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Abstract

The rapid pace of innovations in information and communication tech-

nology (ICT) industry over the past decade has greatly improved peo-

ple’s mobile communication experience. This, in turn, has escalated ex-

ponential growth in the number of connected mobile devices and data

traffic volume in wireless networks. Researchers and network service

providers have faced many challenges in providing seamless, ubiqui-

tous, reliable, and high-speed data service to mobile users. Mathemati-

cal optimization, as a powerful tool, plays an important role in address-

ing such challenging issues.

This dissertation addresses several radio resource allocation prob-

lems in 4G and 5G mobile communication systems, in order to im-

prove network performance in terms of throughput, energy, or fairness.

Mathematical optimization is applied as the main approach to analyze

and solve the problems. Theoretical analysis and algorithmic solutions

are derived. Numerical results are obtained to validate our theoretical

findings and demonstrate the algorithms’ ability of attaining optimal or

near-optimal solutions.

Five research papers are included in the dissertation. In Paper I,

we study a set of optimization problems of consecutive-channel allo-

cation in single carrier-frequency division multiple access (SC-FDMA)

systems. We provide a unified algorithmic framework to optimize the

channel allocation and improve system performance. The next three

papers are devoted to studying energy-saving problems in orthogonal

frequency division multiple access (OFDMA) systems. In Paper II, we

investigate a problem of jointly minimizing energy consumption at both

transmitter and receiver sides. An energy-efficient scheduling algorithm

is developed to provide optimality bounds and near-optimal solutions.

Next in Paper III, we derive fundamental properties for energy min-

imization in load-coupled OFDMA networks. Our analytical results
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suggest that the maximal use of time-frequency resources can lead to

the lowest network energy consumption. An iterative power adjust-

ment algorithm is developed to obtain the optimal power solution with

guaranteed convergence. In Paper IV, we study an energy minimization

problem from the perspective of scheduling activation and deactivation

of base station transmissions. We provide mathematical formulations

and theoretical insights. For problem solution, a column generation ap-

proach, as well as a bounding scheme are developed. Finally, towards to

5G communication systems, joint power and channel allocation in non-

orthogonal multiple access (NOMA) is investigated in Paper V in which

an algorithmic solution is proposed to improve system throughput and

fairness.
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Populärvetenskaplig Sammanfattning
Den snabba utvecklingen inom informations- och kommunikations

teknikområdet har avsevärt förbättrat människors upplevelser av mobil-

kommunikation. Detta i sin tur har lett till en exponentiell ökning av an-

talet anslutna mobila enheter och mängden datatrafik i mobila nätverk.

Forskare och nätverksoperatörer har stått inför många utmaningar för att

tillhandahålla tjänster som är sömlösa, allestädes närvarande, pålitliga,

och använder sig av höghastighetsdata för mobila enheter. För att ta itu

med dessa problem kan matematisk optimering tillämpas för att tillhan-

dahålla en generell metod och systematiska riktlinjer för att analysera

och lösa dessa problem.

Den här avhandlingen fokuserar på att angripa radioresurs optime-

ringsproblem för fjärde och femte generationens (4G och 5G) mobi-

la kommunikationssystem i syfte att optimera tilldelningen av den be-

gränsade resursen frekvens/effekt/tid för att uppnå högsta möjliga pre-

standa. Vinsterna med att optimera resursallokeringen inkluderar förbät-

trad nätverkskapacitet, uppfyllandet av varierande prestandakrav, samt

reducera kapital- och driftutgifter. De i avhandlingen angripna opti-

meringsproblemen kan kategoriseras i två klasser, energi- respektive

spektrumeffektiv resursallokering. Den första klassen syftar till att mi-

nimera total energikonsumtion givet vissa prestandakrav, Den senare

syftar till att maximera systemets genomströmning givet begränsad ef-

fektbudget samt att tillfredsställa krav på servicekvalitet.

Huvudsyftet med den här avhandlingen är att undersöka grundlägg-

ande egenskaper av resursallokeringsproblem för olika 4G och 5G kom-

munikationssystem. Vi studerar en uppsättning energi- och spektrumef-

fektiva resursallokeringsproblem. Matematisk optimering tillämpas som

huvudstrategi för att analysera och lösa dessa problem. Vi tillhandahåller

matematiska formuleringar och teoretisk förståelse för hur man kan op-

timera resursallokering. Baserat på vår teoretiska analys utvecklar vi al-

goritmer av hög kvalitet för att optimera prestandan. Numeriska resultat

erhålls för att validera våra teoretiska resultat och demonstrera algorit-

mernas förmåga att uppnå optimala eller nästan optimala lösningar.
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Introduction and Overview

1 Introduction

1.1 Motivation

Over the past few decades, mobile communication systems have been

successively evolved to the fourth generation (4G), i.e., Long Term Evo-

lution (LTE) and LTE-advance (LTE-A). Even for a contemporary com-

munication system, a fundamental issue, i.e., how to serve users’ strin-

gent data demands for mobile communication by using limited network

resources, still exists. The issue stems from two aspects. On one side,

the explosive growth in traffic data volume and number of connected de-

vices will continue. From Cisco’s annual visual network index reports,

the number of broadband subscribers could reach tens billions by 2020,

most of which are mobile devices [1]. Besides, mobile users’ demand

for high-speed data service is increasing exponentially, mainly driven

by the advanced mobile devices and multimedia applications [2]. On the

other side, with such tremendous growth, the scarcity of radio resources

for cellular networks remains and becomes even more severe. The li-

censed frequency bands which are the scarce and expensive resource

for network service providers, are limited within a narrow spectrum for

the wireless communication in cellular networks, typically from several

hundred megahertz (MHz) to few gigahertz (GHz) [3]. The physical

spectrum has been heavily used and become crowded. It can be foreseen

that the tremendous growth of data traffic and number of mobile devices

could exhaust the capacity in existing cellular networks [4]. Moreover,

this rapid growth has resulted in high energy consumption in cellular

networks.

Energy consumption has become a serious concern for the entire in-

formation and communication technology (ICT) sector. First, the esca-

lation of consumed energy in mobile communication systems indirectly

causes a huge increase of greenhouse gas emission. It has been com-

monly recognized as a threat to environment and sustainable develop-

ment. Second, the cost of high energy consumption is a heavy burden of

capital expenditure and operational expenditure for network operators.

It has been reported in [5] that over 70% of electricity bills for network

operators come from the energy consumption in base stations (BSs).
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Introduction and Overview

Third, energy-efficient communication is crucial for battery-powered

devices, e.g., smart phones, since higher energy consumption will drain

the battery faster. Thus, the efforts for exploiting energy-saving poten-

tials and improving energy efficiency for cellular networks are neces-

sary and important.

For managing these issues of capacity and energy, advanced tech-

nologies and mobile communication systems have to be continuously

developed and evolved, since the existing system will reach its perfor-

mance limits and may not be able to address these challenges. The 4G

LTE/LTE-A mobile communication system has been deployed in many

countries [6, 7]. Towards the future, the fifth generation (5G) systems

are expected to be deployed in the near future [2]. For each genera-

tion of the mobile communication systems, intelligent radio resource

management is of importance in improving spectrum efficiency and re-

ducing energy consumption. Mathematical optimization can be applied

as a reliable and powerful tool to provide general methodology and sys-

tematic guidelines in analyzing and addressing problems.

Motivated by the importance and the arising challenges of spectrum

efficiency and energy saving in 4G and 5G systems, this dissertation

addresses several radio resource allocation problems for orthogonal fre-

quency division multiple access (OFDMA) and single carrier-frequency

division multiple access (SC-FDMA) systems in LTE networks, and

non-orthogonal multiple access (NOMA) systems in 5G systems. The

main objective of this dissertation is to investigate fundamental char-

acteristics of the resource allocation problems, address the problems

by optimization approaches, and provide high-quality algorithmic so-

lutions to optimize system performance. The theoretical results and

algorithmic ideas developed in this dissertation will shed light on the

resource management for the future networks.

1.2 Dissertation Outline and Organization
The dissertation is divided into two parts. In Part I, we provide a gen-

eral introduction to the addressed optimization problems, along with

the related technologies and mathematical tools. Part II consists of five

research papers. Part I is organized as follows. In Chapter 2, we intro-

duce the multiple access technologies OFDMA and SC-FDMA in LTE,
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and NOMA in 5G networks. In Chapter 3, we present radio resource

optimization problems in OFDMA, SC-FDMA, and NOMA. In Chap-

ter 4, we present the mathematical optimization tools which are used

in this dissertation. In Chapter 5, we provide a short description of the

contributions for each paper appended in Part II.
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2 Multiple Access Technologies in LTE and
Beyond

A standardized multiple access (MA) scheme is usually considered as

the representative feature for a cellular system in each generation, e.g.,

code division multiple access in 3G, and OFDMA/SC-FDMA in 4G.

An appropriate MA scheme enables massive mobile devices accessing

the limited network resources efficiently and achieving supreme system

performance. This dissertation has addressed several resource alloca-

tion problems for 4G and 5G networks. Next, we briefly introduce the

basis of OFDMA, SC-FDMA, and NOMA.

2.1 Orthogonal Multiple Access in LTE
In 4G LTE systems, sometimes also referred to as LTE-A which was

standardized in the third generation partnership project (3GPP) Release

10 [7], two advanced orthogonal multiple access (OMA) schemes, OFDMA

and SC-FDMA, have been adopted as the standard MA schemes for

downlink and uplink transmission, respectively [8]. Both MA schemes

are considered as the appropriate technique to support users’ diverse

quality of service (QoS) requirements, exploit the flexible frequency

granularity and achieve high spectral efficiency. The frequency band-

width can be from 1.25 MHz to 20 MHz [9]. By adopting multiple-

input multiple-output (MIMO), LTE-A is able to support a peak data

rate in Gbps [3, 10].

2.1.1 OFDMA

In LTE downlink, OFDMA is based on the concept of multi-carrier

transmission. In the frequency domain, the spectrum is divided into

a large number of narrow-band subcarriers (or subchannels). The sub-

carrier bandwidth equals 15 kHz in both LTE downlink and uplink. The

center frequency of each subcarrier is selected such that all the subcarri-

ers are mathematically orthogonal to each other, and thus eliminates the

interference between the adjacent subcarriers. The orthogonality avoids

the need of separating the subcarriers by means of guard-bands, i.e.,

6
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placing empty frequency bandwidth between adjacent subcarriers, and

therefore saves the bandwidth resource. In the time domain, transmis-

sions are organized into frames with length 10 milliseconds (ms) each.

A frame is divided into 10 equally sized subframes of length 1 ms. Each

subframe, corresponding to one transmission time interval (TTI), con-

sists of two equal time slots of length 0.5 ms. Each time slot consists of

six or seven orthogonal frequency division multiplexing (OFDM) sym-

bols depending on the choice of cyclic prefix [3]. A basic resource unit

(RU) in LTE is a resource block (RB) which consists of 12 subcarriers

with a total bandwidth 180 KHz in the frequency domain and one 0.5 ms

slot in the time domain [11]. Multiple user equipments (UEs) in a cel-

lular network can transmit or receive data by using such time-frequency

RBs.

Another advantage of OFDMA is its robustness in the presence

of multipath fading. In data transmission, the high-speed data stream

is divided into multiple substreams with lower data rate. These bit-

streams are modulated into data symbols and transmitted simultane-

ously over different subcarriers. The bandwidth of each subcarrier is

much smaller than the coherence bandwidth. Thus, each narrow-band

subcarrier only experiences relatively flat fading with approximately

constant channel gain during each TTI. This allows OFDMA to effi-

ciently resist frequency-selective fading. More detailed discussions of

OFDMA can be found in [8, 12].

2.1.2 SC-FDMA

In LTE uplink, one of the disadvantages of OFDMA is its high peak-

to-average power ratio (PAPR) in transmitted OFDM signals, resulting

in a need for a highly linear power amplifier [13]. High PAPR reduces

the power efficiency and imposes a burden of power consumption on

UE, and therefore shortens the battery life. This limitation is not a seri-

ous issue for dowlink transmission because of the availability of power

supply at BSs. However, the power consumption is a major concern in

uplink transmission since a mobile UE is usually limited by its battery

capacity.

To overcome the disadvantage, SC-FDMA, a modified version of

OFDMA, has been adopted as the standard MA scheme for LTE up-

7
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link transmission. SC-FDMA has similar performance as OFDMA but

with lower PAPR [14]. As in OFDMA, orthogonal subcarriers are used

to transmit information symbols in SC-FDMA, but they are transmit-

ted sequentially rather than in parallel as in OFDMA. This mechanism

reduces the envelope fluctuations of the transmitted signal waveform,

and thus offers lower PAPR. This property makes SC-FDMA more at-

tractive for uplink transmission especially for low-cost equipments with

limited power. Performance comparisons between OFDMA and SC-

FDMA have been extensively investigated, see, e.g., [15, 16].

Frequency

Frequency

Localized transmission

Interleaved transmission

UE 1

UE 2

UE 3

Figure 1: An illustration for localized FDMA and interleaved FDMA.

The subcarrier assignment among multiple UEs in SC-FDMA can

be implemented by two subcarrier mapping schemes, i.e., localized

FDMA (LFDMA) and interleaved FDMA (IFDMA) [17]. Figure 1

illustrates these two schemes. In LFDMA, each UE selects a set of

consecutive subcarriers to transmit data. In IFDMA, the subcarriers oc-

cupied by a UE are distributed equidistantly over the entire frequency

band. Detailed discussions of performance comparison between LFDMA

and IFDMA can be found in [18, 19].

2.2 Non-orthogonal Multiple Access Towards 5G
With the deployment of commercial LTE networks worldwide, 4G is

reaching maturity. Looking forward to the future, the rapid growth in

8
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traffic data volume and the number of connected mobile devices, and

the emergence of diverse application scenarios are still the main driv-

ing force to develop the next generation communication system [20].

In recent years, 5G has attracted extensive research and development

efforts from the wireless communication community. The performance

requirements of 5G systems have been firstly identified to adequately

support wireless communications in future scenarios. It is widely ac-

cepted that, in comparison to LTE networks, 5G will be able to support

1000-fold gains in system capacity, peak data rate of fiber-like 10 Gbps

and 1 Gbps for low mobility and high mobility, respectively, and at least

100 billion devices connections, ultra low energy consumption and la-

tency [2, 4].

To fulfill these stringent requirements, the design of 5G network

architecture will be different from LTE, and the current OMA schemes

also need to be evolved. Several non-orthogonal MA schemes are under

investigation for 5G. Compared to OMA in LTE, the new MA enables

considerable performance improvements in system throughput and ca-

pacity of connecting mobile devices. Moreover, the non-orthogonal de-

sign of MA provides good backward compatibility with OFDMA and

SC-FDMA [21]. In Release 13, 3GPP has initiated a study on downlink

multiuser superposition transmission (MUST) for LTE [22], aiming at

investigating multi-user non-orthogonal transmission, and the design of

advanced receivers [23]. The concept of non-orthogonal multiple ac-
cess is that the same frequency resource, e.g., subchannels, RBs, can

be shared by multiple-user signals in the code or power domain, result-

ing in non-orthogonality among user access. By relying on advanced

receivers, multi-user detection and successive interference cancellation

(SIC) are applied for signal separation at the receiver side [24].

In this dissertation, we focus on a non-orthogonal MA scheme in the

power domain. The concept is proposed in [25, 26, 27]. This scheme

applies superposition coding (SC) to superpose multiple UEs’ signals

at the transmitter, and performs SIC at the receiver to separate and de-

code multi-user signals. Throughout this dissertation, we simply use

“NOMA” to denote this power-domain non-orthogonal MA scheme.

Figure 2 shows an illustration for single-cell OMA and NOMA in the

power (as well as frequency) domain. In OMA, each UE has exclu-

9
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Frequency

Po
w

er

Frequency

Po
w

er

Orthogonal multiple access (OMA)

Non-orthogonal multiple access (NOMA)

UE 1

UE 2

UE 3

Figure 2: An illustration for OMA and NOMA.

sive access to the radio resource, whereas each subchannel in NOMA

can accommodate more UEs. In OMA, the maximum number of UEs

who can concurrently access the subchannels is limited by the number

of subchannels. Compared to OMA, the number of the simultaneously

multiplexed UEs in NOMA can be largely increased [28]. Dynamic

switching between OMA and NOMA is considered in some works [25].

In practical scenarios, a hybrid scheme can be designed so that NOMA

or OMA is only performed when it enables better performance over the

other scheme.

In the following, we take a two-UE case in downlink to present the

basics of SC and SIC in NOMA. As shown in Figure 3, a BS serves

two UEs by using the same subchannel. UE 1 is geographically much

closer to the BS than UE 2, thus we assume that use 1 has a stronger

link to the BS, with better channel condition than UE 2. At the trans-

mitter, the BS is supposed to transmit signals x1 and x2 for two UEs,

respectively. After SC in NOMA, x1 and x2 are superposed to a signal

x which is broadcasted to both receivers. The received signals at UE 1

and UE 2 are y1 = h1x + n1 and y2 = h2x + n2, respectively, where

10



Introduction and Overview

UE 2’s signal 
decoding

UE 2 Receiver

SIC of UE 2’s 
signal

UE 1 Receiver

UE 1’s signal 
decoding

BS (Transmitter)

Encoder

Encoder

Message
for UE 1

Message
for UE 2

Combiner

UE 1 UE 2
BS

Figure 3: An illustration: superposition coding and SIC receiver.

hk (k = 1, 2) is the complex channel gain for UE k and nk is additive

white Gaussian noise for UE k. Assuming that |h1|2/n1 > |h2|2/n2,

then the signals which can be decoded at UE 2 can most likely be de-

coded by UE 1 as well [29]. At the receiver side, UE 1’s receiver first

decodes the interfering signal x2 from y1. After subtracting x2, the sig-

nal x1 intended for UE 1 is decoded from h1x1+n1. At UE 2’s receiver,

no interference cancellation takes place, and the signal of interest, x2,

is directly decoded from y2 by treating x1 as noise. Apart from the

power-domain NOMA, there are some other candidate non-orthogonal

MA schemes are under investigation for 5G, e.g., sparse code multi-

ple access (SCMA), multi-user shared access (MUSA), and pattern di-

vision multiple access (PDMA) [30, 31]. Theses non-orthogonal MA

schemes share the same idea. That is multiple UEs can simultaneously

use the same subchannels [31]. Before the above non-orthogonal MA

schemes are incorporated into 5G standards, several key issues must be

addressed, e.g., advanced low-complexity receiver for SIC.

11
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3 Radio Resource Optimization in Cellular Net-
works

Radio resource allocation or scheduling is important for performance

improvement in cellular networks. The goal of resource allocation is to

optimize the assignment of the limited frequency/power/time resource

to achieve the best performance by taking realistic constraints into ac-

count. The benefits of optimization in cellular networks include boost-

ing network performance, satisfying diverse QoS requirements, saving

energy, as well as reducing the capital expenditure and operation expen-

diture. A radio resource optimization (RRO) problem typically consists

of a utility function as the objective, a set of constraints, and variables

to be optimized. The utility can be chosen from a range of performance

metrics. The constraints are usually according to some physical limi-

tations in cellular networks or QoS requirements in practice. All con-

straints combining with the optimization variables define a feasible so-

lution region for the optimization problem.

In general, we aim to find optimal solutions from the feasible re-

gion, or develop near-optimal solutions. For the addressed RRO prob-

lems in the dissertation, it is a difficult and challenging task to solve

the problems, especially for the large-scale instances. We focus on

three classes of optimization problems, i.e., utility optimization in SC-

FDMA, energy-efficient scheduling in OFDMA, and joint power and

channel allocation in NOMA. In this section, we first present some

widely used utility metrics. Then, we give a brief introduction of each

optimization problem.

3.1 Performance Metrics

Utility, in general, can be an abstract concept, e.g., fairness and satisfac-

tion, or a real performance measure, e.g., consumed power in Watt. A

utility function is used to quantify and provide a tangible performance

metric in the objective of an optimization problem. In the following, we

summarize some classic utility functions, including those used in the

dissertation.

12
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• Throughput maximization

Throughput, also referred to as sum-rate utility, represents the ag-

gregate data rate of the UEs in a cellular network. The utility

function can be expressed by
∑K

k=1 Rk if we consider K UEs in

the system, where Rk is the instantaneous data rate of UE k, usu-

ally computed by Shannon’s channel capacity equation in bits per

second. Besides, spectrum efficiency, in bits per second per Hz,

can also be used to quantify throughput in unit bandwidth.

• Weighted sum-rate and fairness

In some application scenarios, instead of merely considering max-

imum throughput, UEs’ priority and fairness in resource alloca-

tion need to be taken into account. The corresponding utility

function is expressed as
∑K

k=1 WkRk by introducing a weight

factor Wk for each UE k to maintain fairness among UEs. For

example, the UE with poor channel condition could be allocated

with higher weight than the UE with good channel condition, to

avoid excessive imbalance in resource allocation among UEs.

In resource scheduling over a time duration, weights can be used

to obtain fairness. For example, one can update Wk = 1/R̄k

for each k in each TTI, where R̄k is the average rate of UE k.

There are several measurements to quantify fairness [32]. Jain’s

fairness index is one of the most common measures to represent

fairness, defined as v =
(
∑K

k=1 R̄k)
2

K
∑K

k=1 R̄
2
k

[33]. A larger value of v,

0 ≤ v ≤ 1, represents fairer rate distribution among UEs from a

system perspective.

• Power/energy minimization

Power/energy minimization is another category of objectives. It

is an important performance metric especially for battery-limited

transmitters in uplink transmission. A typical utility function is∑K
k=1 Pk, where Pk is the transmit power for UE k. In addition,

another performance metric is energy efficiency which is defined

as transmitted bits per unit energy consumption [34]. The func-

tion is expressed by
∑K

k=1 Rk
∑K

k=1 Pk
in bit per Joule.

13
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• Minimum number of allocated channels

Taking the scarcity of frequency resource into account, another

type of utility metric amounts to minimizing the number of allo-

cated subchannels required to meet each UE’s data demand [35].

The benefits consist of two aspects. First, the inter-cell interfer-

ence (ICI) is mitigated by minimizing the used channels in each

cell. Second, it is relevant to make as much resource available as

possible for elastic traffic, while guaranteeing the rates for real-

time applications. The utility function is defined as
∑K

k=1 |Nk|
for OFDM-based systems due to exclusive channel access, and

|⋃K
k=1Nk| for NOMA systems, where Nk is the set of allocated

subchannels of UE k.

3.2 Utility Optimization in SC-FDMA Systems

As discussed in Section 2.1, both OFDMA and SC-FDMA can provide

fine-granularity and flexibility in channel allocation. In SC-FDMA,

there are two types of criteria in assigning subchannels to UEs, LFDMA

and IFDMA [3]. For both assignments in uplink as well as OFDMA in

LTE downlink, there is a common constraint of ensuring exclusivity in

subchannel allocation. That is, one subchannel can be occupied by one

UE at most. Moreover, the constraints of consecutive and interleaved

allocation are respectively imposed by LFDMA and IFDMA. In terms

of the power allocation, the following constraints are usually consid-

ered. First, each UE’s transmit power and the power allocated on each

subchannel should be less than some maximum power levels, since the

transmitter in uplink is typically a battery-powered device. Next, power

allocation over the allocated subchannels for a UE can be uniform or

adaptive in power allocation.

Based on channel state information (CSI), the RRO in SC-FDMA

amounts to determining the optimal subchannel and power allocation,

such that the objective is maximized or minimized, and all the con-

straints are satisfied. For SC-FDMA (as well as OFDMA), resource

allocation can be categorized into two groups. The first is to minimize

utilities, e.g., total transmit power or number of used subchannels, with

the constraints of satisfying QoS requirements, e.g., achieving mini-
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mum data rate for each UE, see e.g., [36, 37, 38, 39]. The second aims

to maximize utilities, e.g., system throughput, with the constraints of

limited power as well as QoS requirements, see e.g., [40, 41].

In SC-FDMA, localized or interleaved allocation can lead to system

performance improvement, but it also limits the freedom in channel al-

location and thus rises differences over OFDMA. Finding global opti-

mum for the consecutive channel allocation problems is generally hard

[42, 43], whereas interleaved channel allocation problems are tractable

[44]. The channel allocation problems in IFDMA, e.g., throughput

maximization [44] or power minimization [45], can be mapped to the

classical matching problems which are polynomial-time solvable. The

consecutive-channel allocation problems in LFDMA are more challeng-

ing than IFDMA. Some works have been devoted for addressing the

problems [46, 47, 48]. Global optimal solutions for these problems in

LFDMA may not be achievable in practice due to the heavy computa-

tional overhead. Many research works have been focused on developing

near-optimal solutions with low-complexity [49, 50, 51, 52].

Surveys of SC-FDMA and OFDMA resource allocation can be found

in [53, 54, 55]. Overviews of the optimization approaches for dynamic

resource allocation are provided in [56, 57]. Lots of research papers

have investigated resource allocation approaches for SC-FDMA and

OFDMA, see e.g., [58, 59, 60, 61, 62].

3.3 Energy-efficient Scheduling in OFDMA Systems
Energy consumers in a cellular network are typically BSs and UEs. It

becomes crucial to address their energy consumption when more and

more BSs and UEs are in the network, and high data traffic is demanded

[63]. Energy is the product of power and time. The energy-saving issues

can be addressed from these two aspects.

From the power domain, radio components (RCs), e.g., power am-

plifier and radio frequency components, in BSs and UEs dominate the

power consumption [64]. To save power, one way is to improve the

power efficiency of RCs in hardware design. Another efficient and in-

tuitive way is to deactivate transceivers’ RCs whenever there is no data

to receive or transmit. This concept is supported and implemented by

discontinuous reception (DRX) and discontinuous transmission (DTX)
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modes in LTE standards [7]. DRX and DTX enable devices to work at

sleep/active states by deactivating/activating the transceivers’ RCs mo-

mentarily (milliseconds) [65]. When a transceiver’s RC is deactivated,

it will not emit or receive any data traffic [65]. It has been shown in

[5, 34] that the power consumption on circuit of a BS in the sleep mode

is much lower than the power consumption in the active mode. This

provides significant gains in power saving and reduces ICI.

Combining with the concept of DTX/DRX, energy consumption

can be reduced by intelligent scheduling approaches in the time do-

main. In order to minimize energy consumption while satisfying UEs’

QoS requirements, energy-efficient (EE) scheduling and operation in

this dissertation is investigated from two perspectives. One focuses on

the time-frequency resource optimization in a single-cell OFDMA sys-

tem, and the other focuses on optimizing BSs operation in a multi-cell

OFDMA network.

• EE scheduling in single-cell scenarios

The adoption of OFDMA gives flexibility in allocating subchan-

nels and time slots to UEs. For an OFDMA single cell, time-

frequency units are represented by a resource grid as shown in

Figure 4. A small block is a time-frequency RU to be allocated to

different UEs.

UE 1

UE 2

UE 3TimeFr
eq

ue
nc

y

……

…
…

Figure 4: An illustration of the resource grid in OFDMA: 6 time slots

and 3 subchannels allocated among 3 UEs.

From Figure 4, each UE accesses subchannels over five time slots.

The transmitter, i.e., BS, should work at the active mode over six

time slots to deliver data for UEs, and at the receiver side, each

UE must keep active for five slots to receive data [66]. The total
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energy consumption of the cellular system has two parts: hard-

ware circuit power consumption at both BS and UEs for being

active, and a dynamic part which is transmit power depending on

how many RUs are used for data transmission. To reduce the en-

ergy, each UE as well as BS can be jointly scheduled to use fewer

time slots to receive or transmit data. In addition, given the fact

that a subchannel with poor channel condition for a UE may be in

a good state for other UEs, the overall energy performance can be

improved if the RU-UE assignment is optimized. One example is

shown in Figure 5. For delivering the same UE data demand as

in Figure 4, the allocation of subchannels and UEs is optimized

by EE scheduling at the RU level. The span of the active slots

for BS and UEs are “squeezed”. After optimization, BS can de-

liver each UE’s data by using five time slots in total, and be in the

sleep mode in the last time slot to reduce energy. Each UE only

needs to be active over three time slots for receiving data, and be

sleeping for the remaining slots to save energy. Moreover, fewer

RUs are used to deliver UEs’ demand thus enables less transmit

power.

UE 1

UE 2

UE 3TimeFr
eq

ue
nc

y

……

…
…

Figure 5: Optimized resource allocation: scheduling UEs to fewer time

slots to reduce energy consumption.

Some algorithmic solutions are proposed to separately reduce the

energy consumption at the transmitter [37] or at the receiver [67]

by optimizing resource allocation. Also, many research works in-

vestigate resource allocation approaches for a single-cell OFDMA

system to improve energy efficiency, e.g., see [39, 68].

• EE scheduling and operation in multi-cell scenarios
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In a multi-cell network, due to the scarcity of the spectrum, co-

channel frequency deployment is usually considered [69]. Multi-

ple BSs use the same frequency band, and thus interfere with each

other. The system performance is thus limited by ICI which may

result in low system throughput and high energy consumption.

One way to reduce energy consumption as well as ICI is to opti-

mize transmit power and resource usage [70, 71]. Based on the

data from real measurements, transmit power is usually consid-

ered as a linear function of the utilization level of RUs in a cell.

The work in [64] shows that linear models can provide reason-

ably good approximation for transmit power in BSs with respect

to the resource usage. Observing this, for fixed transmit power

per RU, the total power consumption increases when more RUs

are used to transmit data in a cell. As a consequence, this cell

will radiate more interference to other cells. If we look at the re-

TimeFr
eq

ue
nc

y

UE 1 UE 3UE 2

UE 1

UE 2

UE 3

Figure 6: An illustration for cell’s load: 10 available RUs and load =

0.7.

source usage in a particular time slot, a cell’s load is defined as

the fractional usage of RUs of the cell. For example in Figure 6,

seven RUs out of ten RUs available in total are used to deliver

UEs’ data demand, then the load in this cell is 0.7. The sum of

the power on these seven RUs is the overall transmit power in this

cell. Given the transmit power per RU, higher load value means

stronger interference to other cells. An analytical model, called
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load-coupling model, widely used in literature [72, 73, 74], is de-

veloped to capture the characteristic between resource usage and

interference. This model takes into account the load level to esti-

mate ICI [75]. For example, the interference generated by a cell

1 to other cells depends on the load level and the transmit power

per RU in cell 1, and the interference, in its turn, has impact on

the load levels of other cells. For satisfying UEs’ data demand by

consuming minimum energy, the optimal load level of each cell

and the transmit power per RU should be decided. This forms

an optimization problem. Some relevant analytical results about

energy savings, load balancing, and offloading can be found in

[72, 73, 74, 75].

Another efficient solution to reduce energy consumption is to

switch some BSs off or to the sleep mode with low power con-

sumption. For the former, some works focus on switching on/off

BSs based on the analysis of traffic profile, e.g., night and day.

Some BSs can be switched off for a long duration when the traf-

fic in these cells is low [5], and the availability of UEs’ access is

guaranteed in the service area. For the latter, some research ef-

forts focus on activating/deactivating BSs’ RC for short period to

reduce energy consumption and ICI. In order to satisfy data de-

mand for all UEs within a strict transmission time requirement,

how to select the best combination of activating/deactivating BSs

in the network, meanwhile consuming minimum energy are ad-

dressed in some works, see, e.g., [76]. Some optimization ap-

proaches and algorithms for EE scheduling are proposed, see,

e.g., [77].

Besides, some other factors can affect energy consumption in multi-

cell networks, e.g., load imbalance among cells [78]. The term load

balancing describes any mechanism that transfers some traffic from the

cells with heavy load to the neighbors with less load in order to bal-

ance the load in the entire network, while improving the network perfor-

mance, e.g. energy consumption [79, 80]. Inappropriate BS-UE associ-

ation can lead to large disparity in cells’ load, that is, some cells, e.g.,

macro BSs, may be overloaded, whereas some neighboring low-power

BSs, e.g., micro or pico BSs, are underloaded. This is undesirable, and
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possibly results in high energy consumption, since the overloaded cells

may need to greatly increase power to satisfy the large amount of data

demand for some UEs. To deal with this problem, load balancing can

make the use of the radio resource more efficient across the network.

From the analysis in some research works [79], energy consumption can

be reduced if the underloaded cells offload some traffic from neighbor-

ing overloaded cells, e.g., by applying LTE cell range expansion [80].

Several algorithmic solutions have been proposed to improve the per-

formance of load balancing and energy savings [72, 73].

3.4 Power and Channel Allocation in NOMA
New MA technologies in 5G, e.g., NOMA, are expected to significantly

improve system performance. Compared to OMA, new MA technolo-

gies introduce new challenges in RRO. In the following, we outline the

representative optimization problem of NOMA.

Unlike OMA, multiple UEs in NOMA are allowed to simultane-

ously use the same subchannel, as shown in Figure 2. Then intra-cell

interference in NOMA is non-negligible, since even after SIC process-

ing, some co-channel interference exists among the UEs. The system

performance and RRO are influenced by this. The benefits of using

NOMA and the impact in RRO can be illustrated by the following exam-

ple. For instance, a cell-center UE 1 and a cell-edge UE 2 are deployed

in NOMA downlink. UE 1 has much better channel condition than UE

2 mainly due to the geographical distances from the BS. In OMA, UE

2 is allocated with a subchannel with poor channel condition, then UE

1 cannot access this channel resource, whereas in NOMA, UE 1 can

reuse the same subchannel with good channel condition to improve the

overall performance. According to the principle of SIC in NOMA, UE

1 can remove the co-channel interference from UE 2, but the interfer-

ence to UE 2 due to co-channel multiplexed UE 1 remains. Observing

this, the power allocation to UE 1 not only affects UE 1’s performance,

e.g., throughput, but also affects the performance of UE 2.

The overall performance in NOMA is very dependent on which UEs

are grouped together and allocated to which subchannel, as well as how

much power should be allocated to the UEs. In addition, due to prac-

tical limitations, it may not be realistic to have a large number of UEs
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to be allocated on each subchannel [26]. The number of multiplexed

UEs on each subchannel is typically bounded by a number. All these

are considered in RRO problems in NOMA. Solving the problems is

challenging in general. Some algorithms and schemes are proposed to

optimize the channel and power allocation for NOMA dowlink and up-

link [26, 27, 81].

In summary, most of the proposed approaches address the RRO

problems in SC-FDMA, OFDMA and NOMA by applying the follow-

ing methods:

• Simplifying and making assumptions to reduce the complexity of

the optimization process, e.g., assuming uniform power alloca-

tion, predefining fixed groups of BS, UE, or channel, before the

optimization process;

• Splitting the difficult optimization procedure into several (prefer-

ably independent) easier-to-solve problems to make the overall

problem tractable but it may sacrifice optimality, e.g., separating

the joint channel and power allocation into two separate steps:

channel allocation and power allocation;

• Relaxing some “complicating” constraints or variables, e.g., lin-

ear relaxation for integer optimization problems;

• Developing exact, approximation, or heuristic algorithms, as well

as providing upper and lower bounds for global optimum;

21



Introduction and Overview

4 Mathematical Optimization
Mathematical optimization is the main approach for addressing the RRO

problems in this dissertation. In this section, we provide an introduction

to the optimization methods from three aspects: mathematical model-

ing, problem complexity, and algorithms. For details of mathematical

optimization, the reader is referred to [82, 83].

4.1 Mathematical Modeling
Mathematical modeling amounts to constructing a mathematical for-

mulation to represent the considered problem. A general optimization

problem can be expressed as:

min f0(x) (1a)

subject to fi(x) ≤ 0, i = 1, . . . , p (1b)

hj(x) = 0, j = 1, . . . , q (1c)

where the n-dimension vector x is the set of optimization variables

of the problem, the function f0 is the objective function, fi(x) ≤ 0
and hj(x) = 0 define p inequality and q equality constraints, respec-

tively. The model describes the problem of finding an optimal solution

x∗ that minimizes f0 among all possible x. Optimization problems can

be classified according to the particular forms of the constraint and ob-

jective function (linear, nonlinear, convex), and variables (continuous,

discrete).

• Linear programming

The optimization problem in (1) is called a linear programming

(LP) formulation if the objective and constraint functions are lin-

ear and all variables are continuous. The problem is nonlinear

programming (NLP) if the objective or some constraint functions

in (1) are nonlinear. An LP problem is usually formulated in the

following standard form:

min
x

cTx, subject to Ax = b,x ≥ 0 (2)
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where cT is a transposed n-dimension vector of coefficients, b is

a column vector in m-dimension, and A is a matrix with m rows

and n columns. The linear constraints and continuous variables

define a feasible region of an LP problem as a polyhedron [84].

The problem is said feasible if there exists at least one point in this

feasible region. The problem is infeasible if the feasible region

is empty, and the problem is unbounded if the optimal objective

value cTx∗ is −∞. LP problems can be efficiently solved by the

simplex algorithm and interior-point algorithms in practice. More

information of both algorithmic solutions, and more discussions

of LP can be found in [82, 84].

• Integer programming

If all the variables are restricted to be integral values, then the

problem is referred to as integer programming (IP) problem, or

combinatorial optimization problem. The standard form of an IP

problem is shown below:

min
x

cTx, subject to Ax = b,x ≥ 0 and integer (3)

As a special case of IP, if all variables are constrained to be in {0,

1}, then it is a binary integer programming (BIP) problem. The

problem (3) is called mixed integer programming (MIP) if only

some variables, not all, have to be integral.

Despite the resemblance of formulation (3) to LP formulation (2),

solving MIP and IP problems is much harder than LP in general.

Some algorithms, e.g., branch-and-bound and branch-and-cut al-

gorithms, can guarantee to solve the general MIP or IP exactly

to global optimum, but it is typically time-consuming in particu-

lar for the large-scale instances. The execution time is in general

exponential with the number of integer variables [82]. One may

need to develop sub-optimal but low-complexity algorithms, as

well as optimality bounds. Details of algorithmic approaches for

solving IP and MIP can be found in [82].

• Convex programming

23



Introduction and Overview

The term convex programming is used to represent a class of the

general optimization problem (1) in which the objective and in-

equality constraint functions, i.e., f0 and f1, . . . , fp, are convex,

and the equality constraint functions h1, . . . , hq are affine [85].

By definition, solving the problem amounts to optimizing a con-

vex objective over a convex set. An LP problem is also a convex

problem. Any local optimum of a convex problem is a global

optimum. For a convex problem, strong duality holds, i.e., zero

duality gap between the original problem and the dual problem

holds. It means an original convex problem can be optimally

solved from the dual domain by constructing its Lagrange dual. In

general, convex problems can be solved efficiently by some well-

known algorithms. e.g., interior-point algorithm. More detailed

information of convex optimization can be found in [85].

It is worth noting that having an LP, IP, MIP, or a convex formulation

in hand is always advantageous than NLP and nonconvex formulations

in general, since the former can be directly treated by standard solvers,

e.g., CPLEX [86] and GUROBI [87] for solving LP, IP, and MIP prob-

lems, and CVX and YALMIP [88] for convex problems. Even though

the state-of-art solvers may not be very efficient for solving some large

instances, but at least for small instances, the global optimum can be

expected. The obtained global optimum can be used for benchmarking

and evaluating the developed heuristic solutions or bounding schemes.

Convex problems are usually solved efficiently, but in practice recog-

nizing a convex function is much difficult than identifying LP and IP

problems. In addition, some original problems may not have a convex

form due to inappropriate formulations, but for some of them it is possi-

ble to transform them to convex problems [85]. In general, recognizing

a convex problem, or possibly transforming a noncovex problem to a

convex optimization problem is challenging. Solving NLP and noncon-

vex problems can be difficult even for small instances. So far, there

are no reliable and effective approaches for solving general NLP and

nonconvex problems to global optimum.
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4.2 Problem Complexity
The computational complexity theory helps algorithm developers to

identify how difficult for solving a problem is. A problem is said to

be tractable if it can be optimally solved by polynomial-time complex-

ity algorithms, and intractable otherwise. By the theory, the class P

(Polynomial) is defined as all decision problems which are tractable. A

decision problem, also referred to as the decision or recognition version

of an optimization problem, has only a yes-or-no solution. The class NP

(non-deterministic polynomial) contains the problems that might have

polynomial-time solutions [82]. The class of NP-complete consists of

the most difficult problems in NP. More precisely, a decision problem

is said to be NP-complete if it belongs to NP, and all other problems

in NP can reduce to this problem polynomially [89]. The class of NP-

hard includes the problems that are at least as difficult as NP-complete,

not necessarily in NP. If the decision version of an optimization prob-

lem is NP-complete, then the optimization problem is NP-hard. This is

because solving an optimization problem is no easier than solving its

decision version, since the former requires to find the optimal values,

whereas the latter only needs to provide a yes-or-no answer.

It is widely accepted that NP-complete problems are intractable. If a

problem is NP-complete (or NP-hard), one cannot expect a polynomial-

time algorithm with global optimality guarantee, unless NP = P. Thus,

problem’s tractability or intractability is of significance in developing

algorithmic solutions. Once an optimization problem is proved to be

NP-hard, it means the problem is intractable in general. Instead of

obtaining global optimum, we may need to develop suboptimal algo-

rithms with polynomial-time complexity. If we need to prove the NP-

completeness for a new decision problem, say Pnew, the following steps

can be applied [90]:

1. Selecting a suitable and already known NP-complete problem

Pnpc

2. Constructing a special instance of Pnew

3. Establishing a polynomial-time transformation from Pnpc to the

special instance of Pnew
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4. Proving that any instance in Pnpc is yes if and only if the con-

structed instance in Pnew is yes

If the above steps are successfully performed, the problem Pnpc is

said to be reducible to Pnew, then the problem Pnew is also NP-complete.

Note that the theory of NP-completeness always focuses on the worst

case. Solving a constructed instance in Pnew is hard, then the worst case

of Pnew is therefore intractable. Details of the computational complexity

theory and examples of hardness proofs can be found in [82, 89].

4.3 Algorithmic Solutions
Algorithmic approaches for solving optimization problems are roughly

categorized into two broad types: exact and heuristic. An exact algo-

rithm, e.g., branch-and-bound, guarantees to find the global optimal so-

lution, but it may take exponential time. Heuristic algorithms are devel-

oped for solving hard problems, and used to find suboptimal solutions

with polynomial-time complexity. The algorithmic approaches used in

this dissertation for tackling RRO problems are presented below.

• Dynamic programming

Dynamic programming (DP) is a stagewise and recursive method

for solving discrete problems. The idea of DP is to divide the

entire solution process into multiple stages, and systematically

search all possibilities to guarantee optimality. The global opti-

mum can be recursively obtained by solving subproblems at each

stage. DP guarantees to find global optimum only if the problem

has optimal substructure [83]. That is, at any stage, the partial (or

local) optimal solution obtained so far can be reused without any

change by the later stages for finding the global optimum.

The main procedure of DP is to: 1) divide the solution process

into N stages, 2) process from the first stage to N , one by one, 3)

obtain and store the partial optimal solution at each stage, 4) move

from one stage to the next stage by following the constructed re-

cursion formula, 5) at stage N , the global optimum is the accumu-

lation of the partial optimum obtained from the previous stages.
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• Column generation

Column generation (CG) is an efficient decomposition method for

tackling large-scale problems, e.g., LP problems [91]. If we con-

sider LP formulation (2) for example, a variable xj , j ∈ {1, . . . , n},
is associated with a column vector aj in the m × n matrix A,

where A = [a1, . . . ,an] and aj = [a1j, . . . , amj]
T . The term col-

umn can refer to a column vector in A. A large-scale optimization

problem contains a huge number of variables along with columns

in matrix A. Some algorithms, e.g., the simplex method, require

to explicitly consider all variables and columns in the algorithm

execution. This may result in a prohibitive amount of time to ob-

tain optimal solution in practice. CG provides an efficient way

to address this issue. The idea is that variables and columns are

not enumerated explicitly, instead, they are generated only when

needed.

By applying CG, the original problem is decomposed into a mas-

ter problem and a subproblem (or pricing problem). The algo-

rithm starts from solving a small-scale master problem with only

a few columns and variables in initial A0 and x0. When the mas-

ter problem (an LP problem) is solved, we obtain the optimal dual

value for each constraint. These dual values are incorporated to

the objective of the subproblem. Then the subproblem is solved

to determine a new variable xnew and a column anew to add to x0

and A0, respectively, for the master problem. The above iterative

process is repeated until no new column is able to be generated by

the subproblem. In iterations, the solution quality of the master

problem is successively improved by adding the new column and

variable. One advantage of CG is that the size of initial columns

is small, and they may retain small until the optimum is obtained

[83, 91].

• Lagrangian relaxation

Relaxation is one of the approaches to address the hard optimiza-

tion problems. It is motivated by the fact that if we relax or re-

move some “complicating” constraints for a hard problem [83],

the relaxed problem may become easy to solve. Moreover, the
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relaxation for an original problem usually leads to a lower-bound

or an upper-bound solution for a minimization or a maximization

problem, respectively. If we just simply remove some constraints,

the resulting bounds may be weak, i.e., far away from the primal

optimum. To address this issue, Lagrangian relaxation transfers

some constraints associated with Lagrange multipliers to the ob-

jective function, and finds the optimal multipliers which results in

the best possible bound.

For example in formulation (1), if we relax the equality con-

straints hj(x) = 0, j = 1, . . . , q, we refer to the following prob-

lem

min f0(x) +

q∑
j=1

λjhj(x) (4a)

subject to fi(x) ≤ 0, i = 1, . . . , p (4b)

as the Lagrangian relaxation or Lagrangian subproblem of the

original problem (1), where λ = (λ1, . . . , λq) is the vector of mul-

tipliers (also called dual variables). We refer to function L(λ) =
min{f0(x) +

∑q
j=1 λjhj(x) | fi(x) ≤ 0, i = 1, . . . , p} as the

Lagrangian function. In order to obtain the best lower bound, we

need to solve the following Lagrangian dual problem.

L∗ = max
λ

L(λ) (5)

For each λ, we can solve L(λ) and update λ. This procedure is

repeated until the stop criteria is satisfied. L∗ is obtained as the

best possible lower bound of the optimal value Z∗ of the original

problem (1), i.e., L(λ) ≤ L∗ ≤ Z∗.

• Heuristics

Heuristic algorithms aim at finding suboptimal solutions for dif-

ficult optimization problems, e.g., NP-hard problems, with a rea-

sonable running time. Unlike exact algorithms, heuristic algo-

rithms have no global optimality guarantee in general. Greedy

algorithm is one of the intuitive and commonly used heuristics.

At each step or iteration, the algorithm only makes the choice
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that seems best at the moment, i.e., locally optimal choice. It

is typically a one-pass algorithm. This means the algorithm stops

once a suboptimal (and feasible) solution is found. For some easy

problems, greedy algorithms can guarantee to find global opti-

mum, e.g., the minimum spanning tree problem [83]. However,

for solving some hard problems, the solution quality of greedy

algorithms may not be very satisfactory, since the problems may

not have optimal substructure, and a local optimum may not nec-

essarily be the global optimum. To overcome the disadvantage,

many other heuristic algorithms such as simulated annealing, tabu

search, genetic algorithms, are proposed to trade off computa-

tional efficiency and solution quality.
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5 Contributions
This dissertation aims at investigating spectrum- and energy-efficient

resource allocation to optimize system performance in 4G and 5G com-

munication systems. The research topics cover resource allocation and

system performance optimization in SC-FDMA, energy-efficient schedul-

ing in OFDMA, energy minimization in load-coupled OFDMA net-

works, and throughput and fairness optimization in NOMA resource

allocation. The scope of the dissertation is formed by mathematical

modeling for the RRO problems, analysis of problems’ complexity, al-

gorithm development, as well as theoretical and numerical results anal-

ysis.

The dissertation consists of five research papers. In these papers, the

main ideas, the core concept of the proposed algorithms, and the major

theoretical results are generated from the discussions among all the au-

thors. The author of this dissertation has contributed to Paper I, II, IV,

and V as the first author, mainly taking the works of the development of

optimization models, algorithm design and implementation, theoretical

analysis and part of the theorem and lemma proofs, all the simulation

works and numerical results analysis, as well as writing. The author has

contributed to Paper III as a co-author, focused on algorithm design,

development and implementation, performance evaluation to verify the

theoretical findings, numerical results analysis, as well as the writing of

these parts. The papers and the main scientific contributions are sum-

marized as follows:

• Paper I: A Unified Graph Labeling Algorithm for Consecutive-
Block Channel Allocation in SC-FDMA

Paper I deals with three localized SC-FDMA resource allocation

problems, utility maximization, power minimization, and chan-

nel minimization. For solving these optimization problems, we

provide the structural insight that allocating consecutive channels

optimally can be mapped to finding an optimal path in an acyclic

graph.

First, the complexity of the three problems has been analyzed. We
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prove their NP-hardness. Next, a unified algorithmic framework

is proposed for solving the problems by applying and developing

the concept of graph labeling. The advantage of the proposed

algorithm is that the solution procedures for tackling three re-

source allocation problems are unified under a common algorith-

mic framework. Also, the algorithm allows a trade-off between

computational efforts and optimality by adjusting a algorithmic

parameter. The proposed algorithm guarantees global optimality

for some special classes of the three problems. Numerical results

show that the proposed algorithmic framework is competitive in

attaining near-optimal solutions.

The paper has been published in IEEE Transactions on Wireless
Communications. Parts of the results have been published in the

following conference:

L. Lei, S. Fowler, and D. Yuan, “Improved Resource Allocation

Algorithm Based on Partial Solution Estimation for SC-FDMA

Systems,” Proceedings of IEEE Vehicular Technology Conference
(VTC Fall), 2013.

• Paper II: Resource Scheduling to Jointly Minimize Receiving
and Transmitting Energy in OFDMA Systems

This paper addresses an energy-efficient scheduling problem for

OFDMA downlink. We jointly minimize receiving and transmit-

ting energy instead of considering energy reduction only at the

transmitter or the receiver. The energy-saving gains are from two

sides. At the transmitter side, we minimize the transmit energy

as well as the circuit energy consumption. For the receiver side,

we minimize the number of time slots for receiving data to reduce

the receivers’ energy consumption.

We formulate the optimization problem by means of integer pro-

gramming. To alleviate the high computational complexity for

obtaining the global optimal solution, an energy-efficient schedul-

ing algorithm based on column generation is developed to provide

a tight lower bound and a feasible near-optimal solution. Perfor-

mance evaluation shows that the proposed algorithm is promising
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in solving the problem efficiently. Also, the algorithm is capable

of providing close-to-optimum bounds for the global optimum.

The paper has been published in Proceedings of IEEE Interna-
tional Symposium on Wireless Communication Systems (ISWCS).

• Paper III: Power and Load Coupling in Cellular Networks for
Energy Optimization

Paper III focuses on investigating fundamental properties and al-

gorithmic solutions to optimally minimize energy in load-coupled

OFDMA networks. The coupling relation of mutual interfer-

ence among multiple cells is characterized by a non-linear load-

coupling model. Both cell load and transmit power interact via

the load-coupling model. Our theoretical and algorithmic investi-

gations provide the answers for the following fundamental ques-

tions: what the optimal operating load of each cell should be,

and how to compute the transmit power for achieving the optimal

load.

We formulate the energy minimization problem for load-coupled

networks. Due to the inherently non-linearity, solving the prob-

lem is challenging. First, we prove that operating at full load is

optimal in minimizing sum energy. Second, to achieve the tar-

get operating load for each cell, we propose an iterative power

adjustment algorithm to obtain the corresponding optimal trans-

mit power with guaranteed convergence. We present numerical

results to corroborate the theoretical findings in a large-scale cel-

lular network, showing the advantage of our solution compared

to the conventional solution.

The paper has been published in IEEE Transactions on Wireless
Communications. Parts of the paper have been published in the

following conference:

C. K. Ho, D. Yuan, L. Lei, and S. Sun, “Optimal Energy Mini-

mization in Load-Coupled Wireless Networks: Computation and

Properties,” Proceedings of IEEE International Conference on
Communications (ICC), 2014.
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• Paper IV: Optimal Cell Clustering and Activation for Energy
Saving in Load-Coupled Wireless Networks

We study a problem of energy-efficient scheduling by performing

cell activating/deactivating for a load-coupled OFDMA network.

The cells are required to serve a target amount of data for the

UEs within a time limit to maintain an appropriate level of QoS,

while considering the coupling relation among cells due to mutual

interference.

First, we provide mathematical formulations, and prove the prob-

lem’s NP hardness. Second, for solving the problem, we propose

a column generation based approach, with the capability of ap-

proaching global optimum. Then, for dealing with large-scale

networks, we derive a bounding scheme to trade off optimality

and the computational complexity. We provide numerical results

to demonstrate that our solutions achieve significant energy sav-

ing over existing schemes.

The paper has been published in IEEE Transactions on Wireless
Communications.

• Paper V: Power and Channel Allocation for Non-orthogonal
Multiple Access in 5G Systems: Tractability and Computa-
tion

We investigate optimization problems of jointly optimizing power

and channel allocation in downlink NOMA, for maximizing util-

ities and improving fairness. We provide theoretical insights on

complexity and optimality. We investigate how different utility

functions and power constraints influence the tractability and op-

timal strategies in resource allocation.

We formulate the optimization problems for NOMA, taking into

account practical considerations of fairness and SIC. To solve the

considered problems, we propose an algorithm framework based

on Lagrangian dual optimization and dynamic programming. The

proposed algorithm is capable of providing near-optimal solu-

tions as well as bounding the global optimum tightly. We use nu-
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merical results to illustrate the significant performance improve-

ment of the proposed algorithm over existing NOMA and OFDMA

schemes.

The paper has been submitted to IEEE Transactions on Wireless
Communications. Parts of the paper have been published in the

following conference:

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Joint Optimization of

Power and Channel Allocation with Non-orthogonal Multiple Ac-

cess for 5G Cellular Systems,” Proceedings of IEEE Global Com-
munications Conference (GLOBECOM), 2015.
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