
From Ontology to Relational Databases

Anuradha Gali1, Cindy X. Chen1, Kajal T. Claypool1 and Rosario Uceda-Sosa2

1 Department of Computer Science, University of Massachusetts, Lowell, MA 01854,
U.S.A.

{agali | cchen | kajal}@cs.uml.edu
2 IBM T. J. Watson Research Center, Hawthorne, NY 10532, U.S.A.

rosariou@us.ibm.com

Abstract. The semantic web envisions a World Wide Web in which
data is described with rich semantics and applications can pose com-
plex queries. Ontologies, a cornerstone of the semantic web, have gained
wide popularity as a model of information in a given domain that can
be used for many purposes, including enterprise integration, database
design, information retrieval and information interchange on the World
Wide Web. Much of the current focus on ontologies has been on the
development of languages such as DAML+OIL and OWL that enable
the creation of ontologies and provide extensive semantics for Web data,
and on answering intensional queries, that is, queries about the struc-
ture of an ontology. However, it is almost certain that the many of the
semantic web queries will be extensional and to flourish, the semantic
web will need to accommodate the huge amounts of existing data that is
described by the ontologies and the applications that operate on them.
Given the established record of relational databases to store and query
large amounts of data, in this paper we present a set of techniques to
provide a lossless mapping of an OWL ontology to a relational schema
and the corresponding instances to data. We present preliminary exper-
iments that compare the efficiency of the mapping techniques in terms
of query performance.

1 Introduction

The Semantic Web brings closer to realization the possibility of semantically
organized data repositories, or ontologies, throughout the Internet that can be
used for intelligent information searching both by humans and computational
agents. Ontologies are human readable, comprehensive, sharable and formal
which means that they are expressed in a language that has well-defined se-
mantics. Ontologies are important to application integration solutions because
they provide a shared and common understanding of data that exist within an
application integration problem domain. Ontologies also facilitate communica-
tion between people and information systems. However, while today there is
an un-precedented wealth of information available on the Web, to fully realize
the power of ontologies and to enable efficient and flexible information gather-
ing, persistent storage of ontologies and its subsequent retrieval is of paramount
importance.

2

There are three possible approaches to store the ontology data and execute
queries on that data. One is to build a special purpose database system which
will be tailored to store and retrieve ontology specific data. The second is to use
an object oriented database system exploiting the rich data modeling capabili-
ties of OODBMS. Given the popularity of SQL and the efficiency of executing
these queries, a complimentary approach is to use relational database systems.
In this approach the OWL data is mapped into tables of a relational schema
and the queries posed in an ontology language are translated into SQL queries.
Relational database systems are very mature and scale very well, and they have
the additional advantage that in a relational database, ontology data and the
traditional structured data can co-exist making it possible to build applications
that involve both kinds of data. While there are approaches that focus on trans-
lating XML documents into corresponding relational tables and data [9, 3], to
the best of our knowledge ours is the first to focus on the persistent relational
storage of OWL ontologies.

The rest of the paper is organized as follows: Section 2 gives an overview of
OWL. Section 3 describes briefly the related work in terms of the different map-
ping schemes available for storing the XML documents in the relational database.
The algorithm for translating the given OWL file into relational schema is ex-
plained in Section 4. Section 5 describes the preliminary performance comparison
of the different approaches. We conclude in Section 6.

2 Background: Ontologies and OWL

Ontology is the key enabling technology for the semantic web. The main purpose
of an ontology is to enable communication between computer systems in a way
that is independent of the individual system technologies, information architec-
tures and application domain. The key ingredients that make up an ontology are
a vocabulary of basic terms, semantic interconnections, simple rules of inference
and some logic for a particular topic.

Ontologies may vary not only in their content, but also in their structure,
implementation, level of description, conceptual scope, instantiation and lan-
guage specification. Ontologies are not all built the same way. A number of
possible languages can be used, including general logic programming languages
such as Prolog. More common, however, are languages that have evolved specif-
ically to support ontology construction. The Open Knowledge Base Connectiv-
ity (OKBC) model and languages like KIF (and its emerging successor CL –
Common Logic) are examples that have become the bases of other ontology lan-
guages. There are also several languages based on a form of logic thought to
be especially computable, known as description logics. These include Loom and
DAML+OIL, which are currently being evolved into the Web Ontology Lan-
guage (OWL) standard. When comparing ontology languages, what is given up
for computability and simplicity is usually language expressiveness, which many
developers disagree since they feel that a good language should have a sound

3

underlying semantics.[1] gives a good overview of all the relevant technologies in
Ontology.

OWL. OWL [6] is a language for defining and instantiating Web ontologies.
An OWL ontology may include descriptions of classes, properties and their in-
stances. Given an ontology, the OWL formal semantics specify how to derive its
logical consequences, i.e. facts not literally present in the ontology, but entailed
by the semantics. These entailments may be based on a single document or mul-
tiple distributed documents that have been combined using defined OWL mech-
anisms. The OWL language provides three increasingly expressive sub-languages
designed for use by specific communities of implementers and users.

OWL Lite supports those users primarily needing a classification hierarchy
and simple constraint features. For example, while OWL Lite supports cardinal-
ity constraints, it only permits cardinality values of 0 or 1. It is typically simpler
to provide tool support for OWL Lite than its more expressive relatives, and
provide a quick migration path for thesauri and other taxonomies.

OWL DL supports those users who want the maximum expressiveness with-
out losing computational completeness (all entailments are guaranteed to be
computed) and decidability (all computations will finish in finite time) of rea-
soning systems. OWL DL includes all OWL language constructs with restrictions
such as type separation (a class can not also be an individual or property, a prop-
erty can not also be an individual or class). OWL DL was designed to support
the existing Description Logic business segment and has desirable computational
properties for reasoning systems.

OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For example, in
OWL Full a class can be treated simultaneously as a collection of individuals and
as an individual in its own right. Another significant difference from OWL DL is
that a owl:DatatypeProperty can be marked as an owl:InverseFunctionalProperty.
OWL Full allows an ontology to augment the meaning of the pre-defined (RDF
or OWL) vocabulary. It is unlikely that any reasoning software will be able to
support every feature of OWL Full.

3 Related Work - XML Mapping Approaches

Given the similarities between XML and OWL, in this section we give a brief
overview of the mapping approaches that have been proposed in literature for
XML documents.

Edge Approach. The simplest scheme proposed by Florescu et al. [3] is to store
all attributes in a single table called the Edge table. The Edge table records the
object identities (oids) of the source and target objects of the attribute, the
name of the attribute, a flag that indicates whether the attribute is an inter-
object reference or points to a value, and an ordinal number used to recover all
attributes of an object in the right order and to carry out updates if the object

4

has several attributes with the same name. The Edge table, therefore, has the
following structure:

Edge(source, ordinal, name, flag, target)

The key of the Edge table is source, ordinal. Figure 2 shows how the Edge
table would be populated for the example XML graph.

Attribute Approach. Attribute mapping scheme groups all attributes with
the same name into one table. Conceptually, this approach corresponds to a
horizontal partitioning of the Edge table used in the first approach, using name
as the partitioning attribute. Thus, as many Attribute tables are created as for
different attribute names in the XML document, and each Attribute table has
the following structure:

Aname(source, ordinal, flag, target)

The key of the Attribute table is source, ordinal, and all the fields have
the same meaning as in the Edge approach.

Universal Approach. Universal table approach stores all the attributes of an
XML document. This corresponds to a Universal table with separate columns
for all the attribute names that occur in the XML document. Conception ally,
this Universal table corresponds to the result of an outer join of all Attribute
tables. The structure of the Universal table is as follows, if n1, n2,...,nk are the
attribute names in the XML document, then

Universal(source, ordinaln1, flagn1, targetn1, ordinaln2,

flagn2, targetn2, . . . , ordinalnk, flagnk, targetnk)

The Universal table has many fields which are set to null, and it also has a
great deal of redundancy.

Normalized Universal Approach. The UnivNorm approach, is a variant of
the Universal table approach. The difference between the UnivNorm and Uni-
versal approach is that multi-valued attributes are stored in separate Over-flow
tables in the UnivNorm approach. For each attribute name that occurs in the
XML document a separate Overflow table is established, following the principle
of the Attribute approach. This way, there is only one row per XML object in the
UnivNorm table and that table is normalized. The structure of the UnivNorm
table and the Overflow tables is as follows, if n1; : : : ; nk are all the attribute
names in the XML document, then

UnivNorm(source, ordinaln1, flagn1, targetn1, ordinaln2, flagn2,

targetn2, . . . , targetnk)

OverflowOwn1(source, ordinal, flag, target)

OverflowOwnk(source, ordinal, flag, target)

The key of the UnivNorm table is source. The key of the Overflow table is
fsource, ordinalg.

5

Basic Inlining Approach. Basic Inlining Approach converts the XML DTD
into relations. Basic inlines as many descendants of an element as possible into
a single relation. Basic creates relations for every element because an XML
document can be rooted at any element in a DTD. Basic approach is highly
inefficient since it creates a large number of relations.

Shared Inlining Approach. Shared Inlining tries to avoid the drawbacks of
basic by ensuring that an element node is represented in exactly one relation.
Shared identifies the element nodes that are represented in multiple relations
in Basic and shares them by creating separate relation for these elements. In
shared, relations are created for all elements in the DTD graph whose nodes
have an in-degree greater than one. Nodes with an in-degree of one are inlined.
Element nodes having an in-degree of zero are also made into separate relations,
because they are not reachable from any other node. Elements below a “*” node
are made into separate relations.

Hybrid Inlining Approach. The hybrid inlining technique is the same as
shared except that it inlines some elements that are not inlined in shared. Hy-
brid additionally inlines elements with in-degree greater than one that are not
recursive or reached through a “*” node.

4 Mapping OWL to Relational Schema

Semantic web is increasingly gaining popularity and importance with an in-
creasing number of people using ontologies to represent their information. To
augment the growth of ontology, efficient persistent storage of ontology concepts
and data is essential. We now examine relational databases as an effective per-
sistent store for ontologies. While there is research on storing XML documents
in relational databases, there has not been much work done on the persistent
storage of ontologies, in particular of ontologies described by OWL.

In this section, we present an approach to map OWL to relational schema.
The goal of our work is to devise an approach that will result in fewer joins
when a user issues a query since join is an expensive operation. Since OWL is
based on XML Syntax, but defines a lot of constraints on classes and provides
inference, the approaches to store XML documents in relational databases are
not fully applicable. We need to preserve all the constraint information while
mapping OWL into relational schemas.

4.1 System Architecture

Our OWL to relational schema mapping system contains three parts — Ontology
Modeler, Document Manager and Ontology Resource Manager.

Ontology Modeler takes OWL documents as input and creates an ontology
model that is similar to DOM [2] for XML documents. While parsing the OWL
documents, all the constraints will also be detected and recorded. An appropriate

6

OWL reasoner, depending upon the input document if its OWL Lite, OWL full
or OWL DL, is selected. Currently, all the OWL documents are stored in main
memory for parsing.

Document Manager helps in processing and handling of OWL documents. It
uses Jena [4] to assist importing of OWL documents. This is important because if
we do not do this, once the imports have been processed, it would be impossible
to know where a statement came from. Document Manager helps in processing
and handling multiple OWL documents. It builds the union of the imported
documents and creates new models for the imported OWL documents.

Ontology Reasoner provides methods for listing, getting and setting the
RDF [8] types of a resource. The rdf:type property defines many entailment
rules in the semantic models of the various ontology languages.

4.2 OWL2DB Algorithm

The algorithm we developed to map an OWL document into relational table is
given in Algorithm 1.

Algorithm 1 Mapping OWL to Relational Schema

1: The given OWL file is first parsed for Root classes that returns an iterator over all
the root classes.

2: Iterate through the root classes to determine the depth of the descendants.
3: The showclass method is called that keeps track of the depth of the subclasses from

the root and when the depth of the graph is 3 then a relation table is created for
all the subclasses above it with attribute names/instances as column names.

4: The above step is repeated starting from the last subclass and traversing the graph
and collecting the list of all the table names and column names of subclasses that
are a the depth of three from the starting node.

5: The depth of the Union/complement/disjoint subclasses on the same level are the
same.

6: Separate relations are created for classes that are disjoint from each other.
7: Once the information on tablenames and corresponding attributes are collected,

we need to collect the values of the instances to populate the database. The graph
is parsed again to collect the values that are stored in a data structure.

8: Finally, a database connection is established and all the tables are created and then
the values are inserted. Inlining the root is handled the same way as a parent node.

Figure 1 shows an example OWL document. Table 1, 2, 3, 4 represent the
relational tables into which the OWL document was mapped.

<rdf:RDF xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation=

"C:\usr\Repository\iris1.0\data\schema\IRISData.xsd"

Name="FurnitureOntology">

<owl:Ontology rdf:about="">

7

<rdfs:comment>An example of OWL Ontology</rdfs:comment>

<owl:priorVersion rdf:resource="C:\usr\Repository\iris1.0

\data\schema\IRISData.xsd"/>

<owl:imports rdf:resource="http://www.w3.org/2001/XMLSchema-instance"/>

<rdfs:label>Furnite Ontology</rdfs:label>

<!----Main Classes----->

<owl:Class rdf:ID="OntologyDependency"/>

<rdfs:label xml:lang="en">ShoppingCatalogOntology</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Relation"/>

<rdfs:label>Relation/rdfs:label>

</owl:Class>

<owl:Class rdf:ID="ProtoNode"/>

<rdfs:label>ProtoNode</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="AtomicNode"/>

<rdfs:label>Atomic Node</rdfs:label>

</owl:Class>

<!----Sub Classes----->

<owl:Class rdf:ID="Name"/>

<rdfs:subClassOf rdf:resource="#Relation" />

<rdfs:label xml:lang="en">Name</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Arity"/>

<rdfs:subClassOf rdf:resource="#Relation" />

<rdfs:label xml:lang="en">Arity</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Reflexive"/>

<rdfs:subClassOf rdf:resource="#Relation" />

<rdfs:label xml:lang="en">Reflexive</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Name"/>

<rdfs:label>Name</rdfs:label>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#ProtoNode"/>

<owl:DatatypeProperty rdf:ID="string">

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="IsAbstract"/>

<rdfs:label>IsAbstract</rdfs:label>

8

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#ProtoNode"/>

<owl:DatatypeProperty rdf:ID="string">

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

- <owl:Class rdf:ID="ProtoNode"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#ProtoNode"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

- <owl:Class rdf:ID="Name"/>

<rdfs:label>Name</rdfs:label>

<rdfs:subClassOf rdf:resource="#ProtoNode" />

<owl:Restriction>

<owl:DatatypeProperty rdf:ID="string">

</owl:Restriction>

</owl:Class>

- <owl:Class rdf:ID="constraintNexus"/>

<rdfs:label>Constraint Nexus</rdfs:label>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#ProtoNode"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

- <owl:Class rdf:ID="Relation"/>

<rdfs:label>Relation</rdfs:label>

<rdfs:subClassOf rdf:

resource="#constraintNexus" />

<owl:Restriction>

<owl:DatatypeProperty rdf:ID="string">

<rdfs:domain rdf:resource=

"#ProtoNode"/>

</owl:Restriction>

</owl:Class>

Fig. 1. Sample OWL document.

9

Name OntologyDependency

Furniture Ontology Shopping Cart

Table 1. Furniture Table

Name Arity Reflexive Symmetric

SPATIAL RELATION 2 true true
HAS-OWNER 2 false false

Table 2. Relation Table

5 Performance

To test the performance of our system, we generated two OWL files which are
wide and deeply nested based on wine.owl and food.owl [7]. The OWL file was
parsed and separate relations were created for all children nodes at a depth of
2. The nodes with an in-degree less than 2 were inlined. The experiment was
repeated, creating relations for child nodes that were at depth 3, 4, 5, ..., 10,
etc. After each mapping, queries were executed to determine the depth-level at
which the inlining should occur for optimal performance. Based on the result,
we have decided that the optimal performance is obtained when the nodes with
an in-degree of 3 to 5 are inlined based on the depth of the OWL document.
When the inlining increases more than that then the performance is close to the
performance of Universal Table approach.

Experimental evaluations were conducted on all the different mapping schemes
discussed in Section 3 and also for the OWL to relations mapping. The database
used for the performance evaluation is IBM DB2 [5]. The parameters considered
were time taken and number of joins needed to perform a simple select or update
query. Separate databases were created for each mapping schemes. The same set
of Queries were issued on all the databases.and the results are shown in Figure 2,
3, 4, and 5.

The queries that were used are as follows.

Query 1 A simple select query to display all the information in the table.

Select hasColor,hasLocation, hasBody, hasSugar from Wine

ProtoName IsAbstract childProtoName

Shopping Catalog Base true Physical Object

Table 3. Proto Table

10

ChildProtoName IsAbstract SemIndp ConstraintRelation ConstraintTarget

Physical Object true false IS-A ShoppingCatalogBase

Table 4. Child Proto Table

Query 2 A delete query.

Delete hasSugar from all the Wines that have hasColor=Red

Query 3 An update query.

Update the hasBody for all the Wines located in Sauterine Region

Query 4 A select query with joins.

List all the Wines made in Bordeaux (several location)

The performance evaluation showed in Figures 2, 3, 4, 5 3 clearly indicate
that Basic Inlining, Universal and Normalized Universal approach perform worst
among the other methods. It also proves that OWL2DB performs pretty close
to shared and attribute mapping approaches that are known to be the optimal
mapping approaches from XML to Relations. OWL2DB is therefore a clearly an
optimal mapping from OWL to Relations.

6 Conclusion

Ontology has more expressive power than XML but XML is richer in defining
structures and grammar. Ontology and XML can be used to describe semi-
structured natural language texts. Ontology is about sharing and consensual
terminology and XML is used to accomplish that. Ontology provides a domain
theory while XML provides the structure of data container. Ontology is a power-
ful new tool for building enterprise and web-based information systems that hold
the promise of drastically reducing system construction and maintenance costs.
It helps businesses develop information systems that are reusable, maintainable,
and able to talk with other systems sharing similar kinds of information. XML
can be used as the underlying technology for Ontology since it is pretty mature.
Both XML and Ontology together can pave the way for the dynamic knowledge
management systems.

This paper describes an efficient approach to mapping OWL documents into
relational tables. There has not been much work in this area and we have tried
to make the process autonomous, that is there is no human intervention once
the input document is given. As the semantic web is gaining importance lately,
we need an efficient approach to store all the ontology documents for the ease
of querying and this paper introduces a first attempt in this direction.

3 In these figures, 1,2,3,4,5,6,7,8 of the X-Axis stands for the Edge, Attribute, Univer-
sal, UnivNorm, Basic, Shared, Hybrid, OWL2DB mapping schemes.

11

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

’datafile1.dat’

Fig. 2. Simple Select Query Q1

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

’datafile1.dat’

Fig. 3. Update Query Q2

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

’datafile1.dat’

Fig. 4. Delete Query Q3

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

’datafile1.dat’

Fig. 5. Join Query Q4

12

References

1. John Davies, Dieter Feasel, and Frank Van Harmelen. Towards the Semantic Web:
Ontology Driven Knowledge Management. John Wiley snd Sons Inc, 2003.

2. Document Object Model (DOM) Level 3 Core Specification.
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/.

3. Daniela Florescu and Donald Kossman. Performance evaluation of alternate map-
ping schemes for stoing xml data in a relational database. Technique Report, 1999.

4. Jena Documentation. http://jena.sourceforge.net/ontology/index.html.
5. David Martineau. DB2 Universal Database for Application Development. John

Wiley snd Sons Inc, 1998.
6. OWL Web Ontology Language. http://www.w3.org/TR/owl-guide/.
7. OWL Web Ontology Language Reference. http://www.w3c.org/TR/owl-ref/.
8. RDF Primer. http://www.w3c.org/TR/2004/REC-rdf-primer-20040210/.
9. Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang, David DeWitt,

and Jeffrey Naughton. Relational databases for querying xml documents: Limita-
tions and opportunities. Proceedings of 25 VLDB Conference, 1999.

