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In a lexicographic semiorders model for preference, cues are searched in a subjective order, and an

alternative is preferred if its value on a cue exceeds those of other alternatives by a threshold �, akin to

a just noticeable difference in perception. We generalized this model from preference to inference and

refer to it as �-inference. Unlike with preference, where accuracy is difficult to define, the problem a

mind faces when making an inference is to select a � that can lead to accurate judgments. To find a

solution to this problem, we applied Clyde Coombs’s theory of single-peaked preference functions. We

show that the accuracy of �-inference can be understood as an approach–avoidance conflict between the

decreasing usefulness of the first cue and the increasing usefulness of subsequent cues as � grows larger,

resulting in a single-peaked function between accuracy and �. The peak of this function varies with the

properties of the task environment: The more redundant the cues and the larger the differences in their

information quality, the smaller the �. An analysis of 39 real-world task environments led to the

surprising result that the best inferences are made when � is 0, which implies relying almost exclusively

on the best cue and ignoring the rest. This finding provides a new perspective on the take-the-best

heuristic. Overall, our study demonstrates the potential of integrating and extending established concepts,

models, and theories from perception and preference to improve our understanding of how the mind

makes inferences.

Keywords: simple heuristics, lexicographic semiorders, take-the-best, single-peaked function, ecological

rationality
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During the 2008 Summer Olympic Games in Beijing, a heated
contest took place alongside the individual competitions happen-
ing in the actual venues: the race between China and the United
States to top the medal count. Table 1 shows the number of medals
claimed by 10 countries in the games. Given these numbers, which
country should be ranked number one? Because the International
Olympic Committee refuses to publish its own final ranking, the
task naturally falls to the individual countries and their respective
news outlets. As seen in Table 1, The New York Times and the
People’s Daily ranked their own countries first. The disparity is
caused by the different rules the two newspapers adopted for
ranking: Whereas the People’s Daily ranked countries according to
gold medals, considering silver and bronze medals only as tie

breakers, The New York Times based its ranking on the total

number of medals. As detailed in an article from The Wall Street

Journal (Johnson, 2008), both rules have their merits and advo-

cates, resulting in this ranking controversy.

The human mind faces a similar problem: how to infer which

alternative is the best given conflicting cues. The rule used by the

People’s Daily is a lexicographic rule that evaluates alternatives

based on a set of cues ordered according to their importance. To

compare the alternatives, the most important cue is checked first.

If one alternative has an advantage over the others on this cue, it

receives a higher ranking; if multiple alternatives have the same

value on the cue, subsequent cues are checked. When alternatives

share the same values on all cues, either a tie is declared or their

rankings are determined randomly. This rule, which we refer to as

the strict lexicographic rule, is a special case of a family of rules

called lexicographic semiorders (Tversky, 1969), in which a

threshold � is applied to determine if the difference between two

alternatives on a cue is large enough to tell them apart meaning-

fully. In the strict lexicographic rule, � is set to zero. If � is set to

2 in the Olympics example (see the last column in Table 1), some

rankings will change. For example, Australia is now ranked higher

than Germany, because their difference in gold medals does not

exceed two and Australia has five more silver medals.

A lexicographic rule is noncompensatory in nature because

higher values of the less important cues cannot compensate for

lower values of the more important cues. In contrast, the rule

adopted by The New York Times is compensatory because the three

Shenghua Luan, Lael J. Schooler, and Gerd Gigerenzer, Center for

Adaptive Behavior and Cognition, Max Planck Institute for Human De-

velopment, Berlin, Germany.

We thank Shuli Yu and Peng Huang for collecting 19 real-world envi-

ronment data sets; Henry Brighton, Michael R. Dougherty, Konstantinos

V. Katsikopoulos, Michael Lee, James Townsend, Peiqiu Zhao, and mem-

bers of the ABC Research Group for their helpful comments; and Anita

Todd and Rona Unrau for editing the manuscript. We are especially

grateful to Tian Liu for her advice on statistical modeling and help in

programming the simulations carried out for the real-world environments.

Correspondence concerning this article should be addressed to Shenghua

Luan, Lentzeallee 94, 14195 Berlin, Germany. E-mail: shluan@mpib-

berlin.mpg.de

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

Psychological Review © 2014 American Psychological Association
2014, Vol. 121, No. 3, 501–525 0033-295X/14/$12.00 http://dx.doi.org/10.1037/a0037025

501

http://dx.doi.org/10.1037/a0037025.supp
mailto:shluan@mpib-berlin.mpg.de
mailto:shluan@mpib-berlin.mpg.de
http://dx.doi.org/10.1037/a0037025


medal types are treated as equally important; thus, a lower value of
one can be fully compensated for by higher values of the others.
This equal-weighting or tallying rule is a special case of a family
of weighting-and-adding rules (Payne, Bettman, & Johnson,
1993), in which features or cues are weighted and their values
added. An unequal-weighting rule can also be employed to rank
countries. For instance, in the 1908 London Olympic Games, the
following weighting scheme was used to calculate the overall
medal points for a country: five for gold, three for silver, and one
for bronze (Johnson, 2008). The points and rankings of the 10
countries according to this rule are shown in Table 1.

Both lexicographic and weighting-and-adding rules were devel-
oped within the context of preference. Weighting-and-adding has
always been the dominant view about the nature of preference,
beginning in the mid-17th century with Blaise Pascal and Pierre
Fermat’s expected value theory, which was then modified by
Daniel Bernoulli to become expected utility theory (Daston, 1988).
Today, the theory has branched into a host of descriptive models
of preference (e.g., Busemeyer & Townsend, 1993; Kahneman &
Tversky, 1979; Payne et al., 1993). The key alternative models to
those derived from expected utility theory operate according to the
lexicographic principle. According to Georgescu-Roegen (1968),
the first to propose a lexicographic rule and ordering was Carl
Menger, founder of the Austrian School of Economics. In his
discussion of concrete needs such as air, food, and shelter for
survival, Menger argued that the order should be lexicographic,
meaning that the most fundamental needs must be taken care of
first before turning to the less important ones. This view is present
in motivational hierarchies (e.g., Maslow, 1954), as well as in
moral theories that assume that not everything has a price (e.g.,
Gigerenzer, 2010). In studies of preference formation, a significant
body of evidence has accumulated to support the use of lexico-
graphic rules in practice (e.g., Bettman, Johnson, & Payne, 1990;
Brandstätter, Gigerenzer, & Hertwig, 2006; Ford, Schmitt, Schech-
tman, Hults, & Doherty, 1989; Kohli & Jedidi, 2007; Lopes, 1995;
Regenwetter, Dana, Davis-Stober, & Guo, 2011).

In this study, we focused on the model of lexicographic semi-
orders and generalized it from preference to inference. Preference
is a matter of taste, which can be evaluated by internal criteria such
as consistency and transitivity. We use the term inference if an
external criterion exists against which the accuracy of a judgment

can be assessed. For example, choosing what sports to watch in the
Olympics is about preference, whereas predicting which country
will win in a men’s basketball match is an inference. Various
models based on both lexicographic and weighting-and-adding
principles have been applied to inference tasks (e.g., Chater, Oaks-
ford, Nakisa, & Redington, 2003; Gigerenzer & Brighton, 2009;
Gigerenzer & Goldstein, 1996; Gigerenzer, Todd, & the ABC
Research Group, 1999; Hogarth & Karelaia, 2007; Katsikopoulos,
Schooler, & Hertwig, 2010). However, apart from one study that
investigated how well lexicographic models with a threshold struc-
ture describe people’s inferences under time pressure (Rieskamp &
Hoffrage, 2008), there has been no systematic analysis of such
models’ performance with regard to the inferences they make.

We addressed the following three questions in the present study:

1. How can lexicographic semiorders be generalized from
preference to inference? To answer this question, we
defined the model in terms of three building blocks of
fast and frugal heuristics (e.g., Gigerenzer & Goldstein,
1996; Gigerenzer et al., 1999), namely, the search, stop-
ping, and decision rules.

2. What is the general functional form of the relation be-
tween the quality of inference and the threshold �? We
derived the answer to this question using Clyde
Coombs’s theory of single-peaked preference functions,
which is rooted in Kurt Lewin’s conceptualization of
approach–avoidance conflicts.

3. How should a mind adapt � in response to the structure
of the task environment? To address this question of
ecological rationality—that is, when and why a certain �

leads to sound inferences—we conducted two studies
with simulated environments, followed by an analysis of
real-world environments.

From Perception to Preference

Concepts from psychophysics have facilitated theory develop-
ment in decision making in many ways. For instance, framing
absolute thresholds as aspiration levels, Herbert Simon (1956)
formulated the satisficing heuristic, the prototype of his bounded-

Table 1
The Medal Counts and Rankings of 10 Countries in the 2008 Beijing Olympic Games

Country Gold Silver Bronze Total Pointsa

Ranking

The New York Times Medal points People’s Daily LS, � � 2b

United States 36 38 36 110 330 1 2 2 2
China 51 21 28 100 346 2 1 1 1
Russia 23 21 28 72 206 3 3 3 3
Britain 19 13 15 47 149 4 4 4 4
Australia 14 15 17 46 132 5 5 6 5
Germany 16 10 15 41 125 6 6 5 6
France 7 16 17 40 100 7 8 10 8
South Korea 13 10 8 31 103 8 7 7 7
Italy 8 10 10 28 80 9 9 9 9
Ukraine 7 5 15 27 65 10 11 11 10

a Each country’s medal points were calculated following a rule used in the 1908 London Olympic Games: five for gold, three for silver, and one for
bronze. b LS, � � 2 is lexicographic semiorders with � at 2.
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rationality framework; Daniel Kahneman and Amos Tversky
(1979) modeled the value functions in their prospect theory based
on the power law between stimulus intensity and sensation; and
signal detection theory, originally developed to advance perceptual
thresholds beyond their deterministic nature (e.g., Gigerenzer &
Murray, 1987; Tanner & Swets, 1954), has been used to model
decision making of various kinds (e.g., Birnbaum, 1983; Haselton
& Buss, 2000; Luan, Schooler, & Gigerenzer, 2011; Pleskac &
Busemeyer, 2010; Wallsten & Gonzalez-Vallejo, 1994).

Duncan Luce (1956) drew on the analogy between psychophys-
ics and preference to challenge the notion in utility theory that
indifference relations should be transitive:

It is certainly well known from psychophysics that if “preference” is

taken to mean which of two weights a person believes to be heavier

after hefting them, and if “adjacent” weights are properly chosen, say

a gram difference in a total weight of many grams, then a subject will

be indifferent between any two “adjacent” weights. If indifference

were transitive, then he would be unable to detect any weight differ-

ences, however great, which is patently false. (p. 179)

Assuming that the same general principles (e.g., Weber’s and
Fechner’s laws) govern human discrimination of both weights and
utilities, Luce proposed a theory of preference that incorporates
just noticeable differences in the utility functions and allows for
intransitive indifference relations. He defined semiorders as pref-
erence orders in which indifference relations result from small
utility differences and that satisfy four simple axioms.

Luce’s work on semiorders was seminal but did not strike at the
core of utility theory because it still assumed that people form
preferences by comparing the expected utilities of the alternatives.
Applying the concept of semiorders to model the underlying
decision process instead of the utility function, Tversky (1969)
coined the term lexicographic semiorders to name a descriptive
model in which “a semiorder or a just noticeable difference struc-
ture is imposed on a lexicographic ordering” (p. 32). Tversky
provided several intuitive examples to explain how the model
works and postulated that the selection of � would be subject to
various individual and contextual factors, although he did not
investigate these factors and their effects in his experiments. His
main goal was to demonstrate intransitive choices by people who
appear to decide using lexicographic semiorders (but see Birn-
baum & Gutierrez, 2007, and Regenwetter, Dana, & Davis-Stober,
2011, who challenged Tversky’s experimental findings).

In sum, combining semiorders (Luce, 1956)—a concept origi-
nating from just noticeable differences in perception—with the
lexicographic procedure, Tversky (1969) formulated lexicographic
semiorders as a descriptive model for preference; the model has
since been found to describe a wide range of preferential choices
(e.g., Bettman et al., 1990; Ford et al., 1989; Kohli & Jedidi, 2007;
Lopes, 1995). In what follows, we describe how we extended this
model from preference to inference.

From Preference to Inference

To generalize lexicographic semiorders from preference to in-
ference, we assume that the primary goal of the mind is to achieve
a high level of accuracy. With this in mind, we specify a lexico-
graphic model for paired-comparison inference tasks in which a
person needs to infer which object of a pair has a larger criterion

value on the basis of relevant cues. The model has three building

blocks:

1. Search rule: Examine cues in the order of their accuracy,

where accuracy is assessed for each cue independently

from other cues.

2. Stopping rule: If the difference between a pair of objects,

A and B, on a cue exceeds a threshold value �, then stop

search.

3. Decision rule: Infer that the object with the higher cue

value is the one with the higher criterion value.1 If no

difference exceeds � for all cues, then pick one object by

guessing.

We refer to this model as �-inference, acknowledging the key

elements it inherits from lexicographic semiorders and emphasiz-

ing the central role � plays in the inference process. The search

rule makes an explicit assumption about independence, which

protects one from estimation errors by reducing variance at the

cost of bias2 (e.g., Geman, Bienenstock, & Doursat, 1992). Models

that make this simplifying independence assumption can outper-

form those that try to estimate dependencies, especially when

sample size is small, the number of cues is large, and the envi-

ronment is unstable (e.g., Gigerenzer & Brighton, 2009; Martignon

& Hoffrage, 1999; Mussi, 2002).

Similarly, the stopping rule assumes a uniform � across all cues

after standardization instead of estimating a different � for each

cue. The specific value of � in a task environment is either

exogenously given or acquired from learning. For the decision

rule, random guessing is used when no difference in any of the

cues exceeds �. In the General Discussion, we report the perfor-

mance of two variants of �-inference, one that allows � to vary for

different cues and the other that tries to avoid guessing.

Having defined �-inference with three building blocks, we next

address the question of how the accuracy of the model varies as a

function of �. Coombs’s theory of single-peaked preference func-

tions (e.g., Coombs & Avrunin, 1977a) was instrumental in our

attempt to answer this question. To explain how, we begin by

describing our analysis of a task involving only two cues.

“Good Things Satiate, Bad Things Escalate”

In a two-cue task environment, the accuracy of �-inference in

terms of percentage correct (PC) can be expressed as follows:

1 When lower cue values imply higher criterion values, cue values need
to be reversed before applying the decision rule.

2 These two concepts are key to the bias–variance analysis in machine
learning. In short, bias refers to how closely an algorithm mimics the true
function that generated the observed data, and variance is how sensitive the
accuracy of the algorithm is to different data samples. To obtain the best
prediction accuracy, an algorithm would ideally be low in both bias and
variance. However, there is often a tradeoff between the two, and algo-
rithms with fewer parameters to estimate tend to have higher levels of bias
but lower levels of variance relative to those with more parameters.
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PC � DR1 � V1 � DR2 | 1 � V2 | 1 � GR � .5

� U1 � (U2 | 1 � UGuessing)

� U1 � URest,

(1)

where DR stands for decision rate, the probability that a cue leads
to a decision3; V for validity, the probability that a decision made
by the cue is correct; and GR for guessing rate, the probability that
a decision is made through guessing. The subscript 2|1 highlights
the conditional nature of the measures associated with the second
cue: For example, V2|1 is the validity of the second cue given that

the first cue fails to make a decision. In addition, the product of DR

and V is the usefulness (U) of a cue, which represents the cue’s
contribution to the overall accuracy of �-inference. UGuessing is the
usefulness from guessing and is simply the product of GR and the
guessing accuracy of .5.

Equation 1 shows that the accuracy of �-inference is an additive
function of the three usefulness components: U1, U2|1, and UGuessing. To
further simplify the equation, we grouped the sum of the latter two
components under the name URest. Understanding how the two
usefulness measures, U1 and URest, change with � will facilitate
our understanding of the effect of � on the accuracy of
�-inference. In general, we hypothesized that U1 would be a
decreasing function of � and URest an increasing one based on the
following rationale: As � becomes larger, more and more deci-
sions will be made by the second cue or by guessing, increasing
their contributions (i.e., URest) to the accuracy of �-inference but
reducing the contribution of the first cue (i.e., U1). We also
hypothesized that the sum of U1 and URest would be a single-
peaked function of �.

This latter hypothesis is derived from previous research on the
approach–avoidance conflict initiated by Lewin (e.g., Lewin,
1935, 1951; Lewin, Dembo, Festinger, & Sears, 1944) and the
related work by Coombs on single-peaked preference functions
(e.g., Coombs, 1964; Coombs & Avrunin, 1977a). The term
approach–avoidance conflict was used by Lewin to depict a situ-
ation in which individuals are subjected to two opposing psycho-
logical forces, one pushing them toward a certain goal (approach)
and the other pulling them away from it (avoidance). Lewin
speculated that as a person moves closer to the goal, both forces
would become stronger but that the force of avoidance would
increase more steeply than that of approach. Empirical studies
confirmed his speculation (e.g., Epstein & Fenz, 1965; Hunt, 1960;
Miller, 1944, 1959), which was then summarized by Coombs and
Avrunin (1977a) with a simple phrase: “Good things satiate, bad
things escalate” (p. 224). Coombs and Avrunin argued that this
principle of approach–avoidance conflict is applicable in many
decision-making tasks and further showed that it is one crucial
reason why preference is often a single-peaked function. Single-
peaked function implies the existence of an ideal point in an
underlying scale, which is the cornerstone assumption of the
unfolding theory for which Coombs is best known (Coombs,
1964).

The left panel of Figure 1 shows how the principle works in
an example introduced by Coombs and Avrunin (1977a). Sup-
pose that you are taking a vacation for an indeterminate period
of time t. The longer the vacation, the more you will be able to
acquire new, exciting experiences or simply relax. In general,
this positive utility, UGood, increases with t, and the function is

likely to be concave because, like many other goods, the accu-

mulation of positive experience has a diminishing marginal

return (good things satiate). However, not all is good during a

vacation: The longer the stay, the more you will miss the

comforts of home. Overall, this negative utility, UBad, is a

decreasing function of t, and the function is likely to be concave

too because the negative experience tends to become increas-

ingly unpleasant toward the end (bad things escalate). As a

result of these two functions, the total utility, UTotal, of the

vacation becomes a single-peaked function of time. Coombs

and Avrunin (1977a, 1977b) proved that as long as there is an

approach–avoidance conflict in a nontrivial decision situation

and the two forces follow the good things satiate, bad things

escalate principle, preference will be a single-peaked function.

Analogous to the above example, our hypothesized effects of �

are visualized in the right panel of Figure 1. In the graph, U1,

URest, and PC (i.e., the accuracy of �-inference in percentage

correct) correspond to UBad, UGood, and UTotal in the left panel,

respectively, and the labels for the two axes, time and utility, are

replaced by � and accuracy. If U1 decreases and URest increases

monotonically as � becomes larger and if their functions follow

the good things satiate, bad things escalate principle, then the

accuracy of �-inference should be a single-peaked function of �.

A First Look Into �-Inference With

Simulated Environments

To test the single-peaked function hypothesis, we conducted

a study with three simulated two-cue environments. How the

three building blocks of �-inference were implemented in our

tests of the model is summarized in Table 2. For the search rule,

we ranked cues according to their ecological correlations (i.e.,

bivariate Pearson correlations) with the criterion because (a)

following Egon Brunswik’s (1955) lens model, ecological cor-

relation has long been used in judgment and decision-making

studies as an indicator of cue quality (e.g., Brehmer & Joyce,

1988; Cooksey, 1996; Hammond & Stewart, 2001; Hogarth &

Karelaia, 2007); (b) in paired-comparison inference tasks, it has

been shown to be strongly related to the unconditional accuracy of

a cue (e.g., Luan, Katsikopoulos, & Reimer, 2012; Rakow, Newell,

Fayers, & Hersby, 2005); and (c) the rankings of cues’ ecological

correlations are independent of the value of �, thus separating the

search rule from the stopping rule. For the stopping rule, � was

measured in terms of a standardized z score; in this study, a range

of � values, from 0 to 3.5 with a step size of 0.1, were applied.

Each two-cue simulated environment consisted of three vari-

ables: one criterion Y and two cues, X1 and X2. Values of these

3 The decision rate (DR) of the first cue is the same as its discrimination
rate (dr), the probability that two objects have different values on a cue
when the cue is searched (e.g., Gigerenzer & Goldstein, 1996). For the
second cue, however, the two diverge. Specifically, dr2|1 � DR2|1/(1 �
DR1). What sets them apart is the reference class: For DR, the reference
class is all pairs of objects within a sample, whereas, for dr, it is confined
to pairs for which decisions cannot be made by previously searched cue or
cues.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

504 LUAN, SCHOOLER, AND GIGERENZER



variables were drawn from a multivariate normal distribution with
means of 0 and the variance–covariance matrix

M f(Y,X1,X2) � �
1 �1 �2

�1 1 r12

�2 r12 1
�.

In the matrix, �1 and �2 are the cues’ ecological correlations, and
r12 is the correlation between the two cues; their values in the three
environments are shown in Table 3. In Appendix A, we show how
the cue measures that are relevant to our analysis can be expressed
in probability terms and calculated mathematically for an arbitrary
� in each environment.

Single-Peaked Function

The effects of � on various cue measures and the accuracy of
�-inference (PC) in Environment A are shown in Figure 2. As seen
in Figure 2A, with a larger �, the validity of Cue 1 (V1) increases
as its decision rate (DR1) decreases. Because the rate of improve-

ment for V1 is slower than the rate of deterioration for DR1, their

product U1 is a monotonically decreasing function of �, having its

maximum at � � 0 and approaching zero when � grows very

large. Figure 2B shows the effects of � on Cue 2’s validity (V2|1)

and decision rate (DR2|1), as well as on the guessing rate (GR).

Like V1, V2|1 also increases with �; however, DR2|1 is now a

single-peaked function of �. This result can be understood in the

following way: When � is very small, most decisions are made by

Cue 1, leaving a low probability of Cue 2 being used; when � is

very large, most decisions are made by guessing rather than by

using any of the cues; therefore, the maximum probability of Cue

2 being used (DR2|1) must lie somewhere in between. The function

of GR is simple: It increases monotonically as � grows larger.

Effects of � on the usefulness of Cue 2 (U2|1) and guessing

(UGuessing) and their sum URest are shown in Figure 2C. The

functions of U2|1 and UGuessing track those of DR2|1 and GR (see

Figure 2B), respectively, and the function of URest is apparently

not affected much by that of U2|1 and is a monotonically increasing

function of �. Finally, Figure 2D shows the effect of � on the

Table 2
The Three Building Blocks of �-Inference as Implemented in This Study

Building
block Key question �-inference

Fine-tuning �

Take-the-best
Individual � for

each cue �-adjustment

Search How are cues ordered? By ecological
correlation

By ecological
correlation

By ecological
correlation

By validity

Stopping Does � take a uniform value across
all cues after standardization?

Yes Not necessarily Yes Yes

How is � set? Exogenous or acquired
from learning

Exogenous or acquired
from learning

Exogenous or acquired
from learning

Fixed at 0

Decision Is a decision made by guessing when
the difference between two objects
does not exceed � for any cue?

Yes Yes No; instead, repeat
search from the first
cue with a lower �
value

Yes

Figure 1. Single-peaked functions. The left panel shows how a single-peaked function can occur as a result of

an approach–avoidance conflict in an example given by Coombs and Avrunin (1977a). The right panel shows

our hypothesized effects of � on the two usefulness measures and the accuracy of �-inference in percentage

correct (PC) in a two-cue task environment.
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accuracy of �-inference (PC), which is the sum of U1 and URest,
together with the functions of U1 and URest. Here, an approach–
avoidance conflict becomes clear: As � grows larger, URest in-
creases, prompting one to approach an even larger �, whereas U1

decreases, leading one to avoid adopting any � that is larger than

0. It is also clear that the functional forms of URest and U1 are in
general consistent with the good things satiate, bad things escalate

principle. As a result, the accuracy of �-inference is a single-
peaked function of �.

In sum, the effects of � on U1, URest, and the accuracy of
�-inference in Environment A confirm our single-peaked hypoth-
esis illustrated in the right panel of Figure 1. We also conducted
the same analyses for Environments B and C (see their parameter
values in Table 3), where the same pattern emerges—that is, the
accuracy of �-inference is a single-peaked function of � due to the
conflict between U1 and URest. In Appendix B, we prove that U1

is a monotonically decreasing and URest a monotonically increas-
ing function of � in any two-cue environment with the same
distributional structure as the three environments discussed here,
demonstrating the generality of this approach–avoidance conflict.
According to Coombs and Avrunin (1977a, 1977b), in most cases,

Table 3
Values of the Key Parameters for the Three Simulated

Two-Cue Environments

Environment

Parameter

�1 �2 r12

A .6 .5 .1
B .6 .5 .7
C .9 .2 .1

Figure 2. The effects of � on various cue measures and the accuracy of �-inference in a simulated two-cue

environment. In this environment, the cues’ ecological correlations �1 and �2 and their intercue correlation r12

are .6, .5, and .1, respectively. V � validity; DR � decision rate; U � usefulness; GR � guessing rate; PC �

the accuracy of �-inference in percentage correct.
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the conflict by itself is sufficient to induce a single-peaked pref-
erence function.

Effects of Environmental Properties on the
Selection of �

Despite the existence of a single-peaked function in each of the
three environments, they do differ in the value of � under which
the peak of the function is reached. The accuracy of �-inference as
a function of � in each two-cue environment is shown in the left
panel of Figure 3. In the figure, the � under which the function
peaks, which we refer to as Peak�, is seen to be 0.6 (in z score) in
Environment A but much smaller in B and C, where it is 0.2 and
0.1, respectively. Because Environments A and B differ in r12 (.1
vs. .7), the intercue correlation that is often taken as a measure of
information redundancy (Hogarth & Karelaia, 2007), this environ-
mental property appears to be negatively related to Peak�. Envi-
ronments A and C, on the other hand, differ in the value of �1 �

�2 (.1 vs. .7), the disparity between the two cues’ ecological
correlations, which seems to be negatively related to Peak� as
well.

Larger values of r12 imply that the second cue is more likely to
contain information that is redundant to the information in the first
cue, and larger values in �1 � �2 indicate that the second cue lags
further behind the first cue in quality. In both cases, the second cue
has less to offer, making the adoption of a large � unnecessary.
However, it is not clear from the left panel of Figure 3 why Peak�

takes the specific values that it does in each environment. We
explain in the following how these values come about.

Suppose that one needs to decide whether to increase � from a
smaller value �j to a larger value �k and is concerned solely with
the effect of such a change on the accuracy of �-inference (PC). In
this case, one should make the change if and only if

PC(�k) � PC(�j) � 0.

On the basis of Equation 1, this inequality can be expanded to

[U1(�k) � URest(�k)] � [U1(�j) � URest(�j)] � 0

� � [URest(�k) � URest(�j)] � [U1(�j) � U1(�k)].

Because the left-hand side represents the change in URest (�URest)
and the right-hand side the change in U1 (�U1), the inequality is
equivalent to

	URest � 	U1 or (	URest� 	U1) � 0.

We call this resulting inequality the change inequality. It implies
that one should continue seeking a larger � as long as the change
in URest remains larger than that of U1 and stop doing so when it
is not. In other words, the highest level of accuracy will be reached
when the growth of URest cannot catch the deterioration of U1,
leading to a net reduction in accuracy.

If the functional forms of �URest and �U1 are known and not
overly complicated, then it is possible to derive mathematically the
exact � above which the inequality fails to hold, and that � will be
the Peak� in an environment. However, the functional forms of
�URest and �U1, especially the former, are indeed quite compli-
cated (see Appendix B). Therefore, we obtained the critical �

value in each environment numerically. The results are shown in
the right panel of Figure 3. In the figure, the x-axis is the change
in 0.1 z score between two � values (i.e., �k � �j � 0.1), and the
y-axis is �URest � �U1, the change in URest minus the change in U1.
As the figure shows, �URest � �U1 starts to become negative when
� changes from 0.6 to 0.7, 0.2 to 0.3, and 0.1 to 0.2 in Environ-
ments A, B, and C, respectively. These transitions imply that the
corresponding Peak� should be 0.6, 0.2, and 0.1 in each of the
environments, consistent with the results displayed in the left panel
of Figure 3.

Figure 3. Finding Peak�, the � under which the accuracy of �-inference peaks, in three simulated two-cue

environments. The left panel shows the accuracy of �-inference as a function of �, with Peak� indicated by a

rectangular box, in each environment; the right panel shows the change in URest minus the change in U1

(�URest � �U1) as a function of the change in � in each environment. According to the change inequality, one

should stop adopting a larger � when (�URest � �U1) � 0. A dashed line is added in the right panel to indicate

the point at which this occurs for each environment. U � usefulness.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

507APPROACH–AVOIDANCE ANALYSIS OF THRESHOLDS



Knowing how the accuracy of �-inference varies with � in an
environment offers a direct way to locate the Peak� in the envi-
ronment. The change inequality and the ensuing analysis, on the
other hand, make it easier to understand the dynamics behind the
function and why Peak� takes a certain value in a particular
environment. Our analysis shows that when either r12 or �1 � �2

is relatively high in an environment, the gain of URest will increase
at a slower pace than will the loss of U1 as � moves away from
zero; as a result, the difference in their rates (�URest � �U1) will
quickly become negative, leading to a small Peak� value.

Summary

In this study, we first explored the effect of � on the accuracy
of �-inference. Drawing upon previous research on approach–
avoidance conflicts and single-peaked preference functions, we
hypothesized that the accuracy of �-inference would be a single-
peaked function of �; results from 3 two-cue environments con-
firm this hypothesis. Defining Peak� as the � that leads to the
highest accuracy of �-inference in an environment, we then in-
vestigated how Peak� is related to two environmental properties.
The change inequality shows that Peak� is determined by the
difference in two rates—the increase in the usefulness of Cue 2
and guessing as well as the decrease in the usefulness of Cue 1 as
� gets larger—and that Peak� is the � above which this difference
starts turning negative. We found that this transition point tends to
occur earlier when the information redundancy between the cues is
higher or the disparity between the cues’ ecological correlations
larger. These results give us a preliminary understanding of
�-inference’s performance. However, because they were derived
from three environments with a very simple information structure,
it was necessary to check the generalizability of the results.

A Systematic Analysis of �-Inference With
Simulated Environments

In this study, we examined if results from the previous study
could be replicated by constructing a broad range of simulated
environments, each characterized by a unique combination of
ecological correlations and intercue correlations. More impor-
tantly, we also investigated the fitting and out-of-sample prediction
accuracy of �-inference in samples of various sizes, tested under
what conditions one would be better off learning the Peak� for
each environment as opposed to using a fixed � across all envi-
ronments, and compared �-inference’s performance with that of a
benchmark model (linear regression). In our subsequent study of
the real-world environments, these kinds of analyses revealed a
result about � that we never expected.

Environment Construction and Properties

The environments in this study are similar to those simulated in
the previous study but with three instead of two cues. In each
environment, the value of an ecological correlation �i was positive
and specified to one decimal place. For example, �is could be [.8,
.4, .2], but not [.8, .4, �.2] or [.81, .39, .18]. In addition, all
intercue correlations were set to be equal in an environment, and
this uniform correlation r was varied from 0 to .9 with a step size
of .1. Following these specifications and with additional mathe-

matical constraints,4 a total of 746 environments can be con-
structed; all were included here. Each environment was further
characterized by the following three properties:

1. Redundancy. This property is measured by the uniform
intercue correlation r. To simplify the classification of
the environments, we divide this property into two cate-
gories: low, if r 
 .4; and high, if r � .4.

2. Dispersion. This property can have three values: equal, if
all cues’ ecological correlations are equal, that is, if �1 �

�2 � �3; compensatory, if �1 	 (�2 � �3); and noncom-

pensatory, if �1 � (�2 � �3). Dispersion provides a rough
measure of the importance of Cue 1 relative to that of the
other two cues (Hogarth & Karelaia, 2007). Note that
compensatory and noncompensatory are used here to
characterize task environments and should be distin-
guished from their usage in describing the nature of
decision strategies.

3. Linear predictability. This property is the total amount of
variance in criterion Y that can be accounted for by the
best fitting regression using the three cues as predictors
(i.e., the R2 value of the regression). In lens-model anal-
yses (e.g., Cooksey, 1996), this measure is often taken as
an estimate for the total amount of information contained
in an environment.

The number of environments in each Dispersion 
 Redundancy
category is shown in Table 4.

Fitting and Prediction Accuracy

In each environment, we drew random samples of three sizes,
N � 20, 100, and 2,000, and derived both the fitting and prediction
accuracy of �-inference. For each sample, we split it randomly
into even halves to create a training set and a generalization set. In

4 For example, it is impossible to construct an environment with �is �
[.9, .8, .1] and r � .8. The high intercue correlation excludes the possibility
that one cue can have a much lower or higher ecological correlation than
the others. Details of each simulated environment included in this study can
be found in the online supplemental materials.

Table 4
The Number of Environments in Each Dispersion 


Redundancy Category for the Simulated Three-Cue and

Real Environments

Dispersion

Simulated
environments

Real
environmentsa

r 
 .4 r � .4 r� 	 .4 r� � .4

Equal 31 42 0 7
Compensatory 258 155 8 15
Noncompensatory 256 4 5 4

a In each real environment, only the three cues with the highest ecological
correlations were considered to identify its dispersion and redundancy.
Moreover, the following rule was used to define an equal environment
there: |�1| � |�3| 
 .10.
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the training set, we estimated the parameters needed to implement
�-inference and obtained the model’s fitting accuracy; in the
generalization set, we applied the estimated parameters to derive
the model’s prediction accuracy. To implement the search rule of
�-inference, the ecological correlations of the cues (�is) need to be
ranked, and for its stopping rule, a � needs to be set. If � is fixed
at a certain value, then only the ranks of �is need to be estimated.
However, if � is needed to achieve a certain goal (e.g., maximizing
accuracy), it too needs to be estimated.

We varied � from a z score of 0 to 1.5 with a step size of 0.1.
In each sample, we derived the fitting and prediction accuracy of
�-inference under each � value. In addition, we also compared the
fitting accuracy from all � values in the training set, identified
Peak� as the � value that led to the highest fitting accuracy, and
examined the prediction accuracy of �-inference with Peak� in the
generalization set.

Summary of Results

The main results of this study are summarized below.
Does the single-peaked function hold generally? The an-

swer is yes. We found that in each and every condition (i.e., for
both fitting and prediction accuracy, in each of the 746 envi-
ronments, and with all three sample sizes), U1 is a monotoni-
cally decreasing function and URest (now equal to U2|1 �

U3|1,2 � UGuessing) a monotonically increasing function of �; as
a consequence, the accuracy of �-inference is a single-peaked
function of �.

What properties of the environment influence Peak�?
Consistent with the two-cue study, on average, the higher the
redundancy among the cues and the higher the dispersion (i.e., the
more an environment tends to be noncompensatory), the smaller
the Peak� (see Figure 4). In contrast, linear predictability has only
a negligible effect on Peak�.5 This result helps us understand one

important aspect of the ecological rationality of �-inference, that

is, the match between the size of � and environmental structures.6

Small �s are ecologically rational when cues are highly redundant

and/or the best cue is of substantially higher quality than the other

cues, irrespective of the environment’s linear predictability.

When should one try to estimate Peak� in each individual

environment instead of using a fixed � across all

environments? Averaged across 746 environments, the accu-

racy of �-inference is a single-peaked function of �; for predic-

tion, it peaks at 0.5 z score in each sample-size condition (see

Figure 5). Using a fixed � of 0.5 across all environments on

average leads to slightly worse prediction accuracy—by half a

percentage point—than using Peak� for each environment when

sample size is 2,000 (see the left panel of Figure 6). However, it

5 In the sample size � 2,000 condition, the correlation between the linear
predictability of an environment and the value of Peak� is �.07. However,
linear predictability is highly correlated with the prediction accuracy of
�-inference using Peak�: The correlation between the two is .98, whereas
the correlations between the prediction accuracy and the two other prop-
erties, redundancy and dispersion, are �.02 and .21, respectively. The
same pattern of results is observed for the other two sample sizes.

6 Central to the study of ecological rationality is the investigation of how
environmental structures influence the selection of mental strategies (e.g.,
lexicographic vs. weighting-and-adding) and, within a certain strategy, the
selection of its key parameter values, such as the exit structure of a
fast-and-frugal tree (e.g., Luan et al., 2011) and the weighting scheme of a
linear model (e.g., Hogarth & Karelaia, 2007). If strategy selection is
analogous to picking a proper tool (e.g., a wrench) from a toolbox for a
certain type of task (e.g., Gigerenzer & Selten, 2002), then parameter
selection can be thought of as further adjustments of the tool (e.g., on the
jaws of a wrench) to make it more suitable for the specific task at hand
(e.g., Lee & Cummins, 2004; Newell, 2005; Newell, Collins, & Lee, 2007).
A complementary understanding of how both strategies and their key
parameters are selected is essential for explaining how the mind adapts to
different task environments.

Figure 4. The Peak�, averaged over all simulated three-cue or real environments, in each Dispersion 


Redundancy environment category. The left panel shows results from the simulated three-cue environments

when sample size is 2,000, and the right panel shows results from the real environments when the size of the

training set is 50% of a sample. Note that no real environments fall into the equal, low redundancy category.
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results in better prediction accuracy—by 0.8 percentage points—
when sample size is 20 (see Table 5). The strong tendency for
�-inference with Peak� to overfit the data when sample sizes are
small is the main reason for this result.

How does �-inference compare to linear regression?

Because we constructed the simulated environments in a way

that ideally suits linear regression, its accuracy should consti-

tute an upper benchmark for performance. As expected, when

sample size is 2,000, �-inference with Peak�, which has better

prediction accuracy than �-inference with � � 0.5, is less

accurate than linear regression by over two percentage points in

prediction (see Table 5). However, when sample size is 20,

�-inference with � � 0.5, which now has better prediction

accuracy than �-inference with Peak�, is only a tenth of a

percentage point less accurate in prediction than linear regres-

sion. It even outperforms linear regression in 104 (14%) and

424 (57%) environments when sample size is 100 and 20,

respectively.

These results were derived from simulated environments in

which key environmental parameters and properties were sys-

tematically varied and comprehensively covered. This enables

us to understand how �-inference performs in theory and how

its performance should be related to these environmental prop-

erties. However, there are two inherent limitations of our sim-

ulated environments: (a) They may be too idealized to represent

environments in the real world, due to the relatively small

number of cues in a task, the normally distributed cue values,

and the constraints on cues’ ecological correlations and the

intercue correlations; and (b) the parameters were sampled

uniformly to increase the scope of their values but without

regard to how they are distributed in the real world. These

limitations raise yet another question of generalizability: How

do the results from simulated environments hold up in real-

world environments in which inference tasks actually take

place?

Figure 5. The fitting and prediction accuracy of �-inference, averaged

over 746 simulated three-cue environments, under a set of fixed � values

in three sample sizes: N � 20, 100, and 2,000. For each sample-size

condition, i random samples were run, with i selected such that a total of

200,000 objects were simulated in each condition (e.g., i � 2,000 for N �

100). PC � percentage correct.

Figure 6. The accuracy of �-inference, averaged over all simulated three-cue or real environments, under

different fixed � values. The left panel shows results from the simulated environments when sample size is

2,000, and the right panel shows results from the real environments when the size of the training set is 50% of

a sample. In each panel, a dashed line indicates the average prediction accuracy of �-inference with Peak� for

each environment. PC � percentage correct.
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A Reality Check of �-Inference in
Real-World Environments

In this study, we collected 39 real-world data sets from various sources
(see Appendix C for a summary of the data sets). Given that these
real-world environments differ from the simulated environments in many
aspects, our main interest was to find out if those incongruities would alter
our previous conclusions regarding the performance of �-inference.

Properties of the Real-World Environments

The 39 real-world data sets cover topics from a variety of fields,
such as psychology, sociology, biology, consumer behavior, econom-
ics, and engineering. In each data set, there is one criterion variable
and several cues related to it. For example, in the data set diamond

price, the criterion is the price of a diamond, and the four cues are carat,
clarity, color, and cut, which are commonly known as the four Cs.

The number of cues in each data set varies substantially, ranging
from two to 18 (M � 7.0, SD � 4.1). The majority of these cues are
nonbinary (89%). Indeed, in 25 of the 39 data sets, there is not a single
binary cue; in the rest, the majority of the cues are not binary, except
for the German city population data set in which all cues are binary.
With regard to the ecological correlations of the cues, the values for
many are negative. Without altering their diagnosticities, we recoded
all negative correlations as positive. In general, the best cues are quite
good, with an average ecological correlation of .77 (SD � .15), and the
second and third best cues are not bad either, with average ecological
correlations of .60 (SD � .19) and .44 (SD � .24), respectively.

Focusing strictly on the three best cues, we defined redundancy in a
real environment as the average intercue correlation among these cues (
r�). Averaged over all environments, the mean r� is .55 (SD � .26). Using
the cutoff of .4, we further classified each environment as either highly
redundant or less so. As a result, 67% (26/39) of the real environments
were characterized as highly redundant, a substantially higher proportion
than in the simulated environments (27%; see Table 4). High redundancy
indicates that the information contained in cues searched after the first one
is less useful, making these cues more dispensable. Figure 7 shows such
effects in the simulated and real environments.

Each panel displays the average correlations of the top three cues with
the criterion. Shown are both the cues’ bivariate correlations, which
define their ecological correlations, and their partial correlations after
controlling for cues with higher bivariate correlations than theirs. Partial
correlations, if estimated with sufficient accuracy, are more indicative of
cues’ contributions to the performance of a model than bivariate corre-
lations, especially for models employing sequential search. It is clear from
the figure that the partial correlations of Cues 2 and 3 are lower than their
bivariate correlations and that the differences are much larger in the real
environments than in the simulated environments. Thus, due to higher cue

redundancy, the potential contributions of the second and third best cues
are reduced to a greater extent in the real environments, enhancing the
relative importance of the best cue.

Recall that we use dispersion to characterize the importance of
the best cue relative to the others and that the three levels of
dispersion are defined based on the relations among cues’ ecolog-
ical (or bivariate) correlations. Again focusing on the top three
cues, Table 4 shows that only nine real environments (23%) are
noncompensatory, a lower proportion than of the simulated envi-
ronments (35%). However, if we revise the definition of dispersion
from bivariate correlations to partial correlations (of cues after the
best one), Figure 7 shows that collectively, the real environments
become noncompensatory—that is, �1 � (�2 � �3)—while the
simulated environments remain compensatory.

In sum, the 39 real-world environments included in our investiga-
tion are quite diverse, as shown by the wide ranges of values on
relevant environmental parameters. Compared with an average sim-
ulated environment, in an average real environment, there tend to be
more cues that a model can potentially use, a higher level of redun-
dancy among the three cues with the highest ecological correlations,
and a best cue that is relatively more important than the other cues.
How such characteristics of the real environments affect the performance
of an inference model, particularly �-inference, is considered next.

Model Testing

Our tests of models’ performance in the real environments differed
from those in the simulated environments in four ways: First, in
�-inference, the threshold � was defined as a percentage of a cue
value range instead of a z score. For instance, if the minimum and
maximum values of a cue in a sample are 5 and 205, the cue has a
range of 200, and then, a � of 5% will be 10. We used this definition
of � because cue values can rarely be described by well-defined
distributions and there are many noncontinuous cues in the real
environments.7 Second, we varied the size of the training set, in terms

7 Although � is defined with different units in the simulated and real
environments, the two can actually be compared directly. Specifically, in
the simulated environments, one can estimate the range of cue values in a
sample and then convert a percentage of this range to a z score. For
example, based on 10,000 random samples with sample size N � 100, we
estimated that cue values on average range from �2.51 to 2.51 z scores in
a sample, giving the whole range a 5.02 z score. Therefore, 1%, 5%, and
10% of this range result in a z score of 0.05, 0.25, and 0.50, respectively.
We have now learned that setting � to 0.50 z score leads on average to the
best prediction accuracy of �-inference with a fixed � in the simulated
environments. In terms of cue range percentage, that is equal to a � of 10%
when sample size is 100. When sample sizes are 20 and 2,000, the
percentages are about 14% and 7%, respectively.

Table 5
The Average Accuracy (in Percentage Correct) of Three Models in the Simulated

Three-Cue Environments

Model

Fitting Prediction

N � 20 N � 100 N � 2,000 N � 20 N � 100 N � 2,000

Linear regression 82.0 78.3 77.6 73.5 76.8 77.5
�-inference with Peak� 82.0 76.5 75.4 72.6 74.6 75.3
�-inference with � � 0.5 76.9 75.4 74.9 73.4 74.5 74.8
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of a percentage of the entire sample, in each environment. The
performance of a model was obtained by averaging the results from
500 random splits in each training-set condition. Third, in addition to
linear regression, three other models were tested and compared to
�-inference. And finally, we examined how the performance of
�-inference depends on the specific criterion used to order cues by
testing four alternatives to ecological correlation.

Zero Is the Best Fixed � in the
Real-World Environments

We started our investigation by setting the training set at 50% of
a sample. Following the analysis procedures in the simulated
environments, we first checked if the accuracy of �-inference is a
single-peaked function of � in the real environments. In 35 of the
39 environments, it is a single-peaked function for both fitting and
prediction accuracy; in the remaining four, the functions are close
to being single peaked. This result supports the generality of the
single-peaked function beyond controlled environments. We next
examined how Peak� is related to environmental properties; the
average Peak� in each Dispersion 
 Redundancy category is
shown in the right panel of Figure 4. The results are similar to
those from the simulated environments: The higher the redundancy
of the cues and the more an environment tends to be noncompen-
satory, the smaller the Peak�.

We found the Peak� in each environment by comparing the
fitting accuracy of �-inference under 51 � values, from 0% to 50%
of a cue value range with a step size of 1%, and identifying the one
that led to the highest accuracy as Peak�. The right panel of Figure
6 shows the fitting and prediction accuracy, averaged over all
environments, of �-inference under each �. It is evident that the
single-peaked function holds at the aggregate level in the real
environments. However, instead of reaching its peak at a small but
nonzero �, the peak is now at zero for both fitting and prediction.
In other words, among all the 51 fixed � values, zero is the best in
the real environments!

�-inference with � � 0 is structurally equivalent to the strict

lexicographic rule in preference and has a set of special properties.

First, setting � at 0 means that a decision is made as soon as there

is any difference in cue values between a pair of objects. In tasks

where each object has a unique value on the first cue, that cue

alone can be used to make all the decisions. Second, even if objects

sometimes have identical values on the first or other cues, this

model will still search, on average, the fewest number of cues in

comparison to �-inference with other � values. And third, in terms

of mental operations (e.g., Bettman et al., 1990), it should be the

simplest. With � at 0, it is not necessary for a person to compute

exactly how objects differ on a cue to determine if the difference

exceeds the threshold. All that is needed is a directional estimate:

Does A have a higher value than B?

With these attractive properties, how does �-inference with a

fixed � of 0 across all environments compare to �-inference with

Peak� for each environment? The horizontal line in the right panel

of Figure 6 shows the average prediction accuracy of �-inference

with Peak�. It is higher than that of �-inference with � � 0 by

about one 40th of a percentage point and is actually worse than

�-inference with � � 0 in the majority of the environments (22/39,

or 56%). In terms of frugality, �-inference with Peak� searches,

on average, 1.71 cues (SD � 0.71) in the generalization set, fewer

than a quarter of all cues available (M � 7.0). Meanwhile,

�-inference with � � 0 searches only 1.14 cues (SD � 0.52),

indicating that it rarely searches beyond the first cue.

Being extremely frugal in search and simple to implement,

�-inference with � � 0 is also better than or as good as other

�-inference models in prediction accuracy. Why? The main reason

is the enhanced relative importance of the best cues in the real

environments. The selection of a proper � value depends heavily

on how much additional information the cues following the first

one can bring. If their contribution is substantial, � should be

large, so that more decisions can be made by those cues; otherwise,

� should be small. Our analysis shows that the information con-

Figure 7. Average correlations of the top three cues with the criterion variable in the simulated three-cue and

real environments. The solid lines indicate cues’ bivariate correlations with the criterion, and the dashed lines

indicate their partial correlations with the criterion after controlling for the cue or cues with higher bivariate

correlation(s).
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tained in the cues after the best one is indeed very limited in the
real environments (see Figure 7), justifying the selection of a small
� value. What was unexpected for us, however, is that the best �

turns out to be zero, the smallest possible.
Further analyses show that avoiding the use of cues whose

directions for inference may be improperly estimated can be a
critical reason why zero stands out as the best. Specifically, in
�-inference, cues are ranked according to their bivariate correla-
tions with the criterion and are used according to the directions of
such correlations. With sufficient data, however, one will be better
off basing inferences on the directions of cues’ partial correlations,
which may be at odds with those of bivariate correlations. Indeed,
correlation signs flip for 25 of the 77 second and third best cues in
the real environments (33%). Such discrepancies will result in
more misguided inferences when these cues are used and reduce
the overall accuracy of �-inference.8 With � at 0, however, this
estimation problem is largely avoided because cues beyond the
first one are rarely searched.

Finally, we examined how the two �-inference models, with
Peak� and with � � 0, fare against linear regression; the results
are shown in Figure 8. For fitting, linear regression tops
�-inference with Peak�, which outperforms �-inference with � �

0, and their differences are substantial. However, a different order
emerges for prediction: �-inference with Peak� beats �-inference
with � � 0, which tops linear regression, although the differences
among the three are quite small. If fitting is regarded as the means
and prediction as the end in the pursuit of accurate inferences,
these results show that all three models reach similar ends even-
tually, only taking different routes to get there. Among them, linear
regression likely takes the most difficult route and �-inference
with � � 0 the easiest because the former must consider all the
cues and their interactions in learning whereas the latter needs to
learn only the order of cues’ ecological correlations.

Extended Model Testing and Comparisons

To get a more comprehensive understanding of �-inference’s
performance, we extended model testing and comparisons in the

real environments in two ways: adding two more training-set

conditions and comparing �-inference with three new models,

take-the-best, Bayesian linear regression, and the general

monotone model (GeMM; Dougherty & Thomas, 2012). The

details of these models and how they were implemented in our

study can be found in Appendix D. While testing GeMM, we

found that the minimal training set needed for the model differs

across the 39 environments. Specifically, it is less than or equal

to 20% of a sample for 12 environments, between 30% and 50%

for 13 environments, and larger than 50% for the remaining 14

environments. In one of the two new training-set conditions, we

set the training set in each environment in accordance with the

minimal training set for GeMM and refer to it as minimal for

GeMM. In the other condition, the training set is 80% of a

sample. Unlike in the 50% condition in which the training set is

not large enough for GeMM to produce reliable parameter

estimates in all 39 environments,9 there is no such problem in

the 80% condition.

The average prediction accuracy of each model is displayed in

Figure 9. It shows that first, take-the-best with dichotomized cues

performs well below the other models (see more on this result in

the General Discussion); second, regular linear regression domi-

nates Bayesian linear regression, although their performance dif-

ference appears to get smaller with a larger training set; and third,

GeMM performs quite well in the two conditions in which it can

be directly compared to the other models.

Regarding �-inference, it can be seen that �-inference with

� � 0 performs best when training sets are smaller but falls

short of the competition as the training set becomes larger

(80%). This is consistent with results from other model-

comparison studies: With a larger training set, flexible models

with more free parameters, such as linear regression and

GeMM, can estimate parameters that capture the interactions

among the cues more accurately, thus improving their predic-

tion accuracy more. We also found that the prediction accuracy

of �-inference is a single-peaked function of � at the aggregate

level in the two new training-set conditions. The best fixed �

remains zero in the 80% condition but becomes 1% of the cue

value range in the minimal for GeMM condition. Finally, we

noticed that while the frugality of �-inference with � � 0

remains rather constant in all training-set conditions,

�-inference with Peak� tends to search fewer cues when the

training set becomes larger, due to the generally lower Peak�

8 The same problem also exists in the simulated environments, but to a
much lesser degree. Among the 1,492 second and third best cues in the 746
environments, signs of 238 (16%) flip between the bivariate and partial
correlations.

9 When the training set is 50% of a sample, GeMM cannot produce
reliable parameter estimates in 14 environments. However, this occurs only
for the version of GeMM that uses the Bayesian information criterion
(BIC) for model selection (see Appendix D). Without this model-selection
constraint, GeMM is able to produce reliable parameter estimates in all 39
environments. However, when the training set is smaller than 50% of a
sample, even this version of GeMM does not work in some of the
environments because the number of cues sometimes exceeds the number
of cases. Results of GeMM without BIC model selection in the 50% and
80% training-set conditions can be found in the online supplemental
materials.

Figure 8. The average fitting and prediction accuracy of three inference

models in the real environments, when the size of the training set is 50%

of a sample. PC � percentage correct.
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values in such conditions. Details of �-inference’s performance
can be found in the online supplemental materials.

�-Inference With Different Cue-Ordering Criteria

In the definition of �-inference, the search rule states that cues
are ordered by accuracy. In our investigations so far, we have
ordered cues by their ecological correlations. Does this specific
choice matter? There are plenty of theoretical and empirical ac-
counts of how people order cues; we tested four of these here (see

Table 6). Among the four, maximizing Kendall’s tau is the goal of

GeMM (Dougherty & Thomas, 2012); Goodman–Kruskal’s

gamma is a linear transformation of cue validity, the cue-ordering

criterion in take-the-best (Martignon & Hoffrage, 2002); success

will lead to the same cue order as ranking cues by their expected

information gains (e.g., Newell, Rakow, Weston, & Shanks, 2004;

Rakow, Hinvest, Jackson, & Palmer, 2004; Rakow et al., 2005);

and usefulness, the cue measure that appeared in our discussion of

the single-peaked function (see Equation 1), has also been studied

as a cue-ordering criterion for take-the-best (e.g., Gigerenzer,

Dieckmann, & Gaissmaier, 2012). It can be shown that in the

absence of ties, these four measures will result in the same cue

ordering; thus, ordering cues simply by counting the numbers of

correct decisions they make (i.e., usefulness) is sufficient in this

case.

We found that for each of the alternative cue-ordering criteria

and in each training-set condition, (a) the single-peaked function

between �-inference’s prediction accuracy and � holds at the

aggregate level, and (b) zero is, on average, the best fixed � across

all the real environments. Thus, specific cue-ordering criteria ap-

pear to have little effect on these two characteristics of

�-inference’s performance in the real environments. (A fuller

account of these results can be found in the online supplemental

materials.) Furthermore, ordering cues by success and usefulness

lead to substantially worse prediction accuracy—typically by more

than three percentage points—than tau, gamma, and ecological

correlation (see Figure 10). The latter three perform at similar

levels, with a slight advantage for tau. This result implies that tau

could be a better cue-ordering criterion than ecological correlation

and warrants further investigation.

As mentioned earlier, ordering cues according to ecological

correlation produces orders that do not depend on the value of �.

In the comparisons shown in Figure 10, we calculated tau, gamma,

success, and usefulness of a cue by setting � to zero. Other �

values will result in more cases in which a cue fails to make

decisions and can alter values of these measures. Our preliminary

results show that in many circumstances, these measures do

change with �, especially for continuous cues, and so do the cue

orders. Thus, with these measures, the search rule (embodied by

the cue orders) and the stopping rule (embodied by the value of �)

Figure 9. The average prediction accuracy of six inference models in the

real environments. Minimal for GeMM means that the training set is set at

a minimal percentage of a sample (starting at 10%) so that reliable

parameter estimates can be obtained for the general monotone model

(GeMM) in each environment. There is no report of GeMM’s performance

in the training set � 50% condition because the training set is not large

enough to generate reliable parameter estimates in 14 of the 39 environ-

ments. Take-the-best was originally developed for tasks with binary cues.

In this study, nonbinary cues were first dichotomized at the median before

being processed by take-the-best. PC � percentage correct.

Table 6
The Four Alternative Cue-Ordering Criteria for �-Inference

Measure Calculationa

From a sample of n objects
Pairs: Total number of pairs n · �n � 1� ⁄ 2
C: Frequency of concordance Freq��Ya � Yb���Xa � Xb�� � Freq��Ya � Yb���Xa � Xb��
D: Frequency of disconcordance Freq��Ya � Yb���Xa � Xb�� � Freq��Ya � Yb���Xa � Xb��
Tx: Frequency of ties on the cue Freq�Xa � Xb�
Ty: Frequency of ties on the criterion Freq�Ya � Yb�

For accessing cue quality
Kendall’s tau �C � D� ⁄ ��Pairs � Tx� · �Pairs � Ty�
Goodman–Kruskal’s gamma �C � D� ⁄ �C � D�
Success �C � 0.5 · Tx� ⁄ Pairs

Usefulness C ⁄Pairs

a In the equations, Freq is short for frequency, the number of fitting cases in a sample; the subscripts a and b

represent two random objects from the sample.
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of �-inference are intertwined, potentially making these rules
harder to learn.

Summary

The real environments included in our study are a diverse
bunch. Collectively, they differ from the simulated environ-
ments in many respects, the most critical being the enhanced
relative importance of the best cues (see Figure 7). This char-
acteristic, together with the danger that correlation signs may
flip for cues searched after the best one, explains why zero is
the overall best fixed � in �-inference (see Figure 6). In
addition, despite being simpler and much more frugal,
�-inference with � � 0 achieves a similar level of prediction
accuracy to �-inference with Peak� and linear regression when
the training set is 50% of the sample (see Figure 8). These
results differ from those in the simulated environments, in
which the best fixed � is clearly not zero and �-inference with
� � 0 lags noticeably behind linear regression and �-inference
with Peak� in prediction accuracy (see Table 5).

To further understand the performance of �-inference in the real
environments, we added two more training-set conditions and
expanded the set of benchmark models. More flexible models,
such as GeMM and linear regression, have higher levels of pre-
diction accuracy than �-inference when the training set is large,
whereas �-inference is the best with smaller training sets (see
Figure 9). We also examined �-inference with different cue-
ordering criteria and found that ranking cues by tau generally leads
to better prediction accuracy, although its advantages over ranking
cues by gamma and ecological correlation, our default ordering
criterion, are rather small (see Figure 10). Finally, we found that
the size of the training set and the measure used for cue ordering
have little impact on the single-peaked function between the pre-

diction accuracy of �-inference and � and the result that zero is the
overall best fixed � in the real environments, indicating the ro-
bustness of these findings.

General Discussion

The concept of semiorders originates from just noticeable dif-

ferences in perception (Luce, 1956). Together with lexicographic
ordering, it then became an essential component in lexicographic

semiorders, a model of preference formation (Tversky, 1969). In
this study, we generalized lexicographic semiorders from prefer-
ence to inference and defined a new model called �-inference in
terms of three building blocks: the search, stopping, and decision
rules. Drawing from previous research on approach–avoidance
conflicts (Lewin, 1935, 1951) and single-peaked preference func-
tions (Coombs & Avrunin, 1977a, 1977b), we then showed that the
accuracy of �-inference is a single-peaked function of �.

The existence of a Peak� in a task environment led us to further
investigate how one should select � in environments with different
information structures. In both simulated and real-world environ-
ments, we found that Peak� tends to be smaller when the redun-
dancy of the cues is higher and when cues differ more in their
information quality. An alternative way to look at this �-selection
problem is to find one particular � that works well across a variety
of environments. That � takes the value of 0.5 z score in the
simulated environments but zero in the real environments. The
disparity can be explained by the tendency of cues to be highly
correlated in real environments, which renders information in the
cues following the best one less useful and enhances the relative
importance of the best cue. �-inference with � � 0 takes advan-
tage of this ecological characteristic, attaining the same level of
prediction accuracy as �-inference with Peak� in the real envi-
ronments.

Figure 10. The average prediction accuracy of �-inference with five different cue-ordering criteria in the real

environments. Left: �-inference with Peak� in each environment. Right: �-inference with � � 0 across all

environments. EC � ecological correlation, equivalent to Pearson’s product–moment correlation; Tau �

Kendall’s tau; Gamma � Goodman–Kruskal’s gamma. PC � percentage correct; GeMM � general monotone

model.
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In what follows, we first explain how our findings about
�-inference can shed new light on the take-the-best heuristic. We
then describe in what ways the building blocks of �-inference can
be fine-tuned to improve its accuracy and explore if such fine-
tuning pays off. After arguing for the importance of studying
redundancy in natural task ecologies, we discuss the psychological
plausibility of �-inference and raise some issues that could be
addressed in behavioral studies of the model.

Take-the-Best Heuristic

Take-the-best searches cues in the order of their validities and
adopts a fixed � of 0 in the stopping rule. Following our general
definition of �-inference, which does not specify the cue-ordering
criterion or how � is set, take-the-best can be viewed as a special
variant of the model (see Table 2). Take-the-best was originally
defined for binary cues (Gigerenzer & Goldstein, 1996). Since
then, there have been many attempts to generalize the heuristic to
nonbinary cues. The predominant solution has been to dichotomize
nonbinary cues using median splits before cue validities are cal-
culated (e.g., Brighton, 2006; Chater et al., 2003; Czerlinski,
Gigerenzer, & Goldstein, 1999; Dougherty & Thomas, 2012).
However, it is arguable if using median splits is the best way to
dichotomize cues (e.g., Lee & Zhang, 2012; Luan & Schooler,
2013). Moreover, the process of dichotomization could harm ac-
curacy because information available in the cues may not be used
to its full extent (e.g., Irwin & McClelland, 2003). Finally, in
paired-comparison tasks, a binary or dichotomized cue will fail to
result in a decision at least 50% of the time.10 This may not only
limit the potential of a good cue but also unnecessarily prolong the
search process.

We have shown the prediction accuracy of take-the-best with
dichotomized cues in 39 real environments (see Figure 9). In all
training-set conditions, take-the-best’s performance falls well be-
low �-inference with � � 0 and the other models, which all use
original cue values as input. In terms of frugality, take-the-best
searches about 2.3 cues in prediction, which is almost double that
of �-inference with � � 0. Therefore, from the perspective of
performance, take-the-best with dichotomized cues is inferior to
�-inference with � � 0.

This indicates that there exists a simpler and more effective way
to generalize take-the-best to nonbinary cues. Instead of computing
medians and dichotomizing cues, one can simply process cue
values as they are and use a � of 0 to stop search. Indeed, this
version of take-the-best has already been tested. In 19 real-world
environments, all of which are also included in our study, Katsiko-
poulos et al. (2010) found that it was on average better than
take-the-best with dichotomized cues, linear regression, and naïve
Bayes in prediction. However, they did not examine the model’s
performance with other threshold values and subsequently the role
of environment structures in threshold selection. Nor were these
issues addressed in a simulation study by Hogarth and Karelaia
(2007), in which they defined take-the-best with a fixed, nonzero
threshold and ranked cues according to their ecological correla-
tions.

�-inference brings take-the-best and other models aimed at
extending take-the-best under the same theoretical umbrella.11 Our
analyses of both the structures of the real-world environments and
the performance of �-inference with varied � values show and

explain why adopting a fixed � of 0 will likely lead to a high level
of performance for real-world inference tasks. Moreover, we found
that when � is 0, ordering cues by ecological correlation and
gamma, which gives the same cue orders as validity (Martignon &
Hoffrage, 2002), results in very similar performance for
�-inference. Thus, it is not necessary to switch from validity to
ecological correlation as the ordering criterion in take-the-best. In
sum, we suggest that one should treat take-the-best as a variant of
�-inference, retain its search and stopping rules, and not dichoto-
mize cues a priori in future applications of the heuristic.

Does Fine-Tuning the Stopping and
Decision Rules Pay?

When implementing the stopping rule of �-inference, we use a
uniform, standardized � for each cue. Would one benefit from
trying to fine-tune � for each individual cue? Because this fine-
tuning could lead to severe overfitting with small samples, we
assumed a sample size of 2,000, which should give sufficient
observations for learning the best � for each cue. We limited the
analysis to 10 simulated three-cue environments because the large
number of � combinations we tried made the computations very
time consuming.12 Our result shows that with a set of �s, one for
each cue, that lead to the highest fitting accuracy in an environ-
ment, the prediction accuracy of �-inference is only slightly higher
(mean difference � 0.36 percentage points, SD � 0.40) than that
of �-inference with a single Peak�. Thus, even in a close-to-ideal
situation (i.e., N � 2,000), fine-tuning � for each individual cue
barely pays off.

Besides the stopping rule, the decision rule of �-inference can
also be fine-tuned. Specifically, when the difference between two
objects does not exceed � for any of the cues, it could be a
reasonable strategy for one to lower � and start searching again
from the first cue in order to avoid guessing. We refer to this
fine-tuning practice as �-adjustment. In the same 10 simulated
environments, with a sample size of 2,000 and with � lowered all
the way to zero, we found that first, with a fixed � across all
environments, �-adjustment generally has higher prediction accu-

10 The maximum decision rate of a binary cue is achieved when half of
the objects in a sample have a cue value of 1 and the other half 0. In that
case, the rate is p(A � 1 & B � 0) � p(A � 0 & B � 1) � .5 
 .5 � .5 

.5 � .5. Any other situation will result in a decision rate that falls below
50%.

11 An attempt has been made to unify take-the-best with the rational
model of decision making (Lee & Cummins, 2004; Newell et al., 2007).
The authors treated both as special cases of a sequential sampling model
that stops search when the strength of evidence for one object exceeds an
interval of uncertainty. The interval of uncertainty is adjustable and func-
tions similarly to � in �-inference. To see if there are more and deeper
connections between such a class of sequential sampling models and
�-inference would be an interesting direction for future research.

12 The 10 environments were sampled according to the linear predict-
ability of an environment, which we found is highly correlated with the
accuracy of �-inference. Among the 10 environments, the linear predict-
ability varies from .05 to .95 with an increasing step size of .1. Details of
the 10 environments and the results of the two fine-tuning attempts are
included in the online supplemental materials. In a nutshell, to find the set
of �s that maximize fitting accuracy, we tested 16 
 16 
 16 � 4,096
combinations of �s in each environment, with � ranging from 0 to 1.5 z

score with a step size of 0.1 for each cue. In each environment, 100 random
samples with N � 2,000 were run.
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racy than �-inference with guessing, and the larger the �, the
larger the difference. Second, with a � that maximizes fitting
accuracy in each environment (i.e., Peak�), the prediction accu-
racy of �-adjustment is only slightly higher than that of
�-inference with guessing (mean difference � 0.18 percentage
points, SD � 0.20).

In sum, in simulated environments with a large sample size,
allowing individual �s for each cue and applying �-adjustment
can both improve prediction accuracy. However, the improve-
ments are generally quite small and come at a certain cost: For the
former, it is a considerable extra demand in computation, and for
the latter, it is the need to adjust the value of � downward and to
revisit the cues. Thus, in typical situations where one has to make
inferences with limited learning opportunities, computational ca-
pacity, and time, fine-tuning the stopping and decision rules ap-
pears not to pay.

Representative Design and Cue Redundancy

Egon Brunswik’s (1955) lens-model framework has been influ-
ential in studies of both perception and judgment and decision
making. One key concept of his work is representative design,
which emphasizes the correspondence between features of a psy-
chological study and those of the real-world tasks that the study is
supposed to represent or generalize to (see a review by Dhami,
Hertwig, & Hoffrage, 2004). The generalizability of a study will
always remain in question without a representative design. This is
a concern not only for behavioral studies but also for theoretical
and simulation studies.

One issue investigated in our study is how one should select �

in environments with varying properties. To address this question,
we used mainly simulated environments because properties of
such environments can be tightly controlled and their effects
clearly observed, and applying a representative design is not cru-
cial to the interpretation of the results. We also compared the
performance of different models. This comparison does call for a
representative design, given that our ultimate goal is to understand
the efficacy of a model in tasks that people may encounter in
reality. Not knowing the general characteristics of the real-world
task ecology, we sampled 39 environments, from which a repre-
sentative design can be approximated.

The most critical characteristic of our real environments is the
high redundancy among the cues of high quality. Besides redun-
dancy, the dispersion of cues’ information quality is also included
in our ecological analyses. Dispersion has been studied extensively
in previous studies, which showed that relative to compensatory
strategies, noncompensatory strategies tend to perform better in
noncompensatory environments, at least for fitting (e.g., Gigeren-
zer et al., 1999; Hogarth & Karelaia, 2007; Katsikopoulos &
Martignon, 2006; Martignon & Hoffrage, 1999). However, an
ecological question related to this ecological finding is how fre-
quently noncompensatory environments are encountered in the
real world. Of the 39 environments in our collection, nine (23%)
are noncompensatory, and 26 (67%) are highly redundant, while
four are classified as both (see Table 4).

The existence of few noncompensatory, high-redundancy envi-
ronments agrees with theory. Statistically speaking, it is simply
difficult for highly correlated cues to differ greatly in their bivari-
ate correlations with the criterion; thus, there is an inherent exclu-

sivity between noncompensatory and high-redundancy environ-
ments. However, this does not mean that the effects of these two
properties on strategy performance and selection have to be ex-
amined separately. If dispersion is redefined by cues’ partial in-
stead of bivariate correlations, Figure 7 shows that the real envi-
ronments on average become noncompensatory, largely because of
the overall high redundancy among the cues. In this way, noncom-
pensatoriness of the environments now helps explain the good
accuracy of �-inference, a noncompensatory model.

In sum, we suggest that cue redundancy should be treated as a
critical feature of task ecologies, especially in studies comparing
compensatory and noncompensatory strategies (see also Dieck-
mann & Rieskamp, 2007; Lee & Zhang, 2012). We also suggest
viewing the two environmental properties, redundancy and disper-
sion, in tandem. Defining dispersion based on measures that take
account of conditionality (e.g., partial correlations) can be a useful
way to develop a more integrated view on the effects of these
properties.

The Psychological Plausibility of �-Inference

�-inference, besides its good prescriptive performance, is
grounded in well-established psychological principles. The first is
lexicographic ordering of cues or attributes. In the past 25 years, a
large number of studies have been conducted to test the use of
lexicographic strategies by human participants in both preference
and inference decision making (e.g., Bergert & Nosofsky, 2007;
Brandstätter et al., 2006; Bröder, 2011; Dhami, 2003; Fific, Little,
& Nosofsky, 2010; Ford et al., 1989; Kohli & Jedidi, 2007; Lee &
Cummins, 2004; Newell, Weston, & Shanks, 2003; Payne et al.,
1993; Regenwetter, Dana, Davis-Stober, & Guo, 2011; Rieskamp
& Hoffrage, 1999, 2008). They showed that lexicographic strate-
gies, with hierarchical orderings of cues and a noncompensatory
decision mechanism, are not only plausible but also able to de-
scribe data better than compensatory models in many circum-
stances. Acknowledging the psychological realism of lexico-
graphic strategies, the typical question addressed in those studies
was actually not whether but how often, when, or in what form.

The second psychological principle of �-inference is differential
threshold, which is one of the cornerstone concepts in psychophys-
ics and has been a ubiquitous psychological construct since the
early days of modern experimental psychology (e.g., Link, 1992).
The third principle is the approach–avoidance conflict, which has
been useful in explaining various goal-directed behaviors (e.g.,
Coombs & Avrunin, 1977a; Lewin, 1935, 1951) and is explicitly
incorporated in some descriptive models of decision making (e.g.,
Busemeyer & Townsend, 1993; Townsend & Busemeyer, 1989).
And the fourth is covariance assessment, which is the foundation
for human judgments of causal relationships (e.g., Einhorn &
Hogarth, 1986), estimation of distal criterion values with proximal
cues (e.g., Brehmer & Joyce, 1988; Brunswik, 1955), classification
of objects (e.g., Fific et al., 2010), and prioritization of cue search
(e.g., Katsikopoulos et al., 2010; Rakow et al., 2005).

These principles support the psychological plausibility of the
three rules that make up �-inference and the model as a whole.
However, because �-inference has not been studied systematically
with human participants, there are open questions that behavioral
studies of the model could address.
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Testing �-Inference Behaviorally

Below are three major issues that we think could be explored

in testing �-inference with human participants in inference

tasks:

1. What criterion or criteria do people adopt for ordering

cues? There has been quite some debate in studies of

take-the-best regarding this issue (e.g., Dougherty,

Franco-Watkins, & Thomas, 2008; Gigerenzer et al.,

2012; Gigerenzer, Hoffrage, & Goldstein, 2008; Newell

et al., 2004; Rakow et al., 2004). In one study, Rakow

and colleagues (2005) tested how closely their partici-

pants’ search orders adhered to three ordering criteria—

validity, success, and ecological correlation—and found

that ecological correlation described their data the best.

However, either binary or dichotomized cues were used

in this and most other studies addressing this issue. It

remains to be seen how people search through cues in

natural environments where such restriction is no longer

applied.

2. How do people set threshold values on the cues? Our

theoretical results show that the values should be smaller

in noncompensatory and/or high-redundancy task envi-

ronments and generally small in real-world tasks.

Whether and how people can acquire such knowledge

need to be investigated. In addition, in our analyses of

�-inference, cue differences are standardized (e.g., as

percentages of a cue value range) before the inference

process starts. Standardization procedures, such as res-

caling variable values according to their distributional

characteristics, are intrinsic to many models; for exam-

ple, even an equal-weighting linear model requires one to

standardize cues before weighting them (e.g., Dawes,

1979). How such procedures are mentally implemented

has rarely been explored.

3. In what situations do people rely on �-inference as

opposed to other strategies of inference? The concept of

the adaptive toolbox is key to the study of ecological

rationality (e.g., Gigerenzer & Selten, 2002; Todd, Gig-

erenzer, & the ABC Research Group, 2012). Some re-

searchers have suggested that rather than a repertoire of

unique mental tools, a general tool with a great degree of

flexibility would be enough to explain human behavior in

a wide range of tasks (see reviews and tests of these two

contrasting ideas in Lee & Cummins, 2004; Newell,

2005; Scheibehenne, Rieskamp, & Wagenmakers, 2013).

We consider �-inference a mental model in between: It is

general because it does not restrict the cue-ordering cri-

terion and allows thresholds on the cues to vary in dif-

ferent tasks, but it is still just one tool in a toolbox, due

to the three specific rules that define it. To what degree

�-inference can account for human inferential decisions

in comparison to other more general or more specific

models is the question to which we most look forward to

finding out the answer.

Closing Remarks

Let us conclude with a look back in history. Gustav Fechner,
founder of psychophysics, was a proponent of fixed thresholds in
perception. In Volume I of Elemente der Psychophysik (Fechner,
1860), he developed a measure for discrimination sensitivity on the
assumption that the mind judges which of two stimuli is heavier
(or larger, louder, etc.) with a threshold exactly midway between
the physical intensities of the stimuli. In Volume II, he laid out his
famous Fechner’s law and defined the intensity of a sensation as
the number of just noticeable differences or �s, whose values are
fixed relative to the physical intensities of stimuli, from the abso-
lute threshold to the sensation being measured. Since Fechner,
however, the notion of fixed thresholds has been repeatedly criti-
cized for its oversimplification and is now deemed by many as
obsolete (e.g., Gigerenzer & Murray, 1987; Link, 1992).

In the present study, we focused on � and showed that it should
not be considered fixed for inference. Rather, on the basis of
single-peaked functions from Coombs’s analysis of approach–
avoidance conflicts, we found that the selection of � depends
systematically on the information structures of the environment.
Yet we also learned that the mind can comfortably get away with
a fixed � without much fine-tuning and even by simply setting it
at zero in the messy real world. Thus, after much thought and
analysis, we end with what Fechner had long advocated—a simple
solution for a complex world—only now we understand better
why and how.
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Appendix A

Relevant Cue Measures in Probability Terms in Simulated Two-Cue Environments

In our simulated two-cue environments, the three variables, Y,

X1, and X2, are from a multivariate normal distribution with means
of 0 and a variance–covariance matrix

M f�Y,X1,X2) � �
1 �1 �2

�1 1 r12

�2 r12 1
�.

We show here how the relevant cue measures can be expressed in
probability terms and calculated mathematically under such envi-
ronments.

DR1, U1, and V1

DR1 � P(X1a � X1b � �) � P(X1a � X1b � ��)

� P(X1D � �) � P(X1D � ��).

U1 � P[(Ya � Yb � 0) � (X1a � X1b � �)]

� P[(Ya � Yb � 0) � (X1a � X1b � ��)]

� P[(YD � 0) � (X1D � �)]

� P[(YD � 0) � (X1D � ��)].

V1 � U1 ⁄ DR1.

In the equations, a and b are two randomly selected objects, YD

is their difference in the criterion variable Y, and X1D their differ-
ence in the first cue X1. The joint distribution of YD and X1D, f(YD,
X1D), is bivariate normal with means at 0 and a variance–
covariance matrix

M f(YD, X1D) � 	 2 2 · �1

2 · �1 2 
.

DR2|1, U2|1, V2|1, UGuessing, and URest

DR2|1 � P[(�� 
 X1D 
 �) � (X2D � �)]

� P[(�� 
 X1D 
 �) � (X2D � ��)].

U2|1 � P[(YD � 0) � (�� 
 X1D 
 �) � (X2D � �)]

�P[(YD � 0) � (�� 
 X1D 
 �) � (X2D � ��)].

V2|1 � U2|1 ⁄ DR2|1.

UGuessing � 0.5 · P[(�� 
 X1D 
 �) � (�� 
 X2D 
 �)].

URest � U2|1 � UGuessing.

The variance–covariance matrices of the two relevant joint
distributions are

M f�X1D,X2D) � 	 2 2 · r12

2 · r12 2 

and

M f�YD, X1D, X2D) � �
2 2 · �1 2 · �2

2 · �1 2 2 · r12

2 · �2 2 · r12 2
�.

In addition to the two-cue environments, we also simulated 746
three-cue environments with a similar but extended distributional
structure (i.e., multivariate normal with means of 0 and a variance–
covariance matrix with an additional parameter �3 for the third
cue). The cue measures in those environments can be expressed
and calculated in similar ways to what is shown above. We include
the Matlab code for these calculations—for both two-cue and
three-cue simulated environments—in the online supplemental
materials.

(Appendices continue)
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Appendix B

Proof of Monotonicity of the Function Between U1 and � and That of URest and � in
Simulated Two-Cue Environments

We prove here that U1 is a monotonically decreasing function
and URest a monotonically increasing function of � in any two-cue
environment simulated in our study (see definitions of U1 and
URest in Equation 1 in the main text). Let us start with U1, which
can be expressed in probability terms as

U1 � P[(YD � 0) � (X1D � �)]�P[(YD � 0) � (X1D � ��)].

A schematic graphic representation of f(YD, X1D), the joint
distribution of YD and X1D, is shown in the left panel of Figure B1.
With � at �j and �k (�j 	 �k), the corresponding U1 as repre-
sented by the different areas in f(YD, X1D) is

U1(�j) � (A1 � A2)�(A3 � A4) and U1(�k) � A2 � A4,

and the difference between the two is

	U1 � �(A1 � A3) � �2A1.

A1 and A3 are equal because f(YD, X1D) is symmetric alongside the
diagonals. Because A1 is positive, �U1 is negative; thus, U1 is a
monotonically decreasing function of �.

The expression of URest in probability terms is

URest � U2|1 � U Guessing

� P[(�� 
 X1D 
 �) � (X2D � �) � (YD � 0)]

� P[(�� 
 X1D 
 �) � (X2D � ��) � (YD � 0)]

� 0.5 · P[(�� 
 X1D 
 �) � (�� 
 X2D 
 �)]

� 2 · {P[(0 � X1D 
 �) � (X2D � �) � (YD � 0)]

�P[(0 � X1D 
 �) � (X2D � ��) � (YD � 0)]}

� P[(0 
 X1D 
 �) � (�� 
 X2D 
 �)].

The right panel of Figure B1 shows f(X1D, X2D), the joint
distribution of X1D and X2D. Because f(X1D, X2D) is symmetric
alongside the diagonals, two pairs among the 12 labeled areas are
equal in size:

a2 � a6 and a7 � a11.

With � at �j, U2|1 is

U2|1(�j) � 2 · [a2 � (YD � 0) � a3 � (YD � 0)

�a11 � (YD � 0) � a10 � (YD � 0)]

�2 · (p1 · a2 � p2 · a3 � p3 · a11 � p4 · a10).

(Appendices continue)

Figure B1. A two-dimensional graphic representation of the joint distribution of YD and X1D (left panel) and

that of the joint distribution of X1D and X2D (right panel). In each graph, segmented areas that are relevant to our

proof are labeled.
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In the equation, pi is a proportion, and the product of pi and an area
is equivalent to a certain joint probability (e.g., p1·a2 � a2�

�YD � 0�). With � at �j, UGuessing is

UGuessing��j) � a1 � a12.

With � at �k, U2|1 and UGuessing are

U2|1 (�k) � 2 · (p2 · a3 � p5 · a4 � p4 · a10 � p6 · a9),

UGuessing(�k) � a1 � a2 � a5 � a6 � a7 � a8 � a11 � a12

� a1 � a12 � a5 � a8 � 2a2 � 2a11.

And �URest, the difference between URest(�j) and URest(�k), is

	URest � [2 · (p2 · a3 � p5 · a4 � p4 · a10 � p6 · a9)

�a1 � a12 � a5 � a8 � 2a2 � 2a11]

�[2 · (p1 · a2 � p2 · a3 � p3 · a11 � p4 · a10)

�a1 � a12]

�2 · (p5 · a4 � p6 · a9) � a5 � a8

�(2 � 2p1) · a2 � (2 � 2p3) · a11.

Because each component in the final equation is positive, �URest

is positive; thus, URest is a monotonically increasing function

of �.

(Appendices continue)
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Appendix C

Summary of the Key Properties of the 39 Real-World Environments

Environment name
Number
of casesa

Nonbinary
cuesb

Binary
cues

Ecological correlation
Mean redundancy among

three best cuesCue 1 Cue 2 Cue 3

Attractiveness_men 32 2 1 .71 .38 .31 .15
Attractiveness_women 30 2 1 .58 .40 .03 .12
Biodiversity 23 6 0 .97 .71 .61 .71
Body fat 1 252 14 0 .99 .81 .70 .79
Car accidents 39 10 3 .75 .68 .56 .53
Fish fertility 395 3 0 .87 .58 .22 .64
Fuel consumption 48 7 0 .70 .46 .45 .27
German city population 83 0 9 .81 .59 .41 .28
Highschool dropout 62 18 0 .60 .54 .51 .88
Homelessness rate 50 6 0 .39 .23 .20 .15
House price_Erie, Penn. 27 10 2 .93 .92 .92 .87
Land rent 67 3 1 .88 .32 .31 .36
Mammals lifespan 42 6 1 .65 .63 .47 .80
Mortality 60 15 0 .64 .51 .51 .37
Obesity 58 10 1 .51 .50 .44 .79
Oxidants 30 4 0 .77 .76 .51 .46
Oxygen 20 6 0 .65 .51 .50 .82
Ozone in San Francisco 13 2 0 .85 .60 .69
Professor salary 52 3 2 .87 .70 .67 .61
Rainfall 24 4 2 .57 .52 .37 .67
Autompg 392 7 0 .83 .81 .78 .90
Autoprice 159 14 0 .89 .84 .84 .85
Bird density 23 7 0 .61 .43 .26 .20
Bolt count 40 7 0 .86 .71 .19 .39
Body fat 2 20 3 0 .88 .84 .14 .49
Fish weight 71 6 1 .92 .92 .92 1.00
House price_Albuquerque, NM 66 4 3 .88 .88 .58 .60
Ice-cream consumption 30 3 0 .78 .26 .05 .18
Machine performance 209 6 0 .86 .79 .66 .61
Manpower usage 25 7 0 .94 .90 .89 .90
SAT score 50 4 0 .89 .44 .38 .69
Servo motor output 167 4 0 .60 .36 .17 .28
Chocolate energy 16 5 0 .92 .64 .57 .53
Carbon monoxide in freeway 24 3 0 .96 .71 .43 .49
Diamond price 308 4 0 .94 .52 .20 .40
Drug cost 29 7 0 .57 .38 .35 .20
Forced expiratory volume test 654 2 2 .87 .76 .25 .49
US crime 47 14 1 .69 .67 .44 .86
Water usage 17 4 0 .63 .41 .29 .34

M 96 6.2 0.8 .77 .60 .44 .55
SD 135 4.1 1.6 .15 .19 .24 .26

Note. The first 20 environments are from Czerlinski, Gigerenzer, and Goldstein (1999), in which the sources and descriptions of those environments are
given. The other 19 were collected from various online data repositories, such as the University of California, Irvine, machine learning repository and the
American Statistical Association. The sources and descriptions of those environments can be found in the online supplemental materials.
a Cases with missing values were discarded. b Both continuous, defined as cues with more than six unique values, and multinomial cues are included.
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Appendix D

Three Models Tested in the Real-World Environments

Take-the-best (Gigerenzer & Goldstein, 1996) is a heuristic also
defined by search, stopping, and decision rules (see Table 2 in the
main text). It searches cues in the order of their validities and
adopts a fixed � of 0 in its stopping rule. In the version of
take-the-best tested in our study, we first dichotomized nonbinary
cues at the median and then calculated cues’ validities to establish
the search order. This is a common practice for the implementation
of the heuristic (e.g., Brighton, 2006; Chater et al., 2003; Czerlin-
ski et al., 1999).

Bayesian linear regression (BLR) differs from regular linear
regression in how the regression coefficients are estimated. Instead
of using the method of ordinary least squares, BLR estimates the
coefficients through Bayesian inference techniques (Goldstein &
Wooff, 2007). We obtained the results of BLR by using the BLR
package in the computing software R that runs a Gibbs sampler for
estimating the posterior distributions of parameters (Campos &
Rodriguez, 2012). More specifically, we used the default setting in
the package, assigning flat priors to the regression coefficients and
scaled-inverse chi-square priors to residual variances. In each
Markov chain Monte Carlo run, we generated a chain with 25,000
iterations, including a burn-in period of 5,000 steps, and further
thinned the chain by keeping every 10th draw from the sequence.
The means of the posterior distributions estimated from the train-
ing set were applied in the generation set to derive the prediction
accuracy of BLR. There may well be better ways to implement
BLR than how we did it here; for example, by using different
priors for the regression coefficients and deriving prediction ac-
curacy not based on the posterior means but from the whole
distributions. However, we believe that an investigation into
whether these methods could actually improve BLR’s prediction
accuracy would require substantial effort and is beyond the scope
of the present study.

The general monotone model (GeMM; Dougherty & Thomas,
2012) is a compensatory model that integrates cue information

much like linear regression. However, GeMM differs from regular
linear regression in three ways: First, the goal of the model is to
maximize the number of correct paired-comparison inferences
within a sample by finding cue weights that yield the best mono-
tonic (i.e., rank order) solution; second, it uses the Bayesian
information criterion (BIC) to evaluate all possible models formed
on the basis of a set of cues and settles on the one that strikes a
good balance between accuracy and model complexity; and third,
due to the absence of a computationally efficient method, the final
model is selected through simulation procedures that require much
computation when the number of cues and/or the sample size are
relatively large.

To obtain the results of GeMM, we used the Matlab code
published by one of the developers of the model (M. Dougherty).
The code was downloaded June 11, 2013, from http://www.damlab
.umd.edu/gemm.html. When the training set is too small in some
task environments, GeMM will not produce reliable parameter
estimates, and we define reliable estimates in a relatively lenient
way: In three of five random samples, GeMM can produce any
estimates of the parameters. In our search for the minimal training
set to implement GeMM, we started from 10% of the sample and
increased it at the step size of 10% until reliable parameter esti-
mates could be obtained. This minimal percentage for each envi-
ronment can be found in the online supplemental materials.

An alternative version of GeMM (M. Dougherty, personal com-
munications, February 26, 2014) bypasses the BIC model-
selection procedure and chooses a model that maximizes accuracy
without penalizing it for complexity. The detailed results of this
and the ordinary version of GeMM for each real environment can
be found in the online supplemental materials.
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