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In this paper, we discuss tensor network descriptions of AdS=CFT from two different viewpoints. First,

we start with a Euclidean path-integral computation of ground state wave functions with a UV cutoff. We

consider its efficient optimization by making its UV cutoff position dependent and define a quantum state at

each length scale. We conjecture that this path integral corresponds to a time slice of anti–de Sitter (AdS)

spacetime. Next, we derive a flow of quantum states by rewriting the action of Killing vectors of AdS3 in

terms of the dual two-dimensional conformal field theory (CFT). Both approaches support a correspon-

dence between the hyperbolic time slice H2 in AdS3 and a version of continuous multiscale entanglement

renormalization ansatz. We also give a heuristic argument about why we can expect a sub-AdS scale bulk

locality for holographic CFTs.
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I. INTRODUCTION

Even though the holographic principle [1], especially the

AdS=CFT correspondence [2], is expected to provide us

with an extremely powerful method to understand quantum

gravity, its basic mechanism has remained mysterious.

One interesting possibility of explaining the mechanism

of holography is its possible connections to tensor net-

works. Tensor networks are methods to express quantum

wave functions in terms of network diagrams and are in a

very similar spirit to holography because they geometrize

algebraically complicated quantum states.

In the pioneering work [3], it has been conjectured that the

AdS=CFT correspondence may be interpreted as the multi-

scale entanglement renormalization ansatz (MERA) network

[4,5], which is a particular example of tensor networks for

conformal field theories (CFTs). At an intuitive level, this fits

nicely with the AdS=CFT in that the MERA network is

aimed at an explicit real space renormalization group (RG)

flow in terms of RG evolution of quantum states. Moreover,

estimations of entanglement entropy of MERA networks

done in [4] look analogous to the holographic entanglement

entropy [6], realizing emergent spacetimes from quantum

entanglement (for recent reviews see [7,8]). Such a con-

nection to tensor networks can also be strongly suggested

by the recent reformulation of holographic entanglement

entropy in terms of bit threads [9].

The tensor network is defined in a discretized lattice

such as spin systems and to connect the actual AdS=CFT
we need to take a continuum limit. A candidate of a

continuum version of MERA is formulated in [10] and is

called continuous MERA (cMERA). It was conjectured in

[11,12] that the AdS=CFT can be regarded as a cMERA

network. Even though the special conformal invariance is

not realized in the MERA network, cMERA has an

advantage that this symmetry is clearly realized.

In the original argument [3], the MERA network was

considered to describe the canonical time slice of AdSdþ2,

i.e. hyperbolic space Hdþ1. However later, it has been

pointed out by several authors [13–16] that the MERA

network may correspond to a de Sitter spacetime dSdþ1

instead of hyperbolic space, especially from the viewpoint

of its causal structure of MERA. Note that a hyperbolic

space and de Sitter spacetime have the same isometry

SOð1; dþ 1Þ and it is not easy to distinguish them only by

symmetries. In the paper [14], the MERA tensor network

is argued to describe a space called kinematical space,

which is nonlocally related to the original AdS spacetime

with mathematically rich structures [17].

Nevertheless, we are still attempting to interpret an AdS

spacetime itself as a continuous limit of a certain tensor

network [a continuous tensor network (cTN)]. A quantum

state is time evolved by a given Hamiltonian and this is also

described by a network of unitary transformations. Thus we

can have a tensor network description of whole spacetime if

each time slice, which defines a quantum state, is described

by a tensor network. A powerful advantage of tensor

network description is that we can take a subregion inside

the network and define a quantum state by contracting

tensors. Motivated by this, in [18], it was conjectured that in

any spacetime described by Einstein gravity, each codi-

mension two convex surface corresponds to a quantum

state in the dual theory, called surface/state correspondence.

This largely extends the holographic principle as it can be

applied to gravitational spacetime without any boundaries.

The perfect tensor network [19] (see also a closely related

network using random tensors [20]), found from a relation

between quantum error correcting codes and holography,
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provides an explicit toy example for the surface/state

correspondence. Moreover, it is expected to provide a

tensor network which corresponds to the hyperbolic space

H2 rather than the de Sitter spacetime. Indeed, it has a

discretized version of the full conformal symmetry. Even

though this network respects the isometry of AdS3 and

holographic entanglement entropy, the quantum state itself

has a flat entanglement spectrum and thus deviates from

any vacuum of CFTs.

To understand connections between tensor networks and

AdS=CFT better, in this paper we study the AdS3=CFT2

duality from two different viewpoints: (i) Euclidean path-

integral description of wave function with a position

dependent cutoff, and (ii) SLð2; RÞ transformations of

AdS3 in surface/state correspondence. We see that both

approaches support the correspondence between a hyper-

bolic time slice in AdS3 and a cMERA-like network for a

CFT vacuum. The second approach also shows that we can

equally identify the network with a de Sitter slice. Next we

turn to the excited states. Especially we focus on the locally

excited state in the bulk AdS3 and cTN description of its

CFT dual. As we see below, we find a consistent picture

which reveals a structure similar to the perfect tensor

network [19] and the random tensor network [20].

Finally we give a heuristic argument about why we expect

a sub-AdS scale bulk locality for holographic CFTs. In this

paper we mainly consider two-dimensional CFTs for

simpler presentations. However, many results can be

generalized into the higher dimensional AdS=CFT.
This paper is organized as follows. In Sec. II, we give a

brief review of AdS3 geometry and its global symmetry. In

Sec. III, we study a Euclidean path-integral description of

vacuum wave function of two-dimensional CFT and

introduce a position dependent cutoff, which preserves

the conformal symmetries. We argue that this corresponds

to the time slice of AdS space. Following this approach

we calculate a wave function at each length scale. In

Sec. IV, we review the formulation of cMERA with

several updates. In Sec. V, we identify a continuous tensor

network which describes the global AdS3 spacetime via the

Killing symmetry of the AdS space. In Sec. VI, we give a

heuristic argument about why we expect a sub-AdS scale

bulk locality for holographic CFTs. In Sec. VII, we

examine locally excited states in the bulk in our continuous

tensor network description. In Sec. VIII, we summarize our

conclusions and discuss future problems. In Appendix A,

we present details of several choices of cutoff functions in

Euclidean path integrals. In Appendix B, we extend the

construction of cMERA to present a formulation of

continuous tensor networks which describe a holographic

spacetime and show consistency conditions.

When we were completing this paper, we noticed a very

interesting paper [21] where a connection between con-

tinuous tensor networks and wave functions in the

Euclidean path integral with a UV cutoff have been studied.

The path-integral formulation in our paper is different from

theirs in that we made the UV cutoff position dependent.

Appendix A in this paper includes a consistency between

our work and [21].

II. ADS3 GEOMETRY

In this section, we briefly review basic properties of the

AdS3 geometry, which are important in our later arguments.

The Lorentzian AdS3 space with a radius L is defined by

the hypersurface in R2;2,

X2
0 þ X2

3 ¼ X2
1 þ X2

2 þ L2: ð1Þ

The global AdS3 (with radius L) is defined by the

parametrization

X0 ¼ L cosh ρ cos t;

X3 ¼ L cosh ρ sin t;

X1 ¼ L sinh ρ sinϕ;

X2 ¼ L sinh ρ cosϕ: ð2Þ

This leads to the following metric:

ds2 ¼ L2ð−cosh2ρdt2 þ dρ2 þ sinh2ρdϕ2Þ: ð3Þ

The Euclidean global AdS3 (i.e. H3) is obtained by the

Wick rotation t → it.
Sometimes it is also useful to work with the Poincare

AdS metric

ds2 ¼ L2
dz2 − dτ2 þ dx2

z2
; ð4Þ

in our later arguments.

A. Global symmetry

The AdS3 space (3) has the SLð2; RÞL × SLð2; RÞR
symmetry, which is generated by ðL1; L0; L−1Þ and

ð ~L1; ~L0; ~L−1Þ. They correspond to the (global) Virasoro

symmetry of its dual two-dimensional CFT. These are

explicitly given by the following Killing vectors in AdS3
[22],

L0 ¼ i∂þ; ~L0 ¼ i∂−;

L�1 ¼ ie�ixþ
�

cosh 2ρ

sinh 2ρ
∂þ −

1

sinh 2ρ
∂− ∓

i

2
∂ρ

�

;

~L�1 ¼ ie�ix−
�

cosh 2ρ

sinh 2ρ
∂− −

1

sinh 2ρ
∂þ ∓

i

2
∂ρ

�

; ð5Þ

where x� ≡ t� ϕ and ∂� ≡ ∂
∂x�

.
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Notice that a SLð2;RÞ subgroup of SLð2;RÞL×SLð2;RÞR
preserves the time slice t ¼ 0. It is generated by

ln ≡ Ln −
~L−nðn ¼ 0;−1; 1Þ, i.e.

l0 ¼ L0 −
~L0 ¼ i∂ϕ;

l−1 ¼ L−1 −
~L1 ¼ ie−iϕ

�

1þ coshð2ρÞ
sinhð2ρÞ ∂ϕ þ i∂ρ

�

;

l1 ¼ L1 −
~L−1 ¼ −ieiϕ

�

−
1þ coshð2ρÞ
sinhð2ρÞ ∂ϕ þ i∂ρ

�

: ð6Þ

Indeed they satisfy the SLð2; RÞ algebra and correspond to

Killing vectors of the hyperbolic space H2,

ds2 ¼ L2ðdρ2 þ sinh2ρdϕ2Þ: ð7Þ

We can identify the geometrical action with a linear combi-

nation of ln as follows:

i∂ρ ¼ −
i

2
ðeiϕl−1 − e−iϕl1Þ;

i∂ϕ ¼ l0: ð8Þ

The SLð2; RÞ transformation gðρ;ϕÞ which takes the

origin ρ ¼ 0 to a point ðρ;ϕÞ on H2 is given by

gðρ;ϕÞ ¼ e−iϕl0e
ρ

2
ðl1−l−1Þ: ð9Þ

B. Hyperbolic/de Sitter slices in AdS3

If we parametrize the hypersurface (1) as follows,

X0 ¼ L sinh τ sinh η;

X3 ¼ L cosh η;

X1 ¼ L cosh τ sinh η sinϕ;

X2 ¼ L cosh τ sinh η cosϕ; ð10Þ

then we find the metric

ds2 ¼ L2ðdη2 þ sinh2ηð−dτ2 þ cosh2τdϕ2ÞÞ: ð11Þ

This shows that a constant η slice is a two-dimensional de

Sitter spacetime, which is accommodated in the interval

−π < t < 0. If we take the η ¼ 0 limit, it becomes a light

cone. To go beyond this, we can introduce the following

coordinate,

X0 ¼ L cosh τ sin η;

X3 ¼ L cos η;

X1 ¼ L sinh τ sin η sinϕ;

X2 ¼ L sinh τ sin η cosϕ; ð12Þ

which leads to

ds2 ¼ L2ð−dη2 þ sin2 ηðdτ2 þ cosh2 τdϕ2ÞÞ: ð13Þ

This describes the hyperbolic slices of AdS3.

If we consider the Euclidean AdS3 (¼ H3) defined by

X2
0 ¼ X2

1 þ X2
2 þ X2

3 þ L2; ð14Þ

we can set

X0 ¼ L cosh τ cosh η;

X3 ¼ L sinh η;

X1 ¼ L sinh τ cosh η sinϕ;

X2 ¼ L sinh τ cosh η cosϕ; ð15Þ

to reach the metric

ds2 ¼ L2ðdη2 þ cosh2ηðdτ2 þ sinh2τdϕ2ÞÞ: ð16Þ

This describes a hyperbolic slice of Euclidean AdS3.

III. ADS=CFT FROM THE EUCLIDEAN

PATH INTEGRAL

In this section, we study the Euclidean path-integral

description of ground state wave functions of two-

dimensional CFTs. We introduce UV cutoff efficiently in

a conformal invariant way and show that we can deform the

path integral into that on a hyperbolic space H2. We argue

that this hyperbolic space corresponds to a time slice

of AdS3.

A. Euclidean path integral with UV cutoff

Consider a two-dimensional CFT on R2. We define the

coordinate of R2 to be ðz; xÞ, where z is the Euclidean time.

We simply express all fields in the CFT as ϕðz; xÞ. The
ground state wave function Ψ½ϕðxÞ�, which is not normal-

ized, is written as a Euclidean path integral,

Ψ½ϕðxÞ� ¼
Z

Y

z0<z<∞

Dϕðz; xÞ · δðϕðz0; xÞ

¼ ϕðxÞÞ · e−SCFTðϕÞ: ð17Þ

To make an explicit analysis, let us consider a free scalar

field theory as a toy example,

SCFT ¼
Z

dxdzLCFT ¼
Z

dxdz½ð∂zϕÞ2 þ ð∂xϕÞ2�: ð18Þ

With the boundary condition ϕð0; xÞ ¼ ϕðxÞ we can solve

the equation of motion ð∂2
x þ ∂2

zÞϕ ¼ 0 as follows:
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ϕðz; xÞ ¼
Z

∞

−∞

dkϕðkÞeikx−jkjz; ð19Þ

where ϕðkÞ is the Fourier transformation of ϕðxÞ. Note that
here we assumed that there is no singular behavior in the

limit z →∞.

The on-shell action is evaluated as

Son shell ¼ 4π

Z

∞

0

dz

Z

∞

−∞

dkjkj2e−2jkjzϕðkÞϕð−kÞ

¼ 2π

Z

∞

−∞

dkjkjϕðkÞϕð−kÞ: ð20Þ

Since the path integral of quantum fluctuation only gives an

overall constant factor (see e.g. [23]), the wave function is

evaluated as

Ψ½ϕðxÞ� ∝ e−Son shell ¼ e−2π
R

∞

−∞
dkjkjϕðkÞϕð−kÞ; ð21Þ

reproducing the well-known result.

In this analysis we observe an important fact that in the k
integral at fixed z in (20), only modes with jkj≲ 1=z
contribute. This fact allows us to approximate the path

integral by introducing a z dependent cutoff of the

momentum without changing the final result of the wave

function as depicted in Fig. 1. This is realized by putting a

cutoff function ΓðλjkjzÞ in the path integral. λ is a parameter

which controls our approximation. We simply define it

such that ΓðxÞ ¼ 1 if jxj < 1; otherwise ΓðxÞ ¼ 0, though

in our argument, the precise form of the cutoff function

ΓðxÞ does not play an important role. The resulting wave

function Ψ½ϕðxÞ� remains approximately the same even if

we introduce this z dependent cutoff as we confirm below.

Let us introduce a length scale (z0) dependent wave

function Ψz0 ½ϕðxÞ� by the Euclidean path integral for the

range z0 ≤ z < ∞ in the presence of the cutoff ΓðλjkjzÞ.
Since ϕðxÞ is defined by the value ϕðz0; xÞ, we need to

rescale the scalar field as ϕ → ejkjz0ϕ as is clear from (19).

Finally we obtain

Ψz0 ½ϕðxÞ� ∝ e
−2π
R

1
λz0

− 1
λz0

dkjkjð1−e2jkjz0−2=λÞϕðkÞϕð−kÞ
: ð22Þ

First of all, it is obvious that the function (22) at z0 ¼ 0

coincides with the correct vacuum wave function (21)

assuming λ ≪ 1. In principle, we can also multiply the

factor ð1 − e−2=λÞ−1 on the cutoff function so that we get the
correct wave function at z0 ¼ 0 even when λ is Oð1Þ.
Having this in mind we simply set λ ¼ 1 below.

Alternatively, we can improve this procedure by taking

into account contributions from high momentum modes in

a nonlocal way. Let us, for example, replace the cutoff

function as follows:

ΓðjkjzÞ → fðjkjzÞ≡ ΓðjkjzÞ þ 1

2
ð1 − ΓðjkjzÞÞ · ejkjz−1;

ð23Þ

where we chose this such that the higher momentum modes

jkjz0 ≫ 1 are suppressed in the path integral.

As we analyze in detail in Appendix A [as the example

(ii)], in this case, the high momentum contribution cancels

the extra term ∼e2jkjz0−2=λ in (22) when jkjz0 < 1. Finally

the wave function at length scale z0 reads

Ψz0 ½ϕðxÞ� ∝ e
−2π
R

jkj≤1=z0
dkjkjϕðkÞϕð−kÞ

× e
−2π
R

jkj>1=z0
dkjkjejkjz0−1ϕðkÞϕð−kÞ

: ð24Þ

Note that for the modes below the cutoff, this reproduces

the correct vacuum wave function (21). On the other hand,

it is clear that the higher momentum modes jkjz0 ≫ 1 are

exponentially suppressed. Thus this wave function (24)

possesses the desired property.

In summary, for a finite value of z0, wave function (22)

or (24) describes the ground state below the cutoff. On the

other hand, for much higher momentum modes, it becomes

trivial and thus it describes a state without any real space

entanglement (i.e. boundary state, as we explain in the next

section).
1
This nicely describes the effective wave function

at the length scale z0 under a real space renormalization

group flow.
2

If we imagine various ways to discretize our Euclidean

path integral, this z dependent UV cutoff provides us

with an efficient choice for this procedure. We call this

FIG. 1. A computation of ground state wave function from the

Euclidean path integral and its optimization, which is described

by a hyperbolic geometry.

1
The wave function (22) corresponds to the boundary state

with Neumann boundary condition, while the wave function
(24) describes the Dirichlet one. For more details, refer to
Appendix A.

2
As we argue in Sec. III B, in a two-dimensional holographic

CFTwith a large central charge c, the actual momentum cutoff at

the length scale z0 is estimated to be jkj ≲ c
z0
(instead of jkj ≲ 1

z0
).

Therefore the momentum region 1
z0
≲ jkj ≲ c

z0
is physically mean-

ingful and is described by a nonlocal field theory.
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an optimized Euclidean path integral below. If we consider

K sites in the UV theory (corresponding to z ¼ ϵ), we have

∼K · ðϵ=zÞ sites as z grows. Therefore we can associate the

following metric of H2,

ds2 ¼ dz2 þ dx2

z2
; ð25Þ

to the Euclidean path integral with the UV cutoff. This

metric is defined such that the area measured by the metric

gives the number of discretized sites. The metric (25) in the

x direction is obvious from the cutoff function ΓðjkjzÞ. The
metric in the z direction can be fixed by requiring that

the vacuum state is invariant under the SLð2; RÞ conformal

symmetry generated by l0; l�1. Note that this symmetry

action preserves the boundary z ¼ 0, where we define the

wave function. In other words, the discretized lattice which

corresponds to our Euclidean path integral is invariant

under this SLð2; RÞ transformation.

The cutoff function can also be made manifestly con-

formally invariant by replacing ΓðjkjzÞ with Γðz · kH2
Þ,

where kH2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2z
p

is the magnitude of the wave vector

of the field configuration at each point of ðz; xÞ. This cutoff
Γðz · kH2

Þ is interpreted as the discretization of ðz; xÞ space
such that each cell has the same infinitesimal area following

the hyperbolic metric (25). For example, we can take an

action for our optimized Euclidean path integral to be

schematically as follows:

Sopt ¼
Z

dxdzΓðz · kH2
ÞLCFT; ð26Þ

where the cutoff function Γðz · kH2
Þ is acted on all fields in

the CFT. In the next subsection, we argue that the hyper-

bolic space (25) corresponds to a time slice of Euclidean

AdS3 as a consequence of AdS=CFT.
Next we compactify the spacial coordinate x and express

it as ϕ with the periodicity ϕ ∼ ϕþ 2π. The ground state

wave function is described by the Euclidean path integral

on the upper half of the infinite cylinder 0 < z < ∞. We

can introduce a z dependent UV cutoff as before without

chaining the final wave function. This leads to a discretized

path integral on the Poincare disk with the metric

ds2 ¼ 4dζdζ̄

ð1 − jζj2Þ2 ; ð27Þ

where

ζ ¼ e−zþiϕ: ð28Þ

This metric is invariant under SLð2; RÞ transformation

ln ¼ Ln −
~L−nðn ¼ 0;�1Þ with

Ln ¼ −ζnþ1
∂

∂ζ
; ~Ln ¼ −ζ̄nþ1

∂

∂ζ̄
: ð29Þ

Again we observe that the metric (27) agrees (up to an

overall factor) with that of the time slice of Euclidean

global AdS3 [refer to (3)] with the identification sinh ρ ¼
2jζj

1−jζj2. Moreover, the SLð2; RÞ generators l0; l�1 coincide

with (6).

B. Interpretations in terms of AdS=CFT

As we already noted, the geometries of optimized

Euclidean path integrals reproduce the time slice of

Euclidean AdS spacetime as in (25) and (27). More

precisely their metrics differ by a factor L2, which is

∼c2 in the Planck scale unit, from the actual AdS metric.

A heuristic explanation is as follows (see also Sec. VI).

Holographic CFTs are characterized by the large central

charge c and a large spectrum gap [24]. Here we turn to a

simple tractable model which captures these properties: a

symmetric product CFT with a large central charge c on a

cylinder. In such a model, the long string sector, which

dominates the microstate degeneracy, can be effectively

described by a CFT with a Oð1Þ central charge on a

cylinder with the extended radius OðcÞ [25]. Thus this

gives a very fine-grained momentum quantization P ∼

n=cðn ∈ ZÞ instead of P ∼ n. In the real space, this means

that the lattice spacing is smaller by a factor ∼c. Therefore,
the actual numbers of lattice sites per unit area in the metric

(25) and (27) are ∼c2. This reproduce the correct AdS3
metric up to Oð1Þ constant.
In the Euclidean AdS3, we can actually find infinitely

many other hyperbolic slices parametrized by η in (16).

Since each of them has a different radius (given by

L cosh η), it is natural to interpret that they correspond

to different choices of the cutoff function,

Γ

�

z · kH2

cosh η

�

: ð30Þ

In the coordinate system (16), we can regard η as an

extra dimension and the AdS boundary as η ¼ �∞. In this

interpretation, following a standard understanding of

AdS=CFT (refer to [26,27] for studies of gravity dual of

CFTs on AdS spaces), the evolution of η can be regarded as

a RG flow such that the momentum scale is given by cosh η.

This consideration also justifies the action (26) at η ¼ 0.

Let us study the field theory more carefully by using the

improved UV cutoff fðjkjzÞ given by (23). Our argument in

the above shows that in a two-dimensional holographic

CFT with a large central charge c, the actual momentum

cutoff at the length scale z is estimated to be jkj≲ c
z, instead

of jkj≲ 1
z. Therefore for the momentum region 1

z ≲ jkj≲ c
z,

we expect a very nonlocal theory whose action for the free

scalar is given by S ¼
R

dxdzϕ · fðjkH2
jzÞ · ϕ, or more
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generally by (26) with ΓðjkjzÞ replaced with fðjkjzÞ. On the
other hand, we can physically ignore the existence of

modes above this strict UV cutoff jkj≳ c
z.

This nonlocality occurs when we consider a small

structure such that z≳ Δx. For example, consider the

entanglement entropy SA at a fixed (Euclidean time) z
with respect to a subsystem A given by an interval with the

length Δx. If Δx ≪ z, then we expect the volume law due

to the nonlocality (see [28,29] for an explicit example in

such a nonlocal scalar field theory),

SA ∼ c
Δx

z
; ð31Þ

where we used the fact that the effective lattice spacing is

estimated as z=c. This agrees with the holographic com-

putation in the Poincare AdS3 as the minimal surface

almost coincides with the original interval A if Δx ≪ z.
This is an additional support for our argument. Refer also to

Fig. 2 for another explanation of (31) by using a MERA

tensor network.

Finally we emphasize again that the above argument

can be applied only to large c CFTs. For example, if we

consider a CFT with a central charge Oð1Þ, the strict UV

cutoff is given by jkj ≤ 1=z and thus we cannot reach the

volume law phase (31).

C. Einstein-Rosen bridge from the path integral

Another interesting example is the quantum state in the

thermofield double CFT given by

jΨTFDi ∝
X

n

e−
β

4
ðH1þH2Þjni1jni2: ð32Þ

In the Euclidean path-integral formalism, the wave function

for this state is described by a path integral on a cylinder

with a finite width, −
β

4
< z < β

4
, in the Euclidean time

direction (we set the UV cutoff z0 to 0 for simplicity). We

express the spacial coordinate as x.
Again we consider a free scalar field theory as a toy

model for our explanation. We introduce the boundary

conditions for the two boundaries at z ¼ � β

4
for the field

ϕðz; xÞ,

ϕ

�

−
β

4
; x

�

¼ ϕ1ðxÞ; ϕ

�

β

4
; x

�

¼ ϕ2ðxÞ: ð33Þ

The classical solution to the equation of motion

ð∂2
x þ ∂2

zÞϕ ¼ 0 is given by

ϕðx; zÞ ¼
Z

∞

−∞

dk

�

ϕþðkÞeikx
coshðjkjzÞ

cosh ðjkjβ=4Þ

− ϕ−ðkÞeikx
sinhðjkjzÞ

sinh ðjkjβ=4Þ

�

; ð34Þ

where ϕ�ðkÞ is the Fourier transformation of
1
2
ðϕ1ðxÞ � ϕ2ðxÞÞ.
From this expression, we can estimate the effective

momentum cutoff as

jkj ≲max

�

1

jzþ β=4j ;
1

jz − β=4j

�

: ð35Þ

Therefore it is clear that near the two boundaries z ¼ � β

4
,

the metric of the discretized path integral behaves like

ds2 ∝ dz2þdx2

ðz�β=4Þ2. The space gets maximally squeezed at the

middle z ¼ 0. To find the precise metric, we require the

SLð2; RÞ conformal symmetry, which leads to the metric

ds2 ¼ dρ2 þ cosh2 ρdϕ2; ð36Þ

with the coordinate transformation

tan

�

πz

β

�

¼ tanh

�

ρ

2

�

: ð37Þ

The SL(2,R) symmetry is explicitly given by

FIG. 2. Folding the MERA network in a two-dimensional

symmetric product CFT Mm=Sm (we chose m ¼ 4.). The left

picture expresses a MERA network for a long string sector

vacuum which is equivalent to the single string sector vacuum

with the radius mR0 ¼ 4R0. The right picture describes its

equivalent network after the folding such that the radius is R0.

We show the coarse graining (isometries) as trivertices and the

disentanglers (unitary transformations) as horizontal lines. The

right network shows that the actual lattice spacing is ϵ=m. From

this network, we can easily see that the entanglement entropy SA
follows the volume law for a small interval A with the width

ðϵ=m ≪ÞΔx ≪ ϵ in the large c limit m → ∞. Note also that the

final MERA network is squeezed near the top region (roughly

more than log
R0

ϵ
steps from the bottom). This is very analogous to

the global AdS3 metric.
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l0 ¼ ∂ϕ;

l−1 ¼ eϕ
�

cosh 2ρ − 1

sinh 2ρ
∂ϕ − ∂ρ

�

;

l1 ¼ e−ϕ
�

cosh 2ρ − 1

sinh 2ρ
∂ϕ þ ∂ρ

�

: ð38Þ

The metric (36) coincides with the time slice of the BTZ

black hole i.e. the Einstein-Rosen bridge, which is known

to be dual to the thermofield double state (32) [30].

D. More general backgrounds

Now we turn to a Euclidean path-integral description of

more general states. First, let us introduce a mass gap. For

example, consider adding the mass termm2ϕ2 in (18). Then

the factor e−jkjz in (19) is replaced with e−
ffiffiffiffiffiffiffiffiffiffi

k2þm2

p
z. This

shows that we can ignore the path integral for the region

z ≫ 1=m. Thus for an optimized lattice computation, the

region z ≫ 1=m should be removed. This is qualitatively

consistent with time slices of holographic geometries dual

to confining gauge theories.

Next consider a static excited state in a CFT such as the

primary state. We can insert a primary field at z ¼ ∞ and

perform the path integral until we reach z ¼ 0. As in

previous sections, we can introduce the z dependent UV

cutoff without changing the final wave function, which

makes discretized computations efficient. Since in such an

example, the SLð2; RÞ conformal symmetry is broken and

thus quantitative analysis is not straightforward, we briefly

discuss only qualitative aspects here. In general, to describe

excited states we need more discretized lattices and the

associated metric is increased compared with that for the

vacuum. This is because to describe an insertion of operator

at z ¼ z1 with a high momentum scale such that k1z1 ≫ 1,

the original UV cutoff ΓðjkjzÞ is not enough and should

be fine grained. To describe deconfined states (Δ > c
24
),

we need large number ∼2π
ffiffiffiffiffiffiffiffiffiffiffi

cΔ=6
p

of lattice sites even at

z ¼ ∞. Therefore in this case z ¼ ∞ is interpreted as a

black hole horizon.

More generally, if we consider time dependent excited

states, it gets more difficult to find a definite connection

between the optimized Euclidean path integral and its

gravity dual, mainly because there is no criterion about

how to choose nice time slices. Nevertheless, a natural

generalization of our previous argument is that for each of

the time slices, we can associate a Euclidean path integral

with a position dependent UV cutoff.

E. Lorentzian AdS=CFT

So far we have discussed an interpretation of AdS=CFT
for the Euclidean AdS3. As a next step we move on to

the Lorentzian AdS3, which is the main focus in the rest of

this paper. In Lorentzian AdS=CFT, we expect that each

codimension two surface corresponds to a quantum state

with the unit norm as argued in [18], called surface/state

correspondence. Therefore, in AdS3, the evolution of a

closed curve on a time slice corresponds to that of quantum

states and we expect that this is described by a continuous

version of tensor network. Indeed, as shown in [31,32], a

procedure called tensor network renormalization tells us

that the Euclidean path integral can be (up to overall

normalization) well approximated by the MERA network

[4]. It is intriguing to note that this tensor network

renormalization looks very analogous to our procedure

of Euclidean path integral summarized in Fig. 1, though the

former is formulated in the language of tensor networks.

Since the (minimum) time slice in the Euclidean AdS3 is

the same as that in the Lorentzian one, we expect that the

time slice in Lorentzian AdS3 corresponds to a tensor

network for the CFT vacuum which can be approximated

by the MERA. We can apply the same argument for time

independent excited states in holographic CFTs (i.e.

primary states and their descendants).

Consider an analytical continuation from the Euclidean

AdS3 to Lorentzian one. If we perform the Wick rotation

ðτ; ηÞ → ðτ; iηþ iπ=2Þ, then the Euclidean AdS3 metric

(16) is mapped to the Lorentzian one with the hyperbolic

slices (13), while the shift ðτ; ηÞ → ðτ þ iπ=2; ηþ iπ=2Þ
maps (16) into the de Sitter slices (11). If we take an

analytical continuation of the UV cutoff function (30) on

the hyperbolic slice in Euclidean AdS3, we find for the

Lorentzian AdS3

hyperbolic slices∶ Γ

�

kH2
· z

sin η

�

;

de Sitter slices∶ Γ

�

kdS2 · z

sinh η

�

: ð39Þ

It has been pointed out that the MERA has a causal

structure [13–16], whichmay suggest an identification of the

MERA space with a de Sitter space. This occurs if

we fix all the tensors of the MERA and change a quantum

state in theUVas the propagation of the change is limited to a

regionwhose boundary looks like a light cone. However, it is

not clear how this is related to any causality in itself gravity

dual interpretation. Indeed, if we consider an excitation in

the bulk AdS, it is expected to correspond to a modification

of a tensor in the middle of a MERA network following a

similar idea in [19]. Under this modification of the tensor, the

UV quantum state, which is obtained by contracting all

tensors in the MERA, is modified at any point and there are

no causal cones. At the same time, our Euclidean path-

integral approach does not have any causal cone structure, as

the excitation in themiddle of the path integral can lead to the

backreactions at any points under our optimization pro-

cedure. In this sense, our Euclidean path-integral description

fits more nicely with the hyperbolic slices.

In order to have direct contact with explicit field theories,

we work with a continuum version of tensor network with
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UV cutoff, rather than explicit lattice models. Therefore we

study a continuous description of tensor network, espe-

cially focusing on the cMERA [10]. Indeed in the next

section we see that for the free scalar example, the length

scale dependent wave function (22) is essentially the same

as that in a cMERA description.

IV. CMERA

In this section we review the formulation of the cMERA

for CFTs [10] with several elaborations e.g. constructions

of the cMERA for a massless scalar field theory on a circle

and details of the spacelike scaling operation, aiming at an

interpretation of Lorentzian AdS=CFT.

A. Construction of the cMERA

The formulation of the cMERAwas originally introduced

in [10] for field theories on the noncompact spacetime Rdþ1.

We start from the IR state jΨIRi which is completely

disentangled so that its real space entanglement vanishes

below the UV cutoff scale. To fix our convention we write

the lattice constant as ϵ which is the inverse of the UV cutoff

Λ ¼ 1=ϵ. As in the MERA [4], we add the entanglement at

each length scale and perform the coarse graining until we

finish this procedure at the UV cutoff scale.

We specify the length scale by u such that this corre-

sponds to the coarse graining by the factor eu. This

parameter u takes the values from u ¼ −∞ (IR limit) to

u ¼ 0 (UV limit). A spacial region with the linear size y in
the UV theory (u ¼ 0) is regarded as that with the linear

size yeu at the scale u. Note that we keep the UV cutoff ϵ

unchanged. Therefore the number of lattice sites gets

decreased as edu when we go from UV to IR. Therefore

when the space manifold on which our field theory is

defined is compact, the lattice points get trivialized in the

IR limit. Therefore we can regard jΨIRi as a disentangled

state with no real space entanglement. For CFTs on

noncompact spacetimes such as Rdþ1, there is a subtlety

to define jΨIRi as the number of lattice sites is still infinite

even in the IR limit. Therefore in this case jΨIRi turns out to
be equal to the CFT vacuum j0i (for the modes below the

UV cutoff scale, i.e. k ≤ Λ ¼ 1=ϵ). As analyzed in [10] if

we introduce a massive deformation, this subtlety does not

happen and jΨIRi is given by the disentangled state.

The operation (so-called entangler) which adds entan-

glement is written as KðuÞ, which is an integral of an

operator which is local below the UV cutoff scale ϵ. The

coarse-graining operation is described by L, which is a

spacelike (nonrelativistic) scale transformation as we see

later in more detail. The state at scale u, denoted by jΨðuÞi
is expressed as follows:

jΨðuÞi ¼ P exp

�

−i

Z

u

−∞

d ~uðKð ~uÞ þ LÞ
�

jΨIRi: ð40Þ

As mentioned earlier, for CFTs on Rdþ1, the IR state jΨIRi
is equal to the vacuum j0i.
One immediately notices that the choice of KðuÞ has

huge ambiguities if we just fix the IR state and UV state.

There are infinitely many ways to interpolate the two states.

However, for a CFT vacuum state, we can choose a special

one owing to the conformal symmetry. This canonical

choice is such that Kð ~uÞ þ L coincides with the dilatation

operator or equally relativistic scale transformation denoted

by L0 for the modes below the UV cutoff scale. Explicitly,

we have L0 ¼
R

dxd
P

d
i¼1 Ttxix

i, using the energy stress

tensor Tμν. Above the UV cutoff scale k > Λ ¼ 1=ϵ, we set
K ¼ 0, while L is still present. For the details of this refer to

the original paper [10] and further studies in [16]. In most

parts of our arguments we do not write the higher modes

explicitly. Thus in the cMERA construction we have that

jΨðuÞi is given by the CFT vacuum below the UV

cutoff scale.

It is sometimes useful to introduce the “interaction

picture” counterpart of the above cMERA formulation

based on the state jΦðuÞi [11], which is simply related

to jΨðuÞi via

jΨðuÞi ¼ e−iuLjΦðuÞi: ð41Þ

This state is expressed as follows:

jΦðuÞi ¼ P exp

�

−i

Z

u

−∞

d ~u K̂ð ~uÞ
�

jΦIRi; ð42Þ

where we defined K̂ðuÞ ¼ eiuLKðuÞe−iuL. In this descrip-

tion, the effective momentum cutoff is u dependent as Λeu,
while the size of the space manifold does not change. In this

description of the compactification radius does not depend

on u.

B. Free massless scalar field theory

Consider an example of free massless scalar field theory

on Rdþ1. We rewrite the original formulation of [10] in

terms of creation and annihilation operators as in [11]. The

Hamiltonian of this theory is defined by

H ¼ 1

2

Z

dkd½πðkÞπð−kÞ þ jkj2ϕðkÞϕð−kÞ�: ð43Þ

We can define the creation and annihilation operator of

the scalar field, ak and a†k, as follows,

ϕðkÞ ¼ ak þ a†
−k

ffiffiffiffiffiffiffiffi

2jkj
p ;

πðkÞ ¼
ffiffiffiffiffiffiffiffi

2jkj
p

�

ak − a†−k
2i

�

; ð44Þ

so that they satisfy ½ak; a†k0 � ¼ δdðk − k0Þ.

MIYAJI, TAKAYANAGI, and WATANABE PHYSICAL REVIEW D 95, 066004 (2017)

066004-8

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



In the description by jΨðuÞi, the action of the operation

K þ L ¼ L0 for the modes below the UV cutoff scale (i.e.

k ≤ Λ ¼ 1=ϵ), which is equal to the relativistic scale

transformation, is defined by

L0 ¼ −
1

2

Z

dxd
�

πðxÞx∂xϕðxÞ þ x∂xϕðxÞπðxÞ

þ d − 1

2
ϕðxÞπðxÞ þ d − 1

2
πðxÞϕðxÞ

�

; ð45Þ

and leads to the action on the annihilation operator

(similarly on the creation operator)

e−iuL
0
ake

iuL0 ¼ e−
d
2
uake−u : ð46Þ

Note that in the two-dimensional case, which we are

interested in our paper, L0 coincides with the dilatation

charge
R

dxTtxx as expected.

The nonrelativistic and relativistic scale transformation

are defined as follows [10],

L ¼ −
1

2

Z

dxd
�

πðxÞx∂xϕðxÞ þ x∂xϕðxÞπðxÞ

þ d

2
ϕðxÞπðxÞ þ d

2
πðxÞϕðxÞ

�

; ð47Þ

and its action is given by

e−iuLake
iuL ¼ e−

d
2
uðcoshðu=2Þake−u þ sinhðu=2Þa†−ke−uÞ:

ð48Þ

In the description by jΦðuÞi, the IR state jΦIRi should be
a state with no real space entanglement. It can be con-

structed as the ground state of the highly massive

Hamiltonian HΛ ¼ 1
2

R

dx½πðxÞ2 þ Λ
2ϕðxÞ2� because in

the IR limit the Hamiltonian becomes infinitely many

copies of harmonic oscillators corresponding to each

lattice point. This state is invariant under the transformation

by L and is constructed explicitly as follows. The ground

state condition is written as axjΦIRi ¼ 0, where ax ¼
ffiffiffiffi

Λ
p

ϕðxÞ þ i
ffiffiffi

Λ
p πðxÞ is the annihilation operator in real

space. By taking Fourier transformation, we can express

it as

jΦIRi ¼
Y

k<Λ

jΩk
Λ
i; ð49Þ

where jΩk
Λ
i is defined by the condition

ðαkak þ βka
†

−kÞjΩk
Λ
i ¼ 0; ð50Þ

where

αk ¼
1

2

 
ffiffiffiffiffi

Λ

jkj

s

þ
ffiffiffiffiffi

jkj
Λ

r
!

;

βk ¼
1

2

 
ffiffiffiffiffi

Λ

jkj

s

−

ffiffiffiffiffi

jkj
Λ

r
!

: ð51Þ

Assuming that the state is “Gaussian,” the entangler K̂
(42) takes the following form,

K̂ðuÞ ¼ i

4

Z

dkdΓðke−u=ΛÞða†ka†−k − aka−kÞ; ð52Þ

ΓðxÞ is the cutoff function such that ΓðxÞ ¼ 1 when x ≤ 1

and ΓðxÞ ¼ 0 for x > 1. This operation K̂ induces the

correct Bogoliubov transformation which maps the IR

disentangled state jΦð−∞Þi ¼ jΦIRi into the CFT vacuum

jΦð0Þi ¼ j0i. More explicitly we find

jΦðuÞi ∝
"

Y

k<Λeu
exp

�

tanh
u

2
a†ka

†

−k

�

j0ki
#

·

"

Y

k>Λeu
jΩk

Λ
i
#

:

ð53Þ

On the other hand, jΨðuÞi is explicitly given by

jΨðuÞi ¼
"

Y

k<Λ

j0ki
#

·

"

Y

k>Λ

jΩk
Λ
i
#

: ð54Þ

Remember that even though the right-hand side looks u
independent, the definition of momentum k is u dependent

such that the actual unit length scale between lattice sites

grows like e−u. Therefore, the UV cutoff Λ corresponds to

the actual momentum scale Λeu. In addition, jΩk
Λ
i repre-

sents a trivial state with no real space entanglement.

Therefore we can identify that the quantum state defined

by the wave function Ψz (22) essentially coincides with the

cMERA state jΨðuÞi (54).3 Combined with the argument in

the previous section based on the Euclidean path integral,

this observation strongly suggests that the hyperbolic time

slice in the Lorentzian AdS spacetime corresponds to

the cMERA.

3
To see this explicitly, after the shift of momentum

k → keu with the standard identification z0 ¼ ϵ · e−u,
the quantity inside the exponential in (22) becomes
R

Λ=λ
−Λ=λ dkjkjð1 − e−2=λþ2jkjϵÞφðkÞφð−kÞ. For jkjϵ ≪ 1 we have

the vacuum state, while for jkj > Λ we have the trivial wave
function corresponding to the Neumann boundary state [33,34].
As we discuss as the example (i) in Appendix A, we can improve
the high momentum behavior of the cutoff function and realize
the state jΩΛi for jkj ≫ Λ. The one other choice (ii) in Appen-
dix A, or equally (23) and (24), leads to the Dirichlet boundary
state jBDi for jkj ≫ Λ, which is similar to a version of the
cMERA considered in [35]: jΨðuÞi ¼ ½

Q

k<Λ
j0ki� · ½

Q

k>ΛjBDi�.
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C. Compactification and spacelike

scale transformation

For the purpose of this paper, it is very useful to

compactify the space coordinates. For simplicity, we focus

on two-dimensional CFTs on R × S1, where the space

coordinate is compactified on a circle S1. We take the radius

of the circle in the original UV theory to be R0. In the

jΨðuÞi picture, the radius depends on u as RðuÞ ¼ R0e
u,

while in the jΦðuÞi picture, the radius is independent from
u as RðuÞ ¼ R0.

Now we turn to the spacelike scale transformation L. In
general QFTs, we argue that the L action is simply given by

a specific quantum quench where the metric in the space

direction changes,

H ¼ H0 þ
Z

dxd
X

d

i;j¼1

δgijT
ij

¼ H0 −

Z

dxd
X

d

i;j¼1

δgijTij; ð55Þ

where we take

δgij ¼ 2ηδij: ð56Þ

This shift ofHamiltonian changes the radiusR intoRð1þ ηÞ.
For example, consider a free scalar field CFT ϕðt; xÞ in

two dimensions. The action looks like

S ¼
Z

dtdx

�

1

2
ð∂tϕÞ2 −

1

2R2
ð∂xϕÞ2

�

; ð57Þ

and the Hamiltonian is found to be (π ¼ _ϕ)

H ¼
Z

dx

�

1

2
π2 þ 1

2R2
ð∂xϕÞ2

�

: ð58Þ

We compactify the space coordinate x such that x ∼ xþ 2π.

Then the radius is given by R. The mode expansion of the

scalar field is given by

ϕðx; tÞ ¼
ffiffiffiffi

R
p X

n∈Z

1
ffiffiffiffiffiffi

jnj
p ½e−inx−ijnjR tan þ e−inxþi

jnj
R ta†−n�;

πðx; tÞ ¼ i
ffiffiffiffi

R
p

X

n∈Z

ffiffiffiffiffiffi

jnj
p

½−e−inx−ijnjR tan þ e−inxþijnjR ta†−n�;

ð59Þ

where the canonical commutation relation is given by

½an; a†m� ¼ δn;m: ð60Þ

Consider a quench process where we suddenly change

the radius R into R0 at t ¼ 0. If we define the creation and

annihilation operator in the new theory by bn and b†n, by
matching ϕ and π at t ¼ 0 we find

ffiffiffiffi

R
p

ðan þ a†−nÞ ¼
ffiffiffiffiffi

R0
p

ðbn þ b†−nÞ;
1
ffiffiffiffi

R
p ðan − a†−nÞ ¼

1
ffiffiffiffiffi

R0p ðbn − b†−nÞ: ð61Þ

Now, the transformation e−iuL changes the radius from R
to Reu. Thus if we set R0 ¼ Reu we find the transformation

an ¼ cosh
u

2
· bn þ sinh

u

2
· b†−n; ð62Þ

which agrees with (48).

This leads to the following transformation rule:

e−iuLane
iuL ¼ coshðu=2Þan þ sinhðu=2Þa†−n: ð63Þ

Indeed this reproduces the noncompact limit result (48) by

setting k ¼ n=R.
As we have explained before, below the u dependent UV

cutoff

n ≤ R0e
u=ϵ; ð64Þ

we simply have jΨðuÞi ¼ j0i in the jΨðuÞi picture
4
[or

equally see (54)]. This is obvious from the L0 action (below
the UV cutoff scale),

e−iuL
0
ane

iuL0 ¼ an: ð66Þ

In this free scalar model, we can confirm
5

½L; ln� ¼ 0; and ½K; ln� ¼ ½K þ L; ln� ¼ 0; ð67Þ

where ln ≡ Ln −
~L−n. Ln and ~Ln are the Virasoro gener-

ators in the left and right-moving sector and they are

explicitly given by

Ln ¼
1

2

X

m∈Z

αmαn−m; ~Ln ¼
1

2

X

m∈Z

~αm ~αn−m; ð68Þ

4
In the jΦðuÞi description, we find the constraint

ðcoshðu=2Þan − sinhðu=2Þa†−nÞjΦðuÞi ¼ 0. Thus we can identify
(here again we omit the higher momentum modes n > R0e

u=ϵ)

jΦðuÞi ¼ exp

�

tanh
u

2

X

n<R0e
u=ϵ

a†na
†
−n

�

j0i: ð65Þ

5
Note that the latter two identities in (67) only hold below the

UV cutoff scale.
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where we defined αn and ~αn such that when n > 0, iαn ¼
ffiffiffi

n
p

an and i ~αn ¼
ffiffiffi

n
p

a−n and that when n < 0, −iαn ¼
ffiffiffiffiffiffi

−n
p

a†−n and −i ~α−n ¼
ffiffiffi

n
p

a†n.
We expect that these properties are true in the general

cMERA for two-dimensional CFTs. In the IR limit

(u → ∞), jΨðuÞi approaches an L invariant state:

LjΨð−∞Þi ¼ 0. Therefore we expect from (67) that it

satisfies the following identity:

lnjΨð−∞Þi ¼ 0: ð69Þ

Thus jΨð−∞Þi is given by a boundary state.
6
Since we do

not expect any excitation of the primary state, it is natural to

identify it with an Ishibashi state [33] for the vacuum

sector [12,35].

Even if we ignore the connection to the cMERA, our

argument here shows the following intriguing fact: the

evolution from the CFT vacuum to the Ishibashi state jΦIRi
is realized as a quantum quench induced by the radius

change.

V. CONTINUOUS TENSOR NETWORKS

AND AdS3=CFT2

In the paper [18], it has been conjectured that there is a

holographic map between any codimension two convex

surface Σ in a gravitational spacetime and a quantum state

in a dual Hilbert space, called surface/state correspondence.

This generalizes the standard holographic principle as

the gravitational spacetime does not necessarily need the

presence of a boundary. If we apply this duality to the

AdS3=CFT2, we find that each convex closed curve Σ

corresponds to a quantum state jΨðΣÞi in the dual CFT

Hilbert space. By considering a foliation by closed curves,

we obtain a tensor network for each codimension one slice

in AdS3. We gave a general formulation of the continuous

tensor in Appendix B. Clearly, a particularly simple and

nice example of the codimension one slice is the time slice

t ¼ const which we study in detail below.

This surface/state correspondence was originally moti-

vated by assuming a possible description of gravitational

spacetimes by ideal tensor networks. Later in [12], this

tensor network was argued to be described by the cMERA

mainly from the viewpoint jΦðuÞi description. Here we

study this issue of AdS3=CFT2 in the jΨðuÞi picture.
Our argument in this section goes as follows. We start

with the surface/state correspondence for AdS3=CFT2.

Using the Killing symmetry and its holographic counterpart

in CFT2 we construct a continuous tensor network. Next

we show that this tensor network actually coincides with

that of the cMERA with the canonical choice of K (below

the cutoff scale).

A. Constructing a continuous tensor network

from AdS3=CFT2

Now we construct a continuous tensor network which

describes the global AdS3 spacetime (3) via the surface/

state correspondence. We focus on the closed curve defined

by a constant value of ρ on the time slice t ¼ 0. We write

the corresponding state parametrized by the value of ρ as

jΨðρÞi. The dual CFT in AdS3=CFT2 lives on the boundary

of AdS3 parametrized by the boundary coordinate ðt;ϕÞ
and the radius R of space coordinate ϕ is R ¼ 1. If we

express the UV cutoff of CFT as that of the AdS space

given by ρ ¼ ρ∞ð→ ∞Þ, the quantum state jΨðρÞi is

defined in the Hilbert space of dual CFT on R × S1 with

the radius of circle S1 given by

RðρÞ ¼ sinh ρ

sinh ρ∞
: ð70Þ

Note that this Hilbert space is always regularized by a

lattice spacing ϵ which does not depend on ρ. The UV state

jΨðρ∞Þi should coincide with the CFT vacuum j0iR¼1,

where we make the radius explicit as a subscript. The state

at general ρ can be written in the following form:

jΨðρÞi ¼ P exp

�

−i

Z

ρ

0

d~ρMð~ρÞ
�

jΨð0Þi: ð71Þ

We determine the ρ evolution operatorMðρÞ by employ-

ing the SLð2; RÞ symmetry we discussed just before. First

remember that

ln ¼ Ln −
~L−n

¼ −

Z

2π

0

dϕeinϕT−−ðϕÞ þ
Z

2π

0

dϕeinϕTþþðϕÞ; ð72Þ

where Tμν is the energy stress tensor of the two-

dimensional CFT.

In order to find MðρÞ we evaluate ∂ρ for the infinitesi-

mally short interval ϕ0 − δ=2 ≤ ϕ ≤ ϕ0 þ δ=2. This leads to

MðρÞ ¼
Z

2π

0

dϕ0Mðρ;ϕ0Þ;

Mðρ;ϕ0Þ ¼
1

δ

Z

δ=2

−δ=2
dϕ sinðϕÞð−T−−ðϕ0 þ ϕÞ

þ Tþþðϕ0 þ ϕÞÞ;

¼ 1

δ

Z

δ=2

−δ=2
dϕ sinðϕÞTtϕðϕ0 þ ϕÞ

≃
1

δ

Z

δ=2

−δ=2
dϕϕTtϕðϕ0 þ ϕÞ≃Dðϕ0Þ; ð73Þ

where D is the dilatation operator. This agrees with the

cMERA for the Poincare AdS space near the AdS boundary

as L0 is the relativistic scale transformation as we noted

6
In the definition of (50), it corresponds to the Neumann

boundary condition.
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before. If we perform integration of ϕ0 to find MðΣρÞ we

simply find

MðρÞ ¼ 0; ð74Þ

in the δ → 0 limit. This can also be found from the total

derivative structure

Mðρ;ϕ0Þ≃
δ2

12
∂ϕTtϕjϕ¼ϕ0

; ð75Þ

in the δ → 0 limit. This trivial evolution (74) agrees with

the free scalar construction on a cylinder (66). Since this

property is also true in the cMERA for any CFT, we find that

our cTN which is obtained from AdS3=CFT2 agrees with

that of the cMERAwith the canonical choice of entangler K
via the identification of radius

R0e
u ¼ sinh ρ

sinh ρ∞
¼ RðρÞ: ð76Þ

Here we need to understand that this correspondence is

confirmed below the UV cutoff scale (k < Λ) as we do not

know how to probe quantum states from AdS3 above the

cutoff scale (k > Λ) at present. The quantum state jΨðρÞi of
the network for the CFT vacuum is simply given by

jΨðρÞi ¼ j0iRðρÞ; ð77Þ

where j0iR denotes the vacuum for the CFT on a cylinder

with radius R.
In the above argument, we consider a deformation of the

AdS boundary into a smaller circle with the rotational

symmetry. More generally, we can consider any deforma-

tion without any rotational symmetry by locally acting ∂ρ

and ∂ϕ in principle such as the action
R

2π
0

dϕ0½Aðϕ0Þ∂ρ þ
Bðϕ0Þ∂ϕ�. This leads to a state jΨðΣÞi for any closed curve
Σ, which realizes the idea of surface/state correspondence.

B. Other slices

So far we focused on the cTN on the hyperbolic planeH2

defined as the time slice t ¼ 0. On the other hand, the space

built from the MERA network is often associated with a de

Sitter space [13–16]. Therefore it is useful to consider what

kind of cTN we can obtain from de Sitter slices.

We can find a one parameter family of de Sitter slices

[see (11)] defined by

cosh ρ sin t ¼ cosh η0; ð78Þ

where η0 is a positive constant. This is a two-dimensional

de Sitter space (dS2) with the metric

ds2 ¼ L2sinh2η0ð−dτ2 þ cosh2τdϕ2Þ; ð79Þ

embedded in AdS3 and it approaches the t ¼ 0 slice at the

AdS boundary ρ →∞. We can confirm that the actions of

l�1 and l0 preserve the dS2 (78) directly.
7
By generalizing

(8) for nonzero t we find

−
i

2
ðeiϕl−1 − e−iϕl1Þ ¼ iðcos t∂ρ − sin t tanh ρ∂tÞ ¼ i∂τ:

ð80Þ

Thus as in the previous subsection, we can identify the τ

evolution in (79) as the same operation (73). This shows

that the cTN on the dS2 can also be identified with the

cMERA network. In this way, as far as we consider the CFT

vacuum, the hyperbolic slice and de Sitter slice have the

same symmetric properties and seem to be identified with

the cMERA network. However, once we consider excited

states in a holographic CFT, they lead to different cTN

descriptions of an identical state as we see in Sec. VII.

We mention that in the de Sitter space, there is a nonzero

minimum radius sinh η0 > 0. This hole in the center may

lead to a problem if we regard the de Sitter space as a

cMERA network. One possibility is that this might be

related to the fact that the sub-AdS locality is not manifest

in the cMERA. Another possibility is that this actually

suggests that the interpretation of the cMERA in terms of a

de Sitter space is not correct. We leave more investigation

of this issue for future research. Note that in this paper our

main framework is based on the identification of the

cMERA as a hyperbolic slice in AdS space.

VI. AN ARGUMENT FOR SUB-ADS

SCALE LOCALITY

So far, in our analysis of continuous tensor networks, we

studied general two-dimensional CFTs and did not employ

any special condition for holographic CFTs. Therefore, this

is not enough to explain the sub-AdS scale locality [15,36].

Indeed, in our cMERA formulation, the momentum cutoff

appears as follows:

n ≤
R0e

u

ϵ
¼ sinh ρ

ϵ sinh ρ∞
∼ sinh ρ; ð81Þ

where we employed the cutoff (64) and the standard

identification of the UV cutoff in AdS=CFT ϵ ∼ e−ρ∞ .
Therefore when ρ is Oð1Þ, we cannot distinguish the

different points in the AdS3 spacetime, thought the distance

between such points is orderOðcÞ (c is the central charge of
the two-dimensional CFT). This means a locality only at

the AdS radius L scale.

However, a standard knowledge of AdS=CFT tells us

that in holographic CFTs we can get a finer resolution of

spacetime up to the Planck scale. Holographic CFTs are

7
We are very grateful to Juan Maldacena for pointing out this.
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characterized by the large central charge c and a large

spectrum gap [24]. Here we turn to a simple tractable model

which captures these properties: a symmetric product CFT

with a large central charge c on a cylinder with the radius

R0 ¼ 1, though this is not exactly a holographic CFT dual

to a standard classical gravity, strictly speaking. Such a

CFT can be expressed as Mm=Sm which is a symmetric

product of m identical CFTs, each of which is denoted

byM. We have c ¼ mcM, where cM is the central charge of

M. This theory is defined as an orbifold of Mm by the

symmetric group Sm. Its twisted sectors include a so-called
long string sector. If we write a primary field of the CFTM
as ϕðt; xÞ, the long string sector is defined by a boundary

condition like ϕaðt; xþ 2πÞ ¼ ϕaþ1ðt; xÞ, where a ¼
1; 2;…; m distinguishes m copies of the CFT M.

In this model, the long string sector, which dominates

the microstate degeneracy, can be effectively
8
described

by a single CFT M on a cylinder with the extended radius

mR0 [25]. Thus this gives a very fine-grained momentum

quantization P ¼ n
m ðn ∈ ZÞ instead of P ¼ n. After Fourier

transformation, this leads to a network with a much finer

structure by the factor 1=m ¼ Oð1=cÞ. The resolution of

this network is estimated as Lϵ sinh ρ∞ · ð1=cÞ ∼ L=c,
which is indeed the Planck length scale. In other words,

the actual lattice constant is estimated as ϵ=m instead of

ϵ ¼ Λ
−1. This fact can also be explained schematically by

folding a MERA network description for the long string

sector as in Fig. 2.

The above is our heuristic argument for a sub-AdS

locality in AdS3=CFT2. Note that in order to explain a

similar locality in a higher dimensional AdS=CFT, we

encounter a fractional power of central charge and this

suggests that the characterization of holographic CFTs in

higher dimensions is much more complicated.

VII. BULK LOCALLY EXCITED STATES

AND THE CMERA

Now we turn to a description of excited states in terms of

continuous tensor networks. Especially we focus on a class

of excited states which correspond to simple excitations in

the bulk AdS space, i.e. local excitations in the bulk. In the

global AdS3 we excite one point at a specific time. Using

the symmetry of AdS3 space, we can focus on an excitation

at ρ ¼ t ¼ 0, constructed by acting a bulk scalar field φα on

the bulk vacuum, i.e. φαj0iAdS. The label α expresses the

primary field in the two-dimensional CFT and the bulk

scalar field is also labeled by α as φα. We denote the

corresponding primary state in the CFT jαi and we take its

chiral and antichiral conformal dimension to be hα ¼ h̄α.
In [12] (see also [37] for a similar but different

formulation), the CFT dual of such a excitation was

identified with the “global Ishibashi state” with the π
2
time

translation denoted by

jΨαi ¼ e−~ϵHe−i
π
2
HjJαi; ð82Þ

where ~ϵ is the UV regularization which makes the excited

energy finite and jJαi is the Ishibashi state for the global

conformal symmetry and satisfies

l�1jJαi ¼ l0jJαi ¼ 0: ð83Þ

On the other hand, the state jΨαi satisfies (in the limit

~ϵ → 0)

ðL�1 þ ~L∓1ÞjΨαi ¼ 0;

ðL0 −
~L0ÞjΨαi ¼ 0: ð84Þ

More explicitly, jJαi is written as

jJαi ¼
ffiffiffiffiffi

N
p

X

∞

k¼0

e−~ϵkjk; αi; ð85Þ

where

jk; αi ¼ 1

Nk

ðL−1Þkð ~L−1Þkjαi;

Nk ≡
Γðkþ 1ÞΓð2hα þ kÞ

Γð2hαÞ
: ð86Þ

This CFT dual of the bulk locally excited state is precisely

identical to that obtained by acting the known CFT dual of

the bulk local field (HKLL map) [38] on the vacuum state

as shown in [12,39,40].

A. Continuous tensor network for bulk

locally excited states

We construct continuous tensor networks which repro-

duce such locally excited states in the global AdS3. In order

to realize the UV state jΨðuÞi other than the CFT vacuum

state, we obviously need to modify the tensor operator

MðρÞ in (71). For example, in the cMERA for a free scalar

field such a modification is solved for quantum quench

excitations in [11]. In terms of the discretized tensor

networks for lattice quantum systems, such modification

is realized by changing tensors as in [19,41]. Especially if

we excite a point in the bulk by a local field, we can obtain

the tensor network by replacing a tensor located at the point

where the local field is inserted as depicted in Fig. 3.

Below we construct a cTN for the locally excited state

following this prescription. If we insert the bulk local field

at ρ ¼ 0, we can still use the same network with Mðρ;ϕÞ
given by (73) for ρ > 0. Since we have MðρÞ ¼ 0 as we

showed before, we can simply identify the state jΨðρÞiwith
8
This is clear from the boundary condition ϕaðt; xþ 2mπÞ ¼

ϕaðt; xÞ.
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jΨðρÞi ¼ jΨαiRðρÞ; ð87Þ

so that it reproduces (82) in the UV limit ρ ¼ ρ∞. Note that

when jαi is the CFT vacuum j0i, this is trivially reduced

to the network (77) for the vacuum which we discussed

before.

Since we focused on the hyperbolic slice H2 defined by

t ¼ 0 in the above, one may wonder how it looks if we

choose other slices such as de Sitter slices. In the gravity

dual, if we excite a point in the bulk, the excitation expands

within a light cone as depicted in Fig. 4. Therefore we

expect that the tensors which correspond to the inside light-

cone region will be modified from those for the vacuum

state. Since we do not have a systematic way to identify this

deformation currently, we cannot closely follow cTN for

general slices including de Sitter slices. In other words the

hyperbolic slice has an advantage as we can only modify a

single tensor (or equally the IR state) to describe the locally

excited state.

Now we explore the consequence of the network flow

(87) a bit more. Remember that the state jΨαi satisfies the
condition (84). We notice that this is the global part of

the standard property ðLn − ð−1Þn ~L−nÞjCi ¼ 0 of cross

cap states jCi as noted in [39]. Moreover, if we consider the

IR limit ρ → 0, the allowed momentum modes are limited

such that only n ¼ 1 modes are meaningful as the radius

RðρÞ shrinks. Therefore, we can identify the IR state

limρ→0jΨαiRðρÞ as the cross cap states in holographic

CFTs under a large c approximation. Notice that the cross

cap state is a highly entangled state, while the boundary

states are disentangled states [35]. Indeed, the latter is

obtained from a time translation by π=2 of the latter state

and the time evolution by π=2 leads to entanglement

propagations to anywhere as is familiar in quantum

quenches [42].

In the free field CFTs, we can impose complete con-

ditions for cross cap states by relating a point and its

antipodal point in terms of fundamental free fields [33,34],

which leads to a maximally entangled tensor if we view a

state as a tensor. If we paste two cross cap states more than

half of each, we get the identity operation as explained in

Fig. 5. This is the same property which the perfect tensor

[19] (see also [43]) satisfies.

In the case of holographic CFTs, we only know the cross

cap condition for the Virasoro generators and explicit

computations look much more difficult. However, if we

remember that the state is obtained from time evolution of a

boundary state, the entanglement scrambling phenomenon

found in [44] suggests that our cross cap states in holo-

graphic CFTs are no longer such simple entangled states as

in free field CFTs but are more scrambled states, similar to

the random tensors in [20].

VIII. CONCLUSION AND DISCUSSION

In this paper we studied connections between tensor

networks and AdS=CFT from two different viewpoints.

In the first part, we considered a Euclidean path-integral

description of ground state wave functions in two-

dimensional CFTs in the presence of the UV cutoff. We

optimized the path-integral computation by introducing a

position dependent UV cutoff without changing the final

wave function. We found that this is regarded as a path-

integral on a hyperbolic space and we argued that this space

corresponds to a time slice of AdS. This conjecture is

supported from the global symmetry of AdS3 and also from

the fact that such a field theory is expected to appear as a

dual CFT on a hyperbolic space. By shifting its boundary,

we defined a wave function as a function of effective length

scale. This scale dependent wave function turns out to be
FIG. 4. The tensor network evolutions which correspond to a

locally excited state in global AdS3.

FIG. 5. Gluing two cross cap states leads to an identity

operation.

FIG. 3. A modification of the tensor network dual to a bulk

local excitation.
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essentially the same as the evolution of quantum states in

the cMERA at least below the cutoff scale. This observation

leads to the interpretation of the hyperbolic time slice in

(Euclidean) AdS spaces as a tensor network. It is an

intriguing future problem to perform an explicit analysis

of our discretized path integral in specific lattice models.

In the latter part, we took a different approach.We started

with a Lorentzian AdS3 and studied a systematic con-

struction of continuous tensor network description dual to

AdS3=CFT2 assuming the surface/state correspondence

[18]. We obtained the resulting network for the canonical

time slice, which is a hyperbolic space H2, from gravita-

tional considerations and found that it essentially coincides

with the (compactification of) the original cMERA network

[10]. However, notice that our analysis from AdS3 geom-

etry only concerns the modes below the cutoff scale.

Interestingly, through an analysis of the locally excited

bulk state, we observed that our network is very analogous

to the perfect tensor network [19] and random tensor

network [20]. This is because the IR state is given by

π=2 time translation of the boundary state, where nontrivial

quantum entanglement is generated. We also gave a

heuristic argument of the sub-AdS scale bulk locality in

the cMERA, based on symmetric product CFTs. All these

suggest that the cMERA, which has full conformal invari-

ance manifestly, can be regarded as a continuous refine-

ment of tensor networks such as the perfect and random

tensor network and thus is expected to describe a canonical

time slice of AdS space at least below the cutoff scale.

The Wick rotation from the Euclidean AdS space to the

Lorentzian AdS space is obvious for the canonical time

slice t ¼ 0. The above arguments, i.e. the correspondence

between a Euclidean path integral on H2 with a UV cutoff

and the cMERA network, are based on this fact. However,

if we choose other hyperbolic slices [η ≠ 0 in (16)] in

Euclidean AdS space, they can be Wick rotated into

hyperbolic (13) or de Sitter (11) slices. This implies that

the cMERA network can also be interpreted as a de Sitter

slice. Indeed, our analysis based on the Killing vectors in

AdS space and its CFT dual supports this possibility. This

might make some connection to a seeming independent

idea based on kinematic spaces [14]. However at the same

time we noticed that the existence of the minimal radius,

which looks like an IR cutoff, in de Sitter geometry is

confusing from the viewpoint of the cMERA. This issue

certainly deserves future investigations.

In this paper we mainly consider two-dimensional CFTs

for simplicity. However, notice that most results can be

generalized into the higher dimensional AdS=CFT in a

straightforward way.

Finally it is a very interesting future problem to find an

explicit relation between the spacetime metric and the

property of the continuous tensor network. An important

challenge is to work out how we obtain the timelike

component of the metric.
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APPENDIX A: OTHER CHOICES OF

UV CUTOFF FUNCTION

Here we consider more general (position dependent)

UV cutoff functions in the Euclidean path integrals of a

free scalar and compute resulting scale dependent wave

functions, which generalizes our result in (22). Here we

set λ ¼ 1. Since we do not want to change the low

momentum (jkjz < 1) behavior we only modify the

higher energy part, keeping the scaling symmetry as

follows:

ΓðjkjzÞ → fðjkjzÞ≡ ΓðjkjzÞ þ ð1 − ΓðjkjzÞÞ · gðjkjzÞ:
ðA1Þ

The wave function at the length scale z0 is expressed as

Ψz0 ¼ exp

�

−4π

Z

∞

−∞

dkcðkÞϕðkÞϕð−kÞ
�

; ðA2Þ

where

cðkÞ ¼ jkj2
Z

∞

z0

dzfðjkjzÞ · e−2jkjðz−z0Þ: ðA3Þ

In the expression of creation/annihilation operators, this

wave function is equivalent to the quantum state
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jΨz0i ∝ exp

�

−

Z

∞

0

dk

�

8πcðkÞ − jkj
8πcðkÞ þ jkj

�

a†ka
†

−k

�

j0i: ðA4Þ

When gðjkjzÞ ¼ 0, we have c0ðkÞ ¼ jkj
2
ð1 − e2jkjz0−2Þ,

which precisely corresponds to (22). Below we consider

two other choices. First consider the case (i) gðjkjzÞ ¼ β1
jkjz,

where β1 is a constant. In this case we obtain

cðkÞ ¼ c0ðkÞ þ α · β1 · jkj · e2jkjz0 ðif jkjz0 < 1Þ;

¼ β1jkj
Z

∞

0

dy

yþ z0
e−2jkjy ðif jkjz0 > 1Þ; ðA5Þ

where α is a positive constant given by the integral
R

∞
1

dy
y e

−2y. When jkjz0 ≫ 1 we can approximate

cðkÞ≃ β1

2z0
: ðA6Þ

This behavior coincides with the IR state jΩΛi used in the

original cMERA [10] [see (54)], after the rescaling keu → k
or equally z0 → Λ. Thus in the connection to the cMERA,

this choice gives a refinement of (22).

On the other hand, if we consider the second choice

(ii) gðjkjzÞ ¼ β2e
jkjz−1 (β2 is an arbitrary constant), we find

cðkÞ ¼ c0ðkÞ þ β2jkj · e2jkjz0−2 ðif jkjz0 < 1Þ;
¼ β2jkj · ejkjz0−1 ðif jkjz0 > 1Þ: ðA7Þ

In particular, we choose β2 ¼ 1=2. Since in this case we

get cðkÞ ¼ jkj
2
for jkjz0 < 1, this precisely reproduces the

correct vacuum wave function (21) in the limit z0 ¼ 0.

Since cðkÞ grows exponentially, for a high momentum

jkjz0 ≫ 1 it approaches a boundary state (Ishibashi state)

for the Dirichlet boundary condition. In the Euclidean

path integral, this choice of UV cutoff can suppress high

momentum modes as the scalar field action S becomes very

large. In this sense, it is similar to the Wilsonian renorm-

alization group flow. These observations are consistent with

the recent paper [21].

APPENDIX B: SPACETIME CONTINUOUS

TENSOR NETWORK

Here we summarize a formulation of the cTN, which

generalizes the cMERA formulation so that we can apply

it to non-AdS spacetimes. Surface/state correspondence

[18] argues that any gravitational spacetime can have

such a tensor network description. We start with a

dþ 2-dimensional gravitational spacetime Mdþ2 described

by Einstein gravity.

We choose a coordinate x ¼ ðt; ~xÞ ∈ Mdþ2 for simplic-

ity, though our argument below should be independent

from the choice of coordinate. At a point x, we associate an

entangling Hermitian operator MiðxÞ (i ¼ 1; 2;…; dþ 1),

which is local up to the UV cutoff scale dual to the Planck

length. The index i describes the spacial direction of the

entangling operation. The time evolution of MiðxÞ is

simply given by a Hamiltonian HðxÞ at each point which

satisfies

dMiðxÞ
dt

¼ i½HðxÞ;MiðxÞ�: ðB1Þ

Now we take a time slice (codimension one spacelike

surface) Ndþ1 and consider its one parameter foliation by

codimension two surfaces Σu i.e. Ndþ1 ¼ ∪uΣu. The sur-

face/state duality tells us that there is a corresponding state

for each surface,

Σu ↔ jΨðΣuÞi: ðB2Þ

Here we assume that the homology Σu is trivial so that it is

dual to a pure state.

We can write the u evolution as

jΨðΣu1Þi ¼ P · exp

�

−i

Z

u1

u2

duMðΣuÞ
�

jΨðΣu2Þi: ðB3Þ

Our basic claim is that KðΣuÞ is expressed in terms of the

local entangler MiðxÞ as follows,

MðΣuÞ ¼
Z

x∈Σu

dxdniuðxÞMiðxÞ; ðB4Þ

where niu is the displacement vector of Σu when we change

u at x.
From (B4) we obtain the important consistency con-

dition of our spacetime tensor network,

dHðxÞ
du

¼ i½niuðxÞMiðxÞ; HðxÞ�: ðB5Þ

Consider various choices of foliations of the time slice

Ndþ1. We take two of them, expressed as Σu and Σw

such that Ndþ1 ¼ ∪uΣu ¼ ∪wΣw. Let us assume that

Σu1 ¼ Σw1
≡ Σ1 and Σu2 ¼ Σw2

≡ Σ2.

Correspondingly we have two expressions

jΨðΣ1Þi ¼ P · exp

�

−i

Z

u1

u2

duMðΣuÞ
�

jΨðΣ2Þi;

¼ P · exp

�

−i

Z

w1

w2

dwMðΣwÞ
�

jΨðΣ2Þi: ðB6Þ

Since we expect the same thing is also true for excited states

which are obtained by replacing some of the tensor inside

Σ2ð∈ Σ1Þ locally, we require
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P · exp

�

−i

Z

u1

u2

duMðΣuÞ
�

¼ P · exp

�

−i

Z

w1

w2

dwMðΣwÞ
�

: ðB7Þ

From this, we can conclude that MðΣÞ is a flat connection
in the space of codimension two surfaces in Mdþ2.

Therefore we can write K as

MðΣuÞ ¼ i∂uGðuÞ · GðuÞ; ðB8Þ

for a certain unitary matrix valued function GðuÞ. Then the
state dual to the surface is written in the form

jΨðΣuÞi ¼ GðuÞjΨð0Þi; ðB9Þ

where jΨð0Þi is a certain reference state. GðuÞ for any

codimension two surfaces in Mdþ2 defines the continuous

tensor network.
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