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Abstract

Agriculture research uses “recommendation domains” to develop and transfer crop man-

agement practices adapted to specific contexts. The scale of recommendation domains is

large when compared to individual production sites and often encompasses less environ-

mental variation than farmers manage. Farmers constantly observe crop response to man-

agement practices at a field scale. These observations are of little use for other farms if the

site and the weather are not described. The value of information obtained from farmers’

experiences and controlled experiments is enhanced when the circumstances under which

it was generated are characterized within the conceptual framework of a recommendation

domain, this latter defined by Non-Controllable Factors (NCFs). Controllable Factors (CFs)

refer to those which farmers manage. Using a combination of expert guidance and a multi-

stage analytic process, we evaluated the interplay of CFs and NCFs on plantain productivity

in farmers’ fields. Data were obtained from multiple sources, including farmers. Experts

identified candidate variables likely to influence yields. The influence of the candidate vari-

ables on yields was tested through conditional forests analysis. Factor analysis then

clustered harvests produced under similar NCFs, into Homologous Events (HEs). The rela-

tionship between NCFs, CFs and productivity in intercropped plantain were analyzed with

mixed models. Inclusion of HEs increased the explanatory power of models. Low median

yields in monocropping coupled with the occasional high yields within most HEs indicated

that most of these farmers were not using practices that exploited the yield potential of

those HEs. Varieties grown by farmers were associated with particular HEs. This indicates

that farmers do adapt their management to the particular conditions of their HEs. Our obser-

vations confirm that the definition of HEs as recommendation domains at a small-scale is

valid, and that the effectiveness of distinct management practices for specific micro-recom-

mendation domains can be identified with the methodologies developed.
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Introduction

Advances in agricultural technology are based almost entirely on observations made on crops,
whether in the laboratory or the field. Over thousands of years, individual farmers have domes-
ticated crops, selected improved cultivars [1] and learned how to manage them to suit the envi-
ronment. Farmers’ knowledge and experience, combined with data from multiple sources is
increasingly used as a tool for agricultural research and development [2–10].

Modern information technology complements farmers’ observations and adds an extra
dimension to evaluation of agricultural system performance. Rigorous modern data mining
techniques can establish relationships and associations between observations from multiple
sources, which farmers can use to improve their crop husbandry [2–6].

The information flow of agricultural research and development is often a top-down process
in which knowledge is generated at a few sites, normally laboratories or research stations, and
is then passed on to farmers through a process of technology transfer. This process has pro-
vided remarkable improvements in productivity (see for example [7]). However, this top-down
model frequently fails to take into account farmers’ knowledge, experience and needs and con-
sequently may not be appropriate for their particular ambience [6,8–17]. The tools used suc-
cessfully in this top-down model are also its Achilles heel; researchers reduce the confounding
effects of temporal and spatial variation with controlled experiments in which a few factors are
varied and the remainder are kept constant [11,18–21]. Experiments are designed to evaluate
the effects of individual factors or combinations of a small number of factors for each crop
within mega-environments or recommendation domains [22–25]. The recommendation
domains are defined as “a group of farmers whose circumstances are similar enough so that
they are all eligible for the same recommendation” [25]. This represents something of a discon-
nect between the research process and the agricultural reality. Farmers groups with similar
conditions are the basis for the recommendations zones, whereas most of the research is
directed towards mega-environments based on physical and biological characteristics that may
cover a wide range of variation. The mega-environments do not take into account either the
physical and biological features of a particular farm or the micro- environment or the idiosyn-
crasies of the farmers’ social space. Farmers’ social space includes such aspects as educational
level, access to inputs, availability of labor, attitudes and all the other aspects that affect how
they manage their farms.

Observations made by farmers will, either explicitly or tacitly, take into account not only
their particular physical and biological environment, but also their social milieu. Hence, mega-
environments and recommendation domains can be extremely successful across large areas
with relatively homogeneous societies and ecologies, however they may not be appropriate
when there is large degree of heterogeneity at a smaller scale within the mega-environment or
recommendation domain. Nevertheless, conceptually recommendation domains evaluate
options for crops grown under similar conditions, that is to say homogeneous growing condi-
tions [25]. If it were possible to adequately characterize the conditions under which individual
experiences occurred and observed, then the conclusions drawn from these observations and
experiences could be transferred to sites that have similar conditions [26–29].

Historically, lack of information on the circumstances under which the farmers made their
observations hampered their use in agricultural research. Precise characterization of growing
conditions and management makes it possible to put both researchers’ and farmers’ experi-
ences into context. The value of information and knowledge generated both from farmers’
experiences and controlled experiments is greatly enhanced when the circumstances under
which it was generated are characterized. Early quantitative analyses in agriculture benefitted
from operations research [30]. Towards the end of the twentieth century, precision agriculture
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began to be used as management strategies that use information technologies to bring data
from multiple sources to bear on decisions associated with crop management [31]. Precision
agriculture couples farmers' observations with precise characterization of the production con-
ditions. This combination addresses the historical challenge of describing the context and pro-
vides insights into the crop response to multiple variables in a specific context, at both the
micro-level within a field and between fields or management units [3].

Precision agriculture emphasizes within field variation, whereas site-specific agriculture, as
we define it, looks principally at variation between sites or management units. A management
unit is a set of plots or fields with relatively homogeneous environmental conditions and rea-
sonably uniform agricultural management practices. Several studies suggest that, in the tropics
at a site-specific level, one needs to steward the field or management unit well before attempt-
ing to adjust practices to handle the micro-spatial variation within a field [3,31, 32,33].

Data obtained from observations at the management unit level tend to be noisy with many
factors that interact influencing the response of the dependent variables. To make sense of the
variation large datasets and “Big Data”methodologies are needed [34–36].

To simplify analysis, we define two major classes of variables: Non-Controllable Factors
(NCFs) which broadly define or characterize the recommendation domain; and Controllable
Factors (CFs) which the farmer can manage to achieve his goals. Farmers can manage or influ-
ence the controllable factors (CFs), but learn to live with the NCFs.

The purpose of this paper is to illustrate how farmers`knowledge can be put into the context
of recommendation domains, and hence determine the effects of CFs within a specific well
defined set of environmental conditions or NCFs. This process enhances the value of farmers'
observations obtained from an applied agricultural setting, so that the observations and experi-
ences of the farmers provide them with an improved knowledge base from which they can
make decisions relevant to their specific circumstances. Key features of this approach are: (a)
the use of recommendation domains to explain part of the variance; and (b) a large number of
observations so as to estimate stochastic variation within domains and reveal true associations
of yield with management factors.

We bring together farmers’ observations and data from multiple sources for plantain (Musa

balbisiana), an under-researched crop grown over a wide range of conditions in Colombia
[37], to develop and test analytic approaches that increase our understanding of a crop to varia-
tions in CFs within the framework of NCFs or recommendation domains. The insights gained
allow farmers to make better well informed management decisions.

Materials and Methods

The approach integrates distinct types of observations on NCFs, CFs and crop response with
expert opinions of both experienced agronomists and agricultural scientists, to provide a quan-
titative evaluation of the potential to manage CFs so as to increase productivity within the con-
straints of NCFs.

Identifying data and selecting variables
Project variables were identified using a two stage process. An initial set of variables was deter-
mined through consultation with experienced agronomists and extension agents working with
plantain. They identified a list of variables likely to influence crop productivity and quality.
This list of variables was then compared with those in the available databases. When variables
on the list were not readily available in existing resources, we systematically evaluated feasibil-
ity for inclusion. When feasible, tools were developed to collect data for the identified variables.
When it was determined that either the costs outweighed the benefits or, simply, the data were
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unavailable as was the case with disease, pest, weed incidence and fertilizer use, the variables
were discarded.

Soil characteristics were identified as important, but most growers neither have access to
reliable information, nor have the habit of sharing the data, nor do they have a standard format
for reporting soil traits. We used the well-established in situ methodology, RASTA (Rapid Soil
and Terrain Assessment, available online at http://www.open-aeps.org/RASTA.pdf), to charac-
terize soils [38].

The variables plant density, intercropping, variety, planting pattern, and annual production
were identified by both experienced agronomists and agricultural scientists. Using both inter-
net-based and facilitated paper-based survey instruments, farmers were asked to recall the
practices used over the past year. Geographical coordinates were obtained by Global Position-
ing System (GPS) or from Google maps. Because farmers were being asked to reconstruct the
characteristics of the growing season from memory, it was unlikely that we would be able to
obtain reliable data on pest and disease management and fertilization. Hence, this data was not
requested. The data was collected over a period of approximately two years during 2011 and
2012. Collected data were then standardized, and a single database of production events was
established.

The standardized database registered 1322 cropping events. Of these, 1055 were obtained
through the facilitators employed as part of the project and 267 were registered on-line by the
farmers themselves. In this dataset there were adequate data to characterize 998 cropping
events. Three hundred and twenty four (324) records were removed from the database due to
inconsistencies including obvious errors in GPS. The geographic locations of the 998 geo-refer-
enced cropping events were linked to climate data from the WorldClim database (http://www.
worldclim.org/bioclim) [39]. This database is an interpolated climate surface for global land
areas at a spatial resolution of 30 arc seconds (1-km spatial resolution). WorldClim is publicly-
available and contains data on monthly precipitation and mean, minimum and maximum air
temperatures. We extracted 19 WorldClim bioclimatic variables for each event. Soil and terrain
characteristics of 752 cropping events were determined with the RASTA methodology. The cli-
mate, soil and crop management data acquired are summarized in Table 1.

More than a half of the observations corresponded to intercropped plantain. As the produc-
tivity measurements from the two different systems were ton ha-1 year-1 for monocropping
and kg plant-1 year-1 for intercropping, the dataset was split into two new datasets (monocrop-
ping and intercropping) for analysis. All other measurements were standardized and obvious
outliers and errors eliminated.

Conditional forest analysis of overall dataset
Amajor advantage of a standardized database is that all the information required for the analy-
sis is contained within a single dataset. A challenge, however, with analyzing such datasets is
the “small n large P” conundrum wherein the number of predictors relative to the total number
of observations may limit traditional degrees of freedom. Likewise, the mix of categorical and
continuous variables, variable quality of the individual observations, missing values and inter-
predictor correlations suggested that a flexible analytic approach, such as those found within
the family of random forest techniques, would be appropriate [40,41].

Categorical variables tend to introduce bias into the tree selection process in typical random
forest models. A variation of random forests, conditional forest, was used to overcome the bias
associated with variable selection in individual classification of trees, through a conditional
inference framework with the goal of minimizing the influence of categorical variables and
numbers of categories on the more typical split criterion [40]. The resultant conditional
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variable importance measure [41] evaluates both the marginal importance (Does this variable
help to explain the response?) and the conditional importance (Does this variable help to
explain the problem better if all the other variables are already given?) of each variable
described in the observation set. While conditional forest models may be used to develop pre-
dictive models, we used the results of the conditional forest to choose the most appropriate
clustering techniques. In the present study, analyses were conducted using the package “part(y)
itioning laboratory assembling various high- and low-level tools for building tree-based regres-
sion and classification models”, also known as “party” in R (www.r-project.org). We initially

Table 1. Types, levels of measurement and sources of collected observations.

Inputs Type Scale Acronym Source

Controllable Factors (CFs)

Plant density Quantb Ratio Pl_dens ProjectDB

Cropping systems (monocropping, intercroppping) Quala Nominal Int ProjectDB

Variety Quala Nominal Var ProjectDB

Planting pattern Quala Nominal Pl_patt ProjectDB

Non-Controllable Factors (NCFs)

Soil

Texture Quala Nominal Text RASTA

Effective soil depth Quantb Ratio Eff_depth RASTA

Soil organic matter Qualb Ordinal SOM RASTA

Drainage Qualb Ordinal Drain RASTA

pH Quantb Interval pH RASTA

Climate

Annual Mean Temperature Quantb Interval BIO1 BIOCLIM

Mean Diurnal Range Quantb Ratio BIO2 BIOCLIM

Isothermality Quantb Ratio BIO3 BIOCLIM

Temperature Seasonality Quantb Interval BIO4 BIOCLIM

Max Temperature of Warmest Month Quantb Interval BIO5 BIOCLIM

Min Temperature of Coldest Month Quantb Interval BIO6 BIOCLIM

Temperature Annual Range Quantb Ratio BIO7 BIOCLIM

Mean Temperature of Wettest Quarter Quantb Interval BIO8 BIOCLIM

Mean Temperature of Driest Quarter Quantb Interval BIO9 BIOCLIM

Mean Temperature of Warmest Quarter Quantb Interval BIO10 BIOCLIM

Mean Temperature of Coldest Quarter Quantb Interval BIO11 BIOCLIM

Annual Precipitation Quantb Ratio BIO12 BIOCLIM

Precipitation of Wettest Month Quantb Ratio BIO13 BIOCLIM

Precipitation of Driest Month Quantb Ratio BIO14 BIOCLIM

Precipitation Seasonality Quantb Ratio BIO15 BIOCLIM

Precipitation of Wettest Quarter Quantb Ratio BIO16 BIOCLIM

Precipitation of Driest Quarter Quantb Ratio BIO17 BIOCLIM

Precipitation of Warmest Quarter Quantb Ratio BIO18 BIOCLIM

Precipitation of Coldest Quarter Quantb Ratio BIO19 BIOCLIM

Geographical Coordinates Quantb Interval GPS ProjectDB

Output

Plantain yield Quantb Ratio Yield ProjectDB

a Categorical variables.
b Continuous variables

doi:10.1371/journal.pone.0150015.t001
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analyzed the overall dataset with a conditional forest model to determine which CFs and NCFs
were associated with productivity and their relative importance. The results of this initial analy-
sis were then compared with the sets of variables suggested by agronomists and agricultural sci-
entists. The conditional forest methodology was then applied to various combinations of
factors. The methodology required complete datasets with yield and all NCFs and CFs. As the
datasets were often incomplete, the yield datasets analyzed were reduced to 467 from the initial
998 cropping events.

Clustering homologous events
Previous studies suggested that the most effective means of analyzing data obtained from mul-
tiple sources, including field observations, is as follows: first, clustering production within
homologous groups for NCFs, and secondly, looking for yield variation within each cluster
[3,26,28,42]. The homologous groups, denoted as Homologous Events (HEs), occur, in both
space and time.

In order to cluster environmental information, and to incorporate as many of the previously
identified explanatory variables as possible, we used factorial analysis for data reduction and
hierarchical clustering based on Ward’s method, with K-means for data partitioning [43–47].
In the case of climate we chose Principal Components Analysis (PCA). This technique was
chosen given its ability to: a) include continuous variables; b) retain the principal components;
and c) minimize the effects of the high degree of linear correlation of the variables included in
the WorldClim database. In addition, its combination with Ward’s method and K-means gen-
erated a defined number of clusters [48,49]. The method consists in first PCA to reduce the
dimensionality of the original data, second, hierarchical clustering based on the principal com-
ponents suggested by the PCA analysis, in such a way that the minimum within-variance in
each cluster is retained, and third a partition of clusters by the K-means algorithm [49]. Appli-
cations of these techniques in agriculture and clustering climate data can be found in [47,50–
56]. In the present study we implemented a package for exploratory data analysis in R called
FactoMineR (http://factominer.free.fr), to cluster the climate data. For soils, we followed the
same procedures, but instead of using PCA as a factorial analysis for data reduction, we
employed Categorical Principal Components Analysis (CATPCA). The method was selected
given that the soil dataset included both quantitative and qualitative information presented in
nominal, ordinal, and continuous scale (Table 1). CATPCA is a factorial analysis well-suited to
treat these types of variables of different scales; it converts every category to a numeric value
through a process called optimal quantification (optimal scaling/scoring) [57]. Several studies
have selected CATPCA as the most apposite factorial analysis to deal with quantitative and
qualitative variables present in their datasets [58–61]. In this paper CATPCA was executed in
the categories module of SPSS/ PASW 181 [62].

Understanding linkages between non-Controllable factors, controllable
factors and productivity
Various models were considered for understanding the relationships between NCFs, CFs and
productivity. Mixed models combined with Generalized Least Squares (GLS) were chosen
given their ability to: (a) provide a quantitative estimate of the effects of CFs on yield within a
hierarchical framework of clusters of HE; (b) estimate the dependencies between the indepen-
dent and dependent variables; (c) keep the initial units of the dependent variable, which in
our case is fruit yield; and (d) handle datasets with both continuous and categorical variables.
These techniques were chosen and used on the same pragmatic basis followed by several
researchers [26,28,63–66]. The method has been be used to compare the performance of
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varieties grown under a range of conditions in commercial fields with all varieties not being
grown at all sites [63,64,67]. In our datasets, most of the varieties were not grown in all HEs. In
the present study we used the linear and Non-Linear Mixed Effects models (NLME) package in
R to fit a linear mixed model for the prediction of random effects (the term prediction is nor-
mally used for the estimation of random effects, whereas estimation is used for fixed effects)
[63,64].

Results

In this section we address the information gained in each stage of the multi-stage analytical
process. The data are summarized and some of the fundamental characteristics that differenti-
ate plantain cropping systems described. Based on these differences the data were pooled in
order to understand the potential influence of management practices, soils and climate on
yields. We contextualized management practices within sets of similar domains that emerge
from the various combinations of NCFs that are grouped in HEs. Finally, the interactions
between management practices or CFs and HEs were identified.

A simple first look at the data showed a skewed distribution of yield for both monocropping
and intercropping systems, with a small number of management units with high yields and
most of the management units with low yields (S1 Fig).

Analysis of overall dataset using conditional forest
The relative importance of each of the identified variables was computed with the conditional
inference trees for each of the two systems. In monocropping systems, the conditional variable
importance measure indicates that management practices, specifically plant density and plant-
ing pattern (Fig 1), both controllable factors, have the greatest influence on yield. The remain-
ing top ten variables with the highest variable importance are all NCFs, of which one is soil
texture and the others are related to climate.

In the intercropping system, plant density and planting pattern were again highly explana-
tory, as the first and third most important variables. In contrast to the monocropping system,
an additional CF, plant variety, also influenced yield (Fig 1). Interestingly, the top ten variables
in the intercropping system included two variables characterizing soils, including effective soil
depth and soil organic matter, neither of which were as relatively important in the monocrop-
ping system. Of the climate variables, both systems indicated a combination of temperature
and precipitation variables in the top ten (Fig 1). The conditional forest demonstrated that
many of the factors identified by the experts were indeed important determinants of yield, or at
least were associated with variation in yield. The inclusion of combinations of factors in the
conditional forest analysis did not provide further insights into those combinations of factors
that most affected yield.

Clustering homologous events. (understanding linkages between non-
controllable factors, controllable factors and productivity)
The management units were clustered into HEs using data from both the intercropping and
monocropping datasets. We first clustered environmental information, through the combina-
tion of factorial analysis for data reduction and hierarchical cluster (S2 and S3 Figs). In the case
of climate, four components with eigenvalues greater than 1 explained 92.1% of the total vari-
ance. For soils, the first two components explained 61.6% (Table 2).

When applying the Ward`s technique to the data, the mathematical procedure assessed
from 2 to 15 clusters. The technique consistently suggested 2 clusters for climate and 3 for
soils. Nevertheless, the range for some variables was wider than that considered to be suitable
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for a homologous event for plantain: thus, for example, the temperature range within clusters
was felt to be too large. Experts suggested that up to about 15 clusters or recommendation
domains was a reasonable, subjective assessment for the range of conditions in our study.
Therefore, the clustering procedure was configured to evaluate 5 to 15 clusters. The clustering
procedure indicated 7 climate clusters and 7 soil clusters within this new framework (S2 and S3
Figs). On inspection by the experts, the ranges within individual clusters appeared acceptable.
Hence, these revised clusters were used as input for the K-means partition [46,49].

Differences between crop performance grown under identical environmental conditions
(NCFs) can be attributed to crop management (CFs) [3,68–70]. Theoretically, as the variance
in NCFs within an HE decreases, the proportion of the variance explained by CFs or manage-
ment increases. Assuming that the HEs are relatively homogeneous, with minimal variance for
NCFs that influence crop performance, most of the variance in productivity would be related

Fig 1. Variable importance for both systems. (a) monocropping, (b) intercropping.

doi:10.1371/journal.pone.0150015.g001

Table 2. Eigenvalues for the principal components in both climate and soil datasets, and the variables with more contribution to each climatic and
soil component.

Component Eigenvalue Cumulative % of variance Characteristics

Climate

1 8.49 44.71 Mainly contribution of temperatures (BIO1, BIO5, BIO6, BIO8, BIO9, BIO10, BIO11)

2 5.25 72.36 Highly associated with precipitation (BIO12, BIO13, BIO16, BIO17, BIO18, BIO19)

3 2.49 85.44 Mainly contribution of temperature variability (BIO2, BIO3, BIO4, BIO7)

4 1.28 92.17 One component in mean diurnal range (BIO2) and the other in precipitation seasonality (BIO15)

Soil

1 2.26 37.69 Mainly contribution of IntDrain and SOM

2 1.43 61.59 Highly associated with ExtDrain and texture

doi:10.1371/journal.pone.0150015.t002
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to variation in the management practices or CFs. Plantain yield was assessed within each HE.
Yield varied greatly within HEs (Fig 2). The highest yield in the HE C3S7 intercropping system
produced 30 kg plant-1 yr-1 whereas the lowest was 1.67 kg plant-1 yr-1. In monocropping in
HE C4S7 the highest yield was 29 ton ha-1 yr-1 whereas the lowest was 0.3 ton ha-1 yr-1. This
indicated that HEs explained part of the yield variance, but that controllable factors (CFs) also
had a major impact on yield within the HEs.

In order to analyze the relationships between NCFs, CFs and productivity, we chose mixed
models to handle both fixed and random effects [71] and also missing values [63,72].

Intercropping
We initially structured the model with HEs as a random effect with fixed effects of variety,
plant density and planting pattern. For intercropping, the method suggested a structure includ-
ing: (a) HEs as a relevant variable associated with yield and (b) different performance of
varieties across HEs. Fixed effects for this model included the CFs: plant density and planting
pattern. (Table 3).

Inspection of the data indicated that management practices were closely associated with
HEs. For example in intercropping, the planting pattern was closely linked with the HE. The
Fisher test indicated that HEs and planting pattern were not independent (p =<0.05)
(Table 3). Consequently, in a complete analysis of the overall dataset with mixed models, HEs/
NCFs and CFs, would be confounded. Hence, effects of CFs on yield were also evaluated within
HEs. The model explaining yield with the lowest Akaike Information Criterion was:

Yieldij ¼ 11:20þ 5:48PQuin� 0:0038Densþ aj þ bj1Dominicoþ bj2Hartonþ bj3Mixture

þ bj4Otherþ εij ð1Þ

εij � Nð0; s2Þ aj � Nð0; s2

aÞ bjk � Nð0; s2

bkÞ

Where Yield = Yield kg plant-1 yr-1, PQuin = planting pattern Quincux with square planting
as reference, Dens = Density (plants/ ha), αj = The additional change in yield due to HEj
(j = 1,2,3,4) and bjk = the additional change in yield due to the variety k instead of Dominico-
harton for HE j (k = 1,2,3,4).

Fig 2. Yield distribution across the HEs for both systems. (a) monocropping, (b) intercropping. In both
figures, C indicates climate whereas S specifies soils. The combination of CS designates each HE
considering both environmental factors.

doi:10.1371/journal.pone.0150015.g002
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The coefficient β1 = 5.48 suggested yield with the quincunx planting pattern was 5.48 kg
plant-1 yr-1 greater than with square planting. The effect was consistent in those HEs where
both square planting and quincunx were used and could be compared (S4 Fig). However, the
agronomists and extension agents on the team did not believe that changing from square plant-
ing to quincunx alone would produce this large yield difference. They observed that the farmers
who used the quincunx system tended to be more progressive: The quincunx system was part
of a superior technology package, but was the only measured parameter indicative of that
package.

To test this hypothesis, particular regions were used as proxies for technology levels (tech-
nology proxies) on the tenuous assumption that farmers in the same region interchange ideas
and tend to use the same technology packages. We divided the growers into groups from the
Central Coffee growing region (commonly known as the eje cafetero in Colombia), the South-
ern Andean region (Cauca and Nariño departments which tend to be poorer and less well
developed), and the Inter-Andean regions of Valle, Tolima and Santander which extension
agents indicated used a more intermediate technology. With a mixed model the restricted max-
imum likelihood using region instead of planting pattern was given by:

Yieldij ¼ 16:56þ 4:21TecnCoffee� 5:00TecnSouthAnd � 0:0042Densþ aj þ bj1Dominico

þ bj2Hartonþ bj3Mixture þ bj4Otherþ εij ð2Þ

In this function, TecnCoffee (technology from coffee region) was the proxy for the Central
Coffee growing region, TecnSoutAnd (technology from Cauca and Nariño departments) was
the Southern Andean region with the InterAndean (technology from inter-Andean region)
taken as the standard for comparison.

The TecnCoffee proxy yielded 4.2 kg plant-1 yr-1 more than the intermediate technology
Inter-Andean zone and the Southern Andean technology produced 5.0 kg plant-1 yr-1 less.
In both cases, whether using quincunx or the technology proxy, preproduction per plant
decreased as plant density increased. The distinct varieties were concentrated in particular
HEs, and the variety effect was likely confounded with HEs (Table 3).

Table 3. Frequency table Homologous Events versus Variety and Planting pattern for both monocropping and intercropping.

Monocropping (HEs) Intercropping (HEs)

Variety C1S7a C4S7a C5S5a C6S6a C7S1a C1S7a C3S7a C4S3a C4S7a

Dominico 1 14 0 0

Dominico-harton 6 24 0 0 0 70 13 30 36

Harton 15 0 51 33 50 13 4 0 0

Mixture 16 20 0 2

Other 0 31 0 0

p-valueb < 0.0 <0.0

Planting pattern

Square 19 20 2 5 50 28 82 30 30

Quincunx 4 4 49 29 0 72 0 0 8

p-valueb < 0.0 < 0.0

a Homologous Events. C indicates climate, whereas S specifies soils, Combination of CS designates each homologous events considering both

environmental factors
b
p-values were calculated using the Fisher's exact test for count data

doi:10.1371/journal.pone.0150015.t003
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With the intercropping system, yields in C3S7 were 2.75 kg plant-1 yr-1 more than the aver-
age, whereas in C4S7 and C1S7 yields were 1.96 and 0.96 kg plant-1 yr-1 more. C4S3 was the
least productive HE with 2.93 kg plant-1 yr-1 less than the average value (Fig 3). The mixed
model estimated the yield of varieties in distinct HEs (Fig 4). The estimates suggest that: (a) in
C3S7, Harton is the lowest yielding variety; (b) in C1S7 and C4S7, Dominico yields most; and
(c) in C4S3, HE with the lowest yields, Dominico yields 11.5 kg plant-1 yr-1 less than the aver-
age value. However, the estimates of yield in the distinct HEs are largely based on the random
effects of the mixed model. In C4S3, there was no data on Dominico. Thus, care is required
when interpreting the information provided by mixed models in unbalanced datasets (Fig 4).

Monocropping
The variation in yield was partially explained by the CFs with a significant effect of HEs on
yield. The yield variation was least in C6S6 with a coefficient of variation (CV) of 34%

Fig 3. Effects of HEs in the mixedmodel for intercropping.

doi:10.1371/journal.pone.0150015.g003

Fig 4. Effects of varieties across HEs for intercropping.

doi:10.1371/journal.pone.0150015.g004
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(Table 4). The greatest yield variation within HEs was in C1S7 (CV 83%) and C7S1 (CV 82%).
The yield variation in C6S6 was highly skewed towards high yield with a median yield of 12.7
ton ha-1 yr-1 and skewness coefficient of -1.55 (Table 4, and S5 Fig). On the other hand, the
yield variation of C1S7 was highly skewed towards lower yield with a skewness coefficient of
1.12 and a median yield of 5.3 ton ha-1 yr-1. Similarly C7S1 had a skewness coefficient of 1.86
and a median yield of 3.2 ton ha-1 yr-1. The HEs of C4S7 (skewness coefficient 0.43) and C5S5
(skewness coefficient 0.71) were also skewed to lower yields, but less so than C1S7 and C7S1
(S5 Fig). Hence, there is an association of low median yields and yields skewed towards low
yields with a high coefficient of variation within HEs. (Table 4, and S5 Fig). High median yields
skewed to high yields are associated with a low coefficient of variation.

As in the case of intercropping, the quincunx system yields were generally greater than
those with square planting (S6 Fig). However, in all cases one system was dominant within a
particular HE (Table 3). Hence, it is not possible to affirm which system was best in a given
HE. Similarly, each of the individual HEs was associated with particular varieties, as indicated
by the Fisher test, invalidating comparison of varieties within or across HE (Table 3). However,
the data from C1S7 suggests that in this HE, square planting with Harton generally produced
less than quincunx and Dominico-harton. However, this conclusion is not definitive as one
plot with both square and Harton produced more than 20 ton ha-1 yr-1 (S6 and S7 Figs).

Discussion

The forest methodology indicated the importance of individual factors as yield determinants,
but did not provide useful insights into how combinations of factors affect yield. However, the
difference in importance of distinct factors in the monocropping and the intercropping system
indicated that combinations of factors are indeed important. This can be better understood by
a simple example. In a field with a sandy soil, a gentle slope and a relatively uniform rainfall
distribution, drainage is unlikely to be positively associated with yield, whereas on a heavy soil,
on flat terrain with a high water table, drainage is likely to be extremely importance. This high-
lights the importance of looking at combinations of NCFs, rather than individual analysis of
their effects. These combinations correspond to HEs.

Several distinct HEs were identified based on NCFs initially identified as potentially impor-
tant by experienced agronomists, extension agents and agricultural scientists. Each of these
HEs encompass circumstances that are sufficiently similar to be considered as recommenda-
tion domains, in which the response to management practices will be similar.

Table 4. Descriptive statistics of plantain yield across Homologous Events for monocropping.

C1S7a C4S7a C5S5a C6S6a C7S1a

Max 20 25.6 24.74 14.55 15

Mean 7.27 11.78 9.2 11.15 3.95

Median 5.28 11.8 7.88 12.73 3.2

Min 1.2 0.25 1.6 0.85 0.6

Skew 1.12 0.43 0.71 -1.55 1.86

StDev 6.04 7.43 5.27 3.81 3.22

CoefVar 83.17 63.13 57.23 34.19 81.66

a Homologous Events. C indicates climate, whereas S specifies soils, Combination of CS designates each homologous events considering both

environmental factors

doi:10.1371/journal.pone.0150015.t004
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The HEs were characterized with climatic data obtained from publicly available databases
and soil information collected by farmers and extension agents in situ. Factorial analysis was
then used to reduce the number of variables. The procedures used, including conditional
forest, depended on a large dataset to quantify the impact of distinct CFs in particularly, well
defined recommendation domains. It is difficult to quantify these factors with a small number
observations.

In spite of more than 900 observations, the multi-stage analytical process produced a very
limited number of HEs with a large range of variation within each one. Experienced agrono-
mists and agricultural scientist considered the range of conditions within the HEs too large for
the HEs to be considered as valid recommendation domains. A pragmatic subjective assess-
ment of what agronomists considered to be a reasonable number of recommendation domains
or HEs, to cover the range of conditions over which the data was collected, was used to set the
maximum number of clusters. Within this framework the data was reanalyzed to give seven cli-
mate and seven soil clusters.

Expert opinion on its own is appropriate for defining HEs in those crops which have been
well researched, but in the case of less well researched crops their performance over a range of
conditions can guide the delimitation of HEs [3,27,28]. In sugarcane, (Saccharum officinarum)
and coffee (Coffea arabica), a wealth of knowledge about the crops, generated through formal
experiments and informal experiences, equipped researchers and growers with information to
define the NCFs (e.g., climate), CFs (e.g., specific management approaches), likely to influence
production [3,42,70]. For Andean blackberry (Rubus glaucus) and lulo (Solanum quitoense)
there was less formal knowledge regarding the likely influence of specific environmental condi-
tions on crop responses, nor was there as much detailed knowledge regarding the functional
relationships between processes that may be linked to crop performance. In those crops, with
limited formal knowledge of the relevance of the variables that describe non-controllable fac-
tors, a mix of expert guidance and automated processing appear to be an effective approach
that takes advantages of the synergies between expert knowledge and standardized statistical
procedures [28].

A key point in validating the approach of using HEs or recommendation domains is their
ability to improve the models used to explain productivity. The lowest Akaike information cri-
terion in the mixed models was obtained by including HEs as a random effect. This indicates
that HEs are explaining more of the variation than would be expected by chance. This in turn
confirms the viability of the concept of HEs as a means of reducing the stochastic variance
inherent in data collected by farmers over a wide range of conditions. Furthermore, it corrobo-
rates the methodology based on expert opinion coupled with data mining techniques. As HEs
explain a significant part of the variance, their inclusion in the analysis should help reveal how
CFs influence productivity both within and across recommendation domains.

In both datasets with monocropping and intercropping, the HEs and specific CFs were fre-
quently confounded. Confounded dataset are likely to be a problem with data from commercial
farms, especially if most farmers use similar technology. This may well be the case when most
farmers ascribed to a particular HE are from the same geographical region: farmers in the same
geographical area frequently use similar practices and plant the same varieties. However, if
cross sectional data is obtained with production units from geographically distinct zones, but
with similar HEs, there is a greater probability that distinct management practices will appear
in the datasets for a given HE, and the likelihood of management practices being confounded
with HEs is reduced. Thus, in Andean blackberry the productivity of two geographically dis-
tinct regions differed markedly even though their HEs were similar. Assuming that the differ-
ences were not due to distinct growing conditions or HEs, the differences were attributed to
management [27]. Thus, strategies that obtain datasets from production units with similar
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NCFs, but from distinct locations, or datasets with ample variation in the same HEs even
though geographically concentrated, are advantageous.

We suspect that the large variation in yield within HEs in our datasets indicate that there
were indeed large variations in management. Furthermore, the highly skewed yield distribution
with a preponderance of very low yield plots under similar NCFs suggests that CFs or manage-
ment of most plots is sub-optimal for yield. Similar results have been obtained with small farm-
ers in the Andes with Andean blackberry and lulo [27,28]. In the absence of detailed data on
management practices, such as fertilizer use, and disease, pest and weed control, we used the
geographic region as a proxy for general management levels as suggested in the studies of lulo
and Andean blackberry [26, 27]. Management skill, estimated by regional proxy, profoundly
influenced yield within HEs with a clear advantage in yield for the TecnCoffee proxy. This,
once again, supports the approach of HEs or recommendation domains to explain variance in
yield due to NCFs and hence to detect how CFs affect yield within a given set of conditions.

However, lack of information on critical CFs, such as fertilizer levels and pest, diseases and
weed management, made it impossible to link yields to particular management practices in
specific HEs other than the quincunx planting pattern, planting density and variety. The appar-
ently large yield increase associated with the quincunx planting pattern in one HE (C1S7, S4
Fig) was also questionable. Experienced agronomists and agricultural scientists’ opinion pro-
posed that the association in intercropped plantain was likely related to the general technologi-
cal level of farmers who used quincunx (see eq 2) from one area apparently using similar
technology to obtain higher yields than average value. Similarly, the large apparent effects of
variety must be treated with care as particular varieties were associated with specific HEs.

The predominance of a single variety in each of the HEs raises the question as to whether
the differences in yield ascribed to HEs are due to the variety or the HE. We suggest that farm-
ers generally choose a variety suitable for their particular conditions. The concentration of vari-
eties in specific HEs, across geographical regions, suggests that the definition of HEs is in
accordance with farmers’ appreciation of their growing conditions and that they have chosen
varieties that fit with their NCFs. Furthermore, it becomes inappropriate to determine what is
the cause of the yield difference between the HEs. The differences are presumably due to the
combination of the characteristics of the HE and the variety that farmers perceive to be best
suited to that HE.

In the intercropping system, across all technological levels and HEs there was a tendency for
yield per plant to decrease as plant density increased. This agrees with the general observation
in controlled experiments that as plant density increases, individual plant yield decreases. This,
in turn, demonstrates that farm data put into the context of HEs can reveal the response of the
crop to CFs, such as plant density.

With the tools and data available, HEs or NCFs were clearly defined and furthermore CFs
were shown to be important in determining yield. For management practices such as plant
density, variety, and planting pattern in intercropping, we only obtained tenuous relationships
with yield in spite of having more than one thousand events to analyze and large variations in
yield within HEs. We suggest that sufficient reliable data existed to define the HEs, whereas for
CFs, even with a large number of events, there was insufficient data on management practices
such as fertilizer use and pest management.

Thus, climate data fromWorldClim and soil and terrain information evaluated in situ with
the specially designed methodology of RASTA were sufficient to characterize recommendation
domains and effectively define HEs. On the other hand, management data, obtained largely
from interviews with growers, were incomplete and insufficient to characterize the individual
CFs. It was not possible to obtain data on fertilizer use and disease, pest and weed control.
Most of the growers had no formal farm records to help them recall how they managed their
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crops. Thus, lack of farm records on crop management practices severely limited the ability to
determine which practices are appropriate in particular HEs or recommendation domains. In
addition, the farmers’ data based solely on memory contained errors. These included obvious
errors, such as unreal planting densities and confusion of units of yield. These errors were cor-
rected wherever possible. Nevertheless, the lack of farm records is a major obstacle to effective
use of farmer information and knowledge.

Howland et al. [73], in a parallel study, found few small fruit farmers kept good farm rec-
ords. Many of them saw the advantage of keeping records, but they had neither the skills
required nor the tools needed to keep records. Currently few growers have access to internet or
computer skills, and hence they were not able to use the platform developed as part of the proj-
ect to maintain adequate records and continually monitor their crop performance. Further-
more, the lack of access to modern Information and Communication Technologies (ICTs) and
the generally low levels of education in rural areas minimize the ability of farmers to access the
results of analysis presented here [73,74]. Nevertheless, growers enrolled in farmers field
schools showed interest in sharing information and were capable of interpreting information
and using it to make informed decisions when it was presented to them in a format they could
understand [73,75,76]. This suggests that the use of farmer generated information as proposed
in this paper will only be an effective tool if farmers: (a) improve their capacity to keep better
records; (b) are provided with the means to keep records; and (c) via group activities such as
farmers field schools, receive processed information in a format that they can use to make bet-
ter decisions.

In Australia and Chile, CropCheck has been developed as a system which growers use to
keep records on management practices that influence yield [6]. Experienced extension agents
define those practices that are likely to influence yield and design protocols for recording them.
Growers then record whether they apply these practices or not. The data from many farmers
are analyzed and associations between yield and distinct practices quantified. CropCheck has
been used in relatively uniform conditions, unlike those in the mountainous regions in which
we work. CropCheck looks at the genetic by management interactions, but does not include
their interaction with the environment, the Genetic by Management by Environment interac-
tions (G x M x E). Farmers using the CropCheck system obtain higher yields [6,77]. We suggest
that the deficiency in data on CFs we encountered could be alleviated by adopting systems like
CropCheck. Such a system, when coupled with the approach of NCFs, would be suitable for sit-
uations with greater heterogeneity than those for which CropCheck was developed.

Although the lack of information on CFs in our study means that it is not possible to
directly deduce optimal practices for a particular HE, an interesting option emerged. The gen-
erally low yields in the HEs, C1S7 and C7S1, coupled with the occasional high yields indicated
that most farmers were not using cultural practices that exploited the yield potential of the HE.
However, it was possible to identify those farmers that were obtaining high yields. Hence, if
the farmers with low yields were able to visit and exchange information with the farmers with
high yield, it is likely that the low yield producers of today could become the high yield farmers
of tomorrow. Small-scale Colombian fruit farmers are indeed willing to share information
[73,75,76]. Hence, simply identifying those farmers who produce high yields in a particular rec-
ommendation domain opens the way to increasing the yields of all growers, even though spe-
cific practices are not identified.

Conclusions

We revisited the idea of recommendation domains from a bottom-up perspective and devel-
oped methodologies for determining Homologous Events (HEs) with similar non-controllable
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factors. Data from sources such as WorldClim, and farmers’ observations such as RASTA for
soils, were analyzed. Successful data mining techniques to define HEs were only possible when
guided by expert opinion. Expert opinion was strengthened and supported by rigorous analyti-
cal methods. The addition of HEs to mixed models improved their capacity to explain yield
variation, confirming the original hypothesis that the recommendation domain concept can be
applied effectively at the micro-level. Furthermore, the use of HEs, which bring together com-
binations of NCFs, was shown to be more effective than looking at the effects of individual fac-
tors and their interactions. The lack of detailed information on management practices limited
the ability to define which individual practices were beneficial in a particular recommendation
domain. However, the use of proxies for general management ability clearly demonstrated that
differences in management are related to yield variation within recommendation domains and
that well managed farms can be identified. This opens the way for using HEs to identify good
farmers in a particular recommendation domain: these farmers can then share their informa-
tion with other less productive growers who may improve their productivity. In spite of the
limited data on management practices, we demonstrated that when data is available it is possi-
ble to associate increased productivity with particular management practices within an HE.
Hence, lack of good farm records is currently a major limitation to the approach, but systems
such as CropCheck exist in other countries and could be adopted. The combination of systems
such as CropCheck, which only looks at CFs, with the concepts of HEs which incorporate
NCFs would appear to be extremely powerful.
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