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Abstract Service robots, working in evolving human en-

vironments, need the ability to continuously learn to rec-

ognize new objects. Ideally, they should act as humans do,

by observing their environment and interacting with objects,

without specific supervision. Taking inspiration from infant

development, we propose a developmental approach that en-

ables a robot to progressively learn objects appearances in

a social environment: first, only through observation, then

through active object manipulation. We focus on incremen-

tal, continuous, and unsupervised learning that does not re-

quire prior knowledge about the environment or the robot. In

the first phase, we analyse the visual space and detect proto-

objects as units of attention that are learned and recognized

as possible physical entities. The appearance of each entity

is represented as a multi-view model based on complemen-

tary visual features. In the second phase, entities are clas-

sified into three categories: parts of the body of the robot,

parts of a human partner, and manipulable objects. The cate-

gorization approach is based on mutual information between

the visual and proprioceptive data, and on motion behaviour

of entities. The ability to categorize entities is then used

during interactive object exploration to improve the previ-
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ously acquired objects models. The proposed system is im-

plemented and evaluated with an iCub and a Meka robot

learning 20 objects. The system is able to recognize objects

with 88.5% success and create coherent representation mod-

els that are further improved by interactive learning.

Keywords Developmental robotics · interactive object

learning · self-identification · object recognition

1 INTRODUCTION

Robots are coming into everyday life, not only as factory

robots but also as service robots helping people to increase

the performance of their work and improve the quality of

their life. While factory robots work in well-structured en-

vironments, service robots or personal robots will work in

human environments that are less predictable and less struc-

tured. These robots will need the ability to adapt to changing

situations and continuously learn new information about the

surrounding environment. Moreover, these robots should be

able to learn without constant human supervision, and learn-

ing should be autonomous and continuous, with the possibil-

ity of using discontinuous interactions with humans and per-

forming autonomous actions in order to acquire information.

Among many different skills, a robot working in a human

environment should be able to perceive the space around it

in order to identify meaningful elements such as parts of its

own body, objects, and humans. In this paper, we focus on

the issue of learning the appearances and recognizing the

elements that appear in the working space of a humanoid

robot, and we call these elements physical entities. Learning

is performed based on both passive observation when a hu-

man manipulates objects in front of the robot and interactive

actions of the robot (Fig. 1).

Fig. 1 The main modules of the proposed approach: learning through

passive observation when a human manipulates an object in front of

the robot and learning through interactive actions of the robot.
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Various computer vision approaches achieve good per-

formances for detecting specific physical entities of particu-

lar classes, like human faces [69], skin parts [73], coloured

[20] or textured [3] objects. Most of these approaches are

based on prior knowledge, either assuming very specific ob-

jects (such as human hands [72] or robot hands [47] of par-

ticular color, or by using artificial markers [17]) or requiring

carefully created image databases, where images of each ob-

ject are labeled in order to perform supervised learning. For

example, the organizers of the Pascal VOC challenge [14]

put a lot of effort in creating and improving image databases

that were very beneficial to algorithms performance over

years. Other approaches include a specific object learning

phase, for example using a turntable to rotate an object and

learn its appearance from different viewing angles. Prior knowl-

edge and supervision facilitate object detection, but they are

not easily applicable for autonomous robots that need to

adapt to different human users and new objects at any time.

Indeed, in such setup, specific or supervised approaches limit

the adaptability of the robot, since it is difficult to extend

these approaches for online continuous detection and learn-

ing of new objects without specific human supervision. There-

fore, we propose that object recognition in this context should

be based on general high-level representations and learning

methods that could be applied to all physical entities of the

environment and could support learning by observation and

by interaction.

The human development is a very motivating example

of efficient learning about the environment without explicit

supervision. Indeed, object representation is considered as

one of the few core knowledge that form the basis of hu-

man cognition [66]. It is interesting to note that these ca-

pabilities are acquired progressively through a long period

during infancy that plays an important role in human life.

At first, a baby learns mostly through observation, because

of its limited manipulation capabilities, in an environment

where the parents are present most of the time. Thus the so-

cial environment is the cause of a large part of the sensory

stimulus, even if the social engagement of the baby remains

limited. Progressively, the baby learns about his own body,

and its control, which then makes it possible to manipulate

objects [53]. It has been shown in many studies (e.g. [26])

that such capability improves knowledge of the surround-

ing world and in particular the objects. The social interac-

tions then take a growing importance as learning focus on

more complex activities. Infant development has inspired a

variety of research studies on autonomous robots learning.

The characteristics of infants learning process, such as be-

ing continuous, incremental, and multi-modal are reflected

in different approaches in developmental robotics [71]. In

contrast to traditional robotics, a developmental approach

does not focus on a fast achievement of predefined goals, but

rather on an open-ended learning process, where the perfor-

mance improves over time, the learning process being flexi-

ble and allowing to adapt to changing circumstances.

In this paper, we propose a developmental approach tak-

ing inspiration from the human development related to ob-

ject appearance learning and recognition [65]. We describe a

perceptual system that makes it possible for a robot to learn

about physical entities in its environment in a two stage de-

velopmental scenario (Fig. 1):

1. learning by observation: the robot learns appearance

models of moving elements, where the motion is mostly

produced by a human partner who demonstrates differ-

ent objects,

2. interactive learning: the robot interacts with objects in

order to improve its knowledge about objects appear-

ances after having identified the parts of its own body,

parts of a human partner, and manipulable objects.

Our main contribution consists in the integration of a

generic perception capability, self- and others- identifica-

tion, and interactive actions for active exploration of the sur-

rounding environment and its objects. Our algorithm requires

very limited prior knowledge and does not require prede-

fined objects, image databases for learning or dedicated de-

tectors, such as markers or human face/skin/skeleton de-

tectors. Instead, using a color and depth camera (hereafter

called RGB-D sensor), the visual space is autonomously seg-

mented into physical entities whose appearances are con-

tinuously and incrementally learned over time and synthe-

sized into multi-view representation models. All entities are

then categorized into parts of the body of the robot, human

parts, and manipulable objects, which make it possible to

correctly update objects models during their manipulation.

Note that even if the social interactions may take a large

part in the learning of objects, it is not the subject of the

current paper, but we refer to our previously published work

on socially-guided learning, where the robot learns objects

with a human partner providing additional feedback used to

guide learning [32], [51].

The paper is organized as follows: Section II gives a

brief overview of related work on unsupervised learning and

interactive learning including self- and others- identifica-

tion; the proposed perceptual approach of learning through

observation is detailed in Section III and the interactive learn-

ing approach is described in Section IV; the experimental

evaluation is reported in Section V; and Section VI is de-

voted to discussion of the results.

2 Related work

We are working on unsupervised object learning and inter-

active perception as a generic approach towards autonomous

learning integrating perception and control. Object learning

has been addressed in a huge number of computer vision
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approaches whose exhaustive review is outside the scope of

this paper (see [23] or [14], for example). We will therefore

restrict ourselves to the approaches closely related to our al-

gorithmic choices. Interactive perception has been used for

detecting and segmenting objects in a scene, for learning ob-

jects properties and appearances, or exploring affordances.

Moreover, some studies on interactive perception integrate

identification of parts of the robot (especially hands) and use

their localization to improve object segmentation or learning

algorithms. We will not cover the more general area of learn-

ing by demonstration as our approach depends only on the

entities motions produced by humans manipulating objects

and used to learn appearances models, but does not rely on a

detailed analysis of the human demonstrations and does not

try to imitate the human behaviour.

2.1 Unsupervised object learning

In our approach, as suggested by studies on the development

of object perception capabilities in humans [65], the percep-

tion of the environment begins by detection of meaningful

elements in the visual field of the robot. These elements are

detected from generic principles such as cohesion and con-

tinuity, while most traditional object detection approaches

are based on prior knowledge or dedicated algorithms pro-

viding robust detection of specific objects of particular cat-

egories. More generic approaches segment a scene into co-

herent image regions and further segment objects from the

background based on consistency of visual characteristics

[64] or motion behaviour [54]. Similar principles have also

been used to detect and model objects using laser range find-

ers [46]. Other unsupervised approaches in vision are aimed

at detecting not a concrete object, but an evidence of an ob-

ject existence or a proto-object [55], [56]. Taking inspira-

tion from human vision, a proto-object is defined as a unit

of attention or a localized visual area with certain properties,

representing a possible object or its part. Proto-object detec-

tion is often based on biologically motivated mechanisms of

selective attention, for example visual saliency [52], [70].

Once an object or a proto-object is detected, its visual

appearance is analyzed and often encoded within more com-

pact descriptors characterizing local features or general vi-

sual content, like color or texture [6]. While balancing be-

tween robustness, speed, and the ability to preserve informa-

tion, a good descriptor should allow to discriminate different

objects and accommodate intra-object variations. Based on

extracted features, an efficient object representation should

characterize a significant part of the visual content in a short

description. In order to improve recognition, object repre-

sentation can combine several types of visual features. In

this case, the efficiency of object recognition will be higher

with complementary descriptors characterizing different types

of visual data while avoiding redundancy [12].

A widely-used object representation methods is the Bag

of Words (BoW). It represents objects or images as collec-

tions of unordered features quantized into dictionaries of vi-

sual words, and each object is encoded by its visual words.

In this case, the learning procedure consists in training a

classifier on extracted visual words, and the recognition pro-

cedure consists in applying the classifier on extracted visual

words [63]. Among existing studies, there are many varia-

tions of BoW based on a pixel-level description [1], image

patches [61], or local features for example, keypoints [63],

[18], edges [16], and regions [57]. Instead of using a sim-

ple list of visual words, the importance of each visual word

can be taken into account by using Term Frequency-Inverse

document frequency (TF-IDF) approach [63]. In this case,

an object is encoded by occurrence frequencies of its vi-

sual words, and TF-IDF approach is used to evaluate the

importance of words with respect to objects and give higher

weights to distinctive visual words. An inverted index allows

to quickly compare each set of extracted visual words with

all memorized objects.

The main weakness of BoW approaches is the absence

of spatial relations between visual words inside images. This

limitation is resolved in variations of BoW, like part-based

models such as the Constellation model [15], or the k-fans

model [10]. Part-based models combine appearance-based

and geometrical models, where each part represents local vi-

sual properties, and the spatial configuration between parts

is characterized by a statistical model or springconnections

representing ”deformable” relation between parts. These mod-

els are based on learning the geometrical relations between

image parts or features, like local features [15] or edges [16].

2.2 Interactive learning

In the context of learning about the surrounding environ-

ment, some knowledge can be acquired through simple ob-

servation, without performing any action, through the im-

age processing techniques reviewed in the previous section.

However, it is not easy to bind all gathered information into

coherent objects representations and learn the overall ap-

pearances of the objects. Actions of the robot provide an

ability to detect manipulable objects in a scene, segment

them from the background, better learn their overall appear-

ances and properties, thus allowing to find out an appropriate

way of interaction with these objects. Interactive actions are

useful for both object learning and also object recognition

in ambiguous situations, when dealing with several similar

objects and when more evidences are needed for object iden-

tification [5].

Several approaches have been proposed to take advan-

tage of interactive actions and various perceptual channels.

For example, in [67], an unknown object is manipulated and

tapped with the robot finger in order to produce a sound that
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is used to recognize this object. The authors of [62] propose

a more complex approach that integrates auditory and pro-

prioceptive feedback when performing five different actions

on a set of 50 objects, showing very high recognition rates.

In [9], an advanced tactile sensor is used with five differ-

ent exploratory procedures in order to associate haptic ad-

jectives (i.e. categories like hard, soft,...) to objects. And in

[24], the evolution of the visual motion of objects during

robot actions are analysed to classify objects into two cat-

egories as a container/non container. All these approaches

take advantage of the behaviour of the object during or af-

ter manipulations, and therefore they are not applicable in

the scenario based on observation that we use as a first stage

in this paper. They however could be used as an interesting

complement with our system for integration of multi-modal

information whenever the visual information is not sufficient

for recognition.

We therefore focus on studies of interactive approaches

aimed at learning visual objects appearances. In [49], an ob-

ject model is learned when the robot approaches the object

closer to the visual sensor and captures images at four po-

sitions and orientations of the object. In [68], an object rep-

resentation is generated from snapshots captured from sev-

eral viewpoints, while the object is intentionally placed by

the robot to the center of its visual field, rotated, and seg-

mented from the background using the pre-learned back-

ground model. In [5], an object representation is learned as

a collection of its views captured at orientations that are se-

lected to maximize new information about the object. The

object segmentation consists of cropping a central part of a

captured image and subtracting the pre-learned background.

As a common limitation of these approaches, a robot does

not detect or grasp an object by itself, but the object is pro-

vided by a human partner placing the object directly in the

hand of the robot. This scenario simplifies the system, since

it does not require object detection, localization, or a grasp

planning.

Perception and action can be also integrated into au-

tonomous object exploration performed without human as-

sistance. In [11], a pushing behaviour is used to move ob-

jects lying on a table in order to improve visual object seg-

mentation and observe different views. The resulting im-

ages are used to train a classifier using a Bag of Words

representation. In [25], two simple actions primitives are

used to spread piled lego blocks in order to be able to sort

them. A more advanced scheme is proposed in [28] to de-

cide which pushing to perform in order to segment cluttered

scenes on a table using a complex probabilistic model. How-

ever, these two last approaches do not integrate object learn-

ing and recognition. In [36], a sophisticated vision system

provides a set of 2D and 3D features that makes it pos-

sible to generate object grasping hypothesis. The success-

ful grasping then allows to achieve precise object motion

used to integrate features from several views in order to pro-

duce coherent 3D models. In [37], object manipulation is

used to generate autonomously complete 3D models of ob-

jects using a RGB-D camera. An initial grasp is performed

through heuristics, before moving the object following an al-

gorithm optimizing the information gained by the new view.

This approach relies mainly on 3D model matching using

the dense data provided by the camera. In contrast, our in-

teractive learning approach is not designed to improve ob-

ject segmentation (and thus is limited in its capacity to seg-

ment clustered scenes), but to improve the object appearance

models in order to provide additional representative views.

Moreover, we do not seek to produce precise 3D models of

objects, but rather use multiple view appearance models for

their adaptability in presence of changing observation con-

dition and capacity to represent deformable objects (which

is however not tested in the current paper).

Most interactive object exploration approaches make use

of knowledge about the body of the robot. This knowledge

can concern the body structure for control and correspond to

the concept of body schema, or the appearance of the body

and correspond to the body image [27]. In [49], the hand

tracking is used for fixation on the object during manipula-

tion, whereas in [43], the hand localization is used to im-

prove object segmentation. In [37], the precise 3D model of

the robot hand is used to precisely localize objects and re-

move the robots parts from the objects models. Therefore,

in interactive scenarios, the self-identification and localiza-

tion of the parts of the robot in the visual field allow more

efficient processing of visual information during and after

interaction with objects. In our approach, we assume a very

limited prior knowledge of the body of the robot and we

show that, as far as perceptual learning is concerned, the raw

motor values are sufficient to learn and continuously adapt

a body image that is sufficient to learn about objects during

manipulation.

2.3 Self- and others- discrimination

As explained before, knowledge about the body image of

the robot provides advantages for interactive exploration of

the environment. As an inspiration, child development and

especially sensorimotor developmental stages demonstrate

the importance of own body exploration. An infant starts to

learn about the world from developing a sense of his own

body, and later on performs interactive actions directed to

exploration of the environment [53].
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2.3.1 Robot self-discovery

Among the variety of studies on self-discovery for robots

learning its body image, most of them are based on prior

knowledge or resort to local approaches. Some strategies ex-

ploit a predefined motion pattern of the robot, a predefined

appearance of the body, or a known body schema, such as

the joint-link structure. For example, in [30], the hand of

the robot is detected based on a grasped object of a known

appearance, and the hand tracking is based on tracking the

object. In [47], the identification of the hand of the robot is

based on wearing a glove of known color. These techniques

simplify the robot self-identification but impose some lim-

itations. Since these algorithms are dependent on a fixed

appearance or behaviour, they cannot be easily adapted to

changes in the appearance or motion pattern of the robot.

The independence on prior knowledge would enable to over-

come these limitations and generalize the self-identification

over new appearances and new end-effectors, like grasped

tools.

In early studies, the detection of the hand of the robot

was based on its motion [42]. The important limitation of

this approach is an assumption of a single source of motion.

However, in real environments, visual motion can be pro-

duced not only by the robot itself but also by other agents

that can be robots or humans.

Considering visual motion as a response of an action,

the visual motion that follows almost immediately after an

action of the robot can be used as a cue to localize the parts

of the robot in the visual field. Based on this principle, self-

identification based on the time-correlation between an ex-

ecuted action and visual motion is performed in [43], [44],

and [21]. In [44], localization of the hand is based on a pre-

learned time delay between the initiation of an action and

the emergence of the hand in the visual field. Assuming a

single source of motion at a time, the hand is identified as

a moving region appearing first within the pre-learned time

window after the initiation of the action. In [43], localization

of the hand is based on the amount of correlation between

the velocity of the movement and the optical flow in the vi-

sual field. This method allows to identify the hand among

multiple sources of motion without requiring a priori infor-

mation about the hand appearance.

A developmental approach of identification of the body

of the robot based on visuomotor correlation is proposed in

[58]. Visuomotor correlation is estimated from propriocep-

tive and visual data acquired during head-arm movements.

In the learning stage, the robot performs motor babbling and

gathers the visual and proprioceptive feedback in terms of

visual motion and changes of motors states. In case of high

correlation, the moving region is identified as a part of the

robot, and the visuomotor information, such as the body pos-

ture and visual features, is stored in the visuomotor memory.

This self-identification method is also adaptable to extended

body parts.

2.3.2 Identification of self and others

A generic method aimed at understanding a dynamic en-

vironment based on contingency is proposed in [21]. The

method allows to discriminate actions performed by the robot

from actions performed by other physical actors considering

the time delays between the actions and the responses and

their respective durations. Autonomous identification of the

hand of the robot during natural interaction with a human

is proposed in [35]. The approach is based on mutual infor-

mation estimated between the visual data and proprioceptive

sensing. The value of mutual information is used to identify

which visual features in a scene are influenced by actions

of the robot. Since the system is aimed at detecting parts of

humans and robots, it is mainly focused on visual regions

that are close to the visual sensor and regions moving with a

high speed.

We are interested in the identification of the parts of the

robot during natural human-robot interaction and also in the

identification of the parts of human partners and possible

objects. We therefore propose a generic identification algo-

rithm that is independent on the appearance and motion pat-

tern of the robot and capable of identifying these three cat-

egories. This algorithm will be integrated with interactive

object exploration in order to enhance the learning process.

3 Learning by observation

In this section, we describe the first stage of the proposed de-

velopmental approach that allows a robot to detect physical

entities in its close environment and learn their appearances

during demonstration by a human partner. Our approach is

based on online incremental learning, and it does not require

image databases or specialized face/skin/skeleton detectors.

All knowledge is iteratively acquired by analyzing the vi-

sual data. Starting from extraction of low-level image fea-

tures, the gathered information is synthesized into higher-

level representation models of physical entities. Given the

localization of the visual sensor, the visual field of the robot

covers the interaction area including parts of the body of the

robot, parts of a human partner, and manipulated objects.

In this work, we have chosen to use a Kinect RGB-D

sensor (Kinect, [74]) instead of using stereo-vision based on

the cameras in the robot eyes. Our choice is justified by the

efficiency and precision of the RGB-D data, since the Kinect

sensor allows fast acquisition of reasonably accurate depth

data as will be discussed in Section 6. Both RGB and depth

data are acquired with the OpenNI library1. Depth data are

1 http //openni.org
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only used during proto-object detection procedure to refine

boundaries of possible objects. The overall algorithm of ob-

ject learning can therefore work without the optional step

requiring depth data, but rather based on RGB data only that

could be performed with the embedded visual sensor.

3.1 Segmentation of the visual space into proto-objects

Learning about the close environment of the robot begins

by segmenting the visual space into proto-objects as salient

units of attention that correspond to possible isolated or con-

nected physical entities. The main processing steps towards

detection and segmentation of proto-objects are shown in

Fig. 2.

segmented proto-object

clustered KLT pointsdepth contours

optical flow processingdepth data processing

Fig. 2 Detection and segmentation of proto-objects.

Our proto-object detection approach relies on motion-

based visual attention, since motion carries a significant part

of information about events happening in the environment

and their actors [22]. In our scenario, moving regions in the

visual field correspond mainly to parts of the body of the

robot, parts of a human partner, and manipulated objects,

which are the entities we seek to learn. Moreover, in the

case of motion-based visual attention, a human partner can

attract the attention of the robot by simply interacting with

an object in order to produce visual motion.

Our motion detection algorithm is based on the Running

average2 and image differencing. After detecting moving

pixels, we fill holes and remove noisy pixels by applying the

erosion and dilation operators from mathematical morphol-

ogy [60]. Further, based on the constraints of the working

2 implemented in the OpenCV library http://opencv.org

area of the robot, we ignore the visual areas that are un-

reachable for the robot.

The detected moving regions of the visual field are an-

alyzed as probable locations of proto-objects. Inside each

moving region, we extract Good Features to Track (GFT)

[59] developed especially for a tracking purpose. The ex-

tracted GFT points are tracked between consecutive images

using the Lucas-Kanade method [40] chosen due to its small

processing cost, accuracy, and robustness. We analyse the

motion behaviour of tracked points in order to detect areas

of uniform motion, which allow to isolate proto-objects in-

side moving image regions. Tracked points are grouped into

clusters based on their relative position and velocity and

following the agglomerative clustering algorithm. Initially,

each tracked point composes its own cluster; then, at each

iteration, we merge two clusters with the smallest distance

given in the equation:

d(ci, cj) = α ∗∆V (ci, cj) + (1− α) ∗∆L(ci, cj); (1)

where d(ci, cj) is the distance measure between two clusters

ci and cj , ∆L(ci, cj) is the Euclidean distance between the

clusters’ mean positions, ∆V (ci, cj) is the difference in the

clusters’ mean velocities, and α is a coefficient giving more

importance to one of the characteristics. We set this coef-

ficient to α = 0.8 (giving more importance to velocity) by

optimizing the proto-objects detection rate (see section 5.2)

on a set of objects demonstrations.

We continue to merge GFT points into clusters until a

specified threshold on the minimal distance is reached. This

threshold is set to 0.0087, also by optimizing the proto-objects

detection rate. Each resulting cluster of coherent GFT points

is a proto-object and it is the basic element of our following

processing. Each detected proto-object is tracked over im-

ages considering as tracked from the previous image in the

case of tracking more than a half of its GFT points.

Each proto-object can be segmented from the background

based on a convex hull of its GFT points. However, this

convex hull does not always correspond to the real object

boundary. If a convex hull is based on few GFT points, it of-

ten cuts the proto-object border or captures the background

and surrounding items. In order to improve the proto-object

segmentation, the results of tracking performed on RGB im-

ages are consolidated with processing of the depth data, and

the depth variation in the visual field is used to obtain more

precise boundaries.

When processing the depth data, at first, the Median blur

filter [29] is applied to smooth depth values and reduce the

noise in the data. Then, the Sobel operator [13] based on the

first derivative is used to detect horizontal and vertical edges

allowing to reveal the depth variation in the visual field.

Noisy and non-significant edges are filtered out by thresh-

olding the obtained results, then the dilation and erosion op-

erations [60] are used to close broken contours. The obtained
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continuous contours are transformed into binary masks. An

additional interest of this step is its advantage in segmenting

several static physical entities localized close to each other;

so if a convex hull of GFT points groups together several

static entities, the processing of the depth data allows to iso-

late the corresponding proto-objects inside a single convex

hull.

3.2 Entity appearance representation

The appearance of each of the proto-objects regions obtained

in the previous section should then be characterized in order

to be learned or recognized later on in our system. For this

objective, we use complementary low-level visual features

that are further organized into hierarchical representations,

as shown in Fig. 3. The appearance of a proto-object corre-

sponds to a view, i.e., the appearance of an entity observed

from one perspective. The view representation is based on

the incremental Bag of visual Words (BoW) approach [18]

extended by an additional feature layer incorporating local

visual geometry. An entity then gathers the different appear-

ances of the physical entity in a multi-view model encoded

as a set of views. Note that a view can appear in several enti-

ties when two different objects share a common appearance

from a particular point of view.

HSVI

mid-features

SURF

mid-features

HSVI

superpixels

SURF

points

mid-levelI

dictionary

low-levelI

dictionary

mid-level

dictionary

low-levelI

dictionary

segmentedIproto-object

basedIonITF-IDFIandIBayesianIfilter

basedIonIvotingIandItracking

ViewIlearning/recognition

EntityIlearning/recognition

Fig. 3 Construction of an entity representation model.

The robot should be able to deal with various entities,

ranging from simple homogeneous objects with few fea-

tures, to complex textured objects. We choose a combination

of complementary visual features that could represent all

these objects. As a local descriptor, we use SURF [2] due to

its efficient and accurate characterization of local image ar-

eas, thus providing a good description of objects with many

details. In order to deal with both textured and homogeneous

coloured objects, we develop an additional descriptor oper-

ating on the level of regularly segmented image regions. The

superpixels algorithm [45] is used to segment images into

relatively homogeneous regions by grouping similar adja-

cent pixels. For segmentation, we use the watershed algo-

rithm [4] on the image convolved with Laplacian of Gaus-

sian, initialised with regularly spaced seeds. Each resulting

superpixel is characterized by its average color encoded in

the HSV space (hue, saturation and value). Note that this

segmentation if used to represent a proto-object as a set of

colored regions and does not modify the proto-object seg-

mentation obtained in Section 3.1.

The extracted low-level feature descriptors are incremen-

tally quantized into dictionaries of visual words [18]. Start-

ing with a dictionary containing the first feature, each new

feature is assigned to its nearest dictionary entry (a visual

word) based on the Euclidean distance between their de-

scriptors. If the distance between the current descriptor and

each dictionary entry exceeds a threshold, a new visual word

is added to the dictionary (see algorithm 1). The quantiza-

tion procedure provides two dictionaries, one for SURF de-

scriptors and one for superpixel colors. The thresholds for

the dictionaries were empirically chosen by optimizing the

object recognition rate (see section 5.3) on a small set of

representative objects (both textured and textureless).

Data: Feature descriptor

Result: Corresponding visual word

if Dictionary is empty then

Add descriptor as the first visual word;

Return visual word;

else

dist min = distance to the nearest visual word;

if dist min < threshold then

return nearest visual word;

else

Add descriptor as a new visual word;

Return new visual word;

end

end

Algorithm 1: Feature search and dictionary update

The size of the color dictionary remains relatively stable

after processing several objects, since colors repeat among

different objects quite often. However, the SURF dictionary

grows continuously with the number of objects. In order to
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avoid the rapid growth of the SURF dictionary, we filtered

the SURF features before including them in the dictionary.

Only features that are seen over several consecutive frames

(we use three consecutive frames) are stored in the dictio-

nary which is used in the following processing as a ground

level for view representation.

The low-level features are grouped into more complex

mid-level features defined as pairs of low-level features. This

feature layer incorporates local visual geometry and allows

not only to characterize views by a set of features, i.e. iso-

lated colors or SURF points, but also synthesize information

into a more robust description considering relative feature

position. For both types of features, each low-level feature

is used to construct mid-features with 4 neighboring low-

level features3 that are the closest in terms of the Euclidean

distance in the image space. Thus, each mid-feature mk is a

pair of visual words, implicitly encoding the corresponding

visual features that have been perceived close in the image

space:

mk = (wa, wb), (2)

where mk is a mid-feature, wa and wb are two visual words

corresponding to neighbouring visual features.

Mid-features are incrementally quantized into dictionar-

ies following the same concept used for quantization of low-

level features. The dissimilarity measure between two mid-

features is estimated as the minimum of pairwise Euclidean

distances between their descriptors (eq. 3). The quantization

procedure provides dictionaries of SURF-pairs and superpixel-

color-pairs.

∆(m1,m2) = min

{

∆F (a1, a2) +∆F (b1, b2),

∆F (a1, b2) +∆F (b1, a2),
(3)

where m1 and m2 are two compared mid-features, and each

mid-feature is a pair of features a and b; ∆F is the dissim-

ilarity between two features (one feature from the first pair

and another feature from the second pair).

According to our representation model, all constructed

mid-features are used to characterize proto-objects appear-

ances, i.e., views, and each view is encoded by the occur-

rence frequencies of its mid-features:

vj = {mk}, (4)

where vj is a view and mk is a mid-feature.

In images captured by a visual sensor, a 3D object is

perceived as its 2D projection depending on its position and

3 We tested 2, 3 and 4-connectedness of features and chose 4-

connectedness based on our preliminary experiments with a set of 10

objects as a compromise between performance and computational cost

in order to be able to perform interactive experiments. We also com-

pared the use of low-level and mid-level features, and got an improve-

ment from 84.33% to 97.83% recognition rate (based on pure labels)

when using mid-features. More details can be found in [41], p84.

viewing angle. These projections can differ significantly de-

pending on the object appearance and shape and can also

depend on the illumination when reflected light produces

shadows and saturations making invisible some parts of the

object [22]. In our approach, the overall appearance of each

physical entity is characterized by a multi-view representa-

tion model (see Fig. 4) that covers possible changes in the

appearance of an entity emerging from different viewing an-

gles and varying illumination. Each entity is encoded as a

collection of views, where each view characterizes the ap-

pearance of one perspective of the entity:

Ei = {vj}, (5)

where Ei is an entity and vj is its observed view. Note that

one view may be a part of several entities.

E1

E2

E3

EN

Fig. 4 Examples of representation models of four different entities

(each model with its views is shown in one line).

3.3 View learning and recognition

Each proto-object detected in the visual space is either rec-

ognized as a known view or learned as a new view. The view

recognition procedure consists of a likelihood estimation us-

ing a voting method based on TF-IDF (Term-Frequency -

Inverse-Document Frequency) [63] approach followed by a

Bayesian filter estimating a posteriori probability of being

one of the known views.

The voting method (see Fig. 5) is used to estimate the

likelihood of a set of mid-features (extracted from the proto-

object region) being one of the known views. Each mid-

feature quantized into a visual word votes for a view where

it has been seen before with its TF-IDF score. The TF-IDF

score is aimed to evaluate the importance of visual words

with respect to views and give higher weights to distinc-

tive visual words. The voting method is fast, since it uses

an inverted index allowing to consider only the views that

have at least one common mid-feature with the analyzed

proto-object. The advantage of this approach with respect
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to supervised algorithms, like Support Vector Machines or

boosting, is the ability to learn new views incrementally by

updating mid-feature occurrence statistics, without knowing

the number of views in advance and without re-processing

all the data while adding a new view.

More formally, the likelihood of a mid-feature set {mk}
being the view vj is computed as a sum of products of mid-

features frequencies and the inverse view frequency:

L(vj) =
∑

mk

tf(mk)idf(mk), (6)

where tf(mk) is the occurrence frequency of the mid-feature

mk, and idf(mk) is the inverse view frequency for the mid-

feature mk.

The occurrence frequency of the mid-feature is com-

puted as:

tf(mk) =
nmkvj

nvj

, (7)

where nmkvj
is the number of occurrences of the mid-feature

mk in the view vj , and nvj
is the total number of mid-

features in the view vj .

dictionary
k

SURFk

mid-features

dictionary
k

HSVk

mid-features

visualkwords

thatkcorrespondk

toktheksetk{mi}

SURFkpairs

HSVkpairs

Votingkforkviews

v1 v2 v3 v4 v5 v6

Likelihood
L(vj)

Fig. 5 The voting method: each extracted mid-feature votes for views,

where it has been seen before.

The inverse view frequency idf(mk) is related to the oc-

currence frequency of a mid-feature among all seen views;

it is used to decrease the weight of mid-features, which are

often present in different views, and it is computed as:

idf(mk) = log
Nv

nmk

, (8)

where nmk
is the number of views with the mid-feature mk,

and Nv is the total number of seen views.

The estimated likelihood is used for appearance-based

recognition of views. However, views of different objects

can be similar, and one object observed from a certain per-

spective can resemble another object. The recognition be-

comes even more difficult if an object is occluded that of-

ten happens during manipulations. In our approach, the tem-

poral consistency of recognition is improved by applying a

Bayesian filter in order to reduce the potential confusion be-

tween entities recognized on a short time scale. Based on

tracking, we predict the probability of recognizing the view

from the a priori probability computed in the previous image

and the probability of being tracked from the previous im-

age. The final a posteriori probability of recognizing a view

is estimated recursively using its likelihood and its predic-

tion:

pt(vj) = ηL(vj)
∑

l

p(vj |vl)pt−1(vl), (9)

where L(vj) is the likelihood of recognizing the view vj ,

p(vj |vl) is the probability that the current view is vj if the

view vl was recognized in the previous image (we set p(vj |vl)

equal to 0.8 if vj = vl and 0.2/(Nv −1) otherwise, with the

total number of views being Nv), pt−1(vl) is the a priori

probability of the view vl computed in the previous image,

and η is the normalization term.

Depending on the highest a posteriori probability ob-

tained among all known views, the proto-object can be

– stored as a new view with the set of current mid-features,

if the highest probability is lower than the threshold thv.n.,

– recognized as the view with the highest probability and

updated with the current set of mid-features, if the prob-

ability is higher than the threshold thv.u.,

– recognized as the view with the highest probability but

not updated, otherwise.

The thresholds thv.n. and thv.u. allow to perform only sta-

ble updates in case of high confidence of recognition and

create new views only in case of low probability of recog-

nition, thus allowing to avoid duplicating views in memory.

The update of the recognized view consists simply in up-

dating the number of occurrences nmkvj and nvj
of each

mid-feature in the view and the number of views containing

the mid-feature nmk
used for computing the tf − idf score

(eq. 7 and 8).

3.4 Entity learning and recognition

The multi-view appearance model of the corresponding en-

tity should finally be updated with the current view. Each

identified view is therefore associated with an entity either

using tracking, or appearance-based recognition. In the case

of successful tracking from the previous image, the current

view is simply associated with the entity recognized in the

previous image (see Fig. 6). When the entity is not tracked

from the previous image, because the entity just appeared

or because of tracking failure due to motion blur for exam-

ple, the entity is recognized using a maximum likelihood

approach based on a voting method similar to the one used

for recognizing views.

The likelihood of the view vj being a part of one of al-

ready known entities is computed as:

L(Ei) = tf(vj)idf(vj), (10)
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Voting
vj

L(Ei)

L(Ei)>the.r

store?

a?new?entity

recognize

the?entity?Ei?

recognize

and?update

the?entity?Ei

L(Ei)>the.u
+

+

-

-

identified

entity

is?tracked?
-

+

recognize

and?update

the?entity?El

Fig. 6 The main steps of the entity learning/recognition; where vj is

the current view, Ei is the entity corresponding to vj with the maximal

likelihood L(Ei), El is the entity tracked from the previous image.

where tf(vj) is the occurrence frequency of the view vj , and

idf(vj) is the inverse entity frequency for the view vj .

The occurrence frequency of the view is computed as

tf(vj) =
nvjEi

nEi

, where nvjEi
is the number of occurrences

of the view vj in the entity model Ei, and nEi
is the number

of views in the entity model Ei.

The inverse entity frequency is related to the view occur-

rence among all entities; it is used to decrease the weight of

views, which are often present in models of different enti-

ties: idf(vj) = logNE

nvj

, where nvj
is the number of entities

with the view vj , and NE is the total number of seen entities.

The entity recognition decision is based on several thresh-

olds (similar to the recognition of views). The entity can be

– stored as a new entity with the current view, if the maxi-

mal likelihood is lower than the threshold the.n.,

– recognized as the entity with the maximal likelihood and

updated with the current view, if the likelihood is higher

than the threshold the.u.;

– recognized as the entity with the maximal likelihood but

not updated, otherwise.

By identifying physical entities and tracking them over

time, their multi-view representation models (see Fig. 4) are

constructed and updated with the observed views.

3.5 Connected entities recognition

In our scenario, objects are explored through manipulation.

As we have observed during our experiments, object ma-

nipulation introduces additional difficulties in processing of

the visual data: both the hand and the grasped object are

detected inside a single proto-object and moreover, a hand

holding the object produces multiple occlusions and some-

times divides the grasped object into parts. Therefore, we

process each proto-object in a way allowing to recognize it

as several connected entities. This problem requires object

segregation, as it is called in psychology. The object seg-

regation capability is an important aspect of our approach

which is capable of segmenting connected entities based on

already acquired knowledge about entities seen alone.

In our approach, each proto-object is recognized either

as a single entity or two connected entities based on the fol-

lowing double-check procedure (see Fig. 7):

1. all mid-features of the proto-object are used for recogni-

tion of the most probable view among all known views,

as described in Section 3.3,

2. the mid-features that do not appear in the most prob-

able view are used for recognition of a possible con-

nected view using the same procedure. The connected

view is recognized if its probability is higher than thv.c..

If this recognition probability is low and more than 20%

of mid-features do not correspond to the first recognized

view, then a new view is stored with these mid-features.

a) b) c)

Fig. 7 Connected entities recognition: a)all extracted mid-features

(HSV pairs); b)the mid-features of the first recognized view, c)the mid-

features of the first recognized view (shown by pink color) and the

mid-features of the connected view (shown by blue color).

Further, each identified view is associated with one of

physical entities as described earlier. If both the object and

the hand have been already seen separately, the correspond-

ing entities exist in the visual memory, and they can be rec-

ognized as connected entities.

The ability to recognize connected entities is really im-

portant in scenarios with object manipulation. It helps pre-

venting erroneous updates of views and entities models when

the object is grasped. If both the object and the hand are

identified as connected entities, then the view of the object

will not be updated with the mid-features of the hand. Fur-

thermore, the information about connected entities is also

used during the entity categorization and interactive object

learning presented in the following section.

4 Interactive learning

In this section, we describe our second developmental stage

where the robot manipulates objects to improve their mod-

els. As a pre-requisite, our approach first categorize all en-

tities into parts of the robot, parts of a human partner, and

manipulable objects. This categorization process makes our

approach robust to changes in the robots effector appear-

ance and allows to update objects models efficiently with-

out adding parts of the robot or human hands to the objects
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models. Note that all the processes described in the previous

sections are still active, thus making it possible to interleave

the two developmental stages by introducing new entities at

any time.

4.1 Entity categorization

The categorization procedure is aimed at identifying the na-

ture of physical entities detected in the visual field in the

interactive scenario when the robot and a human partner ma-

nipulate objects. Each physical entity is classified into one

of the following categories: a part of the robot cr, a part of

a human partner ch, an object co, an object grasped by the

robot co+r, or an object grasped by a human partner co+h.

Before identification of the body of the robot, which is a

requirement for the identification of other categories, all en-

tities are temporally associated to the unknown category cu,

and their correct categories are identified later. Therefore,

within the categorization procedure, at first, the parts of the

body of the robot are discriminated among all physical en-

tities, and then, the rest of single entities are distinguished

either as a human part, or a manipulable object category, as

shown in Fig. 8.

connected

entity?

MI > thr

+-

RGB-D sensor

detected entities 
in the visual space

arms and torso
motors states

entities 

motion 

analysis

Robot 

category (cr)

Object 

category (co)

Human 

category (ch)

MI statistics 

analysis

Object grasped 

by the human 

category (co+h)

Object grasped 

by the robot 

category (co+r)

3 joints
1 joint

3 joints

3 joints

1 joint

3 joints

3 joints

Fig. 8 The categorization flowchart: parts of the robot cr are discrim-

inated based on mutual information (MI) between the visual and pro-

prioceptive data; parts of a human partner ch and objects co are distin-

guished based on both MI and statistics on entities motion; connected

entities are categorized either as an object grasped by the robot co+r

or an object grasped by a human partner co+h.

4.1.1 Robot self-identification

Our goal is to implement a strategy that requires minimum

prior knowledge and avoids the need for a predefined ap-

pearance of the robot, a joint-link structure, or a predefined

behaviour. The independence on the appearance should al-

low a robust recognition of the hands of the robot in the case

of changing their appearance, in the case of occlusion, and

in the case of extension of the hands by grasped tools. The

independence on the behaviour enables to perform recogni-

tion at any time, during a variety of interactive actions with-

out requiring a specific identification phase.

Therefore, during the motor activity of the robot (the ac-

tions performed by the robot will be described in Section

5.1.3), the visual information is gathered together with the

proprioceptive data, and based on mutual information (MI)

between these senses, the system identifies the parts of the

body of the robot among detected physical entities. As the

input data, we acquire and process:

– visual information: the position of detected entities in

the visual field,

– proprioceptive information: joints values of the robot’s

motors accessed through YARP ports4:

• arms joints: shoulder (pitch, roll, and yaw), elbow,

and wrist joints (pronosupination, pitch, and yaw),

• torso joints: pitch, roll, and yaw.

The data acquisition is driven by the visual perception,

and the states of the motors are acquired after receiving a

new image from the visual sensor. The motors states are ac-

quired as a set of arm-torso joints values without considering

the functionality of each joint, nor the character of its impact

on the displacement of the hands of the robot. We acquire

one set of joints values per arm with the torso joints in each

set. The head motors however are not analysed, since they

do not effect on the position of the hand observed from our

external visual sensor.

Both visual and proprioceptive data need to be quantized

in order to compute mutual information. For the visual space

being only of dimension 2, a simple regular grid is used: for

each detected entity, its position in image space is quantized

into one of the visual clusters obtained by dividing the im-

age space with a regular grid of 12 columns and 10 rows,

producing 120 rectangular visual clusters. The joint space

however has a higher dimensionality, and it is not possi-

ble to use a regular discretization along all the dimensions.

The joints values are therefore quantized into a dictionary of

arm-torso configurations with each entry encoded as a vec-

tor of joints values. The quantization is incremental, i.e., it

adds new clusters as required by the data, and we use the

same algorithm as for visual dictionary creation (algorithm

1). This leads to a sparse representation of the joint space

that will adapt to any new joint configuration experienced

by the robot. In our experiments, the mean number of arm-

torso configurations generated by this procedure was about

40.

Mutual information is used to evaluate the dependencies

between the arm-torso configurations Ak (either left or right

arm) and the localization of each physical entity Ei in the

4 http://eris.liralab.it/yarp
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visual cluster LEi
:

MI(LEi
;Ak) = H(LEi

)−Hc(LEi
|Ak), (11)

where LEi
is the position of the entity quantized into the

visual cluster, Ak is the state of the arm k of the robot quan-

tized into the arm-torso configuration, H(LEi
) is the mar-

ginal entropy, and Hc(LEi
|Ak) is the conditional entropy

computed in the following way:

H(LEi
) = −

∑

l

p(LEi
= l)log(p(LEi

= l)), (12)

Hc(LEi
|Ak) = −

∑

a

p(Ak = a)× (13)

∑

l

p(LEi
= l|Ak = a)log(p(LEi

= l|Ak = a))

where p(LEi
= l) is the probability that the localization of

entity Ei is the visual cluster l; p(Ak = a) is the probability

that the arm-torso configuration Ak is the configuration a,

and p(LEi
= l|Ak = a) is the probability of the entity

being in the cluster l when the arm k is in the cluster a.

While the robot moves its hands in the visual field, gath-

ering statistics about the localization of entities and the oc-

currences of arm-torso configurations, MI grows for the phys-

ical entities that correspond to the hands of the robot. When

the MI value reaches a specified threshold thr, the entity is

identified as the robot category cr. On the contrary, the hu-

man and the object categories should have smaller MI due to

their independence from the motors of the robot. The thresh-

old for identifying the robot category was empirically cho-

sen based on MI distribution obtained on a small labelled set

of robot and non-robot entities. Thereby, the physical entity

is identified as the robot category cr, if its MI is higher than

thr, and otherwise, it is considered as one of the non-robot

categories that will be identified in the following processing

as described in the next subsection.

In case of changing the appearance of the hand of the

robot (like wearing gloves, that we do during our experi-

ments presented in Section 5.4), the robot category cr can

be associated with several entities with each entity charac-

terizing a different appearance of the hand (see Fig. 9).

4.1.2 Discrimination of manipulable objects and human

parts

Among the non-robot physical entities, human parts and ob-

jects are discriminated based on their motion behaviour. Most

objects, like the one used in our experiments, are static most

of time, and they are displaced by the robot or its human

partner. Among categories analyzed in this work, only the

robot and the human categories can move alone (while not

Ei

Ej

Ek

Fig. 9 Examples of multi-view models of three entities characterizing

different appearances of the hand of the robot (each model with its

views is shown in one line).

connected to other entities). Thus, we accumulate the statis-

tics on entities motion and use it to distinguish the object

category as a mostly static entity that moves only when con-

nected to other entities (see algorithm 2). Note that this def-

inition is linked to our scenario and is not universal: we

would recognize objects moving autonomously or animals

as human parts, while a human moving his left hand only

when it is touched by his right hand would see the right hand

categorized as a human part and the left hand as an object.

While detecting physical entities, we accumulate the sta-

tistics on their motion over time. Based on these statistics

and the output from the self-identification algorithm, the fol-

lowing probabilities are estimated:

– ps = p(Ei|cEi
6= cr) the probability of seeing the entity

Ei moving as a single entity while being identified as a

non-robot category,

– pc = p(Ei|cEi
6= cr, cEi2

= cr) the probability of see-

ing the entity Ei identified as a non-robot category and

moving together with the connected entity Ei2 identified

as a robot category.

Analysing the motion statistics of single entities, the prob-

ability ps should be lower for the object category, since ob-

ject entities usually do not move alone, as discussed ear-

lier. Analysing the motion statistics of connected entities,

the probability pc should be higher for the object category,

since object entities often move together with other entities

for example, when objects are manipulated. Thereby, each

non-robot entity is categorized as:

– the object category co, if the probability pc > tho.c. and

ps < tho.s.;

– the human category ch, otherwise.

Following our approach, the parts of the body of the

robot are identified first, so that before the robot starts inter-

action with objects it has already accumulated some statis-

tics on entities motion. Once the robot starts interaction with

objects, it accumulates statistics on motion of entities to-

gether with its hands. While applying our categorization al-

gorithm to each detected entity, we identify each single en-

tity as one of the following categories: co, ch, or cr (see
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Data: Non-robot entity Ei

and optionally its connected entity Ei2

Result: Category assigned to the entity Ei

if Ei2 = ∅ then

update the probability of moving alone ps;

else

if category of Ei2 = cr then

update the probability of moving when connected pc;

end

end

if (pc > tho.c.) and (ps < tho.s.) then

assign the object category, co, to Ei;

else

assign the human category, ch, to Ei;

end

Algorithm 2: Discrimination of manipulable objects and

human parts

Fig. 10). Connected entities are identified either as an ob-

ject grasped by a robot category co+r or an object grasped

by a human category co+h based on the categorization statis-

tics gathered when the corresponding entities have been seen

alone.

a) b)

c) d)

Fig. 10 Entity categorization examples: a)the human hand identified as

ch; b) the hand of the robot identified as cr and the object identified as

co; c) the object grasped by the robot identified as co+r; d) the object

grasped by the human identified as co+h.

4.2 Interactive object learning

Once the robot is able to detect and categorize physical en-

tities in the visual space, it starts to interact with object en-

tities (see Fig. 15 and Fig. 16). The actions executed on the

robot are described in Section 5.1.3. While interacting with

an entity, the system each time remembers the grasped en-

tity as Eg and the model of this entity is updated during the

action of the robot. This is a kind of self-supervision, where

the object is supposed to remain the same during its manip-

ulation.
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identify?

a?non-robot?view

Entities?
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Fig. 11 Improving the object representation model during interaction.

During the action of the robot, the manipulated entity Eg can be de-

tected either as an entity connected to the hand of the robot and identi-

fied as the object+robot category co+r , or as a single entity identified

as the object category co. In both cases, the manipulated entity Eg can

be updated with the non-robot view vj recognized in the current image

(see text for details).

According to our algorithm, the system continuously de-

tects entities in the visual space and categorizes them. While

the robot interacts with an object, we are able to discrim-

inate between the object entity and the robot entity, when

they move separately or together (e.g. when the object is

grasped). The information about identified categories of en-

tities is used by our interactive learning algorithm summa-

rized in Fig. 11. If during interaction with an object, the

system detects connected entities categorized as the object

grasped by the robot, we verify the categories of connected

views. For this purpose, we retrieve the set of entities {Ei}

with the current view in their models. For each entity, we

retrieve its category {cEi
} from the statistics stored in the

memory, and based on these categories the view is identi-

fied as:

– a robot view, if at least one corresponding entity is iden-

tified as the robot category (∃i, cEi
= cr);

– a non-robot view, if none of corresponding entities is

identified as the robot category (∀i, cEi
6= cr).

If connected views are identified as a robot view and a non-

robot view (see Fig. 12), the model of the grasped entity Eg

is updated with the non-robot view.

While finishing the object manipulation process, the robot

releases its hand, and the grasped object falls down. In this

case, if the object is detected as a single entity with a un-

known view (corresponding to a perspective that was not

yet observed), a new view will be stored in the memory.
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Fig. 12 Examples of connected views and their mid-features (HSV

pairs) during interactive object learning: the red mid-features corre-

spond to one of connected views (in this case, the hand of the robot),

and the blue mid-features correspond to another connected view (in

this case, the object).

The model of this entity could be updated with this new

view based on tracking in the following images. Thereby,

the robot can explore an object appearance by grasping and

throwing it, while updating the model of the manipulated

entity with the observed views.

After manipulations with objects, the system performs a

check of the visual memory and cleans the dictionaries of

entities and views. The entity dictionary is cleaned by sup-

pressing the noisy entities that have no proper views (these

entities have only views common with other entities). The

view dictionary is cleaned by suppressing the views that

have no associated entities; such views could be created dur-

ing interaction with an entity but never added to its model.

Finally, the cleaning of dictionary makes the knowledge about

physical entities more coherent and improves object recog-

nition as shown in the next section.

5 EXPERIMENTAL EVALUATION

The proposed perceptual system is evaluated on the iCub5

(see Fig. 14b) and the Meka6 (see Fig.14a) humanoid robots

exploring their environment in interactive scenarios. Pre-

cisely, all quantitative data reported in this paper were ac-

quired on the iCub robot, in its first version [48], with a

mean frame rate of 10Hz. In our experiments, at first, the

robot learns about its close environment through observa-

tion, while a human partner demonstrates objects to the robot,

and then, the robot explores its close environment and sur-

rounding objects through interaction. First actions of the robot

are aimed at identifying the parts of its own body, then it dis-

criminates manipulable objects and parts of human partners.

Once the robot is able to categorize the entities in its visual

field, it starts learning objects appearances through manipu-

lation.

The whole set of objects used in our experiments is shown

in Fig. 13. We choose both simple homogeneous objects

(like toys) and also more complex textured objects (like ev-

eryday products including bottles and boxes).

5 http //www.icub.org
6 http //en.wikipedia.org/wiki/Meka Robotics

Fig. 13 The 20 objects used in our experiments. The objects are num-

bered from 1 to 20, from top left to bottom right, and this order is pre-

served in the reported experiments. These images are the real images

acquired by the Kinect sensor and used by our system.

5.1 Experimental setup

In our setup, the robot is placed in front of a table, and the vi-

sual input is taken from the external Kinect sensor mounted

above the head of the robot, as shown in Fig. 14. In case of

using an external visual sensor, interaction with entities re-

quires their localization not only in the image space but also

with respect to the robot. Therefore, at the beginning of our

experiments, the visual sensor is calibrated with respect to

the robot. During experiments, each detected entity is local-

ized in the operational space of the robot and characterized

by its orientation and size.

5.1.1 Visual sensor calibration

The calibration of the visual sensor relative to the base of the

robot is performed with a calibration pattern, a chessboard,

and the OpenCV library is used to compute the position of

the chessboard relative to the sensor. The computation of

the transformation matrix requires both the position and ori-

entation of the chessboard in the operational space of the

robot. The orientation of the chessboard is known, since it

is placed horizontally in front of the robot. In order to ob-

tain the position of the chessboard, we place the hand of the

robot above the origin of the chessboard (see Fig. 14) and

acquire the position of the hand. Then, the transformation

matrix is computed in the following way:

Tsensor→robot = Tsensor→chessbrd×Tchessbrd→robot. (14)

5.1.2 Entity localization

For each detected entity, its 3D position in the visual space is

estimated with respect to the sensor by processing the RGB-

D data as a point cloud and computing the average posi-

tion of its 3D points. The orientation of the entity is esti-

mated based on eigenvectors and eigenvalues of the covari-

ance matrix of the points. The eigenvectors correspond to

three orthogonal vectors oriented in the direction maximiz-

ing the variance of the points of the entity along its axis.

The eigenvectors are used as the reference frame of the en-

tity. A quaternion is chosen to represent the orientation of
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a) b) c)

Fig. 14 a) The experimental setup for the Meka robot with the relative position of the sensor, the robot, and the table. b) The experimental setup

for the iCub robot. c) The acquisition of the position of the pattern in the operational space of the robot, shown for the iCub robot.

the entity, since this representation is compact, fast, and sta-

ble [19]. The position and orientation of the entity is then

estimated in the reference frame of the robot using the trans-

formation obtained through the calibration and the Eigen3
library7.

5.1.3 Actions

The interactive actions of the robot are aimed at achieving

two main goals: categorization of entities (including self-

identification and discrimination of manipulable objects) and

learning objects appearances. Both simple action primitives

and more complex manipulations have been implemented

and used in [31,33]. In this paper, we use two complex ma-

nipulations aimed at observing an object from different view-

ing angles and at different scales:

– TakeLiftFall manipulation (see Fig. 15) consists of reach-

ing an object from above, taking it with a three finger

pinch grasp, lifting, and releasing. This action generates

a random view of the object, when the object falls on the

table,

– TakeObserve manipulation (see Fig. 16) consists of reach-

ing an object from above, taking it with a three finger

pinch grasp, turning the object and approaching towards

the camera, and returning it back to the table. This ac-

tion allows to observe several object perspectives from

different viewing angles and also at a closer scale.

These “complex” manipulations are encoded as sequences

of simple “atomic” action primitives, such as reach or grasp.

Based on the current state of an object (i.e., its position on

the table) and the robot (i.e., the position of its hands and

its joints values), actions could have different durations and

the speed of fingers movements. In order to grasp an ob-

ject, the robot approaches its hand towards the top of the

object, estimated by the visual system, and executes a three-

finger pinch grasp from top. The grasp is pre-encoded and

7 http://eigen.tuxfamily.org

it is designed to be robust for different kinds of objects. As

the fingers are tendon-driven, the grasp is naturally compli-

ant, adapting to the shape of the object. Once the object is

grasped, the robot continues the sequence of actions to exe-

cute the required manipulation. 8

a) b)

c) d)

Fig. 15 TakeLiftFall manipulation: the object is a)grasped, b)lifted,

and c)released; d)when the object falls on the table, it makes it turn-

ing into a random perspective.

5.1.4 Evaluation methodology

Since our work is aimed at interactive learning about the

close environment of the robot, it makes difficult to evalu-

ate the learning performance using existing image databases.

8 The code used in these experiments is open-source. Details for

installing the code are available at http://eris.liralab.it/

wiki/UPMC_iCub_project/MACSi_Software while the doc-

umentation for running the experiments is at http://chronos.

isir.upmc.fr/˜ivaldi/macsi/doc/. The experiments can

be directly reproduced with an iCub robot, whereas in case of other

robots with a different middleware (i.e., not based on YARP), the mod-

ule encoding the action primitives has to be adapted.
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Fig. 17 The association matrix obtained for the 20 objects (shown in rows) and the corresponding physical entities (shown in columns); the color

range (from while 0% to black 100%) represents the percentage of object instances associated with each entity; the columns are sorted by the order

of created entities that nearly follows the order of learned objects. Among entities associated with each object, we distinguish one major entity

that was the most frequently associated (for example, the entity 19 for the object o4, shown in red solid line) and pure entities that were associated

with one object, but never with other objects (for example the entities 19, 20, and 21 for the object o4, shown in green dashed line).

a) b)

c) d)

Fig. 16 TakeObserve manipulation: the object is a)grasped, b)lifted

and approached to the camera, c)turned around, and d)returned back

to the table.

Moreover, as learning is incremental and iterative, it is dif-

ficult to have a precise evaluation of the performance at a

given time during real-time operation. Thus, the performance

is evaluated on several stages of developmental learning, and

the evaluation is based on pre-recorded sequences of images

labelled with a reference ground truth. The evaluation pro-

cedure includes estimation of the following characteristics:

– detection rate is obtained based on manually labelled im-

ages,

– categorization rate: self-identification is evaluated using

forward kinematics model as a reference, while discrim-

ination of objects and human parts is evaluated based on

manually labelled images with the correct categories,

– recognition rate is obtained using a separate evaluation

image database.

In order to evaluate the object recognition, we make a

database with 50 images for each object used in the experi-

ments, and each object is shown from different perspectives.

During evaluation, the perceptual system assigns the images

of objects from the database to physical entities, and then,

we compute the number of entities and views assigned to

each real object. The object recognition rate is estimated

based on the following entities chosen for each object:

– a major entity as the most frequently associated entity

among all entities associated with this particular object,

– pure entities as the entities associated with this particular

object, but never with other objects.

Examples of major and pure entities are illustrated in the

association matrix in Fig. 17. The object recognition rate is

computed as a percentage of the object instances associated

with its major/pure entities, with respect to the total number

of images with the object.

For all the thresholds used in our algorithms (sections

3.4, 4.1, and 4.2), we ran a first experiment with 10 objects

and the initial appearance of the robot and experimentally

varied the thresholds to optimize the recognition rates and

the categorization performance. We then kept these thresh-

olds for all reported experiments.

5.2 Evaluation of detection and tracking

In this experiment, the robot learns about its close environ-

ment through observation, while a human partner demon-

strates the 20 objects (see Fig. 13) one by one. Each ob-

ject is manipulated for about one minute (that corresponds

to about 600 images) allowing to observe different perspec-

tives of the object. In total, the experiment lasts about 20

minutes and contains about 12000 images.

The object detection rate is estimated as a percentage

of images with segmented objects, with respect to the total

number of images with the object. On average, our system

shows an object detection rate of 98% in case of segmenting

entities based on depth-contours. We have also compared the

detection rate with and without using the depth data. Using

motion only (without using the depth data) we obtained a
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detection rate of 86%, showing that our system could also

work using embedded cameras with a loss of performance.

The tracking rate is estimated as the percentage of tracked

instances of the object with respect to the total occurrence

of the object in consecutive images. On average, our system

shows a tracking rate of 77% that does not depend on the use

of the depth information. Note that tracking failures mainly

happen with few objects (O1, O3, O10, and O15) that have

only few features.

5.3 Evaluation of learning through observation

Using the same experiment as in the previous section (i.e.,

after observing each object for 1 minute), the object recogni-

tion rates computed on the separated evaluation database are

reported in Table 1. The average recognition rate based on

pure entities (i.e., the set of all entities associated only with

one object)is 85,7%. The average recognition rate based on

major entities (i.e., the pure entity the most frequently asso-

ciated with the object) is 55,8%. The obtained recognition

rates differ between objects. Intuitively, objects with differ-

ent appearances have been recognized better than objects

which are similar to each other. From the association matrix

(see Fig. 17), the maximal confusion has occurred between

the objects O11 and O6, which have similar colors and simi-

lar lego-parts. However, the two identical objects O1 and O3

which differ only by color, have been distinguished rather

well.

The objects of our dataset that show lower tracking rates

(O1, O3, O10, and O15) also show smaller recognition rates

based on major entities (see Table 1, column 2) comparing to

other objects. This is caused by the fact that a tracking fail-

ure often leads to the creation of a new entity and prevents

to associate several views to a single entity.

From Table 1 and Fig. 17, most objects have been associ-

ated with several entities, with an average of 4.1 entities per

object. This is a common limitation of unsupervised learn-

ing approaches, where the robot decides itself if it observes

a new object or a known object. We will see that interac-

tive learning makes it possible to reduce this segmentation

of objects into several entities.

We also evaluate our system for simultaneous process-

ing of multiple objects in a single image. The system has

been tested with up to 10 objects demonstrated at the same

time (see Fig. 18), and all objects have been detected and

recognized.

During our experiments on object learning, the average

processing time was 0.13s for images with one object. The

time required to process one object varies significantly be-

tween objects and it depends on their complexity and the

number of extracted features. Among all processing stages,

the highest computation cost belongs to recognition and learn-

a) b)

Fig. 18 Simultaneous processing of several objects: a)10 objects de-

tected and recognized in the visual space of the robot, b)the resulted

segmentation of the objects.

ing of views, and in particularly to searching features in dic-

tionaries. Moreover, this cost increases with the dictionaries

growth which was observed to be approximately linear in

our experiments. Other processing stages (object detection,

segmentation, feature extraction, tracking, and categoriza-

tion) take all together about 0.06s per image, and this pro-

cessing cost stays relatively stable over time.

5.4 Evaluation of entity categorization

The categorization performance is evaluated in the interac-

tive scenario where both the robot and the human partner

perform actions aimed at exploration of the objects close to

the robot.

5.4.1 Evaluation of self-identification

In this experiment, the iCub robot performs free hand mo-

tion and interactive actions described in Section 5.1.3, while

the human partner also moves its hands in the visual space.

In total, the experiment lasts about 12 minutes and contains

7200 images. The identification of the body parts of the

robot was evaluated using forward kinematics model as a

reference. Our approach was evaluated with the robot nor-

mal hand appearance and also while changing its appear-

ance by wearing coloured gloves (see Fig. 9). The catego-

rization procedure was able to identify the hand appearances

after a duration varying between 5 and 12 seconds of their

motion in the visual field (cu − cr in Fig. 19), correspond-

ing to the processing of between 50 and 120 images (see

Fig. 19). These variations depend on the particular motions

performed by the robot: motions of the hand across the whole

visual field are more informative than motions that produce

little visible variations and therefore lead to a faster increase

of mutual information and a faster hand identification. Once

the hand of the robot was first identified, the system has

shown an average self-recognition rate of 98.2% for the ini-

tial appearance of the hand. The self-recognition rate for the

other appearance was 98.1% for the blue glove and 98.0%

for the pink glove. Similar results confirming the indepen-
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dence of our approach on the hand appearance were ob-

tained with the Meka robot wearing coloured gloves.
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Fig. 19 Categorization of entities performed while both the human

partner and the robot (with three different appearances of the hand)

perform free hand motion and the human partner also interacts with

first five objects: the graph shows the normalized MI value for each

entity; each entity appears in the timeline as an unknown category cu,

and once it is categorized, its category is marked in the timeline (in this

case, the category cr). The curves corresponding to the five objects do

not appear in the graph as their probability remains close to 0 and they

are hidden by the curve corresponding to the human.

5.4.2 Evaluation of categorization of objects and human

parts

Once the robot identifies its hands among the physical enti-

ties detected in the visual field, it continues interactive ex-

ploration of other entities. While both the robot and its hu-

man partner perform interactive actions with the objects,

the perceptual system continuously analyses the entities be-

haviour and categorizes them. In total, this experiment lasts

about 60 minutes and contains about 36000 images, where

the human manipulates each of 20 objects (in total, about

20 minutes), and the robot manipulates each of 20 objects

(in total, about 40 minutes). The ability to discriminate the

objects and human parts is evaluated a posteriori based on

images labelled with the correct entities categories. During

the experiment, each object has been successfully identified

in the object category within 5-10 seconds of motion during

interaction (corresponding to 50-100 images), leading to a

total correct categorisation rate of 84%. Human parts have

been categorized correctly in 89% of all images. Fig. 20

shows the evolution of the probability of each non-robot en-

tity being an object. It also shows the probability of being a

human, given that the two probabilities sum to 1.

5.5 Evaluation of interactive object learning

Once the robot is able to categorize physical entities de-

tected in the visual field, its focuses on interactive object

exploration. The robot manipulates each object following

the TakeLiftFall or TakeObserve schemes, described in 5.1.3.

Each manipulation lasts about one and a half minute (corre-

sponding to about 900 images). In total, the experiment lasts

O1

O2

O3

O4

O5

human

Object,category,threshold,

(pc>tho.c),and,(ps<tho.s)

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0

0,,,,,20,,,,,,40,,,,,,60,,,,,,80,,,,,100,,,120,,,140,,,160,,,180,,,200,,,220,,,240,,,260,,,280,,,Time,s
Cu,,,Co,,,,,,,,,,,,Cu,,Co,,,,,,,,,Cu,,Co,,,,Cu,,Co,,,,,,,,,,,Cu,,Co

p
cp

s

Fig. 20 Categorization of entities performed while the robot interacts

with the first five objects: the graph shows the probability of being in

the object category based on pc and ps for each entity. Each entity ap-

pears in the timeline as an unknown category cu, and once categorized

as an object is marked co. The entities with the probability below the

threshold fall in the human category.

about 30 minutes for each type of manipulation and con-

tains about 18000 images. The performance of interactive

learning is evaluated using the database described in Section

5.1.4. The evaluation results are reported in Table 1, where

each value is presented in a pair with the corresponding re-

sult obtained during learning through observation presented

in Section 5.3.

Table 1 Performances of object learning: each value is presented in a

pair comparing the results of learning through interaction (2nd stage) /

with respect to learning through observation (1st stage)

Object

Recognition

rate based

on pure

entities,%

Recognition

rate based

on a major

entity,%

Number

of pure

entities

Number

of pure

views

O1 96/96 45/33 4/6 9/9

O2 100/90 92/78 3/3 8/6

O3 98/96 82/40 3/6 5/6

O4 58/60 44/44 1/3 2/4

O5 91/41 52/41 3/1 3/2

O6 63/63 40/40 4/7 4/7

O7 60/60 60/52 1/2 1/2

O8 100/100 86/50 3/4 4/4

O9 89/96 33/32 4/8 5/9

O10 80/80 23/22 5/8 5/8

O11 84/84 35/23 5/6 6/6

O12 87/87 63/47 2/4 2/4

O13 100/100 100/97 1/2 2/2

O14 87/87 51/38 4/7 4/7

O15 94/90 41/25 3/5 3/5

O16 100/100 100/100 1/1 1/1

O17 100/100 100/80 1/2 2/2

O18 100/100 100/99 1/2 1/2

O19 100/100 100/99 1/1 2/2

O20 83/83 76/76 2/4 2/4

Mean 88.5/85.7 66.2/55.8 2.6/4.1 3.6/4.6

For most of objects, the interactive learning shows an

improvement of the recognition rate based on a major entity

with respect to the results of learning through observation

(see Fig. 21). The recognition rate based on pure entities

remains nearly stable in comparison to learning through ob-
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servation. These results can be explained by the concept of

the learning algorithm aimed at updating the best model of

a grasped entity during its manipulation. Thus, interactive

learning procedure improves mostly the major entity, while

leaving other pure entities without significant changes.
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Fig. 21 Improvement of the object recognition rate: the recognition

rate (based on major entities) obtained during learning through obser-

vation is shown in blue, its improvement during interactive learning is

shown in orange, and the final recognition rate (based on pure entities)

is shown in yellow.

Interactive learning allows to obtain enhanced objects

models with an increased number of views. For objects whose

appearances significantly vary between perspectives, inter-

active learning is especially useful. While manipulating an

object, the perceptual system integrates the recognized views

into the representation model of the entity thus enhancing

the model and making it more complete. Moreover, the sys-

tem creates new views when it observes previously unknown

perspectives of the object. From our experiments, interactive

learning results in enhancement of the entities models of the

objects O1, O2, O3, O8, O9, and O11. The examples of im-

provements of some models (in particularly, the views added

to these models) are shown in Fig. 22.

+

+

+

Fig. 22 The representation models of the major entities of the objects

O1, O2, and O3 (each model with its views is shown in one line),

where the views added during interactive learning are shown after the

+ sign.

As discussed in Section 5.3, learning through observa-

tion results in association of some objects with several phys-

ical entities. However, interactive learning allows to consol-

idate the knowledge about an object within its major entity

and decrease the number of entities associated with the ob-

ject. The total number of entities and views decreases mostly

due to cleaning dictionaries performed after manipulation

and described in Section 4.2. Cleaning dictionaries makes

the knowledge more coherent by removing noisy entities

and thus leading to the improvement of the object recogni-

tion rate based on major entities as less views are associated

to the noisy entities.

6 Discussion

We have evaluated our system with a set of objects varying

in color and texture, showing its ability to integrate both in-

formation for recognition, and its capability to recognize and

learn object even when manipulated. However, the choice

of the bag of word approach for object representation and

hand-crafted features could probably be improved, for ex-

ample using even more geometric information than we have

used in feature pairs. Another interesting approach would

be to learn the visual features themselves, which proved to

be efficient in a number of applications [39]. Regarding the

kind of objects our system can learn, our multi-view model

should be well adapted to objects changing shapes, such as

articulated objects. The different appearances corresponding

to the change in the articulated objects would be integrated

as other views, as long as object tracking is possible during

object modification.

From a computational point of view, scaling our approach

to a larger set of objects will face the issue of feature dictio-

nary growth (Section 5.3) that increases the view learning

and recognition time. In our system, the mean computation

time for 20 objects is 0.07s for view learning and recognition

and 0.06 for all the other processing steps which are inde-

pendent on the number of objects. Assuming a linear growth

of dictionaries, our system could recognize 40 objects with

a mean computation time of 0.2s. In order to learn a much

larger set of objects, the dictionary growth should be limited

by introducing additional filtering of dictionaries in order to

keep only the most frequently repeated features. Another ap-

proach could be to learn a fixed dictionary of visual features

in a first phase, before learning the objects. Such approach

would not be incremental as ours, but would make it pos-

sible to use much more efficient data structures as used in

image retrieval (e.g., [34]) that would scale to a much larger

number of objects.

The object representation and learning approach presen-

ted in this paper takes advantage of social interactions as

these interactions produce object motions that are important

in our system, but does not explicitly engage in such interac-

tions. In a related work however, our system has been inte-
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grated within a curiosity-based active object exploration ar-

chitecture [32,51] that took advantage of the social environ-

ment by asking the human partner to manipulate a particular

object. This was possible because our approach provides an

assessment of an object model quality through its number of

views and its recognition probability. This quality measure

has been used to guide the choice of an object, an action,

and an actor (i.e., the robot itself or the human partner) in

order to explore based on the achieved learning progress.

This work made a number of engineering choices whose

consequences can be questioned. Among these, the choice

of a fixed external RGB-D sensor made it possible to sim-

plify implementation, improve the quality of the data, and

therefore the system performance. In particular, it avoids the

complex problem of learning gaze control that involves eyes

and neck joints that have not been considered in this work

[38]. However, this removes the possibility for the system

to control its gaze direction. Imagining the implementation

of our system with a gaze-controlled camera on the robot

head, our image processing stream should not be strongly

affected (beside the loss of performance as illustrated in Sec-

tion 5.2) as long as object tracking remains possible. The en-

tities classification however will require improvements as it

currently depends on the fact that the camera is static to anal-

yse entities motions. A new component computing entities

motion in the robot body frame would therefore be required.

As an alternative for entity categorisation, we could extend

our algorithm by including the head pose (the states of neck

joints) and the gaze direction into the arm-torso dictionary.

This modification will allow to consider the relation between

the entity localization over time relative to the camera pose,

thus allowing the camera motion. The calibration of the sen-

sor currently performed by an initial calibration procedure

could also be performed in a more natural way, following

for example approaches learning visuo-motor coordination

(e.g. [8,7]).

Concerning gaze control on the actual robot as a social

cue, our engineering solution indeed makes it possible to

make the robot look at an object or at humans for social

interaction (thanks to the position of the object in the robot

reference frame given by the RGB-D camera). However, the

fact that the robot point of view from the external camera is

not the point of view from the robot eyes which is assumed

by humans can cause problems in human-robot interactions

scenarios. Indeed, the human could assume that the side of

the object seen by the robot is different from the one actually

observed by the overhead camera.

Several parts of the proposed approach could also be ex-

tended by the use of more general learning approaches than

the current hand-designed algorithms. For example, an in-

teresting future work could be to replace the algorithm for

entities categorisation proposed in Fig.8 by a more adaptive

approach. A first step would be to learn the thresholds used

in this procedure from data, but a more generic approach

learning the entity behaviours and performing unsupervised

categorisation of these behaviours to define the entities cat-

egories would be more appealing.

7 Conclusion and future work

We have developed a perceptual approach that enables a

humanoid robot to explore its close environment in an in-

teractive scenario, following the context of developmental

learning. Without the use of image databases, pre-specified

objects, known robot appearance or direct supervision but

rather taking inspiration from infants development, the robot

first learns by observing its surroundings, and then using its

own interactive actions thanks to the identification of its own

body.

This was achieved thanks to the integration of a generic

physical entity appearance representation, a self- and others-

identification capability, and actions for active exploration

of the objects. The main lessons learned from this system

are that:

– it is possible to make efficient models of all physical en-

tities in front of a robot with a unified appearance model

that can represent both textured objects such as the robot

hands or soda cans and textureless objects such as toys

or human hands,

– it is possible to categorize objects, human parts, and parts

of the robot without prior knowledge on their appear-

ances and using only their motion behaviour and its cor-

relation with the robot proprioceptive sensing,

– the knowledge of these three categories are sufficient to

update object models during manipulation, even when

the object is in the robot hand, without the need of a

precise body schema, nor initial knowledge of the robot

appearance.

An interesting extension of this work would be to im-

prove the integration of experience gathered by the robot

through interaction with its environment into the processing

pipeline itself. In infants, the development of capabilities to

manipulate objects has an influence on their perception and

especially attention [50]. It would be advantageous to imple-

ment a similar feature: once the robot has explored an object

manually at a close scale, it has acquired more knowledge

about the importance of its visual features for interaction or

correct recognition. This experience could provide a feed-

back to the perceptual system, for example by changing the

attention model or notion of saliency to be able to detect

these objects at a greater distance.

Our developmental approach could be further extended

by learning action primitives instead of using hand designed

actions. While we focus on perception in this work, infants
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develop simultaneously their recognition and action capa-

bilities. It would be interesting to work on a more complete

developmental approach for robots by learning the appropri-

ate actions to manipulate the objects (following for example

[38]) at the same time as learning to recognize these objects

or as learning the affordances that make it possible to decide

which actions apply to a given object. Learning these ac-

tions should be coupled with learning a more complete body

schema than the simple partial body image that is learned in

our current approach. Learning the full body schema would

make it possible to extend self-recognition to more complex

parts of the body of the robot, and would make it possible to

perform more efficient manipulation actions.

Finally, it would also be interesting to extend our ap-

proach by integrating the audio information in our system.

While seeking the multimodality of learning and taking in-

spiration from infant-directed interaction, when an adult na-

mes an object while showing it to the infant, we could learn

about objects not only from visual data but also from audio

information. This can be viewed as a step towards the de-

velopment of common language between the robot and its

human partner, where the robot is able to learn objects asso-

ciated with any names that its user would like to use, while

it could help to improve object recognition in more complex

interactive scenarios.
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