paragraphs our

findings are summarized.

The software license is a foundational statement that controls who and under what

conditions can access the source code and executables. As a result it also determines who

can learn the details of how the software works and suggest or make changes that can

be fed back or redistributed. A large number of packages have proprietary or commercial

licenses. Perhaps the first such package was Gaussian7020, released by Pople in 1970 and

commercialized since 1987 by Gaussian, Inc. This model has since been followed by other

codes including Q-Chem39, Jaguar104, MOLPRO22, ADF25, Turbomole23, PQS105, ORCA78,

GAMESS-UK18, and TeraChem106. Some codes use proprietary licenses that allow use of a

code but not redistribution. Examples are GAMESS12, COLUMBUS17, and deMon2K107.

A number of codes have adopted open source licenses. While there are many open sources

licenses there are two distinguishing classes. One class of licenses are the copyleft ones and

the other class are referred to as permissive licenses. The permissive licenses allow one to use,

change and redistribute codes. The copyleft licenses, in addition, stipulate that codes have

17

to be redistributed with the same license conditions as the original code. This stipulation

can force a change of license if such code is incorporated into a package with a permissive

or proprietary license. Examples of codes released with permissive licenses are QMCPack14,

PySCF81, PyQuante108, and NWChem. Codes with copyleft licenses include ABINIT109,

ACES III110, BigDFT111, CP2K35, Dalton112, MADNESS113, MPQC38, Octopus114, and

Siesta40. A last variant are limited copyleft licenses that provide that codes can be linked

as libraries to other codes without affecting those code’s license. The LGPL licenses are

common licenses of this variant that are used by codes such as Psi480.

Revision control systems provide tools to track the changes of the source code of a package.

Importantly this allows going back to previous versions as well as documenting what changes

were made, when, by whom, and why. Over time these systems have become increasingly

sophisticated. The early RCS115 system offered such functionality to a single developer.

CVS116 added a server component allowing multiple people to collaborate on a single code,

but it is also treated every source code file independently. Subsequently, Subversion117 treated

a whole package as an integral entity. All these revision control systems assumed a central

repository containing the master version of the code. The Git118 revision control system

did away with the central repository and provided a mechanism to create multiple new

repositories. Such a new repository can be used to experiment with new ideas that will feed

back into the original repository if successful, but it may also be the beginning of a new code

that follows an independent development path. In addition the concept of a pull request was

introduced, which is a request to the maintainers of a package to incorporate a developer’s

changes. The pull request also provides an opportunity to review the proposed changes before

they are merged into the master branch. Of the open source packages mentioned in the

previous paragraph ABINIT, and BigDFT use Bazaar119, ACES III uses CVS, PyQuante uses

Subversion, CP2K, Dalton, MADNESS, MPQC, NWChem, Octopus, PySCF, QMCPack,

and Siesta are all using Git.

Revision control systems later than and including CVS need a server where the code is

hosted. The CVS and Subversion systems assumed a single master repository and it was

common for an organization that owned a code to host its own server. With open source

packages, there no longer was need to protect against unauthorized individuals getting a copy

18

of the code. SourceForge120 was one of the first code hosting services that relieved developers

of maintaining their own servers. In a similar spirit other hosting services have emerged

including GitHub121, GitLab122, and Launchpad123. ACES III, COLUMBUS, deMon2K, and

GAMESS use their own source code servers. PyQuante uses Sourceforge, Dalton, Octopus

and Siesta use GitLab, whereas ABINIT, CP2K, MADNESS, MPQC, NWChem, PySCF,

Psi4, and QMCPack use GitHub. BigDFT uses Launchpad.

Continuous integration (CI) is an approach whereby software is tested – ideally after

every change. Tools to assist with such an approach have been available for over a decade

(e.g. Buildbot and Jenkins), but they required additional servers to manage the build

process and provide access to the test results. Private servers may cause issues for external

collaborators accessing the test results. Services such as CDash124 sought to address this

problem by hosting the CI results on a public server. However, with codes being hosted on

publicly accessible servers a similar development of CI services emerged. Examples of such

services are Travis-CI125, CircleCI126, GitLab-CI127, and GitHub Actions-CI128. ABINIT,

PyQuante, MADNESS, MPQC, use Travis-CI, CP2K uses CP2K-CI, a custom solution based

on Kubernetes, Dalton, and Octopus use GitLab-CI, NWChem, and PySCF use GitHub

Actions-CI, Psi4, and Siesta use Azure Pipelines, QMCPack uses CTest on a private server

and hosts the results on CDash.

Code coverage is concerned with the question of how much and what parts of the code

are tested by the test cases for the package. Analyzing the code coverage requires that the

executable be instrumented so that instructions executed can be related back to the lines

of source code that generated them. Such instrumentation is available, for example, with

the GCC and the LLVM compilers. The results can be gathered in reports that can be

hosted, for example at Codecov129. ABINIT, CP2K, and Dalton use the GCC compilers

to instrument the executable and the results are hosted on a private server. PySCF and

Psi4 use PyTest with the coverage.py package. For C++ components, Psi4 uses the GCC

compiler instrumentation for code coverage. QMCPack seems to use the GCC compiler

instrumentation for code coverage but the results do not seem to be publicly available. MPQC,

Octopus, Psi4 and PySCF host the coverage results on Codecov.

A relatively new development is trying to associate a quality measure with a code base.

19

Semmle130 have developed a query language "CodeQL" (formerly .QL131) that can be used to

interrogate a code base for the presence of known types of issues. Each issue found generates

an alert and, using the rate of alerts as a function of the code base siz,e a quality score can

be generated. A limitation for computational chemistry projects is that Fortran is not a

supported language. These quality metrics are calculated for MADNESS, PySCF, PyQuante,

Psi4, and QMCPack.

Code documentation describes how a code works and why, giving details about the design

and implementation of the software. The tools available for generating documentation depend

on the programming language used. Today, Doxygen132 is a commonly used tool that supports

C/C++, Fortran and Python. Python also has its own documentation generators such as

Sphinx133 or Epydoc134. In addition documentation can be hosted in a number of ways

as well, be is a project specific server, on a wiki associated with the source code hosting

service, or on a documentation service such as Read the Docs135. ABINIT uses Robodoc136

for documentation generation. BigDFT, Dalton, Psi4, PyQuante, PySCF, and QMCPack use

Sphinx for documentation generation. CP2K, MADNESS, Octopus, and Siesta use Doxygen

for documentation generation. BigDFT, Dalton, Psi4, and QMCPack use Read the Docs for

hosting. PyQuante hosts the documentation on SourceForge. Siesta hosts the documentation

on GitLab. ABINIT, CP2K, MADNESS, Octopus and PySCF use their own server to host

the documentation.

Application distribution, in many cases, was or is based on providing tar-files containing

source code that prospective users unpack and build. More recently, open source codes have

been ported for Linux distributions so that they can be installed with the usual package

managers (ABINIT, CP2K, MPQC, and NWChem). For Python codes the usual Python tools

can be used such as setup.py, Pip, or PiPy. Alternatively, a package might be available with

the Anaconda package manager (PySCF, PyQuante, and Psi4). In other cases applications

may have been containerized with ready to run containers available for download (BigDFT,

Dalton, GAMESS, NWChem, and QMCPack). In some cases an application may even have

been ported for cloud based deployment (Terachem).

Turning to the development of NWChemEx, modern software engineering practices have

been incorporated from the outset. To enable extensive collaborations, NWChemEx is

20

released under the permissive Apache 2.0 license137. Collaboration is furthered by managing

the entirety of NWChemEx under the Git version control system, which supports a

decentralized development model. Furthermore, NWChemEx is hosted on GitHub, which

provides convenient web access to the code, complemented with collaboration tools such as

issue trackers, milestones, support for CI pipelines, and development activity reports. The

NWChemEx code uses CMake138 for its build infrastructure. While CMake is a powerful

tool, it requires users to carefully manage build instructions for builds to proceed as intended.

In fact, managing the multiple toolchain dependencies involved in a complex code such as

NWChemEx is still extremely difficult across multiple hardware and software platforms. To

simplify using CMake, a suite of CMake modules was created, called CMakePP139, which

focuses on automation and boilerplate reduction. Using CMakePP, dependencies can be

downloaded, built, and installed with as little as their URLs; libraries and executables can be

added simply by providing the path to the directory containing the source files; and packaging

files are automatically generated for installed targets. At present, much of the NWChemEx

software is still in private repositories as legal details are being worked out; however, the

intent is to have open repositories in the near future.

A crucial part of NWChemEx’s CI pipeline is unit testing. NWChemEx’s unit tests are

designed to run quickly and are focused solely on determining if all “units" of NWChemEx are

running correctly. Notably, this means that the unit tests do not ensure that NWChemEx

runs at scale, or that NWChemEx is meeting the required performance metrics, rather such

considerations are left to performance tests. Since performance tests require significantly more

computing resources and time than unit tests, performance testing is done periodically outside

of CI. NWChemEx is a dual-language project, and both the C++ and Python components

are subject to unit testing. Catch2140 is used for unit testing the C++ components.

Compared to other C++ unit testing frameworks, we chose Catch2 because it:

• is light-weight (source consists of a single header file),

• supports a wide range of correctness checks, and

• boasts a syntax for assertions natural for typical C++ code.

21

For Python unit tests, NWChemEx relies on the de facto standard, Python’s built-

in unittest module. It is worth noting that NWChemEx’s unit tests not only ensure

correctness, but also that errors are caught and reported correctly, i.e., that a function throws

when it should.

In addition to unit testing, NWChemEx’s CI pipeline also automatically ensures that

the source code is formatted consistently, thereby facilitating code readability. Potential

software contributions are also subject to human-based code review as part of the CI pipeline.

This code review is focused on ensuring code is correct and extensible, but also serves as an

informal means for developers to improve their coding technique. Development efforts are

presently underway to additionally use the CI pipeline to automate the generation and hosting

of user and developer documentation, code coverage, and ensuring that coding best practices

are followed. The documentation is generated using a range of tools. Doxygen132 is used to

generate documentation from C++ sources, which is included in the final documentation

by Sphinx133. Sphinx is also used to generate the documentation for Python sources. Code

coverage reports are generated from the unit tests using GNU compiler features in combination

with Gcov141 and Gcovr142. The reports are hosted on Codecov129.

Admittedly, many of the aforementioned software engineering practices are becoming

routine in no small part because sites like GitHub make such practices easy. In addition,

the National Science Foundation funded MolSSI has aided in educating new and current

developers on the use of best practices in molecular software implementation.143 That said,

some of NWChemEx’s most appealing features come from software engineering practices in

the code itself. In particular, the memoization144 design allows the SDE to automate saving

and loading (checkpoint/restart) an ongoing calculation and enables interactive Python

workflows. Without memoization, computationally expensive steps would need to be rerun

every time the line of code is rerun (such as when a cell in a Jupyter Notebook is

refreshed), but with memoization such calculations are only rerun when the input changes.

Another somewhat unique feature of the SDE is that it enables modules to self-document

themselves through reflection. In addition to saving the developer time, it also ensures that

the documentation stays up-to-date with the source code.

22

5 Tools and Runtime Environments

Computational chemistry software often relies on underlying libraries to accomplish very

specific tasks such as memory management, communication between nodes, and scheduling

of execution on those nodes. Much of the computational chemistry community has adopted

standards such as MPI, OpenMP, OpenACC, and CUDA to accomplish parts of these tasks.

However, there have been specific developments within the chemistry community (often in

collaboration with computer scientists) to manage these tasks. A few examples include the

early development of TCP Linda145 in Gaussian to handle memory and some distributed

multiprocessor communication, the Distributed-Data Interface (DDI) in GAMESS146, and

the CHARM++147–149 programming and runtime environment that is used for multiple codes

such as NAMD and OpenAtom150. Each tool provides a base on which the overlying structure

of the code is built.

Different tools reflect different approaches to achieving performance at scale. For example,

CHARMM++ focuses on reducing load imbalance and overlapping communication and

computation to eliminate bottlenecks to scaling. The runtime enables users to decompose

there computations into relatively small units of work which are then distributed to available

processors. CHARMM++ seeks to distribute work so that processor idle time is minimized

while also scheduling tasks so data is continually moving to and from processes as tasks

are being executed. The fine-grained decomposition of the problem ensures that there are

always a large number of tasks relative to processors and provides flexibility to the runtime

to backfill idle processors with more tasks. This strategy has been used to implement the

highly scalable NAMD molecular dynamics code. The force matrix can be decomposed much

more finely than the traditional spatial decomposition, vastly increasing the number of units

of work available for parallelization, and therefore increasing the number of processors that

can be used for solving a given sized problem.

As another example, CP2K’s strategy for solving large scale systems on parallel com-

puters is to concentrate on methods that solve for the density matrix and avoid matrix

diagonalizations altogether151. The density matrix remains relatively sparse, in contrast to

the eigenvector matrix, which is typically dense. Furthermore, the non-zero values tend to

23

be concentrated in blocks that align with blocks of basis functions associated with atomic

centers. The density matrix then has a sparse block structure in which relatively dense blocks

are distributed sparsely in a larger matrix. The core operation in the algorithms used in

CP2K is matrix-matrix multiplication, where two matrices with the sparse block structure

are multiplied together to produce a third matrix, again with a sparse block structure. This

operation is encapsulated in the Distributed Block, Compressed Sparse Row (DBSCR) library

that provides a very high performance implementation of this operation. The DBSCR library

is a combination of data transfer, node local multiplication and a very highly tuned library for

multiplying individual blocks. The block multiplications consist of small matrices, with moste

dimensions selected from a finite, enumarable set of values, enabling optimization for each set

of block dimensions. The DBSCR library provides most of the parallel capability on which

the remaining algorithms and models are built. Encapsulation of the matrix-matrix operation

enables computer scientists with no background in chemistry to work on its implementation

and help with both algorithm development and performance tuning.

Similarly, NWChem is an example of a co-design effort where parallel tools were developed

in conjunction with the application to enable tera- and peta-scale computations. In this

context, the most important co-designed tool is the GA environment,41,152–157 which is used in

NWChem, MolPro, GAMESS, GAMESS-UK, Columbus, and Molcas. After some experimen-

tation in the early development stages of NWChem, the GA programming model emerged, and

a collaboration with IBM supported GA with the development of LAPI (low-level API).158

The GA portable interface allows each process to independently, asynchronously, and effi-

ciently access logical blocks of physically distributed, dense, multi-dimensional arrays, with no

need for explicit cooperation by other processes and providing one-sided put/get/accumulate

access operations upon patches of arrays regardless of their physical location. Thus, the

GA model retains many familiar and productive aspects of shared-memory programming

models. However, the GA NUMA model also acknowledges that remote data are slower to

access than local data, and it allows data locality to be explicitly specified and used. In these

respects, the GA model is similar to message passing. NUMA is a very important concept

in the performance of all modern computers — high performance demands that algorithms

and compilers optimize usage of the memory hierarchy formed by registers, caches, memory,

24

and data accessed via the network or from storage. If a program ignores this structure,

performance is seriously degraded. In many situations, GA could actually deliver higher

performance than message passing since the latter requires cooperation between sender and

receiver, which makes this programming paradigm difficult to use efficiently. Eliminating this

synchronization and facilitating random data access to distributed data greatly enhances the

scalability and load balancing of irregular algorithms, such as SCF, for which sparsity and the

highly variable cost of integral evaluation produce great irregularity in task execution times.

Moreover, since message passing requires a protocol be built upon communication networks

that, at their lowest level, just move data between buffers in memory, message passing can

degrade latency and bandwidth, especially for short messages.

In addition to the primitive one-sided remote memory access capabilities that facilitated

writing high-performance kernels, GA provided a very high-level interface for operations on

entire matrices (e.g., scaling, addition, many linear algebra operations) that made the rest of

the code much easier to write. Indeed, our first few attempts at a parallel programming model

for NWChem failed this crucial productivity test — 90+% of any code is not performance

critical (it just needs to be correct and fast enough). Hence our focus has always been on

both performance and productivity.

The GAMESS team developed a very similar framework called Distributed Data Interface

(DDI)146, though it does not rely on one-sided communication. DDI was later generalized

(GDDI) to a two-level hierarchy, where subgroups are assigned coarse-grained computational

tasks (for example for fragment molecular orbital approaches) and each subgroup utilizes finer-

grained parallelism159. MOLPRO builds on the Parallel Programming Interface for Distributed

Data (PPIDD), which relies on either GA or MPI2 for its parallel data movement160, while

MOLCAS has integrated GA in certain modules for parallel scalability161.

Despite the success of GA, it is no longer sufficient by itself to support the development

of code using modern computer architectures and programming models. GA is primarily

focused on asynchronous data movement and provides a simple memory model, whereas in

modern computation, many new features come into play. It can often be more efficient to

move computation to the data through techniques such as remote task creation or active

messages. Since it lacks any understanding of execution, GA cannot assist the programmer in

25

optimizing for multi-threaded or accelerated architectures. It has only two levels of memory

(local and remote), whereas modern memory hierarchies are much more complex. Data

consistency in GA requires synchronization and exposes algorithms to the full round trip

latency of communication unless explicit and complex asynchronous programming methods

are used. Modern computation understands how to use oversubscription and parallel slackness

to effectively hide all latencies. With the advent of processors that efficiently handle many

threads, devoting one or more threads to provide rich remote services is no longer a waste of

substantial computing resources. Finally, while there has been substantial work extending

the GA model to sparse computation, efficient support of distributed-data structures requires

a richer set of primitives than simply remote data access. Both TAMM and TA described

below take into account sparsity that can be used for reduced-scaling chemical algorithms.

One of the major tools that NWChemEx will rely on to aid in effective runtime data

movement and execution is MADNESS. The MADNESS (Multiresolution Adaptive Numerical

Environment for Scientific Simulation) software 113 provides a general-purpose numerical

environment for general applications by providing adaptive meshes and fast solvers on trees to

solve differential and integral equations in many dimensions162,163. The core data structures

in MADNESS are irregular k-d trees, used for compact representation of numerical functions

over multi-dimensional spaces. The MADNESS runtime environment provides a native C++

interface to solve the challenges of expressing novel and still evolving numerical algorithms and

representations, while achieving good scalability for the compute functions traversing irregular

spatial trees. The runtime environment includes an active messaging layer, distributed-

data management customized for spatial trees, and extensive asynchronous execution and

communication. MADNESS has applications in nuclear physics164–167, boundary value

problems168, chemistry163,169–171, solid-state physics172, and atomic and molecular physics in

intense laser fields173.

Like all of the numerical libraries of MADNESS, the MADNESS parallel runtime provides

a user friendly interface that allows the user to compose algorithms as a set of dynamically

scheduled tasks that operate on objects in global namespaces. This high-level approach

to parallel programming offers greater composability than that of MPI and explicit thread

programming. Key runtime features include the use of

26

1. global namespaces for building applications that are composed of (global) objects

interacting via remote methods;

2. tasks as first-class entities for fine-grained work decomposition;

3. futures174 for expressing dependencies between the tasks.

These features permit the programmer to focus more on high-level concepts central to the

scientific domain of interest and to deal less with the explicit low-level details of computation

and data partitioning (e.g., message passing between processes with disjoint data or threads

operating on shared data). The MADNESS runtime enables an algorithm to achieve dynamic

load balancing using data-driven work scheduling and to hide significant amounts of the data

communication.

All of these individual concepts appear in other packages, for example, in Cilk175,176,

Charm++147–149, Intel® Threading Building Blocks (TBB)177, and other projects, including

ACE178,179 and partitioned global address space (PGAS) languages180. Some of these features

have made their way into mainstream programming languages. C++, for example, has

included task-based concurrency with asynchronous function calls and futures since 2011.

The MADNESS runtime is composed to allow powerful construction of parallel programs,

one of its distinguishing features. For example, MADNESS futures, unlike other future

implementations, can refer not only to results of local tasks, but also to those of remote tasks,

thus directly supporting composition of distributed task-parallel algorithms.

As mentioned in Sections 3 and 4, the NWChemEx project has developed the SDE

framework96 to decouple the software into modules with standardized APIs using property

types that are unique for each type of module. The SDE is responsible for storing the list of

available modules and properly injecting them at call back locations. The list of available

modules, as well as where they are to be injected, is populated at runtime. Thus changing

the contents of this list provides a straightforward mechanism for interoperability and rapid

prototyping without direct modification of the NWChemEx source code. In order to further

facilitate interoperability and rapid prototyping, the entirety of the SDE’s API is available via

optional Python bindings. The result is that modules can be written in C++ or Python,

and called from either language without any further consideration. Python is a natural

27

language choice for the input layer to a package, hence a natural extension of the SDE’s

Python bindings is a user-friendly scripting layer. Psi4 (among others) also uses Python as

it’s front end for chemical computations181, using MolSSI’s Quantum Chemistry Schema as a

standardized data format182.

While the modular nature of NWChemEx arising from the SDE is ideal for rapidly

refactoring the code base, it also introduces challenges with the data flow. This is because

the rigidity of the property type API prohibits one from passing any additional input data to

the module. To illustrate, consider a self-consistent field (SCF) energy module and a separate

second-order Møller–Plesset perturbation theory (MP2) energy module. Both modules adhere

to an energy property type API, which designates the molecular system as the only input

parameter. The MP2 module perturbs the reference energy which is precomputed by the

SCF module, but the property type API forbids passing the SCF energy to the MP2 module.

This data flow restriction is addressed within the SDE by utilizing memoization144 to cache

and retrieve module results. Under the memoization technique, module results are indexed

by hash keys which uniquely identify each result according to the module’s input parameters.

Every key-result pair is stored in a hash table data member of the SDE Cache class. Note

that the Cache does not store the actual result data, but instead holds a shared pointer

which references the storage location of the result. Whenever a module is called, the input

parameters are hashed to produce the hash key prior to the execution of the module body. If

the hash key matches an entry which already exists in the Cache, then the module call is

replaced by retrieval of the stored result. Subsequently, one can share data between modules

by nesting module calls. For example, the body of an MP2 energy module may include a

call to an SCF energy module. The SCF hash key would match the hash table entry for the

precomputed SCF energy, so the result would be retrieved for subsequent use in the MP2

module.

Inter-module data flow is just one of several applications of memoization in NWChemEx.

The technique is also used in the checkpoint/restart component of the fault tolerance design.

Checkpointing is accomplished by copying Cache entries to a stable storage medium, such

as disk or non-volatile memory. The entries must be serialized into a format from which

the module results can be reconstructed during a restart event. Serialization/deserialization

28

support for most C++ Standard Template Library (STL) types is provided by the cereal183

library and the MADNESS runtime113. Native support for binary, JavaScript Object Notation

(JSON)184, and Extensible Markup Language (XML)185 representations already existed in

cereal and MADNESS. Some other codes that utilize XML or JSON as output include

MOLPRO, Psi4, MPQC and PySCF. NWChem initially explored the use of the Chemical

Markup Language (CML)186, before switching to JSON187. JSON and XML formats provide

human-readable data representations which are useful for analyzing results and are common

formats for data interfaces to external software such as workflow tools. The Hierarchical

Data Format (HDF5) format is the primary format used for checkpoint/restart owing to its

parallel capabilities and high performance when manipulating large datasets. Calculations

are restarted by reconstructing the Cache from the checkpoint file. Other than loading

the checkpoint file, there is no explicit code to implement restart logic. The call tree for

the computation is simply re-executed, with all modules retrieving memoized results until

parity is reached with the checkpointed state. Notably, there are additional use cases beyond

resiliency for reconstructing checkpointed Cache entries. For example, a performance benefit

is possible for sets of closely-related computations (e.g., algorithmic parameter sweeps) with

redundant computations by loading repeated Cache entries from a single checkpoint file.

6 Tensor Methods

Tensor contractions occur widely in various formulations of many-body formalisms ranging

from independent particle models to correlated methods such as CC formulations. A typical

example of a tensor contraction is given by the expression

A(i, j, k, l)+ = B(i, j,m, n)× C(m,n, k, l) , (1)

where A is the four-dimensional output tensor, B and C are the four-dimensional input

tensors, and Einstein summation convention over the repeated indices is assumed - in the

above example summation runs over m and n indices. One of the first uses of tensors was

the Pinnacle software that was an early, in-house C++ code to compute Møller–Plesset

29

energies.188 While this early work did not gain traction at the time, these ideas have been

combined with automatic generation of CC codes such as those by Janssen and Schaefer,189

Li and Paldus,190 Kállay,191 and Nooijen and co-workers192,193 leading to the modern ideas of

many-body interaction codes.

The emergence of parallel computing has also triggered a significant effort toward automatic

generation of scalable CC codes, which resulted in the development of specialized systems that

integrate elements of symbolic algebra for manipulating and optimizing tensor expressions

with efficient parallel tensor libraries. Specialized distributed-memory (or in some cases shared-

memory) libraries for automatic tensor blocking, tensor redistribution, and efficient utilization

of tensor symmetries such as Tensor Contraction Engine (TCE)194,195, super instruction

assembly language (SIAL)110,196, libtensor197, Cyclops Tensor Framework (CTF)198–200, and

TiledArray (TA)201 play a key role in enabling high-accuracy CC methods in many community

codes including NWChem202, Aquarius203, CFOUR204, MPQC38, Q-Chem39, ACES24, and

MRCC205. Below, three of these tensor packages, TCE, TAMM, and TA are discussed as

relevant to the NWChem (TCE) and NWChemEx (TAMM and TA) packages.

6.1 TCE

An integral part of NWChem is the TCE,194,195,206 which is a software package that provides

a high productivity abstraction layer by enabling tensor computations/contractions in a

high-level language instead of low-level Fortran, and that then automatically generates parallel

Fortran code. TCE is a symbolic manipulation program of second-quantized operators and

a program generator, where an ordered list of binary tensor contractions, additions, and

index permutations is translated into an optimized program. All TCE generated codes

take advantage of spin and spatial symmetries for real Abelian point-group symmetry, and

index permutation symmetry at every stage of the calculations to minimize the number of

arithmetic operations and storage requirements. TCE also adjusts the peak local memory

usage by index-range tiling, stores an operation tree as a data structure analogous to a

directed acyclic graph, and supports parallel I/O interfaces and dynamic load balancing for

parallel executions. Synchronization and load balancing is achieved through shared variables

that are atomically updated using GA operations.41,207 By examining the data dependencies

30

in the memory blocks of each matrix, additional parallelism can be obtained even in cases

were very good parallelism exists.

The data representation assumed by TCE is based on the partitioning of the entire

spin-orbital domain into smaller subsets (tiles) containing spin-orbitals corresponding to the

same spin and spatial symmetries. The occupied and unoccupied tiles (i.e., tiles containing

occupied/unoccupied spin-orbital indices, respectively) are designated as [i], [j], [k],

. . . and [a], [b], [c],. . ., respectively. This division entails the partitioning of all tensors

involved in the CC calculations, including cluster amplitudes, recursive intermediates, and

integrals. For example, the tensor corresponding to doubly excited amplitudes is stored in

the block form defined by smaller 4-dimensional tensors

t
[i][j]

[a][b] (2)

representing a subset of doubly excited amplitudes defined by the indices belonging to the [i],

[j], [a], and [b] tiles. This block structure of CC tensors also defines the granularity of the

code. Parallelization and dynamic load balancing occurs over do-loops of occupied/unoccupied

tiles. These units of parallel work contribute to a task pool – a collection of tasks that can

be executed in parallel – where scalability of the calculation is directly related to the size

of its task pool. The tilesize input parameter can be used to define the maximum size of

a tile and to tune the granularity to given architecture specifications. The tilesize also

defines the efficacy of dgemm calls and local memory requirements. While for the iterative

CC singles and doubles (CCSD) and equation-of-motion (EOM) CCSD methods the local

memory demand is proportional to (tilesize)4, the analogous demand for the CCSD(T)

perturbative triples part amounts to 2×(tilesize)6. In order to overcome this bottleneck a

version of the code where the 6-dimensional tensors can be dynamically decomposed along

the first two dimensions to match available local memory have been developed.208

The TCE environment has been used to generate a number of canonical implementations of

single-reference CC methods for ground- and excited-state calculations for arbitrary reference

functions including: restricted, restricted open-shell, and unrestricted Hartree–Fock (RHF,

ROHF, UHF) cases. Moreover, the TCE framework has also enabled various types of state-

31

specific multi-reference CC methods. Examples of the type of scalability possible with TCE

is given in Figure 1.

While TCE has been successful in abstracting the programming of tensor operations,

generated codes are not necessarily ideal for enabling computation at the exascale. Especially

with the increase in scale, complexity, and heterogeneity (CPUs, coprocessors, and accelerators)

of modern platforms, traditional programming models fail to deliver the expected performance

scalability. The main road-blocks precluding TCE from reaching the exascale regime can be

attributed to two factors:

1. lack of an efficient execution model that would define and utilize interdependencies

between particular tasks,

2. problems with data localization across the entire network - although a small portion

of data can be replicated, the large-size tensors distribution may not be synchronized

with a task pool and required data flow.

In many cases, these problems lead to insurmountable network congestion problems.

6.2 Tensor Algebra for Many-body Methods (TAMM)

The Tensor Algebra for Many-body Methods (TAMM) library provides one piece of infras-

tructure for NWChemEx to achieve a scalable performance–portable implementation of key

modules on exascale supercomputing platforms. In addition, TAMM extends the capabilities

needed for dense tensor contractions to contractions of block sparse tensors where the sparsity

structure is not known until runtime. TAMM provides a flexible infrastructure to specify

and manipulate data distribution, manage memory, and schedule tensor operations. This

infrastructure is, in turn, implemented using GA and MPI for scalable parallelization on

distributed-memory platforms and using optimized libraries for efficient intra-node execution

of tensor operation kernels on CPUs and accelerators.

TAMM builds on the experience of NWChem’s TCE and improves upon it in several

important ways. TCE focused on the generation of parallel Fortran 77 programs to execute

MO spin-orbital tensor contraction expressions. TAMM is designed to support a general

32

Figure 1: Benchmark systems considered in EOMCC calculations: free-base porphyrin
(FBP), fused porphyrin dimer, FBP-fused-anthracene, and FBP fused coronene (left panel).
Scalability of the triples part of the CR- EOMCCSD(T) approach for the coronene fused
free-base porphyrin in the aug-cc-pVTZ basis set. Timings were determined from calculations
on the Jaguar Cray XT5 computer system at the. National Center for Computational Sciences
(right panel).

notion of index spaces, allowing the development of a much larger class of methods. A user

can create multiple index spaces corresponding to, for example, atomic, molecular, or localized

orbitals, and simultaneously use them in implementing a method209.

A method is implemented as a sequence of operations. This design separates the speci-

fication of the operations from their implementation. The TAMM scheduler manages the

execution of a collection of operations. It analyzes the dependencies between the operations

and the computation-communication requirements to execute operations in the most load-

balanced and communication-efficient way with the fewest number of global synchronizations.

Whereas TCE generated code to employ a specific parallelization strategy, the TAMM code

is schedule-independent. In particular, TAMM supports a variety of schedules to choose from

based on the operations to be executed.

In addition to automated load-balanced execution of tensor operations, TAMM is de-

signed to allow user control. The users can control data distribution, operation ordering,

33

and the choice of parallelization strategy to construct custom execution plans for specific

computing platforms or input classes. To enable such automation, TAMM implements

multiple mechanisms that a user can choose from. Given the constraints imposed by the

user, TAMM automates the rest of the execution plan to construct an efficient execution

schedule. This allows the user to incrementally adapt the code using tailored execution

strategies with minimal programming effort. With the code generation strategy employed

by TCE, each operation’s schedule is explicitly encoded in the generated code. TAMM’s

runtime interpretation approach reduces the resulting code size, making it more readable and

optimizable.

Execution of operations using the TAMM library involves multi-granular dependence

analysis and task-based execution. At the coarsest level, the dependencies between operations

are analyzed to construct a macro operation-graph. When two operations share the same

data structure with one of them writing to it, the operations are said to conflict and cannot

be executed in parallel. The operation-graph is analyzed to identify and order the non-

parallel operations to minimize the number of synchronizations required. The operations

that can be scheduled in parallel are executed in a single program multiple data fashion. The

execution is compatible with MPI, and the operations are collectively executed on a given

MPI communicator.

Each operation is further partitioned into tasks. The tasks that constitute an operation

are produced using task iterators. Each task computes a portion of the operation, typically

a contribution to a block of data in the output tensor. Until it begins execution, a task

is migrateable and can be scheduled for execution on any compute node or processor core.

Once the execution of a task begins, the data required by the task are transferred to its

location. At this point, the task is bound to the process in which it is executing and cannot

be migrated.

This hierarchical parallelization enables the coordinated use of optimizations at different

granularities. For example, the user might decide to replicate an often-required small tensor.

This information can be used to automatically optimize locality for the remaining tensors and

automate communication overlap. The computation and communication requirements of the

tasks are profiled as they are executed. When an inefficiency (e.g., load imbalance or excessive

34

remote communication) is detected, the tasks are remapped to address the inefficiency. This

new schedule is then used when the computation is executed again – as is the case in an

iterative algorithm.

Optimized execution of each task requires kernels optimized for the given platform. This

includes the exploitation of faster memory, GPUs, and vectorization choices. TAMM is

designed to allow the use of multiple external libraries that can provide these kernels. For

GPUs, the kernels from TAL-SH210,211 and TensorGen212 are used to ensure efficient execution.

In complementing the kernel execution, TAMM manages the data distribution and transfer

to minimize the data movement costs.

6.3 TiledArray

TiledArray (TA) is a generic framework that provides efficient implementation of the algebra

of distributed-memory dense and block-sparse tensors. The development of TA has been

driven by the needs of the newly-reengineered MPQC package,38 thus TA is designed to be

sufficiently generic to provide most of the features expected from a tensor library in the

electronic structure context (e.g., lazy evaluation of tensors for integral-direct electronic

structure methods, irregular tiling, and general sparsity models, among others) by non-

intrusive customization. Nevertheless, TA is fully domain-neutral, i.e., it is free of domain-

specific concepts, such as spin, but it can be customized to support domain-specific features.

TA supports multiple composition styles. The most common is the high-level math-like

“language” that allows non-experts to compose parallel tensor algebra in math-like form; e.g.,

the following expressions for the MP1 amplitude residual and the MP2 energy,

R
ij
ab =G

ij
ab + T ij

acF
c
b + T

ij
cbF

c
a − T ik

abF
j
k − T

kj
ab F

i
k (3)

E(2) =Gab
ij (2T

ij
ab − T

ji
ab) (4)

35

are written in TA C++ as

R(”i, a, j, b”) = G(”i, a, j, b”) + Fv(”b, c”) ∗ T(”i, a, j, c”)

+Fv(”a, c”) ∗ T(”i, c, j, b”)− Fo(”j, k”) ∗ T(”i, a, k, b”)

−Fo(”i, k”) ∗ T(”k, a, j, b”);

double energy = G(”i, a, j, b”).dot(2∗T(”i, a, j, b”)− T(”i, b, j, a”));

with the corresponding TA Python code looking nearly identical to this.38 This style of

programming also supports expert-level features such as complete programmatic control of

sparsity, data distribution, and work partitioning. Other lower-level programming styles,

such as functional-style iteration over tensor blocks to explicit loops over tile indices and

direct byte-level access to the data, are also supported to provide experts with the ability to

compose arbitrary algorithms over general sparse tensorial data structures.213

TA has been designed to support efficient execution on modern and future hardware of

all scales, from a single multi-core machine to a cluster of multi-core, multi-GPU nodes, to

leadership-class supercomputers. To maximize the concurrency and hide latency, which is

crucial for alleviating the load imbalance and lower computation-to-communication ratio of

the irregular sparse tensor algebra, TA has an asynchronous, dataflow-style core. Namely,

the tensors in TA are collections of futures to data tiles, fulfilled by asynchronously executing

tasks, whose scheduling is driven by the data flow between tasks and between memory

spaces (e.g., between memories of different nodes, or between host and device memories

in heterogeneous nodes). By increasing the exploitable concurrency, the fine-grained task

composition allows one to overlap communication and computation, as well as overlap

execution of tasks within individual and across multiple unary/binary tensor expressions,

where possible. These low-level details of TA are implemented using the MADNESS parallel

runtime.113

In addition to the MADNESS runtime (which requires a thread-safe MPI214 implemen-

tation), TA also requires a BLAS library215 for optimized implementation of vector and

matrix algebra. Interfaces to linear algebra packages Eigen216 and ScaLAPACK217 and tensor

36

algebra library BTAS218 are provided. For execution on CUDA-capable accelerators, TA

also requires the CUDA toolkit,69 the cuTT tensor transpose library219 and Umpire memory

management library.220

TA is implemented in the standard C++ language; the most recent version obeys the

2017 C++ ISO standard for most of the code (the CUDA-specific code uses the older, 2014

standard). TA bindings to Python were also developed recently.

A tensor contraction in TA, implemented as an asynchronous formulation of the 2D

SUMMA algorithm,221 has been demonstrated to scale efficiently to up to 256K cores for

large dense tensors; excellent strong scaling was also demonstrated for contractions of block-

sparse and block-rank-sparse tensors.201 Implementation of ground-state and excited-state

CC methods in MPQC based on TA have demonstrated excellent efficiency and strong scaling

on both conventional and heterogeneous clusters.222–224 Pilot implementation of pair natural

orbital CC methods for ground- and excited-states have also been demonstrated.223,225

7 Solvers

Numerical solvers for HF and DFT eigenvalue problems and CC non-linear equations play an

important role in computational chemistry. In earlier days, many quantum chemistry packages

implemented native solvers using algorithms provided in numerical recipes226 or embedded

subroutines from EISPACK227. As computer architectures have become more complex,

developing solvers that can run efficiently on modern distributed-memory parallel architecture

becomes a challenging task228. Fortunately, in the numerical analysis community, standards

for basic linear algebra subroutines (BLAS) emerged. By expressing many algorithms in

terms of these building blocks, one can benefit from vendor optimized BLAS to achieve high

performance with a minimal amount of effort. Furthermore, the development of open-source

LAPACK229 and ScaLAPACK217 libraries allows a new generation of stable and efficient

numerical linear algebra algorithms to be utilized by the computational chemistry community.

The exascale effort is inextricably associated with enabling a new class of solvers that can

significantly reduce the number of iterations required to meet convergence criteria. Another

aspect of the applied math effort is associated with identifying a physically meaningful solution

37

that describes the physics/chemistry of interest. These problems are additionally amplified by

the non-linear character of electronic structure methods targeted in the NWChemEx project,

which includes HF, DFT, and CC formalisms. To illustrate the scale of these problems, one

should realize that in exascale applications of the canonical CC formalism, one will have

to solve sets of non-linear polynomial equations for 1011-1013 wave function parameters. In

the following part of this Section, we will describe state-of-the-art iterative formulations to

address this issue.

7.1 Eigensolver for HF and DFT

In each SCF iteration (for HF and DFT), we need to solve a generalized eigenvalue problem

HX = SXΛ, (5)

where H is the HF or the Kohn–Sham (KS) Hamiltonian matrix, S is the overlap matrix,

and X contains a subset of eigenvectors of the matrix pencil (H,S) associated with the ne

algebraically smallest eigenvalues. Here ne is usually associated with the number of electrons

in the chemical system.

In most quantum chemistry codes, the eigenvalue problem (5) is solved by a dense

eigensolver implemented in LAPACK229, ScaLAPACK217 or more recently in ELPA230,231.

Iterative eigensolver such as the Davidson’s method232, the locally optimal block precon-

ditioned conjugate gradient method233, and the Chebyshev polynomial filtering method234

are used for planewave83, finite difference235 and finite element236 discretization of the DFT

problem. Although recent progress in dense solvers has made them very efficient, there are a

number of drawbacks to using these solvers directly in the SCF iteration.

• It is difficult to make these solvers scalable beyond a few thousand cores due to sequential

bottlenecks in the reduction to a tridiagonal matrix procedure.

• One cannot easily trade accuracy for efficiency in these solvers. Since we typically do

not need highly accurate eigenvectors in early SCF cycles, a more efficient solver that

can provide approximate eigenvectors is sufficient.

38

• These solvers typically do not make use of approximate eigenvectors produced from the

previous SCF cycle.

• Partial diagonalization can only be performed in the tridiagonal eigensolver, even

though more than two-thirds of the time is spent in reduction to tridiagonal form.

In NWChemEx, we adopt the spectrum slicing technique237–240 to design an eigensolver

that is more scalable. The basic idea is to divide the desired part of the spectrum into several

spectrum slices, each containing roughly the same number of eigenvalues. On the ith slice,

we apply a subspace iteration to the shifted and inverted operator (H − σiS)
−1S to compute

eigenvectors associated with eigenvalues closest to σi. Because computation associated with

different slices can be carried out independently and the subspace iteration can also be easily

parallelized, this approach has multiple levels of concurrency that can be fully exploited for

exascale computing platforms.

In this approach, we need to perform an LDLT factorization of the shifted Fock matrix

(KS Hamiltonian) H − σiS, and solve a number of linear systems within each slice. The

diagonal factor provides inertia counts that allow us to make sure all desired eigenpairs are

computed. A Lanczos-based algorithm is used to estimate the distribution of eigenvalues and

provide an initial partition of the spectrum241. The spectrum partition in subsequent SCF

cycles is obtained by analyzing the distribution of eigenvalues obtained from the previous

SCF cycle.

Within the SCF iterative process, there are similarities to the commonly used direct inver-

sion of iterative subspace (DIIS) method242,243. In the first SCF cycle, the approximation to

the desired eigenvectors are generated as linearly independent random vectors. In subsequent

SCF cycles, approximate eigenvectors obtained from the previous SCF cycles are used as the

starting guess. Typically, three to five subspace iterations are sufficient in each SCF cycle.

Another recent development in this field is the ELectronic Structure Infrastructure244

(ELSI) library. ELSI provides a unified interface for a variety of eigensolvers and density-

matrix-based solvers with either sparse or dense matrix representations. ELSI is already

integrated into DFTB+, DGDFT, FHI-aims, and SIESTA codes.245

39

7.2 Newton–Krylov Solver for Coupled-Cluster Equations

The CC equations are traditionally solved by an inexact Newton algorithm of the form

T (k+1) = T (k) −
[
Ĵ (k)

]−1

R(T (k)) (6)

where Ĵ (k) is an approximate Jacobian matrix evaluated at T (k).

In CCSD calculations, a common practice is to choose Ĵ as a diagonal matrix with

orbital energy differences as the diagonal elements. This works well for problems in which the

Jacobian is diagonally dominant, which happens typically when the system is near equilibrium.

For systems far from equilibrium, the diagonal approximation may not be sufficient.

In NWChemEx, we have implemented a Newton–Krylov method246 for solving the CC

equations. Even though J is not explicitly available, it is possible to approximate the product

of J(T) with any tensor W that has the same dimension as T . This can be accomplished

through a finite-difference calculation of the form

J(T)W ≈
R(T + hW)−R(T)

h
, (7)

where h is a small constant.

The possibility to approximate J(T)W by one extra function evaluation makes it possible

to solve the Newton equation by a Krylov subspace-based iterative method such as the

GMRES algorithm247, even when J(T) is not explicitly available. This approach is often

referred to as the Newton–Krylov method.

An iterative procedure for computing the solution to the Newton correction equation

J (k)∆ = R(T (k)) (8)

can be accelerated by using a preconditioner P . Instead of solving (8), we solve

P−1J (k)∆ = P−1R(T (k)), (9)

with the hope that P−1J (k) has a smaller condition number that leads to faster convergence.

40

DIIS is a commonly used technique in many codes to accelerate the convergence of iterative

methods for solving the CC equation and can be combined with the Newton–Krylov method.

At the k-th iteration, we form a new approximation as

T̃ (k+1) =
k∑

j=k−`

ωj

[
T (j) +∆(j)

]
, (10)

for some constant `, where the ωj ’s are chosen to be the solution to the following constrained

minimization problem

min∑
j ωj=1

‖
∑

j

ωj∆
(j)‖.

The k + 1 amplitude approximation is then computed from

T (k+1) = T̃ (k+1) − ∆̃(k+1),

where ∆̃(k+1) is the approximate solution to the Newton correction equation (8) or (9).

In a conventional DIIS procedure, both ∆(k) and D̃(k) are taken to be D−1R(T̃ (k)) and

D−1R(T (k)), respectively. When combined with the Newton–Krylov procedure, we simply

compute both of these corrections by a Krylov subspace iterative solver, such as the GMRES

method.

Figure 2 shows that the Newton–Krylov method is much more stable than the DIIS

method, as indicated by the monotonic reduction of the residual norm.248 For the Cr2 test

problem, the Newton–Krylov method and the combined Newton–Krylov method use fewer

number of residual function evaluations compared with that used in the DIIS method.

41

Figure 2: A comparison of the convergence of the Newton–Krylov, DIIS, and combined
Newton–Krylov DIIS methods when they are applied to Cr2 at equilibrium distance. For each
method, we plot the residual norm at each iteration against the number of residual function
evaluations up to that iteration. The DIIS acceleration was applied every 5 inexact Newton
iterations and each Newton–Krylov iteration used a maximum of 5 GMRES iterations.

8 Gaussian Basis Hartree–Fock and Density Functional

Theory

In many Gaussian basis set HF and Kohn–Sham (KS) implementations, both HF249 and

KS-DFT250–252 are expressed as a set of matrix equations

FC = SCε (11)

where F, C, S and ε represent the Fock, coefficient, overlap and diagonal orbital energy

matrices, respectively. The problem of solving the HF/KS equations thus boils down to

solving a non-linear, generalized eigenvalue problem. The Fock matrix for both HF and KS

formalisms can be encompassed under a single framework as

Fµν = Hcore
µν +Gj

µν + αGk
µν + βGx−dft

µν + γGc−dft
µν (12)

42

where Hcore is the one-electron contribution (kinetic and ion-electron), Gj and Gk represents

the two-electron (Coulomb and explicit exchange), Gx−dft and Gc−dft are the DFT exchange

and correlation (XC) parts, respectively. The mixing coefficients α, β, and γ help span the

HF and DFT limits. With α = 1, β = 0, γ = 0 one gets the pure HF limit, while the

pure DFT limit is obtained with α = 0, β = 1, γ = 0 and α < 1, β < 1, γ = 1 covers

the phase space of non-local hybrid-DFT forms. Most local, non-local (gradient-corrected),

global hybrid, range-separated hybrid and double hybrid and meta exchange-correlation

functionals253,254 have been implemented in NWChem.11,202 As we enter the exascale era,

the need to simulate larger systems with DFT requires reduced-scaling algorithms. Various

strategies have been explored over the years in a number of established codes within different

basis set formulations.23,39,40,78,80,81,202,255–266 Since the parallel Gaussian basis HF and DFT

implementations in NWChem have been described in detail in a recent review202, we will

focus on the implementation in NWChemEx in this paper.

Given that SCF computations are the starting point for most correlated computations, a

large part of NWChemEx’s initial focus is devoted to implementing a massively parallel,

local, density-fit SCF algorithm. The resulting algorithm differs from the canonical algorithm

in two key ways: first, density fitting is used to compress the order four electron-electron

repulsion tensor into an order three variant; second, the use of localized MOs allows for the

exploitation of sparsity in quantities involving MO indices (such quantities are typically dense

given the delocalized nature of the canonical MOs).

The SCF module in NWChemEx is the first major electronic structure method imple-

mented using the SDE. As a result, it is possible for the user to customize and extend

almost every part of the SCF algorithm from the input file. In particular, it is possible

to change the algorithms for building the: core Hamiltonian, Coulomb matrix, exchange

matrix, Fock matrix, and initial guess. While our initial efforts have been primarily focused

on implementing local variants of SCF, we anticipate that the flexibility provided by the

SDE will make it easier to develop architecture-specific algorithms.

One of the most expensive steps in the HF method is the calculation of the exchange

contribution to the Fock matrix. NWChemEx includes an implementation of a local, density-

fit algorithm for building the exchange matrix based on the work of Köppl and Werner.267

43

100 101 102

100

101

102

103

Resource Sets

W
a
ll
T
im

e
/
s

Olestra (CPU) Olestra (GPU)

Ubiquitin (CPU) Ubiquitin (GPU)

Figure 3: Strong scaling of the GPU accelerated XC integration in NWChemEx in comparison
with the CPU implementation in NWChem for two large molecules in the 6-31G(d) basis
set: Olestra (453 atoms / 3181 basis functions) and Ubiquitin (1231 atoms / 10,292 basis
functions). Each Summit Resource Set consists of 7 CPUs and 1 GPU. NWChemEx exhibits
nearly identical linear scaling behaviour as NWChem to hundreds of CPUs + GPUs while
admitting O(5-10x) speedup over the CPU implementation.

Localized MOs are formed to introduce the necessary sparsity for reduced scaling. Subsets

("domains") of the atomic orbital (AO) basis and fitting functions are formed for each MO

based on thresholds for the localized MO coefficients, three-center electron repulsion integral

screening, and localized MO charges. The domains are defined such that all the functions

on an atom center are either included or excluded in the domain. As the size of the system

increases, domain sizes eventually become constant so that, asymptotically, the algorithm

scales linearly with respect to the system size. The sparse tensors and contractions required

by the method are implemented using the TA framework. In order to support larger tensor

block sizes for efficient matrix multiplication, the NWChemEx implementation allows the

domains to be defined as maps between groups of MOs to groups of atoms. This creates a

trade-off between the efficiency of the tensor contractions and the amount of sparsity captured

by the domains.

As a part of the SCF module, NWChemEx includes a scalable implementation of

Kohn–Sham density functional theory (KS-DFT) for Gaussian basis sets. As the target

44

of NWChemEx is performance on leadership class exascale computing architectures, the

majority of development effort has been afforded the computation and assembly of KS

Fock matrix components (equation (12)) while leveraging the computational power of GPU

accelerators in a distributed environment. Over the last few decades, an immense research

effort directed towards the development of GPU accelerated Gaussian basis set KS-DFT,268–273

a majority of which has been focused on the development of highly efficient algorithms for the

evaluation and digestion of the electron repulsion integrals (ERI) required for the formation

of the Coulomb and explicit exchange components of the Fock matrix.61,65,255,268,274–280 A

major component of this effort in NWChemEx has been the development of an efficient and

highly scalable algorithm for the numerical integration of the XC potential on clusters of

GPU accelerators.281 The key component of this algorithm is the reliance on highly tuned,

microarchitecture optimized implementations of GPU accelerated batched level-3 BLAS

operations such as matrix multiply (GEMM) and symmetric rank-2k updates (SYR2K)

to achieve high computational efficiency across a wide range of GPU hardware. Example

comparisons of the strong scaling of the XC integration in NWChem and NWChemEx

for a set of large molecules are given in Fig. 3. Overall, the scalable GPU accelerated XC

integration in NWChemEx has been demonstrated to exhibit O(5x-10x) speedups over the

existing CPU implementation in NWChem.

9 Plane-Wave DFT

The pseudopotential plane-wave method and the related pseudopotential uniform grid real-

space method is a popular, fast, and efficient way to implement KS-DFT29,45,83,109,235,250,251,282–299.

In this approach, the fast varying parts inside the atomic core regions of the valence wavefunc-

tions are removed and replaced by pseudopotentials and the related projector augmented wave

potentials (PAW)300–304, which are generated by requiring that the resulting pseudoatoms

have the same scattering properties as the original atoms305–311. The justification for this

approach is that the electronic structure of chemical bonding is in the interstitial region

outside the atomic core regions. These methods over the years have become an important

class of quantum chemistry methods that can be used to model chemistry and dynamics of

45

molecular and condensed phase systems while retaining an electronic structure description of

their interactions. Moreover, even with the difficulties in parallelizing certain kernels in these

methods (i.e., fast Fourier transforms), highly efficient parallel algorithms have continued

to be developed, which have allowed these methods to keep up over several generations in

high-performance computing architectures.

Within the plane-wave approach the single-particle wavefunctions of a periodic system

can be expanded, in general, as292,293,295,312:

ψjk(r) = eık·r
∑

G

ψ̃jk(G)eıG·r (13)

where k is a vector in the first Brillouin zone, G is the reciprocal lattice vector, and j

represents the orbital index. For molecules (isolated systems), the Brillouin zone sampling is

limited to the Γ-point (k = 0) which gives,

ψj(r) =
∑

G

ψ̃j(G)eıG·r (14)

The size of the plane-wave basis set expansion is determined by the maximum kinetic energy

cutoff (Ecut) via the following relation:

1

2
|G|2 < Ecut (15)

Some favorable features of the plane-wave expansion include: being able to treat periodic

systems in a seamless way, efficient calculation of the expansion coefficients using Fast Fourier

Transform (FFT) techniques, independence of the basis with respect to nuclear positions

which makes it immune to superposition and over-completeness problems which are critical

issues in local basis set approaches.

Since plane-wave basis sets are typically much larger than a local basis, explicit Fock

matrix construction and diagonalization is avoided in favor of direct optimization approaches

like conjugate gradient minimization286,313,314. The most time-consuming steps of plane-wave-

based algorithms are the evaluation of the pseudopotential (specifically the application of

atom-based projectors in non-local pseudopotentials), wavefunction orthogonalization, and

46

exact exchange (if needed) in the description of the exchange-correlation.

Several parallelization strategies have been explored by several groups48,48,82,292,304,315–322

over the years and the different approaches have been implemented in NWChem. For an

overview of the parallel plane-wave DFT implementation in NWChem, we refer the reader

to a recent review.202

The very high amount of parallelism available on future exascale machines with many-

core processors and/or separate GPU devices requires developers to carefully revisit the

implementation of their programs in order to make use of this hardware efficiently. The

exascale systems require the development of new hybrid algorithms to effectively utilize these

machines – requiring an extensive redesign, and essentially complete rewrite, of the old codes.

These new developments are currently being implemented as a part of NWChemEx. Over the

last two years, we have been developing hybrid OpenMP-MPI and SYCL-MPI algorithms.

The OpenMP-MPI algorithms were initially implemented in the NWChem program and

are now being ported into NWChemEx. The SYCL-MPI algorithms are being directly

implemented into NWChemEx.

Many of the details for the OpenMP-MPI hybrid algorithms can already be found in

several recent papers al48,322,323. In Figure 4 the timing results for a full AIMD simulation of

256 water molecules on 16, 32, 64, 128, 256, and 1024 KNL nodes with 66 threads per node

are shown. Leaving out two cores of each Xeon Phi processor during the computations is best

for performance. The most likely explanation for the small degradation in performance when

including the additional two cores is due to the overhead of the operating system and MPI

processes running on the node. The “Cori” system at NERSC was used to run the benchmark,

a Car–Parrinello simulations of 256 H2O with an FFT grid of Ng = 1803 (Ne=2056) using

the plane-wave DFT module (PSPW) in NWChem. The size of this benchmark simulation

is about 4 times larger than many mid-size AIMD simulations carried out in recent years,

e.g., in recent work by Bylaska et al.324–329. The overall timings show strong scaling up to

1024 KNL nodes (69632 cores) and the timings of the major kernels, the pipelined 3D FFTs,

non-local pseudopotential, and Lagrange multiplier kernels all displayed significant speedups.

As part of the NWChemEx development, we are also building an infrastructure for a

47

N=16
C=1088

N=32
C=2176

N=64
C=4352

N=128
C=8704

N=256
C=17408

N=1024
C=69632

Number of nodes/cores (66 used threads per node)

100

101

T
im

e
(s

ec
)

Run times of AIMD on 256 Water molecules

AIMD step

non-local pseudopotentials

queue fft

Lagrange multipliers

Figure 4: Scalability of major components of an AIMD step on the Xeon Phi partition for
“water256”. Figure from Bylaska et al.48.

completely new O(N) AIMD code. In this proposed development, we are generally following

the strategy of Fattenbert et al.297,330. However, we are using several different design choices

compared with this prior work. The main difference in our development is that we are making

more extensive use of 3D FFTs for interpolation and efficiency. Most notably, the iterative

multi-grid Poisson solver is being replaced by a large parallel 3D FFT.

The overall data layout of the O(N) AIMD algorithm is shown in Fig. 5. The overall

space of the simulation is described by the density grid. The ψ patches, depicted as yellow

grids, are used to describe the space for each of the localized wavefunctions. For each

simulation, there are Ne ψ patches, i.e., a patch for each localized wavefunctions. During a

AIMD simulation the patches are moved to follow the motion of the localized ψ.

The key parts to the O(N) AIMD algorithm are as follows.

• Use penalty functions to keep ψ’s constrained to patches (yellow grids).

48

Figure 5: Multiple density grids where subgroups of {ψ} are stored on different density grids.

• The non-local pseudopotential, VNL, and the kinetic energy operator, ∇2, are localized

operators and are computed on the patches. These require FFTs on yellow grids for

accurate interpolation or, alternatively, a real-space form can be used.

• Enforcing orthogonality, requires the evaluation of overlap matrices between different ψ

and iteration algorithms that require sparse matrix multiply.

• Density operations, i.e., Vxc and VH , and local pseudopotentials, Vlocal, are evaluated on

the blue grids. Requires 3D FFTs across blue grids.

• Exact exchange operator, requires the evaluation of 3D FFTs over overlap densities.

These algorithms are following the prior work which used an incomplete butterfly

algorithm, except that the incomplete butterfly algorithm is being generalized to be

carried out across multiple density grids.

• Multiple density grids are used. To handle load balancing for simulations where there

are large regions of space that do not contain ψ, e.g., slab simulations, we generalize

the computational space to have multiple density grids, where each grid has its own

group of localized ψ (see Fig. 5).

During each iteration of an AIMD simulation in this scheme, Ne KS orbitals, ψ(r, 1 : Ne),

are converted from real space to reciprocal space and Ne orbital gradients (i.e. kinetic energy

49

Figure 6: (Top) Illustration of computational steps in a specialized 3D FFT used to build a
patch 3D FFT. (Bottom) Illustration of the pipelined 3D FFT algorithm used in the AIMD
code.

and non-local pseudopotential operators) are transformed from real space to reciprocal space

to real space. This corresponds to computing Ne reverse 3D FFTs and Ne forward 3D FFTs

on the patch grids (i.e., yellow grids).

Each parallel 3D FFT 304,323,331–333 consists of six distinct steps, each of which is executed

for each of the Ne KS orbitals in a pipelined fashion, as illustrated in Figure 6. For the

forward 3D FFT, the steps are (in reverse order for backward FFTs):

1. Unpack the reciprocal space sphere into a 3D cube, where the leading dimension of the

cube is the z-direction, second dimension is the x-direction, and the third dimension is

the y-direction, i.e., cube stored as z, x, y.

50

2. Perform nx×ny 1D FFTs along the z-direction. Note that only the arrays that intersect

the sphere need to be computed.

3. Rotate the cube so that the first dimension is the y-direction, z, x, y → y, z, x.

4. Perform nz × nx 1D FFTs along the y-direction.

5. Rotate the cube so that the first dimension is the x-direction, y, z, x→ x, y, z.

6. Perform ny × nz 1D FFTs along the x-direction.

Note that the 1st step in the above algorithm could be eliminated, however, reducing the

reciprocal space to a sphere substantially improves the parallelization of the overall 3D FFT.

In developing the patch 3D FFTs, the 3D FFT algorithms contained in the NWChem

plane-wave module (called NWPW) have been modified. These algorithms have already been

generalized to use a hybrid MPI-OpenMP model where the planes of 1D FFTs in steps 2, 4,

and 6 execute on multiple threads through an OpenMP DO directive so that a single 1D FFT

is carried out on one thread. The data rearrangement in steps 1, 3, and 5 is threaded using a

DO directive on the loops that perform the data-copying on the node. These algorithms will

be generalized to use the GPU-MPI programming model in the near future. There have also

been recent developments for 3D FFT algorithms using GPUs that show promise and may

be end up being used in our developments334. A key aspect of these algorithms is that they

are implemented using core point to point communication routines, i.e., non-blocking MPI

primitives. More details on the implementation of these FFTs can be found in prior work by

Bylaska et al.92,304,320.

These 3D FFT algorithms are transformed to patch grids by using a mapping function for

the patch grids to a standardized grid in which the point to point communications have been

defined. Implementation of these algorithms is relatively straightforward, although the old

code contained in NWChem was not usable for this development because it does not allow a

dynamic number of instances (the overhead of Fortran 77 made this not practical).

51

10 Coupled-Cluster

Various CC approximations335–341 have evolved into the working engines of high-accuracy

computational chemistry and have been implemented in most of the electronic structure

codes. The success of the CC theory in capturing electron correlation effects originates in:

• Size-consistency of the theory associated with the connected character of diagrams

contributing to the CC equations. This property allows one to correctly describe

chemical reactions and dissociation processes.

• Higher-order excitations can be approximated as products of lower-rank cluster opera-

tors.

• Systematic, and rapid, convergence of the properties with the excitation rank of the

cluster operator.

The perturbative nature of the CC formalism also allows one to incorporate higher-order

clusters using various perturbative techniques. Undoubtedly, the best-known example falling

into this category is the ubiquitous CCSD(T) formalism342.

Two key factors limit the usefulness of accurate CC methods to practical problems of

interest to experimentalists:

• First, the rapid (high-order polynomial) growth of the computational cost with the molec-

ular size N . Namely, CCSD,338 CC with singles, doubles, and triples (CCSDT),343–345

CC with singles, doubles, triples and quadruples (CCSDTQ),346,347 have asymptotic

operations costs proportional to n2
on

4
u, n

3
on

5
u, and n4

on
6
u, respectively (where no and nu

denote the number of correlated occupied and unoccupied orbitals, respectively, and

grow in proportion to the system size N), whereas the cost of the non-iterative (T)

contribution in CCSD(T) is proportional to n3
on

4
u. Hence, doubling the system size

increases the computational expense of even the simplest CC methods by more than

two orders of magnitude;

• Second, the slow basis set convergence of the correlation energy. To reduce the basis

set error of correlation energy to chemically-relevant levels large basis sets are required

52

(100+ basis functions/atom), and the asymptotic rate of convergence to the basis set

limit is very slow: halving the basis set error increases the computational cost by more

than one order of magnitude.

The high computational complexity of the modern wave function methods can be alleviated

somewhat by taking advantage of modern distributed-memory parallel computers such as

pioneered by the original NWChem project. Nevertheless, the development of parallel

algorithms must be accompanied by fundamental improvements of these methods since even

a million-fold concurrency would only allow an increase of the system size by a factor of ten

or so. Thus to make the NWChemEx project transformative, rather than incremental, it is

mandatory to address both of these key issues.

To reduce the cost and complexity of CC methods NWChemEx pursues several direc-

tions, namely by compressing the Hamiltonian via Cholesky-based tensor factorization (see

Section 10.1) and by local compression of the cluster operators in the pair natural orbital

framework (see Sections 10.1 and 10.2). Furthermore, the basis-set problem of CC methods is

addressed by developing the explicitly correlated CC formulation therefore (see Section 10.3).

10.1 Cholesky-decomposition-based CC formulations

Since the CCSD(T) approach was a target of numerous development efforts, special attention

has been paid to reducing the memory requirements associated with the storage of the most

memory demanding tensor in the CCSD(T) workflow representing two-electron integrals.

Among several tensor decomposition techniques, two of them – Cholesky decomposition348–351

and Density Fitting352–358– have assumed special position in the development of CC imple-

mentations224,358–367 based on the approximate representation of two-electron integrals. These

methods also open alternative ways for optimizing the operation count, data representation,

and communication of the parallel codes, which is especially true for the iterative CCSD

formalism (being an intermediate step in the CCSD(T) calculation). In NWChemEx we

enable a CCSD(T) implementation using Cholesky decomposition for atomic two-electron

integrals (µν|ρσ)

(µν|ρσ) =
∑

K

LK
µνL

K
ρσ , (16)

53

a

b

Figure 7: Structures of carbon–hydrogen systems chosen for the benchmark test of the
low-rank compound decomposition procedure of the two-electron integral tensor, the linear
relationship between the number of Cholesky vectors , m, and the number of basis functions,
Nb, and the average number of singular vectors per Cholesky vector (n̄SV D).

where LK
µν (or LK

pq in the molecular orbital basis) are the Cholesky vectors. To further

compress two-electron integrals, we have also tested an approach where Cholesky vectors are

further compressed using Singular Value Decomposition (SVD).368 The combined CD-SVD

decomposition was validated on 1-, 2-, and 3-dimensional systems showing a significant

reduction of storage requirements for two-electron integrals from O(N4
b) to N2

b log(Nb) (see

Fig. 7) without a significant loss in accuracy for ground-state energies, excitation energies,

and non-linear optical properties (see Ref.368 and Fig. 8 for details) – where Nb is the number

of basis functions.

A significant effort was expended to optimize the algebraic form of the CCSD-CD

equations using TAMM functionalities. The main difference between canonical and Cholesky-

decomposition-based equations is the fact that in the latter case a larger number of contractions

between low-rank tensors are involved. In contrast to the canonical formulation, expressions

in the CD-based parameterizations can be further factorized and parallelized due to the fact

that large batches of CD or CD-SVD vectors can be stored locally, which significantly reduces

the inter-node communications. Additionally, imposing a tile structure on all indices including

orbital/spin-orbital ([i],[j],...,[a],[b],...) and Cholesky ([K]) leads to significant

54

a																																											b																																											c

Figure 8: Deviations of ground-state correlation energies (a), excitation energies for first
excited state (b), and static polarizabilities (c) calculated at the CCSD level for the selected
1-D, 2-D, 3-D carbon–hydrogen systems along with the change of θCD and θSVD.

improvements in the performance of the code (especially, when the size of the [K] tiles is

significantly bigger than the sizes of molecular tiles).

10.2 Reduced-Scaling CC methods based on Pair Natural Orbitals

As shown in the previous Section, it is possible to reduce the cost of the CCSD method by

compression of the Hamiltonian, however, reduction of the operation complexity requires

compressing the basis used to express the cluster operator. Any such reduction of the

computational complexity takes advantage of the rapid decay of many-electron correlations

with distances in most chemical situations; truncation of these interactions can be done in

several ways.

1. One group of approaches truncates the many-body expansion (MBE) of the energy,

which is a sum of one-, two-, and higher-body components:

E =
∑

A

EA +
∑

A<B

∆EAB +
∑

A<B<C

∆EABC + . . . (17)

This series converges quickly if classical long-range interactions (e.g., electrostatic

polarization) are renormalized into one-body energies by performing a self-consistent

calculation on the entire system and if the fragments are chosen larger than the quantum

correlation length of the system. The many approaches based on truncated variants

of Eq. (17) differ in the manner of renormalization, fragment definition, and levels of

55

theory; however, they all share an essential technical trait that (after renormalization)

computations on sets of fragments are independent of one another (hence suitable

for coarse-grain parallelization of the work) and utilize standard electronic structure

approaches. We will only mention the fragment molecular orbital method,369 the

incremental correlation scheme370 and the cluster-in-molecules approach.371 The reader

is referred to several reviews for more information.372,373 Evaluation of properties with

these approaches is also possible by differentiating the truncated MBE with respect to

the perturbation parameter.

2. Another group of approaches truncates the operators and wave functions directly by

representing them in a form that reveals their sparse structure. In molecular applications,

this means using spatially localized basis sets (AOs, localized MOs, and finite/spectral

elements) or grids. The oldest approaches of this kind were the “local correlation”

methods of Pulay,374 first implemented by Saebo and Pulay.375,376 The original ansatz

used the non-orthogonal projected atomic orbitals to represent unoccupied states.

Its large-scale use has been made possible by the work of Werner, Schütz and co-

workers377,378 who have developed and refined an efficient implementation of the concept.

Other unoccupied orbital bases have been considered: pair-natural orbitals (PNOs)

investigated by Edmiston, Krauss, Meyer, Ahlrichs, Kutzelnigg, Neese and others,379–386

orbital-specific virtuals (OSVs) of Chan and Manby,387 and localized virtual orbitals of

Jørgensen.388,389 Another group of approaches expresses many-body methods exclusively

or primarily in the AO basis and exploit the resulting sparsity to attain reduced

complexity; these methods were pioneered by Almlöf390 and developed further by

Scuseria, Ochsenfeld, and others.391,392 Lastly, an initial O(N3) implementation of

MP2 and CC2 based on adaptive spectral element-based representation was recently

described by Bischoff, Valeev, and co-workers.113,393

Most important recent development of accurate reduced/linear-scaling CC methods have

employed PNOs385,386 and other closely related concepts.387,394,395 Although PNOs date back

to the 60s and 70s and the work of Edmiston and Krauss,380,396 Meyer,381,382,397 Ahlrichs

and Kutzelnigg,384,398–400 and others, their recent use was popularized by the work of Neese

56

and co-workers,385,386 who showed that they become competitive with canonical methods

rather early. PNO-based compression combined with local (“domain”) formalism (which

alone is sufficient for linear scaling as shown by Werner and co-workers359,401–403) gives rise

to reduced404,405 and even linear scaling394,395,406–411,411–413 variants of the PNO CC methods,

becoming competitive with canonical CC implementations for systems with as few as 10-20

atoms. These dramatic developments have prompted us to make the domain-based PNO CC

methods a major focus of the NWChemEx project.

The PNOs of pair ij are the eigenvectors of the pair-specific density D
ij:

D
ij
U

ij = U
ij
n
ij, (18)

with (Uij)ba ≡ Ubaij the coefficient of MO b in PNO aij, and (nij)ab ≡ naijδaijbij the corre-

sponding occupancy.1 The pair density matrix,

D
ij =

1

1 + δij

(
T̃

ij†
T

ij + T̃
ij
T

ij†
)
, (19)

is defined from the 2-body amplitudes T
(ij), where (Tij)ab ≡ T

ij
ab and T̃

ij
ab = 2T ij

ab − T
ij
ba. To

realize computational savings only those PNOs are kept for which naij ≥ τPNO, where the

truncation threshold, τPNO, is a user-defined model parameter (setting τPNO = 0 makes the

PNO-based representation exact). For a finite (nonzero) τPNO the number of PNOs per pair

is independent of the system size, thus using the truncated PNO basis reduces the number of

amplitudes
(
T̄

ij
)
aijbij

from O (N4) to O (N2). 1-body amplitudes T̄
i are similarly expressed

in a truncated basis of OSVs Ui, typically taken to be PNOs of pair ii truncated with tighter

threshold than the PNOs themselves.

The quality of the PNO representation is controlled by truncation parameter τPNO and the

type of guess 2-body amplitudes used to define the PNOs. Several types of guess amplitudes

have been tried originally;380–382,384,396,397 the standard approach nowadays is to compute

PNOs from first-order Møller–Plesset (MP1) amplitudes,385 defined in the canonical MO

1Following convention, we have used i, j, . . . ; a, b, . . . ; and p, q, . . . for the occupied, virtual, and general

orbitals in the HF basis, respectively.

57

basis as

T
ij
ab =

g
ij
ab

f i
i + f

j
j − fa

a − f b
b

, (20)

with f p
q = 〈p| f̂ |q〉 the matrix elements of the Fock operator (often localized occupied orbitals

are used directly in eq. (20), resulting in so-called as semicanonical MP1 amplitudes)385.

This approach has also been generalized by Tew and co-workers in the context of explicitly

correlated methods.414 Recently it was shown that by iterative optimization of PNOs in

coupled-cluster methods the PNO truncation error can be greatly reduced.225 Similarly, PNOs

can be computed purely numerically.415

The main challenge of domain-local pair natural orbital (DLPNO) methods is the need for

high-performance algebra of block-sparse and hierarchical tensors. Whereas in conventional

CC theory one computes with ordinary dense tensors like tijab and gabcd and optionally with

static block-sparse structure due to spin, geometric, and other symmetries, in PNO CC

methods one computes with more complex tensorial data t
ij
aijbij

and g
aijbij
cijdij

, which can be

represented in a number of ways (e.g., as regular sparse tensors, or hierarchical block-sparse

tensors), and, importantly, with their sparse structure determined by dynamical factors such

as properties of the particular molecular system, variations between iterations, etc. Not only

do DLPNO methods present novel tensorial data structures, but the equations themselves

are different from those of the traditional CC and they involve new types of operations (e.g.,

Hadamard products). The NWChemEx framework will include support for efficient parallel

implementation of reduced-scaling PNO MP2, CCSD, and CCSD(T) energies.

10.3 Explicitly correlated CC methods

The pursuit of predictive simulation of electronic structure involves controlling both the

accuracy (e.g., the Hamiltonian approximation and the wave function ansatz) as well as

precision, namely, the numerical errors that arise due to discretization of the CC equations.

The numerical error of many-body methods like CCSD(T) in their standard formalism,

unfortunately, suffers from the slow asymptotic decay due to the singularity of the Coulomb

electron-electron interaction, and the resulting cusps in the electronic wave function whenever

58

two electrons meet.416–418 This translates into rapid asymptotic growth of the computational

cost with the desired precision; most importantly, the use of small basis sets results in

unacceptably large errors for key properties like reaction energetics, vibrational frequencies,

and spin-spin couplings. To make reduced-scaling many-body methods a viable alternative

to DFT it is mandatory to reduce their basis set errors. This is accomplished most robustly

by building in the cusp-like structure into the wave function via terms dependent on the

interelectronic distances. Such explicitly correlated formalisms, specifically in the form of the

R12/F12 methods,419–421 greatly reduce the basis set error by typically 2 cardinal numbers of

the correlation consistent basis set family. The NWChemEx framework will include support

for the F12 variants of the standard and the reduced-scaling (DLPNO) variants of the CC

methods.

11 Classical Molecular Dynamics

The generation of extended molecular time-trajectories is a principal and general challenge

for biomolecular modeling and simulation, and advanced simulation methodologies need

to be used to implement algorithms that enable the capture of dynamical, energetic and

thermodynamical features central to molecular research.422 The molecular-level processes to

be understood through the application of computer simulation include protein folding, protein

docking, complex enzymatic reactions, and the association and function of large protein and

protein-DNA complexes. The common challenge is the need for sufficiently long simulation

times for sufficiently large ensembles of conformations to capture the relevant events. Using

MD simulation codes on very large processor count heterogeneous and accelerated computer

architectures requires an extensive analysis of the algorithms used and the formulation of an

implementation strategy that leads to significant performance improvements.423

The most efficient implementation of MD is based on a domain decomposition approach.

Domain decomposition has been shown to be the most efficient approach on distributed-

memory systems and is being used by most major classical simulation packages. Physical

space is decomposed into rectangular cells that are assigned to one of the available process

ranks. A main difference among the multiple MD packages is in how the inter-cell interactions

59

are communicated and computed and how the work is load-balanced while the chemical system

is moving in real space. In NWChem, two methods are implemented to dynamically optimize

load-balance between processes. First, the ’ownership’ of a cell-pair can dynamically switch

from the busiest to the less busy rank. Second, the physical space of the computationally most

intensive cell can be dynamically made smaller, thereby increasing the size of neighboring,

less computationally intensive cells. The second method typically requires redistribution of

atoms between ranks with associated communication, and is only applied if the first method

of cell-pair distribution no longer leads to improved load-balance.424,425.

The MD implementation in NWChem requires each process rank used in a simulation to

be assigned at least one cell in the domain decomposition. While this a good approach for

large molecular systems, it limits the use of large numbers of processes for moderately sized

chemical systems. The implications for parallel efficiency, communication requirements, and

load-balancing options of a new approach based on the distribution of the cell-cell pair list

was analyzed as the design target for NWChemEx.426

In NWChemEx, a new data structure has been designed to maximally exploit locality

and reduction of communication and memory requirements.427 The computational workload

depends on the distribution based on relative orientation of cells within the physical decom-

position. Duplication of cell-cell pairs in our current prototype allows the use of a number of

processes up to 42 times the number of cells in the system. The most important challenge

for scalability of classical MD is the need for synchronization after the evaluation of forces

and after updating the coordinates. Large process counts make the use of explicit global

synchronizations very inefficient, and redesigned kernels without explicit synchronization

are required for computational efficiency. All synchronizations can be made implicit by

having processes wait only for expected neighbor contributions before continuing. Such a

local synchronization approach effectively improves scalability by avoiding the causes of

time inefficiencies in global reduction and synchronization operations. This feature can be

accomplished in part by using GA features in a recently developed put-notify mode allowing

all communication to be expressed using a push-data model instead of the traditional pull-data

model and was shown to result in an order of magnitude better scalability of the implemented

MD simulation module in the ARGOS428 code (a prototype for NWChemEx) compared to

60

NWChem.426

The chosen approach is being implemented in a MD kernel for use on modern hetero-

geneous accelerated architectures.429 Work is ongoing to implement further improvements

and optimizations of intra-node parallelism, topology-aware data structure assignment, and

data communication protocols that reduce movement of data needed by multiple processes

on a node only once to that node. Polling mechanisms for each of the processes will be

used to determine the availability of the data. The implementation will make extensive

use of features of the GA toolkit. In addition, data communication will be hidden behind

computation through the use of a small number (typically three) dedicated processes to

handle control tasks, such as global accumulation of kinetic energy and virial for constant

temperature and pressure simulations as well as the collection of data for trajectory and

property recording during simulations runs. A prototype MD kernel has been extensively

instrumented for detailed wall clock time analysis of all components in MD time steps,

including communication, computation, and implicit synchronization times. Such analysis

details assist in identifying opportunities to reduce load imbalance, avoid communication

cost, and improve parallelism. The utilization of the data-centric capabilities enabled by

the GA/ARMCI (Aggregate Remote Memory Copy Interface) PGAS programming model

provides unique opportunities to address the primary challenges for parallel scalability of MD

time-stepping algorithms. The one-sided asynchronous communication operations provided

by the ARMCI communication model and the global, data-centric view of GA allow for an

intuitive way to avoid both global and local explicit synchronous operations and to effectively

manage concurrent communication and computation.

12 Embedding Methods

When dealing with moderate to large chemical systems requiring chemical accuracy, an

accurate theoretical treatment of the entire system with ab initio wavefunction approaches

can become computationally prohibitive very quickly. Embedding or hybrid approaches,

where a smaller chemically relevant active region is treated with a higher-level wavefunction

approach in a background environment represented at a lower-level approximation, can

61

mitigate this issue.

Over the years, several embedding strategies have been developed at different levels of

complexity, such as: ONIOM430, electrostatic embedding431, quantum mechanics/molecular

mechanics (QM/MM)432,433, fragment methods372, density-functional-based embedding434–438,

density embedding (DET)439, density matrix embedding (DMET)440, projector-based em-

bedding441–443, embedded mean-field theory444, self-energy445 and Green’s function embed-

ding.446–448 For a general overview of embedding approaches we refer the reader to numerous

reviews that have been published on the subject.372,431,449–453

All embedding approaches rely on partitioning the full system into subsystems and a

definition of the energy. For two subsystems, A embedded in the environment of B, one can,

within the language of DFT, write the formal DFT-in-DFT embedding energy expression

as435,

E
full
DFT−in−DFT = E

full
DFT + (ẼA

DFT − ẼA
DFT) (21)

and, similarly, the wavefunction (WF)-in-DFT embedding energy as

E
full
WF−in−DFT = E

full
DFT + (ẼA

WF − ẼA
DFT) (22)

where Efull
DFT is the DFT energy for the full system and ẼA

DFT and ẼA
WF are the embedded

energies of subsystem A at the DFT and WF levels of theory, respectively. Clearly, the

correction in parenthesis to the full DFT energy cancels for same, and is non-zero for different,

exchange-correlation functionals in Eq.21, while the correction is almost always non-zero with

a wavefunction method as in Eq.22.

Depending on the nature of the electronic structure of the system, partitioning can

become strongly system dependent. This is especially the case if the subsystem partitioning

involves strongly bonded, i.e., covalently bonded, environments. From a quantum embedding

standpoint, this imposes another stringent requirement, namely, orthogonality between the

subsystems.

The projector-based embedding approach, which has its roots in the pioneering work

of Phillips and Kleinman306 and Huzinaga and Cantu454,455 on the formal separability of

many-electron systems, has been explored with renewed interest recently.442,443 Within this

62

approach, the partitioning is achieved as projections between subspaces instead of physical

partitioning, which ensures the orthogonality requirement. In addition, it also provides a

natural way to generalize the embedding problem to multiple systems, represented at different

levels of theory. This approach has been further explored and developed with great success

in recent years both in molecular and periodic systems, with the main difference being

the choice of the projection operator, namely, the Huzinaga or level-shift-based projection

operators.442,443,454–456 Another key component of the projection approach involves the de-

composition of the orbital spaces, where different promising schemes have been developed

and is an active area of research.438,442,443,457–461

In NWChemEx, we are developing a general and scalable embedding framework to

support the projector-based embedding approach including orbital partitioning, so that

different levels of electronic structure theories may be combined as well as other embedding

variants like quantum-classical embedding.

13 Conclusions and Future Directions

As exascale machines get closer to existence, hardware is growing more complex (multiple

layers of memory, accelerators in addition to CPUs, etc.) in a way that has a direct effect on

programmers as they seek to efficiently use the resources on the machine (for example, fully

taking advantage of any available high bandwidth memory). This review article addresses some

of the challenges for addressing these complex hardware and associated software issues. The

NWChemEx project, as an exemplar of the constantly changing computational landscape,

has been designed for flexibility and performance to respond to these challenges through

reduced-scaling methods, careful design, OOP conventions, modularity and abstractions,

the SDE framework, and solid software engineering practices. Capabilities like unit testing,

software review, and checkpoint/restart have been added into the framework and software

engineering practices from the beginning to ensure that NWChemEx has a solid base from

which to build upon.

The emergence of next-generation exascale architectures offers a unique opportunity to

address outstanding and previously unobtainable chemical challenges with methodologies that

63

describe electron correlation effects and reduce dependence on basis set choice. Novel reduced-

scaling techniques that take advantage of the local character of correlation effects and efficiently

utilize massively parallel architectures through innovative programming tools will significantly

reshape the landscape of high-accuracy simulations. The design and implementation of

such methods and algorithms requires a program suite under which these approaches and

tools can be designed, and NWChemEx strives to be at the forefront of this development.

NWChemEx will offer the possibility of performing simulations with an unprecedented

level of accuracy for systems several orders of magnitude larger than systems tractable by

canonical formulations of theoretical methods. This transition requires redefinition, redesign,

and extension of parallel tensor libraries to cope with challenges posed by efficient exascale

implementations of sparse tensors contractions that underlie reduced-scaling CC formulations.

To achieve this goal, TA and TAMM are used to enable facile development of the algorithms

and to provide performance on CPUs and GPUs for local versions of HF, DFT, and CC

methods.

The arrival of exascale systems like the Argonne Leadership Computing Facility (ALCF)

Aurora computer or the Oak Ridge Leadership Computing Facility (OLCF) Frontier machine,

which are expected to arrive in the 2021-2023 time frame will allow for the performance analysis

and validation of current and future progress of NWChemEx. Moving forward, NWChemEx

will include continued development of reduced-scaling methods coupled with potential energy

surface sampling methods to enable highly accurate calculations of both enthalpy and entropy

effects. In addition, future work will also involve incorporating community standards and

interfacing with other software development projects for property type APIs and additional

functionality into the code.

NWChemEx will significantly shift the envelope for systems-size limits tractable by

high-accuracy methods. In the near-time perspective, NWChemEx will focus on select

classes of methodologies mainly related to the reduced-scale approaches. Once the sparse

infrastructure matures, deploying new formulations and extension to excited-state problems,

strongly correlated methods, properties calculations, and molecular dynamics should be

much easier and less time consuming. We envision and anticipate that the full transition

to NWChemEx and emplacement of a rich environment of electronic structure methods

64

in NWChem will occur over the next decade. In this intermediate period, we envisage the

co-existence of NWChem and NWChemEx according to the equation:

(1− λ)NWChem + λNWChemEx . (23)

The extent of the transition period is contingent upon the external support, engagement of a

broad computational chemistry community, and availability of exascale architectures.

Acknowledgement

The authors thank Edoardo Aprà for his extensive conversations about DFT design and

implementation issues. This research was supported by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science

and the National Nuclear Security Administration. This work used resources of the OLCF

at the Oak Ridge National Laboratory, which is supported by the Office of Science of the

U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research used

resources of the ALCF, which is a DOE Office of Science User Facility supported under

Contract DE-AC02-06CH11357. This research also used resources of the National Energy

Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of

Science User Facility operated under Contract No. DE-AC02-05CH11231. Funding for the

development of NWChem and parallel software tools over the lifetime of the project include

Environmental and Molecular Sciences Laboratory (EMSL), the Construction Project and

Operations and the Office of Biological and Environmental Research. This research also

benefited from computational resources at EMSL, a DOE Office of Science User Facility

sponsored by the Office of Biological and Environmental Research and located at the Pacific

Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute

for the United States Department of Energy under DOE contract DE-AC05-76RL1830.

65

References

1. The National Strategic Computing Initiative. https://www.nitrd.gov/nsci/, 2015;

[Online; accessed 6-August-2020].

2. Kothe, D.; Lee, S.; Qualters, I. Exascale Computing in the United States. Comput. Sci.

Eng. 2019, 21, 17–29.

3. Alexander, F.; Almgren, A.; Bell, J.; Bhattacharjee, A.; Chen, J.; Colella, P.; Daniel, D.;

DeSlippe, J.; Diachin, L.; Draeger, E. et al. Exascale applications: skin in the game.

Phil. Trans. R. Soc. A 2020, 378, 20190056.

4. Bernholdt, D.; Apra, E.; Früchtl, H.; Guest, M.; Harrison, R.; Kendall, R.; Kutteh, R.;

Long, X.; Nicholas, J.; Nichols, J. et al. Parallel Computational Chemistry Made Easier:

The Development of NWChem. Int. J. Quant. Chem. 1995, 56, 475–483.

5. Anchell, J.; Apra, E.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.;

Deegan, M.; Dupuis, M.; Dyall, K. et al. NWChem, Version 3.2. High Performance

Computational Chemistry Group, Pacific Northwestern National Laboratory, Richland,

WA, 1998.

6. Kendall, R. A.; Aprá, E.; Bernholdt, D. E.; Bylaska, E. J.; Dupuis, M.; Fann, G. I.; Har-

rison, R. J.; Ju, J.; Nichols, J. A.; Nieplocha, J. et al. High Performance Computational

Chemistry: An Overview of NWChem a Distributed Parallel Application. Comput. Phys.

Commun. 2000, 128, 260–283.

7. Harrison, R.; Nichols, J.; Straatsma, T.; Dupuis, M.; Bylaska, E.; Fann, G.; Windus, T.;

Apra, E.; Anchell, J.; Bernholdt, D. et al. NWChem, A Computational Chemistry

Package for Parallel Computers, version 4.1. Pacific Northwest National Laboratory,

Richland, Washington, 2000.

8. Straatsma, T. P.; Apra, E.; Windus, T.; Bylaska, E.; de Jong, W.; Hirata, S.; Valiev, M.;

Hackler, M.; Pollack, L.; Harrison, R. et al. NWChem, A Computational Chemistry Pack-

age for Parallel Computers, Version 4.6 (2004). Pacific Northwest National Laboratory,

Richland, Washington.

66

https://www.nitrd.gov/nsci/

9. Apra, E.; Windus, T.; Straatsma, T. P.; Bylaska, E.; de Jong, W.; Hirata, S.; Valiev, M.;

Hackler, M.; Pollack, L.; Kowalski, K. et al. NWChem, A Computational Chemistry

Package for Parallel Computers, Version 4.7. Pacific Northwest National Laboratory,

Richland, Washington, 2005.

10. Bylaska, E.; De Jong, W.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.;

Wang, D.; Apra, E.; Windus, T.; Hammond, J. et al. NWChem, A Computational

Chemistry Package for Parallel Computers, Version 5.1. Pacific Northwest National

Laboratory, Richland, Washington, 2007.

11. Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H.;

Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. et al. NWChem: A Comprehensive and

Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput. Phys.

Commun. 2010, 181, 1477–1489.

12. Schmidt, M.; Baldridge, K.; Boatz, J.; Elbert, S.; Gordon, M.; Jensen, J.; Koseki, S.;

Matsunaga, N.; Nguyen, K.; Su, S. et al. General Atomic and Molecular Electronic

Structure System GAMESS. J. Comp. Chem. 1993, 11, 1347–1363.

13. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput.

Phys. 1995, 117, 1–19.

14. Kim, J.; Baczewski, A. D.; Beaudet, T. D.; Benali, A.; Bennett, M. C.; Berrill, M. A.;

Blunt, N. S.; Borda, E. J. L.; Casula, M.; Ceperley, D. M. et al. QMCPACK: An Open

Source ab initio Quantum Monte Carlo Package for the Electronic Structure of Atoms,

Molecules and Solids. J. Phys.: Condens. Matter 2018, 30, 195901.

15. McKone, T. E.; Nazaroff, W. W.; Berck, P.; Auffhammer, M.; Lipman, T.; Torn, M. S.;

Masanet, E.; Lobscheid, A.; Santero, N.; Mishra, U. et al. Grand Challenges for Life-Cycle

Assessment of Biofuels. Environ. Sci. Technol. 2011, 45, 1751–1756.

16. Goddard, W. A.; Dunning, T. H.; Hunt, W. J.; Hay, P. J. Generalized Valence Bond

Description of Bonding in Low-Lying States of Molecules. Acc. Chem. Res. 1973, 6,

368–376.

67

17. Lischka, H.; Müller, T.; Szalay, P. G.; Shavitt, I.; Pitzer, R. M.; Shepard, R. Columbus –

A Program System for Advanced Multireference Theory Calculations. WIREs Comput.

Mol. Sci. 2011, 1, 191–199.

18. Guest, M. F.; Bush, I. J.; Dam, H. J. J. V.; Sherwood, P.; Thomas, J. M. H.; Lenthe, J.

H. V.; Havenith, R. W. A.; Kendrick, J. The GAMESS-UK Electronic Structure Package:

Algorithms, Developments and Applications. Mol. Phys. 2005, 103, 719–747.

19. Dupuis, M.; Watts, J.; Villar, H.; Hurst, G. The General Atomic and Molecular Electronic

Structure System Hondo: Version 7.0. Comput. Phys. Commun. 1989, 52, 415–425.

20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16

Revision B.01. 2016; Gaussian Inc. Wallingford CT.

21. Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.;

De Vico, L.; Fdez. Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L. et al. Molcas

8: New Capabilities for Multiconfigurational Quantum Chemical Calculations Across

the Periodic Table. J. Comput. Chem. 2016, 37, 506–541.

22. Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Molpro: A General-

Purpose Quantum Chemistry Program Package. WIREs Comput. Mol. Sci. 2012, 2,

242–253.

23. Balasubramani, S. G.; Chen, G. P.; Coriani, S.; Diedenhofen, M.; Frank, M. S.;

Franzke, Y. J.; Furche, F.; Grotjahn, R.; Harding, M. E.; Hättig, C. et al. TURBO-

MOLE: Modular Program Suite for ab initio Quantum-Chemical and Condensed-Matter

Simulations. J. Chem. Phys. 2020, 152, 184107.

24. Perera, A.; Bartlett, R. J.; Sanders, B. A.; Lotrich, V. F.; Byrd, J. N. Advanced Concepts

in Electronic Structure (ACES) Software Programs. J. Chem. Phys. 2020, 152, 184105.

25. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S.

J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22,

931–967.

68

26. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;

Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr. Cryst. Mater.

2005, 220, 567–570.

27. CPMD. https://www.cpmd.org/wordpress/, 2020; [Online; accessed 23-July-2020].

28. Salahub, D.; Goursot, A.; Weber, J.; Koster, A.; Vela, A. In Theory and Applications of

Computational Chemistry: The First 40 Years. A Volume of Technical and Historical

Perspectives; Dykstra, C. E., Frenking, G., Kim, K., Scuseria, G. E., Eds.; Elsevier,

2005; Chapter Applied Density Functional Theory and the deMon Codes: 1964-2004.

29. Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab initio Total-Energy Calcu-

lations Using a Plane-wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186.

30. Case, D. A.; Cheatham III, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr., K. M.;

Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber Biomolecular

Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688.

31. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.;

Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and

Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217.

32. Rackers, J. A.; Wang, Z.; Lu, C.; Laury, M. L.; Lagardère, L.; Schnieders, M. J.;

Piquemal, J.-P.; Ren, P.; Ponder, J. W. Tinker 8: Software Tools for Molecular Design.

J. Chem. Theory Comput. 2018, 14, 5273–5289.

33. MolSSI CMS Software Database. https://molssi.org/software-search/, 2020; [On-

line; accessed 23-July-2020].

34. Wikipedia Category: Computational chemistry software. https://en.wikipedia.

org/wiki/Category:Computational_chemistry_software, 2020; [Online; accessed

23-July-2020].

35. Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: Atomistic Simulations

of Condensed Matter Systems. WIREs Comput. Mol. Sci. 2014, 4, 15–25.

69

https://www.cpmd.org/wordpress/
https://molssi.org/software-search/
https://en.wikipedia.org/wiki/Category:Computational_chemistry_software
https://en.wikipedia.org/wiki/Category:Computational_chemistry_software

36. Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.;

Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D. et al. Scalable Algorithms

for Molecular Dynamics Simulations on Commodity Clusters. SC ’06: Proceedings of

the 2006 ACM/IEEE Conference on Supercomputing. 2006; pp 43–43.

37. Berendsen, H.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing

Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56.

38. Peng, C.; Lewis, C. A.; Wang, X.; Clement, M. C.; Pierce, K.; Rishi, V.; Pavošević, F.;

Slattery, S.; Zhang, J.; Teke, N. et al. Massively Parallel Quantum Chemistry: A

High-Performance Research Platform for Electronic Structure. J. Chem. Phys. 2020,

153, 044120.

39. Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.;

Lange, A. W.; Behn, A.; Deng, J.; Feng, X. et al. Advances in Molecular Quan-

tum Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113,

184–215.

40. García, A.; Papior, N.; Akhtar, A.; Artacho, E.; Blum, V.; Bosoni, E.; Brandimarte, P.;

Brandbyge, M.; Cerdá, J. I.; Corsetti, F. et al. Siesta: Recent Developments and

Applications. J. Chem. Phys. 2020, 152, 204108.

41. Nieplocha, J.; Harrison, R. J.; Littlefield, R. J. Global Arrays: A Portable "Shared-

memory" Programming Model for Distributed Memory Computers. Proceedings of the

1994 ACM/IEEE Conference on Supercomputing. Los Alamitos, CA, USA, 1994; pp

340–349.

42. Bachega, L.; Siddhartha Chatterjee,; Dockser, K. A.; Gunnels, J. A.; Manish Gupta,;

Gustavson, F. G.; Lapkowski, C. A.; Liu, G. K.; Mendell, M. P.; Wait, C. D. et al. A High-

Performance SIMD Floating Point Unit for BlueGene/L: Architecture, Compilation, and

Algorithm Design. Proceedings. 13th International Conference on Parallel Architecture

and Compilation Techniques, 2004. PACT 2004. 2004; pp 85–96.

70

43. Gschwind, M.; Hofstee, H. P.; Flachs, B.; Hopkins, M.; Watanabe, Y.; Yamazaki, T.

Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro 2006, 26, 10–24.

44. Streitz, F. H.; Glosli, J. N.; Patel, M. V.; Chan, B.; Yates, R. K.; de Supinski, B. R.;

Sexton, J.; Gunnels, J. A. 100 + TFlop Solidification Simulations on BlueGene / L.

Proceedings of IEEE/ACM Supercomputing. 2005.

45. Gygi, F.; Yates, R. K.; Lorenz, J.; Draeger, E. W.; Franchetti, F.; Ueberhuber, C. W.;

de Supinski, B. R.; Kral, S.; Gunnels, J. A.; Sexton, J. C. Large-Scale First-Principles

Molecular Dynamics Simulations on the BlueGene/L Platform Using the Qbox Code.

SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. 2005; pp

24–24.

46. Sodani, A.; Gramunt, R.; Corbal, J.; Kim, H.; Vinod, K.; Chinthamani, S.; Hutsell, S.;

Agarwal, R.; Liu, Y. Knights Landing: Second-Generation Intel Xeon Phi Product.

IEEE Micro 2016, 36, 34–46.

47. Dagum, L.; Menon, R. OpenMP: An Industry Standard API for Shared-Memory

Programming. CSE-M, IEEE 1998, 5, 46–55.

48. Bylaska, E. J.; Jacquelin, M.; de Jong, W. A.; Hammond, J. R.; Klemm, M. Performance

Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the

Intel© Xeon Phi™ Processor. High Performance Computing. Cham, 2017; pp 404–418.

49. Shan, H.; Williams, S.; de Jong, W.; Oliker, L. Thread-Level Parallelization and

Optimization of NWChem for the Intel MIC Architecture. Proceedings of the Sixth

International Workshop on Programming Models and Applications for Multicores and

Manycores. New York, NY, USA, 2015; pp 58–67.

50. Apra, E.; Klemm, M.; Kowalski, K. Efficient Implementation of Many-body Quantum

Chemical Methods on the Intel Xeon Phi Coprocessor. SC ’14: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis. 2014; pp 674–684.

71

51. Huang, H.; Chow, E. Accelerating Quantum Chemistry with Vectorized and Batched

Integrals. Proceedings of the International Conference for High Performance Computing,

Networking, Storage, and Analysis. 2018; p 1–14.

52. Mironov, V.; Moskovsky, A.; D’Mello, M.; Alexeev, Y. An Efficient MPI/OpenMP

Parallelization of the Hartree–Fock–Roothaan Method for the First Generation of Intel©

Xeon Phi™Processor Architecture. Int. J. High Perform. Comput. Appl. 2019, 33,

212–224.

53. Leang, S. S.; Rendell, A. P.; Gordon, M. S. Quantum Chemical Calculations Using

Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel

Xeon Phi. J. Chem. Theory Comput. 2014, 10, 908–912.

54. Owens, J. D.; Houston, M.; Luebke, D.; Green, S.; Stone, J. E.; Phillips, J. C. GPU

Computing. Proceedings of the IEEE 2008, 96, 879–899.

55. Aamodt, T. M.; Fung, W. W. L.; Rogers, T. G.; Martonosi, M. General-Purpose Graphics

Processor Architecture; 2018.

56. Walker, R. C.; W.Götz, A. Electronic Structure Calculations on Graphics Processing

Units: From Quantum Chemistry to Condensed Matter Physics; 2016.

57. Tornai, G. J.; Ladjánszki, I.; Rák, A.; Kis, G.; Cserey, G. Calculation of Quantum

Chemical Two-Electron Integrals by Applying Compiler Technology on GPU. J. Chem.

Theory Comput. 2019, 15, 5319–5331.

58. Ma, W.; Krishnamoorthy, S.; Villa, O.; Kowalski, K. GPU-Based Implementations of the

Noniterative Regularized-CCSD(T) Corrections: Applications to Strongly Correlated

Systems. J. Chem. Theory Comput. 2011, 7, 1316–1327.

59. Kim, J.; Sukumaran-Rajam, A.; Hong, C.; Panyala, A.; Srivastava, R. K.; Krishnamoor-

thy, S.; Sadayappan, P. Optimizing Tensor Contractions in CCSD(T) for Efficient

Execution on GPUs. Proceedings of the 2018 International Conference on Supercomput-

ing. New York, NY, USA, 2018; pp 96–106.

72

60. DePrince, A. E.; Hammond, J. R.; Gray, S. K. Many-Body Quantum Chemistry on

Graphics Processing Units. 2011; https://www.mcs.anl.gov/uploads/cels/papers/

scidac11/final/deprince_eugene.pdf, [Online; accessed 30-January-2021].

61. Asadchev, A.; Gordon, M. S. New Multithreaded Hybrid CPU/GPU Approach to

Hartree–Fock. J. Chem. Theory Comput. 2012, 8, 4166–4176.

62. Yasuda, K. Accelerating Density Functional Calculations with Graphics Processing Unit.

J. Chem. Theory Comput. 2008, 4, 1230–1236.

63. Yoshikawa, T.; Komoto, N.; Nishimura, Y.; Nakai, H. GPU-Accelerated Large-Scale

Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-

Functional Tight-Binding. J. Comput. Chem. 2019, 40, 2778–2786.

64. Genovese, L.; Ospici, M.; Deutsch, T.; Méhaut, J.-F.; Neelov, A.; Goedecker, S. Density

Functional Theory Calculation on Many-Cores Hybrid Central Processing Unit-Graphic

Processing Unit Architectures. J. Chem. Phys. 2009, 131, 034103.

65. Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.; Windus, T. L.

Uncontracted Rys Quadrature Implementation of up to G Functions on Graphical

Processing Units. J. Chem. Theory Comput. 2010, 6, 696–704.

66. DePrince, A. E.; Hammond, J. R. Coupled Cluster Theory on Graphics Processing

Units I. The Coupled Cluster Doubles Method. J. Chem. Theory Comput. 2011, 7,

1287–1295.

67. Snyder, J. W.; Fales, B. S.; Hohenstein, E. G.; Levine, B. G.; Martínez, T. J. A

Direct-Compatible Formulation of the Coupled Perturbed Complete Active Space Self-

Consistent Field Equations on Graphical Processing Units. J. Chem. Phys. 2017, 146,

174113.

68. Ufimtsev, I. S.; Martínez, T. J. Graphical Processing Units for Quantum Chemistry.

Comput. Sci. Eng. 2008, 10, 26–34.

73

https://www.mcs.anl.gov/uploads/cels/papers/scidac11/final/deprince_eugene.pdf
https://www.mcs.anl.gov/uploads/cels/papers/scidac11/final/deprince_eugene.pdf

69. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit, [Online; accessed 30-

August-2020].

70. OpenCL. https://www.khronos.org/opencl/, 2020; [Online; accessed 22-July-2020].

71. HIP Programming Guide. https://rocmdocs.amd.com/en/latest/Programming_

Guides/HIP-GUIDE.html, 2020; [Online; accessed 22-July-2020].

72. Edwards, H. C.; Trott, C. R.; Sunderland, D. Kokkos: Enabling Manycore Performance

Portability Through Polymorphic Memory Access Patterns. J. Parallel Distrib. Comput.

2014, 74, 3202–3216.

73. RAJA Performance Portability Layer. https://github.com/LLNL/RAJA, 2020; [Online;

accessed 22-July-2020].

74. Shiozaki, T. BAGEL: Brilliantly Advanced General Electronic-structure Library. WIREs

Comput. Mol. Sci. 2018, 8, e1331.

75. Anderson, J. A.; Glaser, J.; Glotzer, S. C. HOOMD-blue: A Python Package for High-

Performance Molecular Dynamics and Hard Particle Monte Carlo Simulations. Comput.

Mater. Sci. 2020, 173, 109363.

76. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.;

Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput.

Chem. 2005, 26, 1781–1802.

77. Eastman, P.; Swails, J.; Chodera, J.; McGibbon, R.; Zhao, Y.; Beauchamp, K.; Wang, L.-

P.; Simmonett, A.; Harrigan, M.; Stern, C. et al. OpenMM 7: Rapid Development of

High Performance Algorithms for Molecular Dynamics. PLOS Comp. Biol. 2017, 13,

e1005659.

78. Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78.

79. Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Dona-

dio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A. et al. PLUMED: A Portable Plugin

74

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://github.com/LLNL/RAJA

for Free-Energy Calculations with Molecular Dynamics. Comput. Phys. Commun. 2009,

180, 1961–1972.

80. Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.;

Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M. et al. Psi4

1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced

Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197.

81. Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.;

McClain, J. D.; Sayfutyarova, E. R.; Sharma, S. et al. PySCF: The Python-Based

Simulations of Chemistry Framework. WIREs Comput. Mol. Sci. 2018, 8, e1340.

82. Gygi, F. Architecture of Qbox: A Scalable First-Principles Molecular Dynamics Code.

IBM J. Res. Dev. 2008, 52, 137–144.

83. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.;

Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A Modular

and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.:

Condens. Matter 2009, 21, 395502.

84. Dongarra, J.; Beckman, P.; Moore, T.; Aerts, P.; Aloisio, G.; Andre, J.-C.; Barkai, D.;

Berthou, J.-Y.; Boku, T.; Braunschweig, B. et al. The International Exascale Software

Project Roadmap. Int. J. High Perform. Comput. Appl. 2011, 25, 3–60.

85. Cociorva, D.; Wilkins, J.; Baumgartner, G.; Sadayappan, P.; Ramanujam, J.; Nooijen, M.;

Bernholdt, D.; Harrison, R. Towards Automatic Synthesis of High-Performance Codes

for Electronic Structure Calculations: Data Locality Optimization. High Performance

Computing — HiPC 2001. Berlin, Heidelberg, 2001; pp 237–248.

86. Kerbyson, D.; Vishnu, A.; Barker, K.; Hoisie, A. Codesign Challenges for Exascale

Systems: Performance, Power, and Reliability. Computer 2011, 44, 37–43.

87. Lee, J.; Sun, J.; Peterson, G.; Harrison, R.; Hinde, R. Power-aware Performance of

Mixed Precision Linear Solvers for FPGAs and GPGPUs. Application Accelerators in

High Performance Computing, 2010 Symposium, Papers. 2010.

75

88. Fought, E. L.; Sundriyal, V.; Sosonkina, M.; Windus, T. L. Saving Time and Energy with

Oversubscription and Semi-direct Møller–Plesset Second Order Perturbation Methods.

J. Comput. Chem. 2017, 38, 830–841.

89. Fought, E. L.; Sundriyal, V.; Sosonkina, M.; Windus, T. L. Improving Efficiency of Semi-

direct Møller–Plesset Second-order Perturbation Methods Through Oversubscription on

Multiple Nodes. J. Comput. Chem. 2019, 40, 2146–2157.

90. Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.;

Buch, R.; Fiorin, G.; HÃ©nin, J.; Jiang, W. et al. Scalable Molecular Dynamics on

CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130.

91. Jain, N.; Bohm, E.; Mikida, E.; Mandal, S.; Kim, M.; Jindal, P.; Li, Q.; Ismail-Beigi, S.;

Martyna, G.; Kale, L. OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse

Capabilities. International Supercomputing Conference. 2016.

92. de Jong, W. A.; Bylaska, E.; Govind, N.; Janssen, C. L.; Kowalski, K.; Müller, T.;

Nielsen, I. M. B.; van Dam, H. J. J.; Veryazov, V.; Lindh, R. Utilizing High Performance

Computing for Chemistry: Parallel Computational Chemistry. Phys. Chem. Chem. Phys.

2010, 12, 6896–6920.

93. Schüler, M.; Kovar, T.; Lischka, H.; Shepard, R.; Harrison, R. J. A Parallel Implemen-

tation of the COLUMBUS Multireference Configuration Interaction Program. Theor.

Chim. Acta 1993, 84, 489 – 509.

94. Lischka, H.; Dachsel, H.; Shepard, R.; Harrison, R. J. Parallel Computing in Quantum

Chemistry — Message Passing and Beyond for a General ab initio Program System.

Future Gener. Comput. Syst. 1995, 11, 445 – 450.

95. Wong, A. T.; Harrison, R. J. Approaches to Large-Scale Parallel Self-Consistent Field

Calculations. J. Comput. Chem. 1995, 16, 1291–1300.

96. Richard, R. M.; Bertoni, C.; Boschen, J. S.; Keipert, K.; Pritchard, B.; Valeev, E. F.;

Harrison, R. J.; de Jong, W. A.; Windus, T. L. Developing a Computational Chemistry

Framework for the Exascale Era. Comput. Sci. Eng. 2019, 21, 48–58.

76

97. van Dam, H. J. J.; Vishnu, A.; de Jong, W. A. A Case for Soft Error Detection and

Correction in Computational Chemistry. J. Chem. Theory Comput. 2013, 9, 3995–4005.

98. Vishnu, A.; Van Dam, H.; De Jong, W.; Balaji, P.; Song, S. Fault-Tolerant Commu-

nication Runtime Support for Data-Centric Programming Models. 2010 International

Conference on High Performance Computing. 2010; pp 1–9.

99. van Dam, H. J. J.; Vishnu, A.; de Jong, W. A. Designing a Scalable Fault Tolerance

Model for High Performance Computational Chemistry: A Case Study with Coupled

Cluster Perturbative Triples. J. Chem. Theory Comput. 2011, 7, 66–75.

100. Meneses, E.; Ni, X.; Zheng, G.; Mendes, C. L.; Kalé, L. V. Using Migratable Objects to

Enhance Fault Tolerance Schemes in Supercomputers. IEEE Trans. Parallel Distrib.

Syst. 2015, 26, 2061–2074.

101. Hogan, S.; Hammond, J. R.; Chien, A. A. An Evaluation of Difference and Threshold

Techniques for Efficient Checkpoints. Proceedings of IEEE Dependable Systems and

Networks Workshops (DSN-W). Boston, MA, 2012; pp 1–6.

102. VELOC. https://github.com/ECP-VeloC/VELOC, 2018; [Online; accessed 29-August-

2020].

103. Nicolae, B.; Moody, A.; Gonsiorowski, E.; Mohror, K.; Cappello, F. Veloc: Towards

High Performance Adaptive Asynchronous Checkpointing at Large Scale. Proceedings -

2019 IPDPS 2019, 911–920.

104. Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.;

Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A. Jaguar: A High-

Performance Quantum Chemistry Software Program with Strengths in Life and Materials

Sciences. Int. J. Quant. Chem. 2013, 113, 2110–2142.

105. Baker, J.; Wolinski, K.; Malagoli, M.; Kinghorn, D.; Wolinski, P.; Magyarfalvi, G.;

Saebo, S.; Janowski, T.; Pulay, P. Quantum Chemistry in Parallel with PQS. J. Comput.

Chem. 2009, 30, 317–335.

77

https://github.com/ECP-VeloC/VELOC

106. Seritan, S.; Bannwarth, C.; Fales, B. S.; Hohenstein, E. G.; Isborn, C. M.; Kokkila-

Schumacher, S. I. L.; Li, X.; Liu, F.; Luehr, N.; Snyder Jr., J. W. et al. TeraChem: A

Graphical Processing Unit-Accelerated Electronic Structure Package for Large-Scale ab

initio Molecular Dynamics. WIREs Comput. Mol. Sci. e1494.

107. Geudtner, G.; Calaminici, P.; Carmona-Espíndola, J.; del Campo, J. M.; Domínguez-

Soria, V. D.; Moreno, R. F.; Gamboa, G. U.; Goursot, A.; Köster, A. M.; Reveles, J. U.

et al. deMon2k. WIREs Comput. Mol. Sci. 2012, 2, 548–555.

108. Muller, R. P. PyQuante: Python Quantum Chemistry.

https://sourceforge.net/projects/pyquante/, [Online; accessed 27-January-2021].

109. Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.;

Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M. et al. ABINIT: First-Principles Approach

to Material and Nanosystem Properties. Comput. Phys. Commun. 2009, 180, 2582–2615.

110. Deumens, E.; Lotrich, V. F.; Perera, A.; Ponton, M. J.; Sanders, B. A.; Bartlett, R. J.

Software Design of Aces III with the Super Instruction Architecture. WIREs Comput.

Mol. Sci. 2011, 1, 895–901.

111. Ratcliff, L. E.; Dawson, W.; Fisicaro, G.; Caliste, D.; Mohr, S.; Degomme, A.; Videau, B.;

Cristiglio, V.; Stella, M.; D’Alessandro, M. et al. Flexibilities of Wavelets as a Compu-

tational Basis Set for Large-Scale Electronic Structure Calculations. J. Chem. Phys.

2020, 152, 194110.

112. Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.;

Cimiraglia, R.; Coriani, S.; Dahle, P. et al. The Dalton Quantum Chemistry Program

System. WIREs Comput. Mol. Sci. 2014, 4, 269–284.

113. Harrison, R. J.; Beylkin, G.; Bischoff, F. A.; Calvin, J. A.; Fann, G. I.; Fosso-Tande, J.;

Galindo, D.; Hammond, J. R.; Hartman-Baker, R.; Hill, J. C. et al. MADNESS: A

Multiresolution, Adaptive Numerical Environment for Scientific Simulation. SIAM J.

Sci. Comput. 2016, 38, S123–S142.

78

114. Tancogne-Dejean, N.; Oliveira, M. J. T.; Andrade, X.; Appel, H.; Borca, C. H.; Le Bre-

ton, G.; Buchholz, F.; Castro, A.; Corni, S.; Correa, A. A. et al. Octopus, a Computa-

tional Framework for Exploring Light-Driven Phenomena and Quantum Dynamics in

Extended and Finite Systems. J. Chem. Phys. 2020, 152, 124119.

115. Tichy, W. F. Design, Implementation, and Evaluation of a Revision Control System.

Proceedings of the 6th International Conference on Software Engineering. Washington,

DC, USA, 1982; p 58–67.

116. Grune, D. Concurrent Versions System, A Method for Independent Cooperation. On-

line, accessed 27-January-2021, 1986; https://dickgrune.com/Books/Publications/

Concurrent_Versions_System,_a_method_for_independent_cooperation.pdf.

117. Collins-Sussman, B.; Fitzpatrick, B. W.; Pilato, C. M. Version Control with Subversion;

O’Reilly Media, 2011.

118. Torvalds, L. Tech Talk: Linus Torvalds on git. Online, accessed 27-January-2021, 2007;

https://www.youtube.com/watch?v=4XpnKHJAok8&t=1m30s.

119. Pool, M. Bazaar. Online, accessed 27-January-2021, 2005; https://bazaar.canonical.

com/en/.

120. SourceForge. Online, accessed 27-January-2021, 1999; https://sourceforge.net/.

121. Preston-Werner, T.; Wanstrath, C.; Hyett, P. J.; Chacon, S. GitHub. Online, accessed

27-January-2021, 2008; https://github.com/.

122. Sijbrandij, S.; Zaporozhets, D. GitLab. Online, accessed 28-January-2021, 2014; https:

//gitlab.com/.

123. Launchpad. Online, accessed 28-January-2021, 2004; https://launchpad.net/.

124. CDash. Online, accessed 28-January-2021, https://cdash.org.

125. Travis CI. Online, accessed 28-January-2021, 2011; https://travis-ci.com.

126. CircleCI. Online, accessed 28-January-2021, 2011; https://circleci.com.

79

https://dickgrune.com/Books/Publications/Concurrent_Versions_System,_a_method_for_independent_cooperation.pdf
https://dickgrune.com/Books/Publications/Concurrent_Versions_System,_a_method_for_independent_cooperation.pdf
https://www.youtube.com/watch?v=4XpnKHJAok8&t=1m30s
https://bazaar.canonical.com/en/
https://bazaar.canonical.com/en/
https://sourceforge.net/
https://github.com/
https://gitlab.com/
https://gitlab.com/
https://launchpad.net/
https://cdash.org
https://travis-ci.com
https://circleci.com

127. Sijbrandij, S.; Zaporozhets, D. GitLabCI. Online, accessed 28-January-2021, 2016;

https://gitlab.com.

128. Preston-Werner, T.; Wanstrath, C.; Hyett, P. J.; Chacon, S. GitHub Actions CI. Online,

accessed 28-January-2021, 2018; https://github.com.

129. Codecov – Develop healthier code. 2016; https://www.codecov.io/, [Online; accessed

7-May-2020].

130. Looks Good To Me (LGTM). Online, accessed 28-January-2021, 2007; https://lgtm.

com.

131. d. Moor, O.; Verbaere, M.; Hajiyev, E.; Avgustinov, P.; Ekman, T.; Ongkingco, N.;

Sereni, D.; Tibble, J. Keynote Address: .QL for Source Code Analysis. Seventh IEEE

International Working Conference on Source Code Analysis and Manipulation (SCAM

2007). 2007; pp 3–16.

132. van Heesch, D. Doxygen. 1997; https://www.doxygen.nl, [Online; accessed 7-May-

2020].

133. Brandl, G. Sphinx – Python Documentation Generator. 2008; https://www.

sphinx-doc.org/, [Online; accessed 7-May-2020].

134. Loper, E. Epydoc. Online, accessed 28-January-2021, 2002; http://epydoc.

sourceforge.net/.

135. Holscher, E.; Grace, B.; Leifer, C. Read the Docs. Online, accessed 28-January-2021,

2010; https://readthedocs.org/.

136. van Weert, J. ROBODoc. Online, accessed 28-January-2021, 1994; https://rfsber.

home.xs4all.nl/Robo/index.html.

137. Apache 2.0. https://www.apache.org/licenses/LICENSE-2.0, 2019; [Online; ac-

cessed 30-August-2020].

138. CMake. 2000; https://cmake.org/, [Online; accessed 7-May-2020].

80

https://gitlab.com
https://github.com
https://www.codecov.io/
https://lgtm.com
https://lgtm.com
https://www.doxygen.nl
https://www.sphinx-doc.org/
https://www.sphinx-doc.org/
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
https://readthedocs.org/
https://rfsber.home.xs4all.nl/Robo/index.html
https://rfsber.home.xs4all.nl/Robo/index.html
https://www.apache.org/licenses/LICENSE-2.0
https://cmake.org/

139. CMakePP – Automating and Simplifying CMake Build Systems. 2020; https://github.

com/cmakepp, [Online; accessed 7-May-2020].

140. Catch2. https://github.com/catchorg/Catch2, 2020; [Online; accessed 22-July-

2020].

141. gcov – a Test Coverage Program. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html,

[Online; accessed 7-May-2020].

142. Hart, W.; Atkinson, L. Gcovr – generate GCC code coverage reports. 2013; https:

//github.com/gcovr/gcovr/, [Online; accessed 7-May-2020].

143. McDonald, A. R.; Nash, J. A.; Nerenberg, P. S.; Ball, K. A.; Sode, O.; Foley IV, J. J.;

Windus, T. L.; Crawford, T. D. Building Capacity for Undergraduate Education and

Training in Computational Molecular Science: A Collaboration Between the MERCURY

Consortium and the Molecular Sciences Software Institute. Int. J. Quant. Chem. 2020,

120, e26359.

144. Michie, D. "Memo" Functions and Machine Learning. Nature 1968, 218, 19–22.

145. Ahuja,; Carriero,; Gelernter, Linda and Friends. Computer 1986, 19, 26–34.

146. Fletcher, G. D.; Schmidt, M. W.; Bode, B. M.; Gordon, M. S. The Distributed Data

Interface in GAMESS. Comput. Phys. Commun. 2000, 128, 190 – 200.

147. Kalé, L. V. Parallel Programming with CHARM: An Overview ; 1993.

148. Kalé, L. V.; Krishnan, S. CHARM++: A Portable Concurrent Object Oriented System

Based on C++. Proceedings of the Eighth Annual Conference on Object-oriented

Programming Systems, Languages, and Applications. 1993; pp 91–108.

149. Kalé, L. V.; Ramkumar, B.; Sinha, A. B.; Saletore, V. A. The CHARM Parallel

Programming Language and System: Part II – The Runtime system; 1994.

150. Kim, M.; Mandal, S.; Mikida, E.; Chandrasekar, K.; Bohm, E.; Jain, N.; Li, Q.;

Kanakagiri, R.; Martyna, G. J.; Kale, L. et al. Scalable GW Software for Quasiparticle

Properties Using OpenAtom. Comput. Phys. Commun. 2019, 244, 427–441.

81

https://github.com/cmakepp
https://github.com/cmakepp
https://github.com/catchorg/Catch2
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/gcovr/gcovr/
https://github.com/gcovr/gcovr/

151. Borštnik, U.; VandeVondele, J.; Weber, V.; Hutter, J. Sparse Matrix Multiplication:

The Distributed Block-Compressed Sparse Row Library. Parallel Comput. 2014, 40, 47

– 58.

152. Nieplocha, J.; Harrison, R.; Littlefield, R. The Global Array Programming Model for

High Performance Scientific Computing. SIAM News 1995, 28, 12–14.

153. Nieplocha, J.; Harrison, R. J.; Littlefield, R. J. Global Arrays: A Nonuniform Memory

Access Programming Model for High-Performance Computers. J. Supercomput. 1996,

10, 169–189.

154. Nieplocha, J.; Harrison, R. J. Shared Memory NUMA programming on I-WAY. Proceed-

ings of 5th IEEE International Symposium on High Performance Distributed Computing.

1996; pp 432–441.

155. Dachsel, H.; Nieplocha, J.; Harrison, R. An Out-Of-Core Implementation of the COLUM-

BUS Massively-Parallel Multireference Configuration Interaction Program. SC’98: Pro-

ceedings of the 1998 ACM/IEEE Conference on Supercomputing. 1998; pp 41–41.

156. Nieplocha, J.; Tipparaju, V.; Saify, A.; Panda, D. Protocols and Strategies for Optimizing

Performance of Remote Memory Operations on Clusters. Proceedings of the 16th

International Parallel and Distributed Processing Symposium. p 275.

157. Dinan, J.; Balaji, P.; Hammond, J. R.; Krishnamoorthy, S.; Tipparaju, V. Supporting

the Global Arrays PGAS Model Using MPI One-Sided Communication. 2012 IEEE

26th International Parallel and Distributed Processing Symposium. 2012; pp 739–750.

158. Shah, G.; Nieplocha, J.; Mirza, J.; Kim, C.; Harrison, R.; Govindaraju, R. K.;

Gildea, K.; DiNicola, P.; Bender, C. Performance and Experience With LAPI-A New

High-Performance Communication Library for the IBM RS/6000 SP. Proceedings of the

First Merged International Parallel Processing Symposium and Symposium on Parallel

and Distributed Processing. 1998; pp 260–266.

159. Fedorov, D. G.; Olson, R. M.; Kitaura, K.; Gordon, M. S.; Koseki, S. A New Hierar-

chical Parallelization Scheme: Generalized Distributed Data Interface (GDDI), and

82

an Application to the Fragment Molecular Orbital Method (FMO). J. Comput. Chem.

2004, 25, 872–880.

160. Wang, M.; May, A. J.; Knowles, P. J. Parallel Programming Interface for Distributed

Data. Comput. Phys. Commun. 2009, 180, 2673 – 2679.

161. Vancoillie, S.; Delcey, M. G.; Lindh, R.; Vysotskiy, V.; Malmqvist, P.-A.; Veryazov, V.

Parallelization of a Multiconfigurational Perturbation Theory. J. Comput. Chem. 2013,

34, 1937–1948.

162. Alpert, B.; Beylkin, G.; Gines, D.; Vozovoi, L. Adaptive Solution of Partial Differential

Equations in Multiwavelet Bases. J. Comput. Phys. 2002, 182, 149–190.

163. Harrison, R.; Fann, G.; Yanai, T.; Beylkin, G. Multiresolution Quantum Chemistry

in Multiwavelet Bases. International Conference on Computational Science. 2003; pp

103–110.

164. Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Y.; Thornton, S. Adaptive

Multi-resolution 3D Hartree-Fock-Bogoliubov Solver for Nuclear Structure. Phys. Rev.

C 2014, 90, 024317.

165. Pei, J.; Stoitsov, M.; Fann, G.; Nazarewicz, W.; Schunck, N.; Xu, F. Deformed

Coordinate-Space Hartree-Fock-Bogoliubov Approach to Weakly Bound Nuclei and

Large Deformations. Phy. Rev. C 2008, 78, 064306.

166. Fann, G.; Pei, J.; Harrison, R. J.; Jia, J.; Ou, M.; Nazarewciz, W.; Schunck, N.;

Shelton, W. A. Fast Multiresolution Methods for Density Functional Theory in Nuclear

Physics. Physics: Conference Series 180 2009, 012080.

167. Pei, J.; Fann, G.; Nazarewicz, W.; Harrison, R.; Hill, J.; Galindo, D.; Jia, J. Coordinate-

Space Hartree-Fock-Bogoliubov for Superfluid Fermi Systems in Large Boxes. J. Phys.

Conf. Ser. 402 2012, 012035.

168. Reuter, M.; Hill, J.; Harrison, R. Solving PDEs in Irregular Geometries with Multireso-

lution Methods I: Embedded Dirichlet Boundary Conditions. Comput. Phys. Commun.

2012, 183, 1–7.

83

169. Harrison, R.; Fann, G.; Yanai, T.; Gan, Z.; Beylkin, G. Multiresolution Quantum

Chemistry: Basic Theory and Initial Applications. J. Chem. Phys. 2004, 121, 11587–

11598.

170. Yanai, T.; Fann, G.; Gan, Z.; Harrison, R.; Beylkin, G. Multiresolution Quantum

Chemistry: Hartree-Fock Exchange. J. Chem. Phys. 2004, 121, 6680–6688.

171. Sekino, H.; Maeda, Y.; Yanai, T.; Harrison, R. J. Basis Set Limit Hartree-Fock and Den-

sity Functional Theory Response Property Evaluation by Multiresolution Multiwavelet

Basis. J. Chem. Phys. 2008, 129, 18647020.

172. Thornton, W. Electronic Excitations in YTiO3 using TDDFT and Electronic Structure

Using a Multiresolution Framework. Ph.D. thesis, University of Tennessee, Knoxville,

2011.

173. Vence, N.; Harrison, R.; Krstić, P. Attosecond Electron Dynamics: A Multiresolution

Approach. Phys. Rev. A 2012, 85, 033403.

174. Baker Jr., H. G.; Hewitt, C. The Incremental Garbage Collection of Processes. Pro-

ceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages.

1977; pp 55–59.

175. Blumofe, R. D.; Joerg, C. F.; Kuszmaul, B. C.; Leiserson, C. E.; Randall, K. H.; Zhou, Y.

Cilk: An Efficient Multithreaded Runtime System. Proceedings of the Fifth ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).

Santa Barbara, California, 1995; pp 207–216.

176. Blumofe, R. D.; Joerg, C. F.; Kuszmaul, B. C.; Leiserson, C. E.; Randall, K. H.;

Zhou, Y. L. Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distrib.

Comput. 1996, 37, 55–69.

177. Threading Building Blocks. https://www.threadingbuildingblocks.org, [Online;

accessed 30-August-2020].

84

https://www.threadingbuildingblocks.org

178. Schmidt, D. C. The ADAPTIVE Communication Environment (ACE). http://www.

dre.vanderbilt.edu/~schmidt/ACE.html, [Online; accessed 30-August-2020].

179. Schmidt, D. C.; Huston, S. D. C++ Network Programming: Systematic Reuse with ACE

and Frameworks, Vol. 2 ; Pearson Education, 2002.

180. Yelick, K.; Bonachea, D.; Chen, W.-Y.; Colella, P.; Datta, K.; Duell, J.; Graham, S. L.;

Hargrove, P.; Hilfinger, P.; Husbands, P. et al. Productivity and Performance Using

Partitioned Global Address Space Languages. Proceedings of the 2007 international

workshop on Parallel symbolic computation. 2007; pp 24–32.

181. Smith, D. G. A.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.;

Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A. et al. PSI4 1.4: Open-

source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152,

184108.

182. A schema for Quantum Chemistry. https://molssi-qc-schema.readthedocs.io/en/

latest/.

183. Grant, W. S.; Voorhies, R. Cereal. https://github.com/USCiLab/cereal, 2013; [On-

line; accessed 29-August-2020].

184. Pezoa, F.; Reutter, J. L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON

Schema. Proceedings of the 25th International Conference on World Wide Web. 2016;

pp 263–273.

185. XML standards for simulation data. http://www.quantum-simulation.org.

186. Murray-Rust, P.; Townsend, J. A.; Adams, S. E.; Phadungsukanan, W.; Thomas, J.

The Semantics of Chemical Markup Language (CML): Dictionaries and Conventions. J.

Cheminf. 2011, 3, 43.

187. Hanwell, M. D.; de Jong, W. A.; Harris, C. J. Open Chemistry: RESTful Web APIs,

JSON, NWChem and the Modern Web Application. J. Cheminf. 2017, 9, 55.

85

http://www.dre.vanderbilt.edu/~schmidt/ACE.html
http://www.dre.vanderbilt.edu/~schmidt/ACE.html
https://molssi-qc-schema.readthedocs.io/en/latest/
https://molssi-qc-schema.readthedocs.io/en/latest/
https://github.com/USCiLab/cereal
http://www.quantum-simulation.org

188. Windus, T. L.; Pople, J. A. Pinnacle: An Approach Toward Object Oriented Quantum

Chemistry. Int. J. Quantum Chem., Symposium Proceedings 1995, 29, 485–495.

189. Janssen, C. L.; Schaefer, H. F. The Automated Solution of Second Quantization Equa-

tions with Applications to the Coupled Cluster Approach. Theor. Chim. Acta 1991, 79,

1–42.

190. Li, X.; Paldus, J. Automation of the Implementation of Spin-Adapted Open-Shell

Coupled-Cluster Theories Relying on the Unitary Group Formalism. J. Chem. Phys.

1994, 101, 8812–8826.

191. Kállay, M.; Surján, P. R. Higher Excitations in Coupled-Cluster Theory. J. Chem. Phys.

2001, 115, 2945–2954.

192. Nooijen, M.; Lotrich, V. Towards a General Multireference Coupled Cluster Method:

Automated Implementation of Open-Shell CCSD Method for Doublet States. J. Mol.

Struct. THEOCHEM 2001, 547, 253–267.

193. Nooijen, M. State Selective Equation of Motion Coupled Cluster Theory: Some Prelimi-

nary Results. Int. J. Mol. Sci. 2002, 3, 656–675.

194. Hirata, S. Tensor Contraction Engine: Abstraction and Automated Parallel Implemen-

tation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation

Theories. J. Phys. Chem. A 2003, 107, 9887–9897.

195. Hirata, S. Symbolic Algebra in Quantum Chemistry. Theor. Chem. Acc. 2006, 116,

2–17.

196. Deumens, E.; Lotrich, V. F.; Perera, A. S.; Bartlett, R. J.; Jindal, N.; Sanders, B. A.

Annual Reports in Computational Chemistry ; Elsevier, 2011; Vol. 7; Chapter The Super

Instruction Architecture: A Framework for High-Productivity Parallel Implementation

of Coupled-Cluster Methods on Petascale Computers, pp 179–191.

197. Epifanovsky, E.; Wormit, M.; Kuś, T.; Landau, A.; Zuev, D.; Khistyaev, K.; Manohar, P.;

Kaliman, I.; Dreuw, A.; Krylov, A. I. New Implementation of High-Level Correlated

86

Methods Using a General Block Tensor Library for High-Performance Electronic Struc-

ture Calculations. J. Comput. Chem. 2013, 34, 2293–2309.

198. Solomonik, E.; Matthews, D.; Hammond, J.; Demmel, J. Cyclops Tensor Framework:

Reducing Communication and Eliminating Load Imbalance in Massively Parallel Contrac-

tions. 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

2013; pp 813–824.

199. Solomonik, E.; Matthews, D.; Hammond, J. R.; Stanton, J. F.; Demmel, J. A Massively

Parallel Tensor Contraction Framework for Coupled-Cluster Computations. J. Parallel

Distrib. Comput. 2014, 74, 3176–3190.

200. Matthews, D. A.; Stanton, J. F. Non-Orthogonal Spin-Adaptation of Coupled Cluster

Methods: A New Implementation of Methods Including Quadruple Excitations. J. Chem.

Phys. 2015, 142, 064108.

201. Calvin, J. A.; Lewis, C. A.; Valeev, E. F. Scalable Task-Based Algorithm for Mul-

tiplication of Block-Rank-Sparse Matrices. IA3 ’15, The 5th Workshop on Irregular

Applications: Architectures and Algorithms. New York, New York, USA, 2015; pp 1–8.

202. Aprà, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T. P.;

Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J. et al. NWChem: Past, Present,

and Future. J. Chem. Phys. 2020, 152, 184102.

203. Matthews, D. Aquarius: A Parallel Quantum Chemistry Package Built on the Cy-

clops Tensor Framework. https://github.com/devinamatthews/aquarius, [Online;

accessed 30-August-2020].

204. Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.-C.;

Szalay, P. G.; Gauss, J.; Stanton, J. F. Coupled-Cluster Techniques for Computational

Chemistry: The CFOUR Program Package. J. Chem. Phys. 2020, 152, 214108.

205. Kállay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csóka, J.;

Szabó, P. B.; Gyevi-Nagy, L.; Hégely, B. et al. The MRCC Program System: Accurate

Quantum Chemistry From Water to Proteins. J. Chem. Phys. 2020, 152, 074107.

87

https://github.com/devinamatthews/aquarius

206. Baumgartner, G.; Auer, A.; Bernholdt, D. E.; Bibireata, A.; Choppella, V.; Cociorva, D.;

Xiaoyang Gao,; Harrison, R. J.; Hirata, S.; Krishnamoorthy, S. et al. Synthesis of High-

Performance Parallel Programs for a Class of Ab Initio Quantum Chemistry Models.

Proceedings of the IEEE 2005, 93, 276–292.

207. Nieplocha, J.; Harrison, R. Shared Memory Programming in Metacomputing Environ-

ments: The Global Array Approach. J. Supercomput. 1997, 11, 119–136.

208. Kowalski, K.; Krishnamoorthy, S.; Olson, R. M.; Tipparaju, V.; Apra, E. Scalable

Implementations of Accurate Excited-State Coupled Cluster Theories: Application of

High-Level Methods to Porphyrin-Based Systems. Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis. 2011;

p 72.

209. Mutlu, E.; Kowalski, K.; Krishnamoorthy, S. Toward Generalized Tensor Algebra

for ab initio Quantum Chemistry Methods. Proceedings of the 6th ACM SIGPLAN

International Workshop on Libraries, Languages and Compilers for Array Programming.

2019; pp 46–56.

210. TAL-SH: Tensor Algebra Library Routines for Shared Memory Systems. https://

github.com/DmitryLyakh/TAL_SH, 2020; [Online; accessed 21-June-2020].

211. Lyakh, D. I. An Efficient Tensor Transpose Algorithm for Multicore CPU, Intel Xeon

Phi, and NVidia Tesla GPU. Comput. Phys. Commun. 2015, 189, 84–91.

212. Kim, J.; Sukumaran-Rajam, A.; Thumma, V.; Krishnamoorthy, S.; Panyala, A.;

Pouchet, L.; Rountev, A.; Sadayappan, P. A Code Generator for High-Performance Ten-

sor Contractions on GPUs. IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2019, Washington, DC, USA, February 16-20, 2019. 2019; pp

85–95.

213. Lewis, C. A.; Calvin, J. A.; Valeev, E. F. Clustered Low-Rank Tensor Format: Introduc-

tion and Application to Fast Construction of Hartree–Fock Exchange. J. Chem. Theory

Comput. 2016, 12, 5868–5880.

88

https://github.com/DmitryLyakh/TAL_SH
https://github.com/DmitryLyakh/TAL_SH

214. MPI Forum. https://github.com/mpi-forum/, 2020; [Online; accessed 22-July-2020].

215. Blackford, L. S.; Demmel, J.; Dongarra, J.; Duff, I.; Hammarling, S.; Henry, G.;

Heroux, M.; Kaufman, L.; Lumsdaine, A.; Petitet, A. et al. An Updated Set of Basic

Linear Algebra Subprograms (BLAS). ACM Trans. Math. Softw. 2002, 28, 135–151.

216. Guennebaud, G.; Jacob, B. Eigen v3. http://eigen.tuxfamily.org, 2010; [Online; accessed

30-August-2020].

217. Blackford, L. S.; Choi, J.; Cleary, A.; D’Azeuedo, E.; Demmel, J.; Dhillon, I.; Ham-

marling, S.; Henry, G.; Petitet, A.; Stanley, K. et al. In ScaLAPACK User’s Guide;

Dongarra, J. J., Ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 1997.

218. BTAS. https://github.com/BTAS/BTAS, [Online; accessed 30-August-2020].

219. Hynninen, A.-P.; Lyakh, D. I. cuTT: A High-Performance Tensor Transpose Library for

CUDA Compatible GPUs. 2017.

220. Beckingsale, D.; Mcfadden, M.; Dahm, J.; Pankajakshan, R.; Hornung, R. Umpire:

Application-Focused Management and Coordination of Complex Hierarchical Memory.

IBM J. Res. & Dev. 2020, 64, 1–10.

221. Van De Geijn, R. A.; Watts, J. SUMMA: Scalable Universal Matrix Multiplication

algorithm. Concurrency: Pract. Exper. 1997, 9, 255–274.

222. Peng, C.; Calvin, J. A.; Pavošević, F.; Zhang, J.; Valeev, E. F. Massively Parallel

Implementation of Explicitly Correlated Coupled-Cluster Singles and Doubles Using

TiledArray Framework. J. Phys. Chem. A 2016, 120, 10231–10244.

223. Peng, C.; Clement, M. C.; Valeev, E. F. State-Averaged Pair Natural Orbitals for Excited

States: A Route toward Efficient Equation of Motion Coupled-Cluster. J. Chem. Theory

Comput. 2018, 14, 5597–5607.

89

https://github.com/mpi-forum/
https://github.com/BTAS/BTAS

224. Peng, C.; Calvin, J. A.; Valeev, E. F. Coupled-Cluster Singles, Doubles and Perturba-

tive Triples with Density Fitting Approximation for Massively Parallel Heterogeneous

Platforms. Int. J. Quant. Chem. 2019, 119, e25894.

225. Clement, M. C.; Zhang, J.; Lewis, C. A.; Yang, C.; Valeev, E. F. Optimized Pair

Natural Orbitals for the Coupled Cluster Methods. J. Chem. Theory Comput. 2018, 14,

4581–4589.

226. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes:

The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, 2007.

227. Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; Garbow, B. S.; Ikebe, Y.; Klema, V. C.;

Moler, C. B. Matrix Eigensystem Routines: EISPACK Guide; pub-SV, 1976; pp vii +

551.

228. Fann, G.; Littlefield, R.; Elwood, D. Performance of a Fully Parallel Dense Real

Symmetric Eigensolver in Quantum Chemistry Applications. Proc. High Performance

Computing ’95, Simulation MultiConference. San Diego, CA, 1995.

229. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L. S.; Demmel, J.; Dongarra, J. J.;

Du Croz, J.; Hammarling, S.; Greenbaum, A.; McKenney, A. et al. LAPACK Users’

Guide (Third Ed.); Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 1999.

230. Auckenthaler, T.; Blum, V.; Bungartz, H.-J.; Huckle, T.; Johanni, R.; Krämer, L.;

Lang, B.; Lederer, H.; Willems, P. R. Parallel Solution of Partial Symmetric Eigenvalue

Problems from Electronic Structure Calculations. Parallel Comput. 2011, 37, 783–794.

231. Marek, A.; Blum, V.; Johanni, R.; Havu, V.; Lang, B.; Auckenthaler, T.; Heinecke, A.;

Bungartz, H.-J.; Lederer, H. The ELPA Library - Scalable Parallel Eigenvalue Solutions

for Electronic Structure Theory and Computational Science. J. Phys.: Condens. Matter

2014, 26, 213201.

232. Davidson, E. R. The Iterative Calculation of a Few of the Lowest Eigenvalues and

90

Corresponding Eigenvectors Large Real-Symmetric Matrices. J. Comput. Phys. 1975,

17, 87–94.

233. Knyazev, A. V. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block

Preconditioned Conjugate Gradient Method. SIAM J. Sci. Comput. 2001, 23, 517–541.

234. Zhou, Y.; Saad, Y.; Tiago, M. L.; Chelikowsky, J. R. Self-Consistent-Field Calculations

Using Chebyshev-Filtered Subspace Iteration. J. Comput. Phys. 2006, 219, 172–184.

235. Kronik, L.; Makmal, A.; Tiago, M. L.; Alemany, M.; Jain, M.; Huang, X.; Saad, Y.;

Chelikowsky, J. R. PARSEC–The Pseudopotential Algorithm for Real-Space Electronic

Structure Calculations: Recent Advances and Novel Applications to Nano-Structures.

Phys. Status Solidi B 2006, 243, 1063–1079.

236. Pask, J.; Sterne, P. Finite Element Methods in ab initio Electronic Structure Calculations.

Model. Simul. Mat. Sci. Eng. 2005, 13, R71.

237. Zhang, H.; Smith, B.; Sternberg, M.; Zapol, P. SIPs: Shift-and-Invert Parallel Spectral

Transformations. ACM Trans. Math. Software 2007, 33, 9–40.

238. Keçeli, M.; Zhang, H.; Zapol, P.; Dixon, D. A.; Wagner, A. F. Shift-and-Invert Paral-

lel Spectral Transformation Eigensolver: Massively Parallel Performance for Density-

Functional Based Tight-Binding. J. Comput. Chem. 2016, 37, 448–459.

239. Williams-Young, D. B.; Beckman, P. G.; Yang, C. A Shift Selection Strategy for Parallel

Shift-Invert Spectrum Slicing in Symmetric Self-Consistent Eigenvalue Computation.

ACM Trans. Math. Softw. 2020, 46 .

240. Williams-Young, D. B.; Yang, C. Parallel Shift-Invert Spectrum Slicing on Distributed

Architectures with GPU Accelerators. 49th International Conference on Parallel Pro-

cessing - ICPP. New York, NY, USA, 2020.

241. Lin, L.; Saad, Y.; Yang, C. Approximating Spectral Densities of Large Matrices. SIAM

Rev. 2016, 58, 34–65.

91

242. Pulay, P. Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration.

Chem. Phys. Lett. 1980, 73, 393–398.

243. Rohwedder, T.; Schneider, R. J. An Analysis for the DIIS Acceleration Method Used in

Quantum Chemistry Calculations. J. Math. Chem. 2011, 49, 1889–1914.

244. Yu, V. W.-z.; Corsetti, F.; García, A.; Huhn, W. P.; Jacquelin, M.; Jia, W.; Lange, B.;

Lin, L.; Lu, J.; Mi, W. et al. ELSI: A Unified Software Interface for Kohn–Sham

Electronic Structure Solvers. Comput. Phys. Commun. 2018, 222, 267–285.

245. Yu, V. W.-z.; Campos, C.; Dawson, W.; García, A.; Havu, V.; Hourahine, B.;

Huhn, W. P.; Jacquelin, M.; Jia, W.; Keçeli, M. et al. ELSI — An Open Infrastructure

for Electronic Structure Solvers. Comput. Phys. Commun. 2020, 256, 107459.

246. Knoll, D.; Keyes, D. Jacobian-Free Newton–Krylov Methods: A Survey of Approaches

and Applications. J. Comput. Phys. 2004, 193, 357–397.

247. Saad, Y.; Schultz, M. H. GMRES: A Generalized Minimal Residual Algorithm for

Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869.

248. Yang, C.; Brabec, J.; Veis, L.; Williams-Young, D. B.; Kowalski, K. Solving Coupled

Cluster Equations by the Newton Krylov Method. Front. Chem. 2020, 8, 987.

249. Ostlund, N. S.; Szabo, A. Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory ; Dover Publications Inc New edition edn, 1996.

250. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation

Effects. Phys. Rev. 1965, 140, A1133.

251. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules (International

Series of Monographs on Chemistry); Oxford University Press, USA, 1994.

252. Dreizler, R. M.; Gross, E. K. U. Density Functional Theory: An Approach to the

Quantum Many-Body Problem; Springer: Berlin, 1990.

92

253. Perdew, J. P.; Schmidt, K. In Density Functional Theory and Its Application to Materials;

Van Doren, V., Ed.; Melville, NY: American Institute of Physics, 2011; Chapter Jacob’s

Ladder of Density Functional Approximations for the Exchange-Correlation Energy

Density Functional Theory and Its Application to Materials, pp 1–20.

254. Mardirossian, N.; Head-Gordon, M. Thirty years of Density Functional Theory in

Computational Chemistry: An Overview and Extensive Assessment of 200 Density

Functionals. Mol. Phys. 2017, 115, 2315–2372.

255. Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units.

2. Direct Self-Consistent-Field Implementation. J. Chem. Theory Comput. 2009, 5,

1004–1015.

256. Rudberg, E.; Rubensson, E. H.; Sałek, P. Kohn- Sham Density Functional Theory Elec-

tronic Structure Calculations with Linearly Scaling Computational Time and Memory

Usage. J. Chem. Theory Comput. 2011, 7, 340–350.

257. Bock, N.; Challacombe, M.; Gan, C. K.; Henkelman, G.; Nemeth, K.; Niklasson, A. M.;

Odell, A.; Schwegler, E.; Tymczak, C.; Weber, V. FreeON: A Suite of Programs

for Linear Scaling Quantum Chemistry, 2011. https://github.com/FreeON/freeon,

[Online; accessed 30-August-2020].

258. Skylaris, C.-K.; Haynes, P. D.; Mostofi, A. A.; Payne, M. C. Introducing ONETEP:

Linear-Scaling Density Functional Simulations on Parallel Computers. J. Chem. Phys.

2005, 122, 084119.

259. Bowler, D. R.; Miyazaki, T. Calculations for Millions of Atoms with Density Functional

Theory: Linear Scaling Shows Its Potential. J. Phys.: Condens. Matter 2010, 22,

074207.

260. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J.

Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian

and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128.

93

https://github.com/FreeON/freeon

261. Mohr, S.; Ratcliff, L. E.; Genovese, L.; Caliste, D.; Boulanger, P.; Goedecker, S.;

Deutsch, T. Accurate and Efficient Linear Scaling DFT Calculations with Universal

Applicability. Phys. Chem. Chem. Phys. 2015, 17, 31360–31370.

262. Ozaki, T. O (N) Krylov-Subspace Method for Large-Scale ab initio Electronic Structure

Calculations. Phys. Rev. B 2006, 74, 245101.

263. Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M.

Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys.

Commun. 2009, 180, 2175–2196.

264. Ren, X.; Rinke, P.; Blum, V.; Wieferink, J.; Tkatchenko, A.; Sanfilippo, A.; Reuter, K.;

Scheffler, M. Resolution-of-Identity Approach to Hartree–Fock, Hybrid Density Func-

tionals, RPA, MP2 and GW with Numeric Atom-Centered Orbital Basis Functions.

New J. Phys. 2012, 14, 053020.

265. Ratcliff, L. E.; Mohr, S.; Huhs, G.; Deutsch, T.; Masella, M.; Genovese, L. Challenges

in Large Scale Quantum Mechanical Calculations. WIREs Comput. Mol. Sci. 2017, 7,

e1290.

266. Chow, E.; Liu, X.; Smelyanskiy, M.; Hammond, J. R. Parallel Scalability of Hartree–Fock

Calculations. J. Chem. Phys. 2015, 142, 104103.

267. Köppl, C.; Werner, H.-J. Parallel and Low-Order Scaling Implementation of Hartree–Fock

Exchange Using Local Density Fitting. J. Chem. Theory Comput. 2016, 12, 3122–3134.

268. Kussmann, J.; Ochsenfeld, C. Employing OpenCL to Accelerate Ab Initio Calculations

on Graphics Processing Units. J. Chem. Theory Comput. 2017, 13, 2712–2716.

269. Manathunga, M.; Miao, Y.; Mu, D.; Götz, A. W.; Merz, K. M. Parallel Implementation

of Density Functional Theory Methods in the Quantum Interaction Computational

Kernel Program. J. Chem. Theory Comput. 2020, 16, 4315–4326.

270. Luehr, N.; Sisto, A.; Martínez, T. J. Electronic Structure Calculations on Graph-

ics Processing Units; John Wiley and Sons, Ltd, 2016; Chapter Gaussian Basis Set

Hartree–Fock, Density Functional Theory, and Beyond on GPUs, pp 67–100.

94

271. Yasuda, K. Accelerating Density Functional Calculations with Graphics Processing Unit.

J. Chem. Theory Comput. 2008, 4, 1230–1236.

272. Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. Generating Efficient Quantum

Chemistry Codes for Novel Architectures. J. Chem. Theory Comput. 2013, 9, 213–221.

273. Brown, P.; Woods, C. J.; McIntosh-Smith, S.; Manby, F. R. A Massively Multicore

Parallelization of the Kohn-Sham Energy Gradients. J. Comput. Chem. 2010, 31,

2008–2013.

274. Kalinowski, J.; Wennmohs, F.; Neese, F. Arbitrary Angular Momentum Electron

Repulsion Integrals with Graphical Processing Units: Application to the Resolution of

Identity Hartree–Fock Method. J. Chem. Theory Comput. 2017, 13, 3160–3170.

275. Ufimtsev, I. S.; Martínez, T. J. Quantum Chemistry on Graphical Processing Units. 1.

Strategies for Two-Electron Integral Evaluation. J. Chem. Theory Comput. 2008, 4,

222–231.

276. Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units. 3.

Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular

Dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628.

277. Miao, Y.; Merz, K. M. Acceleration of Electron Repulsion Integral Evaluation on

Graphics Processing Units via Use of Recurrence Relations. J. Chem. Theory Comput.

2013, 9, 965–976.

278. Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. Highly Efficient, Linear-

Scaling Seminumerical Exact-Exchange Method for Graphic Processing Units. J. Chem.

Theory Comput. 2020, 16, 1456–1468.

279. Barca, G. M. J.; Galvez-Vallejo, J. L.; Poole, D. L.; Rendell, A. P.; Gordon, M. S.

High-Performance, Graphics Processing Unit-Accelerated Fock Build Algorithm. J.

Chem. Theory Comput. 2020, 16, 7232–7238.

95

280. Barca, G. M. J.; Poole, D. L.; Vallejo, J. L. G.; Alkan, M.; Bertoni, C.; Rendell, A. P.;

Gordon, M. S. Scaling the Hartree-Fock Matrix Build on Summit. Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis. 2020.

281. Williams-Young, D. B.; de Jong, W. A.; van Dam, H. J. J.; Yang, C. On the Efficient

Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters.

Front. Chem. 2020, 8, 951.

282. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Physical review 1964, 136,

B864.

283. Pickett, W. E. Electronic Structure of the High-Temperature Oxide Superconductors.

Rev. Mod. Phys. 1989, 61, 433–512.

284. Ihm, J.; Zunger, A.; Cohen, M. L. Momentum-Space Formalism for the Total Energy of

Solids. J. Phys. C: Solid State Phys. 1979, 12, 4409–4422.

285. Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-Functional

Theory. Phys. Rev. Lett. 1985, 55, 2471–2474.

286. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, J. Iterative Mini-

mization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and

Conjugate Gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

287. Remler, D. K.; Madden, P. A. Molecular Dynamics Without Effective Potentials via the

Car-Parrinello Approach. Mol. Phys. 1990, 70, 921–966.

288. Dal Corso, A. Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline

Materials ; Springer, 1996; pp 155–178.

289. Pask, J.; Klein, B.; Fong, C.; Sterne, P. Real-Space Local Polynomial Basis for Solid-

State Electronic-Structure Calculations: A Finite-Element Approach. Phys. Rev. B

1999, 59, 12352–12358.

96

290. Andreoni, W.; Curioni, A. New Advances in Chemistry and Materials Science with

CPMD and Parallel Computing. Parallel Comput. 2000, 26, 819–842.

291. Fattebert, J.-L.; Bernholc, J. Towards Grid-Based O(N) Density-Functional Theory

Methods: Optimized Nonorthogonal Orbitals and Multigrid Acceleration. Phys. Rev. B

2000, 62, 1713–1722.

292. Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced

Methods; Cambridge University Press, 2009.

293. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods; Cambridge

University Press, 2004.

294. Valiev, M.; Bylaska, E. J.; Gramada, A.; Weare, J. H. First Principles Molecular

Dynamics Simulations Using Density-Functional Theory. Reviews in Modern Quantum

Chemistry: A Celebration of the Contributions of Robert G. Parr. 2002.

295. Bylaska, E. J.; Tsemekhman, K.; Govind, N.; Valiev, M. Large-Scale Plane-Wave-Based

Density Functional Theory: Formalism, Parallelization, and Applications. Computa-

tional Methods for Large Systems: Electronic Structure Approaches for Biotechnology

and Nanotechnology. 2011; pp 77–116.

296. Moore, S.; Briggs, E.; Hodak, M.; Lu, W.; Bernholc, J.; Lee, C.-W. Scaling the RMG

Quantum Mechanics Code. Proceedings of the Extreme Scaling Workshop. 2012; pp

1–6.

297. Osei-Kuffuor, D.; Fattebert, J.-L. Accurate and scalable O(N) Algorithm for First-

Principles Molecular-Dynamics Computations on Large Parallel Computers. Phys. Rev.

Lett. 2014, 112, 046401.

298. Chen, Y.; Bylaska, E. J.; Weare, J. H. First Principles Estimation of Geochemically

Important Transition Metal Oxide Properties. Molecular Modeling of Geochemical

Reactions: An Introduction. 2016; pp 107–149.

97

299. Sundararaman, R.; Letchworth-Weaver, K.; Schwarz, K. A.; Gunceler, D.; Ozhabes, Y.;

Arias, T. JDFTx: Software for Joint Density-Functional Theory. SoftwareX 2017, 6,

278–284.

300. Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979.

301. Holzwarth, N. A. W.; Matthews, G. E.; Dunning, R. B.; Tackett, A. R.; Zeng, Y. Com-

parison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented-

Plane-Wave Formalisms for Density-Functional Calculations of Solids. Phys. Rev. B

1997, 55, 2005–2017.

302. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-

Wave Method. Phys. Rev. B 1999, 59, 1758–1775.

303. Valiev, M.; Weare, J. H. The Projector-Augmented Plane Wave Method Applied to

Molecular Bonding. J. Phys. Chem. A 1999, 103, 10588–10601.

304. Bylaska, E. J.; Valiev, M.; Kawai, R.; Weare, J. H. Parallel Implementation of the Pro-

jector Augmented Plane Wave Method for Charged Systems. Comput. Phys. Commun.

2002, 143, 11–28.

305. Phillips, J. C. Energy-Band Interpolation Scheme Based on a Pseudopotential. Phys.

Rev. 1958, 112, 685–695.

306. Phillips, J. C.; Kleinman, L. New Method for Calculating Wave Functions in Crystals

and Molecules. Phys. Rev. 1959, 116, 287–294.

307. Austin, B. J.; Heine, V.; Sham, L. J. General Theory of Pseudopotentials. Phys. Rev.

1962, 127, 276–282.

308. Yin, M.; Cohen, M. L. Theory of ab initio Pseudopotential Calculations. Phys. Rev. B

1982, 25, 7403–7412.

309. Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials That Work: From H to

Pu. Phys. Rev. B 1982, 26, 4199–4228.

98

310. Hamann, D. R. Generalized Norm-Conserving Pseudopotentials. Phys. Rev. B 1989,

40, 2980–2987.

311. Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations.

Phys. Rev. B 1991, 43, 1993–2006.

312. Bylaska, E. J. Annual Reports in Computational Chemistry ; Elsevier, 2017; Vol. 13;

Chapter Plane-Wave DFT Methods for Chemistry, pp 185–228.

313. Štich, I.; Car, R.; Parrinello, M.; Baroni, S. Conjugate Gradient Minimization of the

Energy Functional: A New Method for Electronic Structure Calculation. Phys. Rev. B

1989, 39, 4997–5004.

314. Kresse, G.; Hafner, J. Ab initio Molecular Dynamics for Liquid Metals. Phys. Rev. B

1993, 47, 558–561.

315. Clarke, L. J.; Štich, I.; Payne, M. C. Large-Scale Ab Initio Total Energy Calculations

on Parallel Computers. Comput. Phys. Commun. 1992, 72, 14–28.

316. Nelson, J.; Plimpton, S.; Sears, M. Plane-Wave Electronic-Structure Calculations on a

Parallel Supercomputer. Phys. Rev. B 1993, 47, 1765–1774.

317. Wiggs, J.; Jonsson, H. A Hybrid Decomposition Parallel Implementation of the Car-

Parrinello Method. Comput. Phys. Commun. 1995, 87, 319–340.

318. Canning, A.; Wang, L.; Williamson, A.; Zunger, A. Parallel Empirical Pseudopotential

Electronic Structure Calculations for Million Atom Systems. J. Comput. Phys. 2000,

160, 29–41.

319. Canning, A.; Raczkowski, D. Scaling First-Principles Plane-Wave Codes to Thousands

of Processors. Comput. Phys. Commun. 2005, 169, 449–453.

320. Bylaska, E. J.; Glass, K.; Baxter, D.; Baden, S. B.; Weare, J. H. Hard Scaling Challenges

for Ab Initio Molecular Dynamics Capabilities in NWChem: Using 100,000 CPUs per

second. Journal of Physics: Conference Series. 2009; p 012028.

99

321. Bylaska, E. J.; Tsemekhman, K.; Baden, S. B.; Weare, J. H.; Jonsson, H. Parallel

Implementation of Γ-Point Pseudopotential Plane-Wave DFT with Exact Exchange. J.

Comput. Chem. 2011, 32, 54–69.

322. Bylaska, E. J.; Aprà, E.; Kowalski, K.; Jacquelin, M.; De Jong, W. A.; Vishnu, A.;

Palmer, B.; Daily, J.; Straatsma, T. P.; Hammond, J. R. Transitioning NWChem to the

Next Generation of Manycore Machines. Exascale Scientific Applications: Scalability

and Performance Portability 2017, 165–186.

323. Canning, A.; Shalf, J.; Wright, N.; Anderson, S.; Gajbe, M. A Hybrid MPI/OpenMP

3D FFT for Plane Wave First-Principles Materials Science Codes. Proceedings of the

International Conference on Scientific Computing (CSC). 2012; pp 1–6.

324. Swaddle, T. W.; Rosenqvist, J.; Yu, P.; Bylaska, E. J.; Phillips, B. L.; Casey, W. H.

Kinetic Evidence for Five-Coordination in AlOH2+
(aq) Ion. Science 2005, 308, 1450–1453.

325. Rustad, J. R.; Bylaska, E. J. Ab Initio Calculation of Isotopic Fractionation in

B(OH)3(aq) and BOH−
4 (aq). J. Am. Chem. Soc. 2007, 129, 2222–2223.

326. Atta-Fynn, R.; Johnson, D. F.; Bylaska, E. J.; Ilton, E. S.; Schenter, G. K.; De Jong, W. A.

Structure and Hydrolysis of the U(IV), U(V), and U(VI) Aqua Ions from Ab Initio

Molecular Dynamics Simulations. Inorg. Chem. 2012, 51, 3016–3024.

327. Fulton, J. L.; Bylaska, E. J.; Bogatko, S.; Balasubramanian, M.; Cauët, E.; Schen-

ter, G. K.; Weare, J. H. Near-Quantitative Agreement of Model-Free DFT-MD Predic-

tions with XAFS Observations of the Hydration Structure of Highly Charged Transition-

Metal Ions. J. Phys. Chem. Lett. 2012, 3, 2588–2593.

328. Odoh, S. O.; Bylaska, E. J.; de Jong, W. A. Coordination and Hydrolysis of Pluto-

nium Ions in Aqueous Solution Using Car–Parrinello Molecular Dynamics Free Energy

Simulations. J. Phys. Chem. A 2013, 117, 12256–12267.

329. Atta-Fynn, R.; Bylaska, E. J.; de Jong, W. A. Importance of Counteranions on the

Hydration Structure of the Curium Ion. J. Phys. Chem. Lett. 2013, 4, 2166–2170.

100

330. Fattebert, J.-L.; Osei-Kuffuor, D.; Draeger, E. W.; Ogitsu, T.; Krauss, W. D. Modeling

Dilute Solutions Using First-Principles Molecular Dynamics: Computing More Than A

Million Atoms With Over a Million Cores. High Performance Computing, Networking,

Storage and Analysis, SC16: International Conference. 2016; pp 12–22.

331. Canning, A. Scalable Parallel 3D FFTs for Electronic Structure Codes. International

Conference on High Performance Computing for Computational Science. 2008; pp

280–286.

332. Canning, A.; Shalf, J.; Wang, L.-W.; Wasserman, H.; Gajbe, M. A Comparison of

Different Communication Structures for Scalable Parallel Three Dimensional FFTs in

First Principle Codes. Parallel Computing: From Multicores and GPU’s to Petascale.

2010; pp 107–16.

333. Ayala, O.; Wang, L.-P. Parallel Implementation and Scalability Analysis of 3D Fast

Fourier Transform Using 2D Domain Decomposition. Parallel Comput. 2013, 39, 58 –

77.

334. Franchetti, F.; Spampinato, D. G.; Kulkarni, A.; Popovici, D. T.; Low, T. M.; Franu-

sich, M.; Canning, A.; McCorquodale, P.; Van Straalen, B.; Colella, P. FFTX and

SpectralPack: A First Look. 2018 IEEE 25th International Conference on High Perfor-

mance Computing Workshops (HiPCW). 2018; pp 18–27.

335. Coester, F. Bound States of a Many-Particle System. Nucl. Phys. 1958, 7, 421–424.

336. Coester, F.; Kummel, H. Short-Range Correlations in Nuclear Wave Functions. Nucl.

Phys. 1960, 17, 477–485.

337. Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of

Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical

Methods. J. Chem. Phys. 1966, 45, 4256–4266.

338. Purvis, G.; Bartlett, R. A Full Coupled-Cluster Singles and Doubles Model: The

Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918.

101

339. Paldus, J.; Li, X. A Critical Assessment of Coupled Cluster Method in Quantum

Chemistry. Adv. Chem. Phys. 1999, 110, 1–175.

340. Crawford, T. D.; Schaefer, H. F. An Introduction to Coupled Cluster Theory for

Computational Chemists. Rev. Comput. Chem. 2000, 14, 33–136.

341. Bartlett, R. J.; Musiał, M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod.

Phys. 2007, 79, 291–352.

342. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A Fifth-Order Per-

turbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157,

479–483.

343. Noga, J.; Bartlett, R. J. The Full CCSDT Model for Molecular Electronic Structure. J.

Chem. Phys. 1987, 86, 7041–7050.

344. Noga, J.; Bartlett, R. J. Erratum: The Full CCSDT Model for Molecular Electronic

Structure [JCP 86, 7041 (1987)]. J. Chem. Phys. 1988, 89, 3401–3401.

345. Scuseria, G. E.; Schaefer, H. F. A New Implementation of the Full CCSDT Model for

Molecular Electronic Structure. Chem. Phys. Lett. 1988, 152, 382–386.

346. Oliphant, N.; Adamowicz, L. Coupled-Cluster Method Truncated at Quadruples. J.

Chem. Phys. 1991, 95, 6645–6651.

347. Kucharski, S. A.; Bartlett, R. J. Recursive Intermediate Factorization and Complete

Computational Linearization of the Coupled-Cluster Single, Double, Triple, and Quadru-

ple Excitation Equations. Theor. Chem. Acc. 1991, 80, 387–405.

348. Beebe, N. H.; Linderberg, J. Simplifications in the Generation and Transformation

of Two-Electron Integrals in Molecular Calculations. Int. J. Quant. Chem. 1977, 12,

683–705.

349. Røeggen, I.; Wisløff-Nilssen, E. On the Beebe-Linderberg Two-Electron Integral Ap-

proximation. Chem. Phys. Lett. 1986, 132, 154–160.

102

350. Aquilante, F.; Pedersen, T. B.; Lindh, R. Low-Cost Evaluation of the Exchange Fock

Matrix from Cholesky and Density Fitting Representations of the Electron Repulsion

Integrals. J. Chem. Phys. 2007, 126, 194106.

351. Koch, H.; Sánchez de Merás, A.; Pedersen, T. B. Reduced Scaling in Electronic Structure

Calculations Using Cholesky Decompositions. J. Chem. Phys. 2003, 118, 9481–9484.

352. Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. On Some Approximations in Applications

of Xα Theory. J. Chem. Phys. 1979, 71, 3396–3402.

353. Vahtras, O.; Almlöf, J.; Feyereisen, M. Integral Approximations for LCAO-SCF Calcu-

lations. Chem. Phys. Lett. 1993, 213, 514–518.

354. Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of Approximate Integrals in ab initio

Theory. An Application in MP2 Energy Calculations. Chem. Phys. Lett. 1993, 208,

359–363.

355. Weigend, F. A Fully Direct RI-HF Algorithm: Implementation, Optimised Auxiliary

Basis Sets, Demonstration of Accuracy and Efficiency. Phys. Chem. Chem. Phys. 2002,

4, 4285–4291.

356. Werner, H.-J.; Manby, F. R.; Knowles, P. J. Fast Linear Scaling Second-Order Møller-

Plesset Perturbation Theory (MP2) Using Local and Density Fitting Approximations.

J. Chem. Phys. 2003, 118, 8149–8160.

357. Sodt, A.; Subotnik, J. E.; Head-Gordon, M. Linear Scaling Density Fitting. J. Chem.

Phys. 2006, 125, 194109.

358. Boström, J.; Pitonak, M.; Aquilante, F.; Neogrady, P.; Pedersen, T. B.; Lindh, R.

Coupled Cluster and Møller–Plesset Perturbation Theory Calculations of Noncovalent

Intermolecular Interactions Using Density Fitting With Auxiliary Basis Sets from

Cholesky Decompositions. J. Chem. Theory Comput. 2012, 8, 1921–1928.

359. Schütz, M.; Manby, F. R. Linear Scaling Local Coupled Cluster Theory with Density

Fitting. Part I: 4-External Integrals. Phys. Chem. Chem. Phys. 2003, 5, 3349–3358.

103

360. Werner, H.-J.; Knizia, G.; Manby, F. R. Explicitly Correlated Coupled Cluster Methods

with Pair-Specific Geminals. Mol. Phys. 2011, 109, 407–417.

361. DePrince III, A. E.; Kennedy, M. R.; Sumpter, B. G.; Sherrill, C. D. Density-Fitted

Singles and Doubles Coupled Cluster on Graphical Processing Units. Mol. Phys. 2014,

112, 844–852.

362. Parrish, R. M.; Sherrill, C. D.; Hohenstein, E. G.; Kokkila, S. I. L.; Martínez, T. J.

Communication: Acceleration of Coupled Cluster Singles and Doubles via Orbital-

Weighted Least-Squares Tensor Hypercontraction. J. Chem. Phys. 2014, 140, 181102.

363. Bozkaya, U.; Sherrill, C. D. Analytic Energy Gradients for the Coupled-Cluster Singles

and Doubles Method with the Density-Fitting Approximation. J. Chem. Phys. 2016,

144, 174103.

364. Pedersen, T. B.; Sánchez de Merás, A. M.; Koch, H. Polarizability and Optical Rotation

Calculated from the Approximate Coupled Cluster Singles and Doubles CC2 Linear

Response Theory Using Cholesky Decompositions. J. Chem. Phys. 2004, 120, 8887–8897.

365. Epifanovsky, E.; Zuev, D.; Feng, X.; Khistyaev, K.; Shao, Y.; Krylov, A. I. General

Implementation of the Resolution-of-the-Identity and Cholesky Representations of

Electron Repulsion Integrals within Coupled-Cluster and Equation-of-Motion Methods:

Theory and Benchmarks. J. Chem. Phys. 2013, 139, 134105.

366. Feng, X.; Epifanovsky, E.; Gauss, J.; Krylov, A. I. Implementation of Analytic Gradients

for CCSD and EOM-CCSD Using Cholesky Decomposition of the Electron-Repulsion

Integrals and Their Derivatives: Theory and Benchmarks. J. Chem. Phys. 2019, 151,

014110.

367. Folkestad, S. D.; Kjønstad, E. F.; Koch, H. An Efficient Algorithm for Cholesky

Decomposition of Electron Repulsion Integrals. J. Chem. Phys. 2019, 150, 194112.

368. Peng, B.; Kowalski, K. Highly Efficient and Scalable Compound Decomposition of

Two-Electron Integral Tensor and its Application in Coupled Cluster Calculations. J.

Chem. Theory Comput. 2017, 13, 4179–4192.

104

369. Fedorov, D. G.; Kitaura, K. Extending the Power of Quantum Chemistry to Large

Systems with the Fragment Molecular Orbital Method. J. Phys. Chem. A 2007, 111,

6904–6914.

370. Stoll, H. Correlation Energy of Diamond. Phys. Rev. B 1992, 46, 6700–6704.

371. Li, W.; Piecuch, P.; Gour, J. R.; Li, S. Local Correlation Calculations Using Standard

and Renormalized Coupled-Cluster Approaches. J. Chem. Phys. 2009, 131, 114109.

372. Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V. Fragmentation Methods:

A Route to Accurate Calculations on Large Systems. Chem. Rev. 2012, 112, 632–672.

373. Herbert, J. M. Fantasy Versus Reality in Fragment-Based Quantum Chemistry. J. Chem.

Phys. 2019, 151, 170901.

374. Pulay, P. Localizability of Dynamic Electron Correlation. Chem. Phys. Lett. 1983, 100,

151–154.

375. Sæbø, S.; Pulay, P. Local Configuration Interaction: An Efficient Approach for Larger

Molecules. Chem. Phys. Lett. 1985, 113, 13–18.

376. Saebo, S.; Pulay, P. The Local Correlation Treatment. II. Implementation and Tests. J.

Chem. Phys. 1988, 88, 1884–1890.

377. Schütz, M.; Hetzer, G.; Werner, H.-J. Low-Order Scaling Local Electron Correlation

Methods. I. Linear Scaling Local MP2. J. Chem. Phys. 1999, 111, 5691–5705.

378. Schütz, M.; Werner, H.-J. Local Perturbative Triples Correction (T) with Linear Cost

Scaling. Chem. Phys. Lett. 2000, 318, 370–378.

379. Edmiston, C.; Krauss, M. Configuration-Interaction Calculation of H3 and H2. J. Chem.

Phys. 1965, 42, 1119–1120.

380. Edmiston, C.; Krauss, M. Pseudonatural Orbitals as a Basis for the Superposition of

Configurations. I. He2+. J. Chem. Phys. 1966, 45, 1833–1839.

105

381. Meyer, W. Ionization Energies of Water from PNO-CI Calculations. Int. J. Quant.

Chem. 1971, 5, 341–348.

382. Meyer, W. PNO–CI Studies of Electron Correlation Effects. I. Configuration Expansion

by Means of Nonorthogonal Orbitals, and Application to the Ground State and Ionized

States of Methane. J. Chem. Phys. 1973, 58, 1017–1035.

383. Meyer, W. PNO-CI and CEPA Studies of Electron Correlation Effects. Theor. Chim.

Acta 1974, 35, 277–292.

384. Ahlrichs, R.; Lischka, H.; Staemmler, V.; Kutzelnigg, W. PNO-CL (Pair-Natural-Orbital

Configuration Interaction) AND CEPA-PNO (Coupled Electron Pair Approximation

with Pair Natural Orbitals) Calculations of Molecular Systems. 1. Outline of Method

for Closed-Shell States. J. Chem. Phys. 1975, 62, 1225–1234.

385. Neese, F.; Wennmohs, F.; Hansen, A. Efficient and Accurate Local Approximations to

Coupled-Electron Pair Approaches: An Attempt to Revive the Pair Natural Orbital

Method. J. Chem. Phys. 2009, 130, 114108.

386. Neese, F.; Hansen, A.; Liakos, D. G. Efficient and Accurate Approximations to the

Local Coupled Cluster Singles Doubles Method Using a Truncated Pair Natural Orbital

Basis. J. Chem. Phys. 2009, 131, 064103.

387. Yang, J.; Chan, G. K.-L.; Manby, F. R.; Schütz, M.; Werner, H.-J. The Orbital-Specific-

Virtual Local Coupled Cluster Singles and Doubles Method. J. Chem. Phys. 2012, 136,

144105.

388. Eriksen, J. J.; Baudin, P.; Ettenhuber, P.; Kristensen, K.; Kjærgaard, T.; Jørgensen, P.

Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–

Expand–Consolidate CCSD (T) Model. J. Chem. Theory Comput. 2015, 11, 2984–2993.

389. Høyvik, I.-M.; Kristensen, K.; Jansik, B.; Jørgensen, P. The Divide-Expand-Consolidate

Family of Coupled Cluster Methods: Numerical Illustrations Using Second Order

Møller-Plesset Perturbation Theory. J. Chem. Phys. 2012, 136, 014105.

106

390. Häser, M.; Almlöf, J. Laplace Transform Techniques in Møller–Plesset Perturbation

Theory. J. Chem. Phys. 1992, 96, 489–494.

391. Ayala, P. Y.; Scuseria, G. E. Linear Scaling Second-Order Møller–Plesset Theory in

the Atomic Orbital Basis for Large Molecular Systems. J. Chem. Phys. 1999, 110,

3660–3671.

392. Doser, B.; Lambrecht, D. S.; Ochsenfeld, C. Tighter Multipole-Based Integral Estimates

and Parallel Implementation of Linear-Scaling AO–MP2 theory. Phys. Chem. Chem.

Phys. 2008, 10, 3335–3344.

393. Kottmann, J. S.; Bischoff, F. A. Coupled-Cluster in Real Space. 1. CC2 Ground State

Energies Using Multiresolution Analysis. J. Chem. Theory Comput. 2017, 13, 5945–5955.

394. Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural Triple Excitations in Local

Coupled Cluster Calculations with Pair Natural Orbitals. J. Chem. Phys. 2013, 139,

134101.

395. Riplinger, C.; Neese, F. An Efficient and Near Linear Scaling Pair Natural Orbital Based

Local Coupled Cluster Method. J. Chem. Phys. 2013, 138, 034106.

396. Edmiston, C.; Krauss, M. Pseudonatural Orbitals as a Basis for the Superposition of

Configurations. II. Energy Surface for Linear H3. J. Chem. Phys. 1968, 49, 192–205.

397. Meyer, W.; Rosmus, P. PNO-CL and CEPA Studies of Electron Correlation Effects. 3.

Spectroscopic Constants and Dipole-Moment Functions for Ground-States of First-Row

and Second-Row Diatomic Hydrides. J. Chem. Phys. 1975, 63, 2356–2375.

398. Ahlrichs, R.; ; Driessler, F.; Lischka, H.; Staemmler, V.; Kutzelnigg, W. PNO-CL

(Pair-Natural-Orbital Configuration Interaction) AND CEPA-PNO (Coupled Electron

Pair Approximation with Pair Natural Orbitals) Calculations of Molecular Systems.2.

Molecules BeH2, BH, BH3, CH4, CH-3, NH3 (Planar and Pyramidal), H2O, OH+3, HF

and Ne Atom. J. Chem. Phys. 1975, 62, 1235–1247.

107

399. Ahlrichs, R.; Keil, F.; Lischka, H.; ; Kutzelnigg, W.; Staemmler, V. PNO-CL (Pair-

Natural-Orbital Configuration Interaction) AND CEPA-PNO (Coupled Electron Pair Ap-

proximation with Pair Natural Orbitals) Calculations of Molecular Systems.3. Molecules

MgH2, AlH3, SiH4, PH3 (Planar and Pyramidal), H2S, HCl, and Ar Atom. J. Chem.

Phys. 1975, 63, 455–463.

400. Ahlrichs, R.; Lischka, H.; B, Z.; Kutzelnigg, W. PNO-CL (Pair-Natural-Orbital Config-

uration Interaction) and CEPA-PNO (Coupled Electron Pair Approximation with Pair

Natural Orbitals) Calculations of Molecular Systems.4. Molecules N2, F2, C2H2, C2H4,

and C2H6. J. Chem. Phys. 1975, 63, 4685–4694.

401. Schütz, M.; Werner, H.-J. Low-Order Scaling Local Electron Correlation Methods. IV.

Linear Scaling Local Coupled-Cluster (LCCSD). J. Chem. Phys. 2001, 114, 661–681.

402. Schütz, M. A New, Fast, Semi-Direct Implementation of Linear Scaling Local Coupled

Cluster Theory. Phys. Chem. Chem. Phys. 2002, 4, 3941–3947.

403. Schütz, M. Low-Order Scaling Local Electron Correlation Methods. V. Connected Triples

Beyond (T): Linear Scaling Local CCSDT-1b. J. Chem. Phys. 2002, 116, 8772–8785.

404. Schmitz, G.; Hättig, C.; Tew, D. P. Explicitly Correlated PNO-MP2 and PNO-CCSD

and Their Application to the S66 Set and Large Molecular Systems. Phys. Chem. Chem.

Phys. 2014, 16, 22167–22178.

405. Schmitz, G.; Hättig, C. Perturbative Triples Correction for Local Pair Natural Orbital

Based Explicitly Correlated CCSD (F12*) Using Laplace Transformation Techniques. J.

Chem. Phys. 2016, 145, 234107.

406. Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse Maps-A Systematic

Infrastructure for Reduced-Scaling Electronic Structure Methods. II. Linear Scaling

Domain Based Pair Natural Orbital Coupled Cluster Theory. J. Chem. Phys. 2016,

144, 024109.

407. Pavosevic, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. SparseMaps-A Systematic

Infrastructure for Reduced-Scaling Electronic Structure Methods. IV. Linear-Scaling

108

Second-Order Explicitly Correlated Energy with Pair Natural Orbitals. J. Chem. Phys.

2016, 144, 144109.

408. Pavosevic, F.; Peng, C.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. SparseMaps-A

Systematic Infrastructure for Reduced Scaling Electronic Structure Methods. V. Linear

Scaling Explicitly Correlated Coupled-Cluster Method with Pair Natural Orbitals. J.

Chem. Phys. 2017, 146, 174108.

409. Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F. A New Near-Linear

Scaling, Efficient and Accurate, Open-Shell Domain-Based Local Pair Natural Orbital

Coupled Cluster Singles and Doubles Theory. J. Chem. Phys. 2017, 146, 164105.

410. Schwilk, M.; Ma, Q.; Köppl, C.; Werner, H.-J. Scalable Electron Correlation Methods.

3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals

(PNO-LCCSD). J. Chem. Theory Comput. 2017, 13, 3650–3675.

411. Ma, Q.; Schwilk, M.; Köppl, C.; Werner, H.-J. Scalable Electron Correlation Methods.

4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals

(PNO-LCCSD-F12). J. Chem. Theory Comput. 2017, 13, 4871–4896.

412. Ma, Q.; Werner, H.-J. Scalable Electron Correlation Methods. 5. Parallel Perturbative

Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural

Orbitals. J. Chem. Theory Comput. 2017, 14, 198–215.

413. Ma, Q.; Werner, H.-J. Explicitly Correlated Local Coupled-Cluster Methods Using Pair

Natural Orbitals. WIREs Comput. Mol. Sci. 2018, 8, e1371.

414. Tew, D. P.; Helmich, B.; Hättig, C. Local Explicitly Correlated Second-Order Møller–

Plesset Perturbation Theory with Pair Natural Orbitals. J. Chem. Phys. 2011, 135,

074107.

415. Kottmann, J. S.; Bischoff, F. A.; Valeev, E. F. Direct Determination of Optimal Pair-

Natural Orbitals in a Real-Space Representation: The Second-Order Moller–Plesset

Energy. J. Chem. Phys. 2020, 152, 074105.

109

416. Kato, T. On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics.

Commun. Pure Appl. Math. 1957, 10, 151–177.

417. Pack, R. T.; Brown, W. B. Cusp Conditions for Molecular Wavefunctions. J. Chem.

Phys. 1966, 45, 556–559.

418. Kutzelnigg, W.; Morgan, J. D. Rates of Convergence of the Partial-Wave Expansions of

Atomic Correlation Energies. J. Chem. Phys. 1992, 96, 4484–4508.

419. Kutzelnigg, W. R12-Dependent Terms in the Wave-Function as Closed Sums of Partial-

Wave Amplitudes for Large-L. Theoret. Chim. Acta 1985, 68, 445–469.

420. Kong, L.; Bischoff, F. A.; Valeev, E. F. Explicitly Correlated R12/F12 Methods for

Electronic Structure. Chem. Rev. 2012, 112, 75–107.

421. Hättig, C.; Klopper, W.; Köhn, A.; Tew, D. P. Explicitly Correlated Electrons in

Molecules. Chem. Rev. 2012, 112, 4–74.

422. Straatsma, T. P.; McCammon, J. A. Molecular Design and Modeling: Concepts and

Applications Part A: Proteins, Peptides, and Enzymes; Methods in Enzymology; Aca-

demic Press, 1991; Vol. 202; Chapter Theoretical Calculations of Relative Affinities of

Binding, pp 497–511.

423. Straatsma, T. P.; Bylaska, E. J.; van Dam, H. H. J.; Govind, N.; de Jong, W. A.;

Kowalski, K.; Valiev, M. In Annual Reports in Computational Chemistry ; Wheeler, R. A.,

Ed.; Annual Reports in Computational Chemistry; Elsevier, 2011; Vol. 7; Chapter

Advances in Scalable Computational Chemistry: NWChem, pp 151–177.

424. Straatsma, T. P.; Philippopoulos, M.; McCammon, J. A. NWChem: Exploiting Paral-

lelism in Molecular Simulations. Comput. Phys. Commun. 2000, 128, 377–385.

425. Straatsma, T. P.; McCammon, J. A. Load Balancing of Molecular Dynamics Simulation

with NWChem. IBM Syst. J. 2001, 40, 328–341.

110

426. Straatsma, T. P.; Chavarría-Miranda, D. G. On Eliminating Synchronous Communica-

tion in Molecular Simulations to Improve Scalability. Comput. Phys. Commun. 2013,

184, 2634–2640.

427. Straatsma, T. P.; McCammon, J. A. Load Balancing of Molecular Dynamics Simulation

with NWChem. IBM Syst. J. 2001, 40, 328–341.

428. ARGOS Molecular Dynamics. http://www.argoscode.org, [Online; accessed 30-

August-2020].

429. Straatsma, T. P.; McCammon, J. A. ARGOS, A Vectorized General Molecular Dynamics

Program. J. Comput. Chem. 1990, 11, 943–951.

430. Svensson, M.; Humbel, S.; Froese, R. D.; Matsubara, T.; Sieber, S.; Morokuma, K.

ONIOM: A Multilayered Integrated MO+ MM Method for Geometry Optimizations

and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt (P (t-Bu)

3) 2+ H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357–19363.

431. Sushko, P. V.; Huang, C.; Govind, N.; Kowalski, K. Computational Materials Discovery ;

2018; Chapter Embedding Methods in Materials Discovery, pp 87–116.

432. Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions: Dielectric, Electro-

static and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J.

Mol. Biol. 1976, 103, 227–249.

433. Valiev, M.; Garrett, B. C.; Tsai, M.-K.; Kowalski, K.; Kathmann, S. M.; Schenter, G. K.;

Dupuis, M. Hybrid Approach for Free Energy Calculations with High-Level Methods:

Application to the SN2 Reaction of CHCl3 and OH- in Water. J. Chem. Phys. 2007,

127, 051102.

434. Wesolowski, T. A.; Warshel, A. Frozen Density Functional Approach for ab initio

Calculations of Solvated Molecules. J. Phys. Chem. 1993, 97, 8050–8053.

435. Govind, N.; Wang, Y. A.; Carter, E. A. Electronic-Structure Calculations by First-

Principles Density-Based Embedding of Explicitly Correlated Systems. J. Chem. Phys.

1999, 110, 7677–7688.

111

http://www.argoscode.org

436. Elliott, P.; Burke, K.; Cohen, M. H.; Wasserman, A. Partition Density-Functional

Theory. Phys. Rev. A 2010, 82, 024501.

437. Huang, C.; Pavone, M.; Carter, E. A. Quantum Mechanical Embedding Theory Based

on a Unique Embedding Potential. J. Chem. Phys. 2011, 134, 154110.

438. Khait, Y. G.; Hoffmann, M. R. Annual Reports in Computational Chemistry ; Elsevier,

2012; Vol. 8; Chapter On the orthogonality of orbitals in subsystem Kohn–Sham density

functional theory, pp 53–70.

439. Bulik, I. W.; Chen, W.; Scuseria, G. E. Electron Correlation in Solids via Density

Embedding Theory. J. Chem. Phys. 2014, 141, 054113.

440. Knizia, G.; Chan, G. K.-L. Density Matrix Embedding: A Strong-Coupling Quantum

Embedding Theory. J. Chem. Theory Comput. 2013, 9, 1428–1432.

441. Seijo, L.; Barandiarán, Z. Computational Chemistry: Reviews of Current Trends; 1999;

Chapter The Ab Initio Model Potential Method: A Common Strategy for Effective Core

Potential and Embedded Cluster Calculations, pp 55–152.

442. Manby, F. R.; Stella, M.; Goodpaster, J. D.; Miller III, T. F. A Simple, Exact Density-

Functional-Theory Embedding Scheme. J. Chem. Theory Comput. 2012, 8, 2564–2568.

443. Hégely, B.; Nagy, P. R.; Ferenczy, G. G.; Kállay, M. Exact Density Functional and Wave

Function Embedding Schemes Based on Orbital Localization. J. Chem. Phys. 2016,

145, 064107.

444. Fornace, M. E.; Lee, J.; Miyamoto, K.; Manby, F. R.; Miller III, T. F. Embedded

Mean-Field Theory. J. Chem. Theory Comput. 2015, 11, 568–580.

445. Lan, T. N.; Kananenka, A. A.; Zgid, D. Communication: Towards ab initio Self-Energy

Embedding Theory in Quantum Chemistry. J. Chem. Phys. 2015, 143, 241102.

446. Inglesfield, J. A Method of Embedding. J. Phys. C: Solid State Phys. 1981, 14, 3795.

447. Pisani, C.; Dovesi, R.; Nada, R.; Kantorovich, L. Ab initio Hartree–Fock Perturbed-

Cluster Treatment of Local Defects in Crystals. J. Chem. Phys. 1990, 92, 7448–7460.

112

448. Chibani, W.; Ren, X.; Scheffler, M.; Rinke, P. Self-Consistent Green’s Function Embed-

ding for Advanced Electronic Structure Methods Based on a Dynamical Mean-Field

Concept. Phys. Rev. B 2016, 93, 165106.

449. Neugebauer, J. Chromophore-Specific Theoretical Spectroscopy: From Subsystem Den-

sity Functional Theory to Mode-Specific Vibrational Spectroscopy. Phys. Rep. 2010,

489, 1–87.

450. Gomes, A. S. P.; Jacob, C. R. Quantum-Chemical Embedding Methods for Treating

Local Electronic Excitations in Complex Chemical Systems. Annu. Rep. Prog. Chem.,

Sect. C: Phys. Chem. 2012, 108, 222–277.

451. Jacob, C. R.; Neugebauer, J. Subsystem Density-Functional Theory. WIREs Comput.

Mol. Sci. 2014, 4, 325–362.

452. Wesolowski, T. A.; Shedge, S.; Zhou, X. Frozen-Density Embedding Strategy for Multi-

level Simulations of Electronic Structure. Chem. Rev. 2015, 115, 5891–5928.

453. Sun, Q.; Chan, G. K.-L. Quantum Embedding Theories. Acc. Chem. Res. 2016, 49,

2705–2712.

454. Huzinaga, S.; Cantu, A. Theory of Separability of Many-Electron Systems. J. Chem.

Phys. 1971, 55, 5543–5549.

455. Francisco, E.; Martín Pendás, A.; Adams, W. Generalized Huzinaga Building-Block

Equations for Nonorthogonal Electronic Groups: Relation to the Adams–Gilbert Theory.

J. Chem. Phys. 1992, 97, 6504–6508.

456. Graham, D. S.; Wen, X.; Chulhai, D. V.; Goodpaster, J. D. Robust, Accurate, and

Efficient: Quantum Embedding Using the Huzinaga Level-Shift Projection Operator for

Complex Systems. J. Chem. Theory Comput. 2020, 16, 2284–2295.

457. Head, J. D.; Silva, S. J. A Localized Orbitals Based Embedded Cluster Procedure for

Modeling Chemisorption on Large Finite Clusters and Infinitely Extended Surfaces. J.

Chem. Phys. 1996, 104, 3244–3259.

113

458. Whitten, J.; Pakkanen, T. A. Chemisorption Theory for Metallic Surfaces: Electron

Localization and the Description of Surface Interactions. Phys. Rev. B 1980, 21, 4357–

4367.

459. Tamukong, P. K.; Khait, Y. G.; Hoffmann, M. R. Density Differences in Embedding

Theory with External Orbital Orthogonality. J. Phys. Chem. A 2014, 118, 9182–9200.

460. Welborn, M.; Manby, F. R.; Miller III, T. F. Even-Handed Subsystem Selection in

Projection-Based Embedding. J. Chem. Phys. 2018, 149, 144101.

461. Culpitt, T.; Brorsen, K. R.; Hammes-Schiffer, S. Communication: Density Functional

Theory Embedding with the Orthogonality Constrained Basis Set Expansion Procedure.

J. Chem. Phys. 2017, 146, 211101.

114

Biographies

Karol Kowalski is a Laboratory Fellow at Pacific Northwest National Laboratory. Karol

has received his Ph.D. in theoretical physics from Nicolaus Copernicus University. He has

contributed to several computational chemistry packages, including GAMESS and NWChem.

He is currently involved in developing a scalable implementation of local coupled-cluster (CC)

formulations in NWChemEx. Karol is also an author of Green’s function formulations and

equation-of-motion CC methods used in the high-accuracy characterization of ionization,

transport, and excited-state processes in molecular systems.

Raymond Bair is the Chief Computational Scientist for Applications in the Computing,

Environment and Life Sciences Directorate (CELS) and the Computational Science Division

(CSD) at Argonne National Laboratory. He is also Senior Scientist at Large in the University

ofnArgonne’s Laboratory Computing Resource Center (LCRC). Dr. Bair received his B.S. in

Chemistry and Mathematics from Westminster College, PA, and his Ph.D. in Theoretical

Chemistry from the California Institute of Technology. His research interests span high

performance computational methods, new computer architectures, and computational facilities

to meet emerging research needs.

Nicholas P. Bauman is a Postdoctoral Research Associate at the Pacific Northwest National

Laboratory. Nicholas received his B.S. degree in Chemistry from Michigan Technological

University. He completed his Ph.D. in Theoretical/Computational Chemistry at Michigan

State University, focusing on developing and applying high-level many-body methods. He

then was a Postdoctoral Associate at the University of Florida. He continues to develop and

implement many-body methods in the NWChem and NWChemEx packages and apply those

methods to a variety of problems.

Jeffery S. Boschen is a Postdoctoral Research Associate with the Ames Laboratory. He

received a B.S. in chemistry from Truman State University and a Ph.D. in physical chemistry

from Iowa State University. His research interests include highly accurate electronic structure

methods, non-adiabatic dynamics, and high performance computing.

Eric J. Bylaska is a research scientist at the Pacific Northwest National Laboratory. Eric

received a B.S. degree in applied physics and a B.S. degree in computer science from Michigan

Technological University. He then received a Ph.D. in physical chemistry from the University

115

of California, San Diego. Eric’s research involves several areas of chemical, geochemical, and

environmental research. Eric is the primary author of the ab initio molecular dynamics and

band structure modules in the NWChem and NWChemEx program packages. He has also

developed several new methods for chemistry and materials simulation including adaptive

unstructured finite element electronic structure codes, parallel in time algorithms, efficient

implementations of the exact exchange operator, and the EMSL Arrows web application.

Jeff Daily is a Senior Member of Technical Staff at Advanced Micro Devices (AMD). Jeff

received his B.S. and Ph.D. degrees in Computer Science from Washington State University

where he focused on high performance computing runtimes and applications. While at Pacific

Northwest National Laboratory (PNNL), Jeff contributed to the Global Arrays project,

the parallel runtime library for the NWChemEx project. Jeff is currently a member of

the Machine Learning Software Engineering team at AMD, supporting the development of

machine learning frameworks for AMD GPUs. Note: Work on NWChemEx and GlobalArrays

was performed while at PNNL.

Wibe A. de Jong is a Senior Scientist at Lawrence Berkeley National Laboratory (LBNL),

and a Fellow of the American Association for the Advancement of Science. de Jong received

his M.S. in Chemical Physics and Ph.D. in Theoretical Chemistry at the University of

Groningen (Netherlands), where he focused on actinide chemistry and the development of

parallel relativistic quantum chemistry software. Before moving to LBNL, he led the team

developing the NWChem computational chemistry code. de Jong has made contributions to

multiple software packages, continues to develop new methods and scalable and fault-tolerant

algorithms for, and integrating data science approaches in, NWChem and NWChemEx.

Thom H. Dunning, Jr. is a Research Professor of Chemistry at the University of Wash-

ington, a Battelle Fellow at the Pacific Northwest National Laboratory, and a Professor

Emeritus of Chemistry at the University of Illinois Champaign-Urbana. Dr. Dunning is a

Fellow of the American Physical Society, the American Association for the Advancement

of Science, and the American Chemical Society. Dr. Dunning received his B.S. degree

from the Missouri University of Science and Technology in 1965 and his Ph.D. degree from

the California Institute of Technology in 1970. He is known for his contributions to the

development of computational techniques for molecular electronic structure calculations as

116

well as the application of quantum chemistry to the characterization of lasers, combustion

chemistry, aqueous clusters, and organic and inorganic chemistry.

Niranjan Govind earned a Ph.D. in Physics from McGill University in Montreal, Canada,

followed by postdoctoral work at the Department of Chemistry at the University of California,

Los Angeles. He was a staff scientist at Accelrys, Inc. in San Diego before joining his present

position at the Pacific Northwest National Laboratory (PNNL), where he is currently a Chief

Scientist. His research interests focus on the development and application of time-dependent

electronic structure methods for molecules and materials, embedding approaches, relativistic

electronic structure methods, X-ray spectroscopies, and ultrafast dynamics including excited-

state non-adiabatic molecular dynamics. In addition to his position at PNNL, he also serves

on the Editorial Board of Electronic Structure, IOPScience, UK.

Robert Harrison is a Professor of Applied Mathematics and Statistics at Stony Brook

University where he also directs the Institute for Advanced Computational Science. He

received his Ph.D. from the University of Cambridge in Theoretical Chemistry. He has

held staff and leadership positions at Brookhaven National Laboratory, Oak Ridge National

Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory, and

has helped lead the Global Arrays, NWChem, MADNESS, and NWChemEx projects. His

research interests are focused on scientific computing and the development of computational

chemistry methods for the world’s most technologically advanced supercomputers.

Murat Keçeli is an Assistant Computational Scientist at Argonne National Laboratory.

He received B.S. and M.S. degrees in physics from Bilkent University in Turkey and a Ph.D.

degree in chemical physics from the University of Illinois at Urbana-Champaign. His thesis

was focused on size-extensive many-body methods for the vibrational structure of molecules

and extended systems. Murat is currently working on memoization and checkpointing

infrastructure of NWChemEx. He is also involved in data-driven projects that makes use of

leadership class supercomputers.

Kristopher Keipert is a solutions architect at NVIDIA corporation. Previously at Argonne

National Laboratory, Kristopher helped design and develop the data resiliency infrastructure

in NWChemEx. Kristopher received his Ph.D. in physical chemistry at Iowa State University,

where he conducted novel research in dynamics simulations of photochemical systems and

117

high performance computational chemistry algorithms.

Sriram Krishnamoorthy is a computer scientist and Laboratory Fellow in PNNL’s High

Performance Computing group, and a Research Professor at the School of Electrical Engi-

neering and Computer Science in Washington State University. He earned his B.E. from the

College of Engineering, Guindy (Chennai, India) and M.S. and Ph.D. degrees from The Ohio

State University. His research focuses on parallel programming models, quantum computing,

fault tolerance, and compile-time/runtime optimizations for high-performance computing. In

addition, he is the lead for the development of the TAMM software and its application to

coupled cluster equations.

Suraj Kumar is a postdoctoral researcher at the National Institute for Research in

Computer Science and Automation (INRIA) Paris, France. Prior to this, he was also a

postdoctoral researcher at Pacific Northwest National Laboratory, USA. Suraj received his

M.E. and Ph.D. degrees in computer science from Indian Institute of Science, Bangalore,

India and INRIA Bordeaux, France, respectively. His research interests include tensor

algorithms, parallel computing, runtime systems, heterogeneous architectures, linear algebra,

and scheduling.

Erdal Mutlu is a Computer Scientist at Pacific Northwest National Laboratory (PNNL).

Erdal received his B.Sc. and M.Sc. degrees in computer science and engineering in Sabanci

University, Istanbul. Later, he completed his Ph.D. studies in computer science at Koc

University, Istanbul, where he focused on software reliability for asynchronous programming

models. After joining PNNL as a post-doctoral research associate, he worked on development

of the tensor algebra framework, "Tensor Algebra for Many-body Methods (TAMM)", that

is being used as the main tensor computation engine in several modern high performance

computing systems. Currently, he is working on extending TAMM capabilities for reduced

scaling methods developed in NWChemEx.

Bruce Palmer is a research scientist at PNNL. Bruce received his undergraduate degrees

in math and chemistry from Bowdoin College and a Ph. D. in chemical physics from Harvard

University. Bruce has worked extensively on the statistical properties of fluids as well as

working on several high-performance computing libraries. He has been a long time developer

of the Global Arrays communication library, used in many quantum chemistry applications,

118

as well as working on frameworks for simulating flow in groundwater and more recently a

framework for developing HPC applications to model the power grid.

Ajay Panyala is currently a computer scientist in the High Performance Computing group

at PNNL. Ajay received his B.Tech. degree in computer science from Jawaharlal Nehru

Technological University, Hyderabad, India. He then completed his Ph.D. in computer science

at Louisiana State University where he focused on developing compiler optimizations for high

performance computing applications. He is currently one of the lead developers of the Tensor

Algebra for Many-body Methods (TAMM) parallel computational infrastructure effort in the

DOE ASCR ECP NWChemEx and DOE BES SPEC projects where he closely works with

computational chemists on the development of computational chemistry applications. He is

primarily responsible for all aspects of TAMM design, development and performance tuning

used to drive scalable implementations of many-body methods.

Bo Peng is a computational scientist in the physical and computational science division

at Pacific Northwest National Laboratory (PNNL). Bo received his B.S. degree in chemistry

from Nankai University in Tianjin, China. After several years research at the Institute of New

Energy Material Chemistry, he then moved to the United State, and completed his Ph.D.

in physical and theoretical chemistry at the University of Washington in Seattle, where he

focused on the theory and algorithm development for ab initio calculations. He then joined

PNNL as a Linus Pauling post-doctorate fellow and was promoted to full time staff. Bo has

contributed to several quantum chemistry packages. His currently research is focused on

the developments and applications of novel many-body theories and their high-performance

software libraries.

Ryan M. Richard is a Scientist II at Ames Laboratory working in Professor Theresa L.

Windus’s group. Ryan received his B.S. degree in chemistry from Cleveland State University

and his Ph.D. in chemistry at The Ohio State University. Ryan’s research focuses on

reducing the time to solution for ab initio methods. In particular he is interested in reduced

scaling techniques (e.g., fragment-based methods, local orbital methods) and the use of

high-performance computing.

T. P. Straatsma is a Distinguished Research Scientist in the Oak Ridge Leadership

Computing Facility OLCF) at the DOE Oak Ridge National Laboratory (ORNL), and an

119

Adjunct Professor in the Department of Chemistry at the University of Alabama in Tuscaloosa.

Straatsma earned his Doctoral and Doctorate degrees in Mathematics and Natural Sciences

from the University of Groningen. His specialization is in the design and implementation

of advanced modeling and simulation methodologies applied to chemical and biochemical

systems. Straatsma is a core developer for the NWChem computational chemistry software

suite, and the lead developer for the ARGOS molecular dynamics code and the GronOR

massively parallel and GPU-accelerated non-orthogonal configuration interaction package.

Peter V. Sushko is a staff scientist and Materials Sciences group leader in the Physical

Sciences Division, Pacific Northwest National Laboratory. Peter received his BSc and MSc

degrees in physics from St. Petersburg State University, Russia. He then completed his PhD

in physics at University College London, UK, where he was developing embedded cluster

approaches for simulating electronic properties of point defects in ionic materials. Peter’s

research is focused on revealing atomic-scale mechanisms of diffusion, defect formation, and

chemical reactions, and predicting the effects of disorder and defects on materials properties

and functions.

Edward F. Valeev received M.Sc. in Chemistry in 1996 from the Higher Chemistry

College of the Russian Academy of Sciences (Moscow, Russia) and Ph.D. in Chemistry in

2000 from the University of Georgia (Athens, GA). He held a research scientist post at the

School of Chemistry and Biochemistry at Georgia Tech, with a joint research appointment at

the Oak Ridge National Laboratory during 2004-2006. In 2006 he joined the Department

of Chemistry at Virginia Tech, where he is now a Professor of Chemistry. Prof. Valeev’s

interests focus on accurate (many-body) methodology for electronic and molecular structure

and high-productivity and high-performance scientific computing.

Marat Valiev is a Computational Scientist at Environmental Molecular Sciences Laboratory

at PNNL. Marat received his M.S. and Ph.D. degrees in condensed matter physics at University

of Connecticut, where he was focused on development of novel field based formulations for

density functional theory. His current research interests revolve around the development

of new theoretical methods for molecular simulations of complex systems, including their

implementation for high performance computational codes. Marat is core member of NWChem

computational chemistry project and a primary developer of QM/MM module in NWChem.

120

Hubertus J. J. van Dam is an HPC Application Architect at Brookhaven National

Laboratory. Hubertus received his B.Sc. in chemical engineering from the Fontys University

of Applied Sciences, and his M.Sc. in chemistry from Radboud University. He received

his PhD in theoretical chemistry from Utrecht University for research on multi-reference

correlation methods. Hubertus has contributed to multiple electronic structure packages.

Jonathan M. Waldrop is a Postdoctoral Research Associate with Ames Laboratory.

Jonathan received his B.Sc. in chemistry from Mercer University. He then received a Ph.D.

in chemistry at Auburn University under the supervision of Prof. Konrad Patkowski, focusing

on electronic structure theory development and application. His research has focused on

extensions of symmetry-adapted perturbation theory (SAPT), and currently centers on the

implementation and development of projector-based embedding within NWChemEx.

David B. Williams-Young is a Research Scientist in the Computational Research Division

at Lawrence Berkeley National Laboratory. In 2013, David received his B.S. in Chemistry

and Mathematics from the Indiana University of Pennsylvania, and in 2018, his Ph.D. in

Chemistry from the University of Washington. David’s dissertation work focused on the

development of high-performance algorithms for the treatment of light-matter interaction

and relativistic effects in molecular systems. David has contributed to quantum chemistry

software packages, including Gaussian, Chronus Quantum, and NWChemEx. Currently, the

primary focus of David’s research is in the development of numerical solvers for large scale

electronic structure problems on emerging and massively parallel computing architectures.

Chao Yang is a senior scientist in the Computational Research Division at Lawrence Berke-

ley National Laboratory (LBNL). He received his B.S in Computer Science and Mathematics

from Central Missouri State University, M.A. in Mathematics from University of Kansas and

Ph.D in Applied Mathematics from Rice University. He was the 1999 Householder fellow at

Oak Ridge National Laboratory. He joined LBNL in 2000. His research focuses on numerical

linear algebra, high performance computing with applications in computational chemistry. He

has contributed to eigensolvers and nonlinear equation solvers for the NWChemEx project.

Marcin Zalewski is a software engineer at Nvidia. Marcin received his B.A. and M.S.

degree in computer science from Rensselaer Polytechnic Institute, and his Ph.D. degree in

computer science from Chalmers University of Technology where he worked on topics in

121

generic programming in C++. Marcin worked on research topics in large-scale distributed

HPC applications at Indiana University and Pacific Northwest National Laboratory prior to

joining Nvidia.

Theresa L. Windus is a Distinguished Professor of Chemistry at Iowa State University

(ISU), an Associate with Ames Laboratory, an ISU Liberal Arts and Sciences Dean’s Professor,

and a Fellow of the American Chemical Society. Theresa received her B.A. degrees in chemistry,

mathematics and computer science from Minot State University. She then completed her

Ph.D. in physical chemistry at Iowa State University where she focused on developing high

performance algorithms. Theresa has contributed to multiple chemistry packages and currently

develops new methods and algorithms for high performance computational chemistry as the

director of the NWChemEx project as well as applying those techniques to both basic and

applied research.

122

Table of Contents image

123

	Introduction
	Hardware and Software Evolution Challenges
	Design Challenges and Principles
	Software Engineering Practices
	Tools and Runtime Environments
	Tensor Methods
	TCE
	Tensor Algebra for Many-body Methods (TAMM)
	TiledArray

	Solvers
	Eigensolver for HF and DFT
	Newton–Krylov Solver for Coupled-Cluster Equations

	Gaussian Basis Hartree–Fock and Density Functional Theory
	Plane-Wave DFT
	Coupled-Cluster
	Cholesky-decomposition-based CC formulations
	Reduced-Scaling CC methods based on Pair Natural Orbitals
	Explicitly correlated CC methods

	Classical Molecular Dynamics
	Embedding Methods
	Conclusions and Future Directions
	Acknowledgement
	References

