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Abstract—Mobile Sensing Apps have been widely used as
a practical approach to collect behavioral and health-related
information from individuals and provide timely intervention
to promote health and well-beings, such as mental health and
chronic cares. As the objectives of mobile sensing could be either
(a) personalized medicine for individuals or (b) public health for
populations, in this work we review the design of these mobile
sensing apps, and propose to categorize the design of these
apps/systems in two paradigms – (i) Personal Sensing and (ii)
Crowd Sensing paradigms. While both sensing paradigms might
incorporate with common ubiquitous sensing technologies, such
as wearable sensors, mobility monitoring, mobile data offloading,
and/or cloud-based data analytics to collect and process sensing
data from individuals, we present two novel taxonomy systems
from Sensing Objectives and Sensing Paradigms perspectives that
can specify and classify apps/systems from aspects of the life-cycle
of mHealth Sensing: (1) Sensing Task Creation & Participation,
(2) Health Surveillance & Data Collection, and (3) Data Analysis
& Knowledge Discovery. With respect to different goals of the
two paradigms, this work systematically reviews this field, and
summarizes the design of typical apps/systems in the view of the
configurations and interactions between these two components. In
addition to summarization, the proposed taxonomy system also
helps figure out the potential directions of mobile sensing for
health from both personalized medicines and population health
perspectives.

Index Terms—Mobile Health (mHealth), Mobile Sensing, Mo-
bile Crowd Sensing (MCS), and Personal Sensing.

I. INTRODUCTION

Mobile Sensing [1] refers to a sensing paradigm leveraging
ubiquitous sensors embedded in mobile devices (e.g., mobile
phones, smartwatches) to monitor the environments, human
behaviors, and interactions between human and environments
in a human-centric manner [2], [3]. Lots of work studied the
adoption of mobile sensing techniques in health domains [4]–
[6] such as mental health [7] and chronic cares [8]. Early
visionary works [9], [10] proposed the basic framework of
mobile health (mHealth) sensing techniques in nowadays that
leverage “non-invasive” mobile sensing schemes [11] to collect
data for human activities recognition and infer the individual’s
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health status using machine learning algorithms with longitude
and real-time sensory data accordingly [7], [12]–[14].

Compared to traditional medical sensors that are frequently
operated by health professionals to collect data from patients
in clinic contexts, mHealth sensing relies on participation of
voluntary users to obtain information for health-related well-
beings in their daily life [11], [15]–[18]. Furthermore, the
goal of mHealth sensing research is to study the innovative
applications of mobile sensing techniques to collect behavioral
data related to health and well-beings, while medical sensing
aims at designing new measurement and instrument techniques
for medical purposes [19]. More comparison between mHealth
sensing and medical sensing could be found in Appendix.A.
In this work, given the rapid development in such area, we
propose to review and survey the recent progress in mHealth
sensing techniques.

A. Health Issues and Health Outcomes of mHealth Sensing
Apps/Systems

There are several works reviewing and surveying the re-
search problems [20]–[25], emerging techniques [26], [27],
system design [28]–[30], and prototyping tools [14], [31], [32]
for mHealth Sensing apps/systems. In this work, we propose
to first categorize the research works on mHealth sensing
apps/systems with respect to the major health issues (e.g.,
depression and anxiety) that are covered by mHealth.

Furthermore, for every major health issue reviewed here, we
also discuss mHealth sensing research from the perspectives
of personalized medicine and population health — two major
health outcomes of modern healthcare [33]–[35]. Specifically,
we would like to survey and compare the mHealth sensing
techniques that handle to the health issues for either personal-
ized medicine or population health purposes. In our work, we
define these two outcomes as follows.

• Personalized Medicine. The personalized medicine fo-
cuses on individual patients–“with medical decisions,
practices, interventions and/or products being tailored
to the individual patient based on their predicted re-
sponse or risk of disease” [36]. Thus, the objective of
personalized medicine is to improve and optimize the
individual treatment effects through sensing, monitoring,
and predicting their health status [37], [38].

• Population Health. The population health is defined as
“the health outcomes [39] of a group of individuals,
including the distribution of such outcomes within the
group” [40]. The goal of population health is to promote
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Fig. 1: The three-stage pipeline of mHealth Sensing apps

the health of an entire human population [41], where
the approaches include discovering health outcomes, un-
derstanding patterns of health determinants, and policy
making for interventions.

Thus, the first part of this survey includes a comprehensive re-
view on the research related to mHealth sensing apps/systems
targeting at various health issues from the perspectives of
population health and personalized medicine. In Appendix.B,
we introduce the procedure that we collect and select the
publications and health issues for review.

B. Objectives and Design & Implementation (D&I) Issues of
mHealth Sensing Apps/Systems

For the two health outcomes of mHealth sensing, we plan
to generalize and categorize existing works into two design
paradigms – (i) Personal Sensing (PS) and (ii) Crowd Sensing
(CS) paradigms, according to the significant differences in
app designs, such as user engagement strategies [42], [43]
and data analysis approaches [44], [45]. Moreover, as shown
in Figure 1, we follow the common frameworks of mobile
sensing apps [1], [46] and propose to modularize the design
of mHealth sensing apps [47] for both Personal Sensing and
Crowd Sensing into a pipeline of three stages as follows.

1) Sensing Task Creation & Participation - With a pool of
potential mobile users, the mHealth Sensing organizers
create tasks for specific health issues via deployed
apps [4], [48], [49], then prompt the participation of the
users [10], [50], [51] or recruitment participants with
incentives [52], [53].

2) Health Surveillance & Data Collection - With actively
engaged participants, the mHealth Sensing apps and sys-
tems collect health-related data from participants in their
daily life scenarios [11], [54], then store and offload
the sensing data with security and privacy-protection
guarantees [55]–[58].

3) Data Analysis & Knowledge Discovery - With health-
related data collected, the mHealth Sensing apps and
systems carry out data processing and analysis under
ethical certification [59]–[61] to predict health-related
events for individuals [62], [63] and discover determi-

nants of health [40] – i.e., knowledge about population
health and well-beings [10], [64].

Based on above two mHealth sensing design paradigms
and the pipeline of three stages, this work provides two
taxonomy systems that cover the major technical challenges
and methodologies in this area. Specifically, we focus on the
“objectives” (e.g., data privacy, data quality, energy efficiency,
and other goals desired to enable practical mHealth sensing
apps/systems) and “designs & implementations (D&I)” (e.g.,
methodologies to achieve the objectives) respectively. Further-
more, we review and categorize the sensing objectives and
D&I issues by the combination of two mHealth sensing design
paradigms and three stages in details. Note that we discuss
our motivations to structure these two taxonomy systems in
Appendix.C.

C. Organization of the Survey

The rest of this manuscript is organized as follows. Section
II reviews several typical mHealth Sensing apps/systems for
seven common health issues with case studies in details, where
we specifically discuss ways mHealth sensing techniques
handle the health issues for population health and personal-
ized medicine purposes. Section III introduces the taxonomy
system classifying mHealth sensing apps/systems from the
sensing objectives perspective. Section IV presents the taxon-
omy system the classifies the mHealth sensing apps/systems
from the perspective of sensing paradigms and D&I issues.
In Section V, we point out identified research gaps and future
directions in mHealth Sensing, while Section VI concludes
the article. In Appendix, we review the scientific approaches
to this survey.

II. REVIEWING MHEALTH SENSING APPS AND SYSTEMS
FOR COMMON HEALTH ISSUES

In this section, we first list the definitions of some health-
related terms in Table I. Then, with respect to seven most com-
monly researched health issues in reviewed papers, we review
and summarize typical objectives and applications of mHealth
Sensing works surrounding the seven issues (i.e., depression
and anxiety, sleep quality and insomnia, diabetes, heart, elder-
care, diet management, tinnitus, and COVID-19) from the two
mHealth Sensing perspectives (i.e., (a) Personalized Medicine
and (b) Population Health).

In general, as shown in Table II, for Personalized Medicine
objective, apps adopt Personal Sensing paradigm and focus
on individual’s health benefit via D&Is of health status mon-
itoring, recognition, and intervention; while for Population
Health, the apps in a Crowd Sensing manner mainly aim
to measure/understand population health status and discover
knowledge for public health benefit.

Here we discuss three typical health issues among the seven
from both perspectives of mHealth Sensing.

A. Depression and Anxiety

Depression and anxiety are the main mental health disor-
ders, broadly experienced by 548 million people worldwide
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TABLE I: Terms and Definitions

Terms Definitions

Mobile Health Namely mHealth, a term used for the practice of
medicine and public health supported by mobile
devices [23]

mHealth Provider Peoples (e.g., researchers, business companies) who
organize healthcare services by designing and de-
ploying mHealth techniques and applications [65].

Ubiquitous Sensing Using networked sensors pervasively exist in daily-
life scenarios to capture information about humans,
environments, and their interactions [66]

Personal Sensing A technique collecting and analyzing data from
sensors embedded in the context of individual’s
life with the aim of identifying his/her behaviors,
thoughts, feelings, and traits [3]

Crowd Sensing A technique where a large group of individuals hav-
ing mobile devices capable of sensing and comput-
ing collectively share data and extract information
to measure, map, analyze, estimate or infer (predict)
any processes of common interest [67]

Passive Sensing Sensing via devices that detect and respond to some
type of input from the physical environment [68]

Health Status One’s medical conditions (both physical and men-
tal), claims experience, receipt of health care, med-
ical history, genetic information, evidence of insur-
ability, and disability [69]

Health Outcomes Health events occurring as a result of interventions
[70]

Health Determinants Conditions which contribute to a wide range of
health and quality of life-risks and outcomes [71]

Mental Health A state of well-being in which the individual
realizes his/her own abilities, can cope with the
normal stresses of life, can work productively and
fruitfully, and is able to make a contribution to
his/her community [72]

Treatment Effects Causal effect of a given treatment or intervention
on an outcome variable of health interests [73]

Health Benefit Positive phenomenons that a medicine treatment,
substance or activity is improving health [74]

Health Intervention A treatment, procedure, or other action taken to
prevent or treat disease, or improve health in other
ways [75]

Digital Biomarkers Objective, quantifiable physiological and behavioral
data that are collected and measured by means of
digital devices [76]

who hardly access effective treatment [133], [134]. mHealth
Sensing gives ubiquitous and flexible solutions on both sides
of personal mental health monitoring and intervention [49],
[135]–[139] and population mental health surveying and un-
derstanding [140], [141].

a) Personal Depression and Anxiety Monitoring and In-
tervention: mHealth Sensing techniques are providing broadly
accessible services for individuals with mental disorders, as
they can collect user’s daily-life indicators varying with time
and scenarios, as well as deliver timely interventions though
without scarce clinical resources [27]. A typical application
of Personal Sensing for depression and anxiety is Mobilyze!
[78], a mobile mental intervention application with a two-
step framework – context sensing and ecological momentary
intervention. By collecting contextual data such as locations,
recent calls, ambient light, and feeding them into a medical

diagnosis model, it infers user’s mental health status and
provides interventions to guide to overcome psychological
dilemmas (e.g., lack of social interaction). Furthermore, in
mental health domain, the concept of just-in-time adaptive
intervention (JITAI) was proposed to guide timely and person-
alized interventions [18]. For example, advances in artificial
intelligence are promoting smarter decision-making of when
and where it is most helpful to provide supportive interventions
by learning from individual’s historical behaviors [142], [143].

b) Population Depression and Anxiety Survey: Mobile
Sensing techniques are increasingly being adopted to popula-
tion depression and anxiety surveys, as they provide a low-
cost (both in resources and time), widespread, and online
data collection manner versus laborious and high-cost clinical
testing and questionnaires. For example, by studying the corre-
lation between anxiety and behavioral indicators (e.g., activity
locations, text messages, and calls) in a 54-students group
over two weeks, Boukhechba et al. [83] proposed flexible
anxiety assessment methods for monitoring college students
via mobile apps.

c) Population Mental Health Determinants Understand-
ing: New inspirations and knowledge about population mental
health determinants can be gained via massively collecting and
comparatively analyzing data among populations [81], such as
inferring causes between social anxiety and group behavioral
patterns [144]. For example, a Mobile Crowd Sensing platform
– Sensus [4] was leveraged by Chow et al. to verify clinical
models of depression and anxiety [82]. Taking the levels of
depression and social anxiety as moderators, researchers tested
the relations between state effect and time spent at home of
72 recruited students, and finally, they gain an understanding
on the significant correlations between depression & anxiety
and home-stay behaviors in the target population.

B. Sleep Quality and Insomnia

mHealth sensing applications are widely applied to monitor
sleep status and measure sleep quality. The basis for this is that
the digital biomarkers (e.g., heart rate and sound of snoring)
related to sleep can be easily collected by mobile sensors
during sleeping [145].

a) Personalized Sleep Monitoring and Insomnia Assis-
tance: mHealth Sleeping apps are giving more and more
accessible sleep quality monitoring and sleep-aid services to
users [12], [85], [145], [146]. Several sleep monitoring systems
are deployed on wearable devices requiring users to wear a
product embedded with specific sensors during sleeping, which
is either limited in clinical environment [147] or uncomfortable
to the users [148]. A new trend in mHealth Sensing for
sleep monitoring is using off-the-shelf mobile phones built-
in sensors such as microphones and accelerometers to detect
the sleep duration and infer sleep quality. For example, Hao et
al. [48] proposed to leverage microphone audio to detect the
events closely related to sleep quality such as ambient noise,
body movement, and snoring [85] to enable personalized and
in-place sleep quality monitoring. Furthermore, Gu et al. [86]
mined and detected the sleep stage (e.g., week sleep, deep
sleep, and rapid eye movement) by monitoring sleep environ-
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TABLE II: A summary table of the mHealth apps on seven common health issues created for the motivations in (a) Personalized
Medicine and (b) Population Health respectively

Health Issues Personalized Medicine Population Health
Motivations Examples Motivations Examples

Depression
and Anxiety

Self-identifying and reducing
depression and anxiety

[77], [78],
[79], [13],
[80], [50]

Population mental health screening
and determinants inferring

[81], [82],
[54], [83],
[84]

Sleep Quality
and Insomnia

Monitoring and interventions
to promote sleep quality

[85], [48],
[86], [12]

Population sleep statistics for
understanding sleep science issues [87], [88]

Diabetes (type 2) Glucose monitoring for type
2 diabetes management

[8], [89],
[90], [91]

Understanding the social determinants
contributing to diabetes [92], [17]

Heart Heart rate monitoring and
heart disease prevention

[93], [94],
[95], [96],
[97], [16]

Researching the impact of determinants
on cardiovascular diseases [98]

Elder-care
In-home care service and
assistance [99], [100] Understanding the health status and

lifestyle of the elderly population [101]
Outdoor monitoring and
notification [102], [103]

Diet and Weight
Management

Diet self-monitoring and
exercise management

[62], [63],
[17], [104]

Understanding population eating
patterns, episodes, and disorders [105]

Tinnitus Tinnitus self measurement
and retraining therapy [106], [107] Studying symptoms, causes, and

treatments of tinnitus population
[108], [109],
[110], [111]

COVID-19 Automatic self-diagnosis [112], [113],
[114], [115]

Population screening the spread of
COVID-19

[116], [117],
[118], [119]

Contact tracing for infectious
risk estimation

[120], [121],
[122], [123]

Public Health Policy Evaluation and
Development

[124]–[126],
[127]–[129],
[130]–[132]

ment and personal factors leveraging a statistical model, which
provides fine-grained descriptions of sleep status.

b) Population Sleep Science Research: Crowd Sensing
apps are widely used to create population sleep status datasets
for sleep science, such as understanding the issues on psy-
chological research and sleep science, as one’s sleep quality
interacts with her/his lifestyle and mental status. In practice,
to understand the behavioral pattern between phone usage and
sleep quality, recently, Sharmila et al. [87] collected a large-
scale phone usage dataset and sleep questionnaires from 743
participants of different ages and socioeconomic backgrounds
in a Crowd Sensing manner and figure out the effect of
mobile phone usage patterns on sleep using statistical methods.
Abdullah et al. [88] proposed to study the effects of sleep
quality on people’s daily rhythm and well-being including
levels of alertness, productivity, physical activity, and even
sensitivity to pain.

C. Mobile Sensing in COVID-19 Era

The mobile devices that people carry around are like
"witnesses" to the spread of the epidemic, as the spread of
the COVID-19 virus is accompanied by human mobility and
contact, where Mobile Sensing have shown its great power
in COVID-19 era [149]; the typical contributions include
personal diagnosis [112], infection traceability [120], trans-
mission interpretation [118] and policy decision-making [150],
etc.

a) Personal Automatic Self-Diagnosis via Sounds: Mo-
bile microphones collect audio samples such as sighs, breath-
ing, heart, digestion, vibration sounds on body, which can
serve as the indicators to diagnose lung diseases [151], giving
great possibilities of automatic detection and diagnosis of
COVID-19 infection [113]. For example, Brown et al. [114]
proposed methodologies to detect diagnostic signs of COVID-

19 from voice and coughs, which well distinguish a user
who is COVID-19 positive with a cough from a negative
user with a cough. In addition to voice analysis, Han et al.
[115] further explored fusion strategies to combine voice and
reported symptoms which yield better detection performance.

b) Personal Contact Tracing: The COVID-19 virus
spreads from an infected person’s mouth or nose in small liq-
uid particles when they cough, sneeze, speak, sing or breathe
[152], causing finding the contacts of positive patients is an
essential task for epidemic control. Many contact tracing mo-
bile apps are developed and deployed for privacy-preserving
and comprehensive COVID-19 tracing for individual users to
check their contact history with mobile phone data [120],
[121], [123], [153]. For example, Carli et al. [122] developed
WeTrace, a mobile COVID-19 tracing app which detects and
records one’s contact with others leveraging the interaction via
Bluetooth Low Energy (BTE) communication channel; and a
trusted data transmission framework is proposed to balance
the health and the privacy perspectives.

c) Epidemic Spreading Analysis via Human Mobility:
The significant correlation between human mobility and
COVID-19 infections provides guidance on investigating and
understanding the spreading of COVID-19 via multi-scale
human mobility data [116]–[118]. From the perspective of the
human mobility research, large-scale and long-term GPS data
can be used to detect high-risk regions [154], and population
traveling data (e.g., Baidu Qianxi [155]) can be leveraged
to analyze the spreading path between cities and countries
[156]. For example, by incorporating human mobility data into
epidemic modeling, Hao et al. [119] studied how the multi-
scale urban human mobility impacts the spreading process
at varying levels, which provides insights on making smarter
policies to respond the next outbreak.
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d) Public Policy Evaluation and Making: Strict infection
control policies proposed by governments have been taken to
limit and mitigate the fast-spreading of COVID-19, such as
lock-down, travel restrictions, quarantine, social distance ban.
mHealth Sensing data among populations is contributing in
evaluating and making these policies [150], [157]. Intuitively,
several of the sensing indicators among populations, such as
the average time of users stay-at-home and the number of
mobile devices in a public place, can be used to measure
stay-at-home and social distance policy efficiency [124], [125].
Furthermore, statistical and machine learning methods can be
used to estimate, simulate, and predict the effects of the poli-
cies on controlling virus spreading driven by the population
data gathered in mobile devices [127], [128], [130].

D. Discussion

Note that, in this work, we review and summarize the
works on mHealth Sensing Apps and Systems that deployed
over massive smartphones and commodity interactive devices,
such as tablets, smartwatches, and other wearable consumer
electronics in non-invasive sensing manners. Many other
works intending to monitor physiological status of patients for
medical purposes or professional devices/systems for critical
cares/assisted living, such as medical sensors [158]–[162],
Internet of Medical Things (Medical IoTs) and Medical Cyber-
Physical Systems (Medical CPSs) [163]–[185], and medical
robots [186]–[191], are not included here. Of-course, there
are many other behavior-related health issues that are not well
covered here, such as drug/alcohol abuses or addiction [192],
[193] in general.

III. TAXONOMY SYSTEM I: CLASSIFICATION OF MHEALTH
SENSING BY SENSING OBJECTIVES

In this phrase, we introduce the proposed mHealth Sensing
taxonomy system I from sensing objectives perspective. With
respect to the two perspectives of modern healthcare, as shown
in Figure 2, we specify and classify Major Sensing Objectives
of mHealth Sensing apps as (a) Personalized Medicine and (b)
Population Health apps. Then we further discuss the Detail
Sensing Objectives in each step of the life-cycle framework of
mHealth Sensing.

A. Objectives in Sensing Task Creation & Participation

The main objectives in Sensing Task Creation & Partic-
ipation step are creating and allocating health-related tasks
in mobile apps, then prompt the participation of the users or
recruited participants to execute the sensing tasks. Since the
health benefit for the participants in the two types of apps
varies (i.e., participants in Personalized Medicine apps obtain
direct personal health benefit, while participants in Population
Health practices hardly obtain health benefit equaling to
their efforts), where the detail objectives in this step can be
distinguished as service provision for personalized medicine
seekers and recruitment for population health participants.

• Service Provision for Personalized Medicine Seekers -
Sensing apps for Personalized Medicine provide accurate

health status monitoring and personalized interventions or
treatments, which can be concluded as healthcare services
provision [18], [194], [195]. In most of the Personalized
Medicine cases, participants actively engage in the sens-
ing task for personalized medicine with an expectation
to seek and extend personal health benefit [196]. To this
end, the detail objective of personalized medicine apps
in this step is to provide exact healthcare services (e.g.,
exercise reminders and user-friendly interface) and keep
improving service quality (e.g., optimizing intervention
times with algorithms) to guarantee and enhance users’
active engagement [197].

• Recruitment Provision for Population Health Partici-
pants - Population Health apps are mostly for studying
population health issues leveraging massive collected
data from groups, causing a problem for participants is
that – there is no intuitive and sufficient health benefit
gained for themselves to compensate for their costs and
concerns (e.g., time consumption, privacy exposure [198],
and battery usage [199]). For example, in a COVID-19
infectious population screening [200] or a rare clinical
disease causes understanding program [201], the results
are valuable for organizers but limited for participants.
The above reasons lead to a unique detail objective of
Population Health apps in absorbing participation – pro-
viding recruitment to gather participants and motivating
their performance with incentives [53], [202].

B. Objectives in Health Surveillance & Data Collection

With exact sensing tasks and a pool of users/participants,
the bottleneck in Health Surveillance & Data Collection is
– how to effectively collect and gather trustworthy sensing
data, with taking users’ costs and concerns into consideration.
As Figure 3, we summarize that mHealth Sensing apps’
trustworthiness lies in data quality and data quantity; further,
the data quality can be further indicated as data precision
and data fidelity, and the data quantity can be divided into
longitudinal coverage and population coverage. In addition,
some objectives are commonly existed in both Personalized
Medicine and Population Health practices, such as security &
privacy and resources consumption, but vary in details, where
we reviews these issues in the last of this section.

a) Personal Sensing for Personalized Medicine: In Per-
sonalized Medicine mobile apps, to provide timely and adap-
tive healthcare services based on precise and sufficient data,
the detail objectives in this step are data precision and longi-
tudinal coverage in data collection process.

• Data Precision - The data precision is the most straight-
forward pursuit of Personal Sensing tasks, which de-
termines the service quality of Personalized Medicine.
Here we give the mobile medical devices in the intensive
care unit (ICU), which is the last barrier to save the
lives of dying patients in the hospital, as examples [203],
[204]. The personal wearable devices with incentive body
sensors, light and sound sensors, and others precisely
collecting the physical and environmental context data
from ICU are typical Personal Sensing schemes with high
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sampling precision, finely sensing physical and environ-
mental biomarkers such as facial expressions, functional
status entailing extremity movements and postures, and
environmental indicators for ICU’s context [205].

• Longitudinal Coverage - Data with large longitudinal
helps understanding personal health issues comprehen-
sively for two fold reasons – not only longitudinal
moment-to-moment data sampling is helpful for cap-
turing complex health dynamics to achieve meaningful
modelling and prediction [14], [206]–[208], but also the
analyzing of the onset of some diseases is not trivial,
as the disease might be triggered by the interaction
of multiple pathogenic determinants over a long period
(e.g., monthly and annually), which cannot be detected
with a brief observation [209]–[211]. In addition, the
interaction of mHealth Sensing apps is also beneficial
to the enlargement of longitudinal coverage of data col-
lection, which shares and gathers information between
apps. For instance, Google Health and HealthVault are
cross-platform personal health record systems storing and
sharing information between mHealth apps in a secure
and privacy-protected manner, which gives mHealth apps
a great potential for comprehensively serving health and
well-being [212].

b) Crowd Sensing for Population Health: In Population
Health practices, the task of Health Surveillance & Data
Collection is to build a large-scale and error-free data pool
surrounding the health issues to be analyzed and researched,
with detail objectives of ensuring data fidelity and enlarging
population coverage in the sensing process.

• Data Fidelity - Versus data precision, data fidelity in the
mHealth Sensing context refers to that there is no human
error (e.g., intentional cheating or equipment failure) in
the gathered data [213]–[215]. Especially, different from
the collections of some general datasets (e.g., traffic speed
data or urban temperature data) which can be gathered
in a short time, collecting daily/clinical health-related
data requires enormous manpower, incentive cost, and
devices resources in a long time [216], [217]. Also, once
human errors are introduced into the data pool, it would
causes biased health modeling, inaccurate treatment effect
measurement, and wrong medical conclusions, which are
harmful to the health and well-being purposes [218].

• Population Coverage - Enlarging the population cov-
erage of Health Surveillance & Data Collection is ben-
eficial to obtain statistical-significant and generalized
Data Analysis & Knowledge Discovery. Specifically,
in Crowd Sensing paradigm, some general guarantees
for population coverage are age, gender, region, patient
groups coverage; for varied research purposes, the cov-
erage requirements for population attributes vary [219],
[220]. For example, data for population mental health
researches should cover balanced genders and diversified
ages for comparative analysis and knowledge discov-
ery with no/limited prior knowledge leveraging machine
learning [221] or statistical inference [222] approaches;
data for sleep science researches should cover kinds of
patient groups such as sleep apnea, insomnia, Parkinson’s
disease, and periodic limb movement disorder (PLMD),
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as well as healthy people as control group.

In addition, though the detail sensing objectives in Health
Surveillance & Data Collection step are specified as the
above perspectives, these objectives are usually overlapped.
For example, data precision and longitudinal coverage are
also meaningful in Crowd Sensing for Population Health
practices, but compared to these two objectives, data fidelity
and population coverage are in need of relatively dedicated
D&Is for specific existing problems.

c) Commonly Existed Objectives – Concerns & Costs:
Beyond the technical objectives in trustworthiness of data,
other issues in solving users’ practical concerns and costs are
the common objectives for mHealth Sensing apps.

• Security & Privacy - Issues in security and privacy are
greatly concerned in health-related domains, as health
data is top sensitive [55], [153]. As for Personalized
Medicine mobile apps, the security/privacy issues include
identity privacy [223] (participants do not want to ex-
pose personal information), data privacy [224] (health-
related data is top sensitive), attribute privacy [225] (for
attributes such as locations and trajectories). Besides,
the risk of privacy leakage in Population Health apps is
greater [226], [227], as it requires regular sensitive health-
related data uploading and offloading between mobile de-
vices and cloud servers via networks [228]. To be specific,
additional privacy concerns in Population Health data
collecting and uploading processes are task privacy [229]
(the sensing tasks may correlate to participants’ illnesses),
and decentralized privacy [230] (frequent communication
with a central server could be more easily hacked).

• Resources Consumption - Keeping mobile sensing data
sampling causes considerable battery, hardware, and soft-
ware resources consumption, for every mHealth Sens-
ing participants. From Personalized Medicine perspec-
tive, the resource consumption is more intense, as its data
collection actions are generally continuous and intensive
[231]. Against this background, the type and combina-

tion of sensors in working and their sampling rate, data
accuracy and sampling abundance are under considera-
tion [232], [233]. From Population Health perspective,
when the hardware consumption of each individual’s
perception is already relatively economical, the decrease
in resources consumption are mainly achieved optimiz-
ing the task allocation in spatial, temporal, participants,
and content to achieve cost-effective globally sensing
[64], [234]–[237].

Worth mentioning, the pursuit of data trustworthiness may
increase the concerns & costs of users; also, concerns & costs
also limit the intensive, longitude, and broad-coverage data
sampling of users. It leaves app developers to make an optimal
tradeoff between the two objectives in practice, as shown in
Figure 3. On the one hand, the developers should design and
develop the apps with certifications that minimize data access
privileges subject to the actual needs, to release the costs &
concerns. On the other hand, advances in resources saving
and privacy protection approaches may make it possible for
developers to obtain additional permissions from users, which

Data
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Knowledge
Discovery

Personal Sensing Crowd Sensing

Historical Data

Current Physical Status

Current Environment

…

… Single User

or or

Stay-home too long

Exercise too strenuously

Listen too loud music

anxious heart risk hearing
damage

Historical Physical Status

Historical Environment

…or

Fig. 4: The comparison of main objectives of Data Analysis &
Knowledge Discovery in the apps for Personalized Medicine
and Population Health

further improves the apps’ trustworthiness.

C. Objectives in Data Analysis & Knowledge Discovery

After gathering expected personal or population data pools,
the main objective in Data Analysis & Knowledge Discovery
fold is to discover health-related knowledge about individuals
and populations from gathered data, and provide adaptive and
timely healthcare as feedback [238], [239].

a) Personal Sensing for Personalized Medicine: Apps
for Personalized Medicine usually recognize [240] or predict
[241], [242] individual user’s health status by integrating
his/her historical, as well as current physical and environ-
mental data surrounding a specific health issue to accurately
recognize/predict health risks and provide precise healthcare
interventions at the right time, as shown in Figure 4.

• mHealth Accuracy in Risk Prediction - Effective per-
sonalized healthcare services rely on the accuracy in the
health status modeling and progression prediction. Suffi-
cient multimodal data collected user’s daily life such as
self-reported medical history, physical biomarkers (e.g.,
heart rate), and environmental biomarkers (e.g., locations)
provides great information for accurately modeling and
predicting one’s health outcomes and progressions via
machine learning approaches [243]–[245]. For example,
by passively monitoring schizophrenia patients’ psychi-
atric symptoms represented by 7-item scale scores and be-
havioral/contextual characteristics (e.g., physical activity,
conversation, mobility) over months, Wang et al. [246]
proposed a prediction system which predicts psychiatric
symptoms’ dynamics and progression merely based on
mHealth Sensing data without traditional self-reported
ecological momentary assessment (EMA).

• mHealth Precision in Predictive Intervention - A typi-
cal detail objective in this step for Personalized Medicine
apps is to provide predictive interventions with high
mHealth precision responding to recognized/predicted
health outcomes and progressions (e.g., increasing de-
pression and anxiety, exposing to high heart risk, and
being damaged hearing). Specifically, the precision above
lies on precise intervention timing, measures, and inten-
sity, which leads to just-in-time, adaptive, and effective
mHealth supporting services [18], [247]. For example,
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Costa et al. [136] proposed to improve one’s cognitive
performance by unobtrusively regulating emotions with
smartwatch notifications in varying detected heart rates.
Lei et al. [248], by formulating the intervention tasks
in real-time as a contextual bandit problem, provided an
online actor-critic algorithm as an intervention strategy to
guide JITAI practices.
b) Crowd Sensing for Population Health: Crowd Sensing

practices investigate population health issues by comprehen-
sively mining massive health-related data among researched
groups such as monitoring and screening the population health
status in a region in both depth and coverage [245], [249], and
verifying [87] and inferring [84] the determinants of specific
diseases via powerful statistics-based approaches.

• Depth and Coverage of Population Health Monitoring
in Communities - For Population Health apps (especially
for the apps on population health monitoring, screening,
and surveying), in terms of data analysis, it is meaningful
to deeply mine and widely enlarge the information of
targeting communities leveraging collected Crowd Sens-
ing data. For example, in many mHealth Crowd Sensing
practices, some specific characteristics of health problems
(e.g., the contact infection of infectious diseases [250],
familial heredity phenomenon of genetic diseases [251],
and regional relevance of conventional health habits
[252]) give great possibility to finish a mobile popula-
tion health screening of the whole community by only
investigating a subset of this group, which is a manner
with accuracy guarantee and lower cost.

• Statistical Power of mHealth Approaches in Knowl-
edge Discovery - The statistical power of the mHealth
approaches is a key pursuit for medical-related knowledge
discovery in large-scale population data. Specifically, in
mHealth field, Crowd Sensing is being used as a useful
tool to collect and analyze massive population health-
related data to obtain medical knowledge, where new
knowledge can be summarized or inferred by statistical
methods for a better understanding of health determinants
[71], such as staying home too long causes mental health
problems [83], lacking exercise would increase the risk
of heart attack [95], and listening too loud music leads to
tinnitus [107]. For example, Zhang et al. [220] revealed
how human mobility features extracted from large-scale
human mobility data affect one’s health conditions and
which group of features contribute significantly leverag-
ing statistical approach – shapely additive explanation
value analysis, which shed light on how to understand
human mobility data in health monitoring domain.
c) Commonly Existed Objectives – Risks and Ethical

Issues: In both mHealth-based Personalized Medicine and
Population Health knowledge discovery practices, some risks
and ethical issues cannot be ignored in sensing objectives.

• Risks and Ethical Issues - Risks and ethical issues are
crucial in human-subject and mHealth research, since
personally identifiable health-related data of users would
be collected, uploaded, and analyzed, as well as sensitive
scientific study results would be made public to varying
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Population Health 
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  Intervention Precision
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- Risks and Ethical Issues 

 

Fig. 5: The relationship between the objectives of Personal
Sensing and Crowd Sensing paradigms

degrees, even if some certifications are issued by the
developers [253], [254]. For instance, funded by three-
party advertisers, such as insurance companies, developer
may exposure information to them; some patients and
victims may be forced to pay more or even fail to apply,
which goes against ethics [255]. Besides of revealing
private health information, common risks and ethical
issues in mHealth Sensing apps include data loss, theft
and hacked [256], excessive or unauthorized collection
of data [257], loose medical conclusions and negative
impact on life [258], [259]. Besides, the scientific studies
carried with mHealth apps may be not solid enough,
since most of the obtained conclusions are based on
limited observation samples and periods; for example,
few studies have conducted follow-up studies on large-
scale populations for more than a few months, and exact
long-term impact of mHealth sensing apps on personal
and population health is still not scientifically clari-
fied [260]. Against this background, appropriate analysis
of potential risks [259], ethical issues [261], [262], as
well as previously mentioned security & privacy issues
should be done ahead of issuing certifications of mHealth
apps being used in daily-life and even medical scenarios.

It is worth mentioning that, applying Crowd Sensing apps
can be regarded as a accumulation of the number of Personal
Sensing apps deployed in a community. Thus, most of the
objectives in Personal Sensing are also what the Crowd Sens-
ing paradigm pursues in practice. To this end, here we con-
clude the objectives of Personal Sensing, Crowd Sensing, and
mHealth Sensing as shown in Figure 5, where their objectives
are progressive. For example, intuitively, in Crowd Sensing
practices, improvements in cost saving and data accuracy also
certainly prompt the performance of the apps.

IV. TAXONOMY SYSTEM II: CLASSIFICATION OF
MHEALTH SENSING BY SENSING PARADIGMS AND D&IS

With respect to distinguished sensing objectives (i.e., Per-
sonalized Medicine and Population Health) and their details
discussed in Section III, two sensing paradigms (i.e., Personal
Sensing and Crowd Sensing) are correspondingly proposed to
deal with related technical issues through detailed D&Is. In
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this phrase, as shown in Figure 6, for each step of mHealth
Sensing life cycle, varying detailed D&I issues of the two
sensing paradigms are discussed.

A. Design & Implementation Issues in Sensing Task Creation
& Participation

To prompt the users’ participation and task execution
leveraging services and recruitment respectively for Personal
Sensing for Personalized Medicine and Crowd Sensing for
Population Health apps discussed in III-A, in this section, we
intend to specify the detail D&I issues of the two paradigms
as followings.

a) Personal Sensing for Personalized Medicine: The
promotion of user engagement in Personalized Medicine apps
is by providing services. Here we discuss two typical forms of
user engagement services – clinical health service and human-
computer interaction (HCI) and gamification and attraction in
detail.

• Clinical Health Service and HCI - Providing straight-
forward and effective clinical health service with good
HCI design for user experience is the most intuitive
way to increase users’ active engagement, since the
essential motivation of the users downloading the app is
to obtain personal health benefit [263], [264]. In practice,
user engagement strategies can be organized as setting
sensing health-related targets around users’ personalized
objectives, delivering adaptive therapeutic feedback in-
cluding positive reinforcement, reflection reminders, and
challenging negative thoughts [265], [266], and designing
easy-to-use platforms [199]. For instance, Cai et al.
[267], [268] propose to prompt an adaptive and passive
personal mobile sensing framework to provide ecological
momentary assessment and intervention services based on
the reinforcement learning techniques, which significantly
increased user engagement in healthcare apps.

• Gamification and Attraction - Gamifying the mHealth
Sensing apps for providing entertainment would promote
user engagement, as not only the mobile sensing data can

be used as input for gamification [269], but also mobile
apps are excellent and prevailing mobile carriers for
pervasive entertainment [270]. In practice, gamification
strategies are widely applied in Personalized Medicine
apps to promote participation such as self-report data
collection [271], [272] (e.g., setting the goals of the
game as the indices to be sensed), data pre-analysis on
client [273] (e.g., pop-up windows asking the user about
the activity and status when the app detects a sequence
of abnormal indices), and health intervention wrapping
[274] (e.g., relaxing users under depression via games).
Typically, Rabbi et al. [272] designed an app named
SARA, which integrates gamified engagement strategies
including contingent rewards, badges for completing ac-
tive health tasks, funny memes/gifs & life-insights, and
health-related reminders or notifications.

b) Crowd Sensing for Population Health: Though partic-
ipants in Population Health tasks may also actively/voluntarily
engage in the tasks attracted by D&Is for services (i.e.,
services and HCI designs) above [275], a crucial problem in
the tasks does exist – participants may not obtain straight-
forward health benefit compensating their efforts, leading to
its unique incentive mechanisms – recruitment with monetary
incentives [42]. Worth mentioning, in most Crowd Sensing for
Population Health practices, the incentive mechanisms (i.e.,
services and recruitment) are not used strictly separated; they
can be wrapped together to optimize the incentive effects [43],
[276], [277].

• Recruitment with Monetary Incentives - Monetary in-
centivization is an intuitive way to quantify and equalize
participants’ efforts and benefits, though some voluntary
Crowd Sensing activities also do exist. In practice, for
research or business purposes, mHealth professionals and
insurance companies may consider to promote mHealth
apps as tools for groups of interests [278]. The monetary
incentives strategies can be further divided into categories
as platform-centric and user-centric methods [53]. The
platform-centric methods refer to that the allocation and
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adjustment of incentives are charged by the organiz-
ers. For example, based on the game theory [279], the
organizers can lead the task and adjust the strategies
by measuring the individual/overall performance of the
participants [280]. The user-centric methods are mostly
conducted in an auction manner, where users bid for the
tasks published and the participants with the lowest bid
are dynamically allocated to complete the sensing tasks
[281].

In addition to the above incentive models, there are some
works focusing on the participant selection and incentive allo-
cation problems [52], [56], [57], [235], [236], [282]–[284] un-
der certain budgets and data collection objectives/constraints,
since sometimes too straightforward incentive allocation may
lead to biased selection and low retention rate in recruited
populations [285]. Specifically, Xiong et al. proposed sev-
eral participant recruitment strategies [57], [282]–[284] for
mobile crowd sensing in either online or offline manners.
Wang et al. [235], [236] studied the problem of participant
recruitment and task/incentive allocation in the context of
multi-tasking, where incentives are allocated to the same
pool of potential participants for multiple tasks with shared
budgets, via hierarchical data collection objectives. The same
group of researchers also studied to collect population health-
related data from large crowds with non-monetary incentives
in practice [64], [286].

B. Design & Implementation Issues in Health Surveillance &
Data Collection

In the Health Surveillance & Data Collection fold, for the
objectives of data quality, sensing schemes and data gathering
approaches are the main D&I issues. As shown in Figure 7,
in mHealth Sensing field, either it needs widespread devices
(e.g., mobile devices and social network) with pervasive cov-
erage among populations, or it needs dedicated devices (e.g.,
portable medical devices) for accuracy and professionalism,
which is hard to be traded off, limited by the costs and
the accessibility of specific devices. Besides, there are some
trails, surveys, and evaluations approaches in Crowd Sensing
paradigm especially.

a) Personal Sensing for Personalized Medicine: Though
the two paradigms sometimes adopt common sensing schemes
(e.g., wearable devices and mobile devices shown in Figure
7) under some circumstances, while, for the objectives on
numerical accuracy and longitudinal coverage, the sensing
schemes in Personal Sensing practices are more granularity-
oriented.

• Granularity-Oriented Sensing Schemes - To accurately
monitor user’s physical/environmental dynamics in a
timely manner, some dedicated and intensive sensors
deployed in medical devices are commonly used in
Personal Sensing practices, such as mobile fall detection
devices on elderly care in daily scenarios [287]–[289]
and intensive location/maneuvers monitoring devices in
hospital scenarios [290], [291] which are equipped with
radar. For example, Fang et al. [292], [293] purposely
embedded radio sensor into wearable devices as a new
powerful sensing modality to provide whole-body activity
and vital sign monitoring in clinical, which serves as an
example that specialized sensing schemes provide richer
function in Personal Sensing scenarios.

b) Crowd Sensing for Population Health: To broadly col-
lect health-related data with guarantees of population coverage
and data fidelity, in Crowd Sensing practice, the detail D&Is
lie on coverage-oriented sensing schemes (for population
coverage), trials, surveys, and evaluations (for data collection
efficiency and fidelity).

• Coverage-Oriented Sensing Schemes - In Crowd Sens-
ing practices, though many sensing schemes are the same
as those used in the Personal Sensing apps as shown
in Figure 7, while, in order to enable the system to be
used in a larger population coverage, ubiquitous sensing
schemes are prevailing in Crowd Sensing practices, such
as social medias (e.g., Facebook and Twitter) [294],
[295] and large-scale human mobility data which is not
gathered dedicatedly for health-related purposes [83],
[296], [297]. For instance, Choudhury et al. used passive
sensed data from social medias to measure and predict
the depression in population [294], [298], even further
to discover shifts to suicidal tendency from content in
Reddit [299].

• Trails, Surveys, and Evaluations - In Crowd Sensing
data collection process, it is essential to motivate par-
ticipants to keep uploading sensing data with efficiency
and fidelity. Typically, trail and survey schemes are for
the efficiency, and data evaluation schemes are for the
fidelity. As for trails and surveys, micro-randomized
trials (MRTs) are tools for maintaining and improving
participants’ efficiency by optimizing the combinations
of incentives (e.g., varying levels of monetary incentives,
and virtual rewards) [277], [300], [301]. With MRTs,
participants first randomly grouping to collect data under
varying incentives, then in the following sensing loops,
the collected data in the previous round is used to measure
which combinations of incentives are optimal. As for
evaluation schemes, they are for enforcing data fidelity
[302]. In specific, once a new round of data collected, but
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before accepting the data as convinced, the data fidelity is
estimated and only convinced data is gathered; according
to the estimation, positive or negative feedback is given
to participants to reward/punish them in the following
rounds. An intuitive scheme, named truth discovery [303],
is to let multiple participants finish a same task to find
the wrong-data providers [304]. However, this repeated
validation manner cannot be adopted to health-related
data collection since sensitive personal data can only be
sensed by the individual himself/herself. While the trust
framework [305] is an alternative means to solve this.
Some measurement methods can be used to establish a
credit rating measurement system for participants, and
implement different acceptance of data contributed by
users with different credits, and varied tasks and incen-
tives are dynamically allocated to enforce participants’
performance in the following sensing rounds [306]–[308].

C. Design & Implementation Issues in Data Analysis &
Knowledge Discovery

With respect to detailed sensing objectives listed in Section
III-C, we one-by-one discuss the detail D&I issues in this
section. Furthermore, in order to fully study detailed technical
perspectives of the two sensing paradigms, inspired by the
mHealth Personal Sensing framework proposed by Mohr et al.
[3], we formulate the D&Is of Data Analysis & Knowledge
Discovery workflow as shown in Figure 8.

a) Personal Sensing for Personalized Medicine: Gen-
erally, in Personal Sensing, Data Analysis & Knowledge
Discovery serves to mine collected raw data to realize health
status recognition and interventions or health outcomes and
progression predictions.

• Health Outcomes and Progression Predictions - Due
to the fact that most health problems are determined
by multiple pathogenic factors and sometimes progress
slowly, it is not trivial for conventional clinical methods to
effectively predict health outcomes and progressions via
sparse clinical records [309]. Personal Sensing data pro-
vides rich personalized information to model the health
status of user and predict his/her future health outcomes
and progressions. As shown in Figure 8 (a), after col-
lecting raw data (e.g., GPS location, microphone signal,
and screen status), digital physical and environmental
biomarkers (e.g., places, ambient noises, and app usages)
can be extracted [310], [311]. Then, personal health status
modeling and prediction models analyze individuals’ clin-
ical status and predict health outcomes and progressions
with consideration of longitudinal data both in current
and historical. For instance, in the machine learning
era, feature embedding and deep learning techniques are
good tools to solve the challenges in multidimensional
pathogenic factors and long-term disease progression;
specifically, feature embedding techniques (e.g., graph
embedding) automatically learn and extract influential
features [312], and deep learning models (e.g., RNNs,
GNNs) could serve as predictors with great performance

in dynamically capturing patterns in temporal and other
dimensions [241], [242], [313]–[315].

• Health Status Recognition and Interventions - As
shown in Figure 8 (a), according to different health status,
the Personal Sensing apps could deliver varying inter-
ventions as healthcare services for users. What’s more,
the apps can further recognize users’ following status for
measurement of the interventions’ effectiveness to refine
the strategies and suit the users [316], [317]. As for im-
plementations, activity recognition approaches are helpful
for health status modeling and recognition [318]–[320].
Okeye et al. [321]–[323] proposed multiple-sensors based
activity recognition schemes by extracting knowledge
from smart ambiences; and Triboan et al. [324]–[327]
improved the activity recognition methods to be applied
in complex environments in a more real-time and fine-
grained manner. Besides, MRTs [328] are ideal tools to
deliver JITAI for patients. As stated in Section IV-B,
analogous to the designs of MRTs in improving the
effectiveness of interventions.

b) Crowd Sensing for Population Health: We discuss two
typical applications (i.e., population health status measure-
ment and health determinants discovery) to conclude D&I in
Crowd Sensing applications.

• Population Health Monitoring and Assessments -
Intuitively, as shown in Figure 8 (b), once sensing tasks
among a group of users are adopted, organizers can
scan the clinical status among populations and achieve
assessment of population status. Furthermore, in the
population assessment models, some techniques (i.e.,
transfer learning [329]) inspired by some characteristics
of population health problems, such as spatial correlation,
help achieve low-error surveys of entire target group
by only monitoring a subset of users. For example, to
investigate a large group of people such as citizens of
a country, Chen et al. [64] studied and indicated spatio-
temporal correlation of neighboring regions and proposed
to do data inference for the whole map with limited region
samples, which gives insights in operating population
health monitoring in a Crowd Sensing manner.

• Health Determinants Discovery - As shown in Figure
8 (c), the D&Is of applications on population health
determinants discovery differ. Specifically, in clinical
practices, especially for mental health and chronic ill-
ness, with prior knowledge such as clinical diagnosis
and EMA, organizers massively collecting multi-modal
data from participants (participants may be divided into
experimental group and control group) and analyze popu-
lation pattern among participants’ biomarkers and clinical
diagnosis to understand and discover health determinants;
finally, population knowledge serves as feedback, which
benefits to both participants themselves (for health-related
interests) and organizers and researchers (for knowledge
about the health issues researched). From the implemen-
tation perspective, large-scale data analysis methods give
great insights on population health knowledge discovery
(e.g., inference and understanding) from Crowd Sensing
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Fig. 8: Data Analysis & Knowledge Discovery workflows in three typical Personal Sensing and Crowd Sensing apps.

data. For instance, machine learning methods such as
clustering algorithms are widely used to classify indi-
viduals into groups according to common health-related
patterns [330]. In addition, statistical methods such as sta-
tistical inference are also promising confirmatory tools for
understanding and inference on clinical conclusion than
training-based models with confidence intervals on as-
sessment, which, compared with machine-learning-based
methods, is commonly leveraged by clinical scientists
since it is a hypothesis-driven and interpretable manner
[331]. For example, Boukhechba et al. [83] used Social
Interaction Anxiety Scale (SIAS) correlation analysis to
understand how social anxiety symptoms manifest in the
daily lives of college students; besides correlation analy-
sis, Huang et al. [7] operated a Least Absolute Shrinkage
and Selection Operator (LASSO) linear regression model
to infer the causal relationship between mental health
disorders and location semantics.

Though items above could summarize most of the D&Is issues
in this step in Personal Sensing and Crowd Sensing paradigms,
there are also some side D&Is issues for some problems that
may exist in the mobile sensing data [332]. For example,
ideally, the input of the data analysis algorithm is continuous
and sufficient, while in mHealth Sensing contexts, the data
streams collected may be sparse and biased due to some tech-
nical issues (e.g., operating system’s restrictions on software
running in the background) and varying users’ usage behaviors
(e.g., forgetting to wear the device or run the app); thus
overcoming the insufficiency of data and effective modeling
is an urgent problem to be solved [27], [333]. Additionally,
similar side problems include ways to analyze and understand
the relationship between the complex dynamics of the health
and multimodal factors [334], and ways to integrate medical
knowledge into algorithms pervasively and effectively [335].

V. FUTURE DIRECTIONS

In this work, we reviewed the applications and systems of
personal sensing and crowd sensing for personalized medicine
and population health, respectively, and proposed two tax-
onomy systems for mHealth Sensing systems from the per-
spectives of “Sensing Objectives” and “Sensing Paradigms” .
Here summarize the two taxonomy systems in Table III. It is
obvious that mHealth Sensing apps in both Personal Sensing
and Crowd Sensing paradigms will continue to be promis-
ing research topics to solve both Personalized Medicine and
Population Health problems, where some research problems
such as data limitations, data fidelity, privacy & security, risk
analysis, and ethical issues are still not well addressed in
mHealth Sensing life cycle. Based on the proposed taxonomy
systems and identified gaps, we foresee the following research
directions in future works.

A. Data Limitation and Data Fidelity

In mHealth contexts, the potential future directions in terms
of data could be solving the research problems of data
limitations and data fidelity. First, the data limitations in
time series, as well as between sensor samplings and system
operations [336], [337] lead to discontinuous multimodal data
collection and even loss in mHealth apps [338]. Existing
mHealth data analysis works lack design for handling imper-
fect heterogeneous data, where transfer learning techniques
may be potential tools [329]. Second, the data fidelity issues
caused by participants’ concealment or deception lead to
biased/error data gathering and misleading/false health con-
clusions [339]. Thus, besides of promoting user engagement
by incentive strategies, the work of effectively verifying the
fidelity of data uploaded by users is worthy of further study.

B. Privacy and Security Preserving for mHealth

Note that privacy and security have been widely studied
in Medical IoTs or Medical CPSs [171], [172], [176]–[178],
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TABLE III: Summary of two taxonomy systems for mHealth Personal Sensing and Crowd Sensing

Sensing Objectives (System I) Sensing Paradigms and D&Is (System II)
Personalized Medicine Population Health Personal Sensing Crowd Sensing

Sensing
Task Creation

&
Participation

Service provision
for personalized
medicine seekers

Recruitment provision
for population
health participants

Improving user engagement
via clinical health services,
gamification and attractions

Extra motivating participants’
performance via recruitment
with monetary incentives

Health
Surveillance

&
Data Collection

More focusing on data
precision and longitudinal
coverage

More focusing on data
fidelity and population
coverage

Using granularity-oriented
sensing schemes

Using coverage-oriented
sensing schemes with trails,
surveys, and evaluationsPrivacy & Security and Resources Consumption

Data Analysis
&

Knowledge
Discovery

Improving mHealth
accuracy in risk
prediction and precision
in predictive interventions

Pursuing depth and
coverage of health
monitoring in communities
and statistical power
of mHealth approaches

Leveraging health outcomes
and progressions predictions,
and health status recognition
and interventions

Leveraging population health
assessment and health
determinants discovery

Risks and Ethical Issues

[340], [341]. Compared to medical IoTs or medical CPSs
deployed at homes or professional clinics, the mHealth sensing
systems leveraging the sensors deployed at ubiquitous mobile
devices make the privacy and security issues even more com-
plicated but lack of studied. To secure the personal health data
from potential leakages, encryption techniques [342], [343]
could be used and optimized for mHealth data management.
Additionally, privacy protection that controls the access of
mobile Apps to some critical information [344], [345] is also
required to scale-up mHealth in societies. In this way, mobile
developers frequently need to design and develop the apps
with verification that minimizes data access privileges subject
to the actual needs. Thus, a unified and integrated approach,
combining the data security and privacy controls subject to
principle of least privilege [346]–[348] for mHealth sensing,
might be a promising direction for future research.

C. Risks and Ethical Issues in Human-Subject Studies

After-all, the research on mHealth sensing is human-subject
studies, where human involve in-the-loop of scientific studies,
data analysis, and information disclosures, causing potential
risks and ethical issues. Though some works have been done
in software developing and data science domains [349], [350],
versus clinical medical practices which pay great attention to
risk analysis and ethical principles [351], the risk analysis
and ethical issues in mHealth area are not properly studied
and addressed [261], [262]. For example, versus medical
records and conclusions are drawn under highly professional
processes and stored separately by hospitals’ databases with
strict rules for sharing, the measurements and decisions in
mHealth practices may not be strictly conducted and shared
under criterion [260]. Truly, some of mHealth sensing apps,
such as Sensus [4], already include protocol certification and
ethical review components in the system to monitor the whole
life-cycles of mHealth crowd sensing. In the future, scientific
study, protocol management, risk analysis, ethical review, and
even prescription management [184] criteria and techniques
should be further studied, especially for commercially-used
mHealth sensing apps and systems.

VI. LIMITATIONS AND CONCLUSIONS

The mHealth Sensing is a practical approach in modern
healthcare domain, which is being widely used for the objec-
tives on either (a) personalized medicine for individuals or (b)
public health for populations. In this work, we reviewed and
summarized mHealth sensing Apps and systems that deployed
over smartphones and commodity ubiquitous devices. Though
there are many methods for reporting systematic reviews
(e.g., PRISMA [352]), in this paper, our review method is
mainly intuition-driven and vision-based. We have covered
more than 300 papers and proposing new taxonomy systems
that summarize and categorize existing works in two sensing
paradigms (i.e., Personal and Crowd Sensing) and three stages
of the mHealth sensing pipeline in details.

Also, though we have tried our best to cover the important
works in this area and related fields, this survey is still with
several limitations. For example, this work did not include pro-
fessional medical systems for medicare/rehabilitation/assisted
living purposes, such as medical sensors [158]–[162], [353],
Medical IoTs/CPSs [163]–[185], and medical robots [186]–
[191]. Furthermore, there have been a number of great works
surveying or reviewing this area and related fields [1], [24],
[42], [100], [145], [163], [219], [226], [228], [229], [238],
[262], [279], [291], [302], [354]–[359], while we have not
compared our taxonomy systems with these works.

To systematically summarize the existing works and identify
the potential directions in this emerging research domain, this
work actually presents two novel taxonomy systems from
two major perspectives (i.e., sensing objectives and sensing
paradigms and Designs & Implementations (D&Is)) that can
specify and classify apps/systems from steps in the life-cycle
of mHealth Sensing: (1) Sensing Task Creation & Partici-
pation, (2) Health Surveillance & Data Collection, and (3)
Data Analysis & Knowledge Discovery. Through discussing
the real-world Mobile Sensing apps/systems in the proposed
taxonomy systems, most of the research problems in mHealth
Sensing can be formally classified, and several future research
directions are pointed out, targeting to provide structural
knowledge and insightful ideas and guidance for researchers
in the related field.
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APPENDIX

DISCUSSION ON SCIENTIFIC APPROACH

In the appendix, we discuss the scientific approach of this
survey. First of all, we would like to clarify our motivation —
mHealth sensing, where we include a brief discussion on the
comparisons between mHealth sensing and sensing techniques
in general medical settings. Later, we review the scientific
procedures and criteria that we select publications for review.
Finally, we review the scientific way that we built the two
taxonomy systems.

A. Research Definition: mHealth Sensing versus Medical
Sensing

In this paper, we give a comprehensive survey on mHealth
Sensing techniques, where the topic (e.g., mHealth Sensing)
is close but significantly from “Medical Sensing”. Here we
discuss the major differences between the two types of sensing
techniques in a structured manner, including “target popu-
lations” who need the two sensing techniques, “deployment
contexts” that the two sensing techniques are adopted, “med-
ical goals” that the two sensing techniques aim to meet, and
“methodologies” that the two sensing techniques propose to
collect data.

As shown in Table IV, the mHealth Sensing and Medical
Sensing techniques vary significantly. Specifically, mHealth
Sensing techniques are majorly designed for voluntary/active
users in some daily/commercial scenarios, for health-related
behaviors monitoring and intervention, by leveraging wear-
able/mobile devices. The overall goals of mHealth Sensing
are improving health status and well-beings by studying the
innovative applications of mobile sensing techniques to collect
behavioral and environmental data. In contrast, the Medical
Sensing takes care of patients in medicare context such as
hospital or clinical scenarios, where it aims at providing
the medical diagnoses and treatments through professional
devices, where the overall goals of Medical Sensing is to de-
sign new measurement and instrument techniques for medical
purposes. Thus, the mHealth Sensing mainly discussed in this
paper essentially differ from Medical Sensing.

TABLE IV: mHealth Sensing versus Medical Sensing

mHealth Sensing Medical Sensing
Populations Voluntary or active users Patients in medical care
Contexts Daily or commercial Hospital or clinical
Coverage Monitoring and intervention Diagnosis and treatment
Goals Health issues for well-being Medical issues for clinics
Methods Wearable/mobile devices Professional devices

B. Research Methods: Selection Procedure and Criteria for
Related Works

In tis survey, we refer more than 300 technical papers and
review them from applications and taxonomies perspectives.
Generally, we collect these publications in scientific way as
follows.

• First, we cover several notable publications from our
previous works in mHealth Sensing, mobile systems de-
sign, and crowd sensing and data analytics. Specifically,

we include our works on mobile systems design to
understand the dynamics and personalization of health
and well-being [7], [27], [52], [82], [83], [199], [241],
[267], [268], [284]. We also introduce our works in smart
healthcare, elderly care and context-aware computing for
health [46], [100], [102], [103], [235]–[237], [284], [286],
[307], and the fundamentals of mobile crowd sensing
and crow data analysis for health [4], [7], [52], [57],
[82], [126], [131], [132], [234]–[236], [282]–[284]. The
inclusion of our previous works further confirms the
professionality of our group to carry out this survey.

• Besides, we also cover some notable works from pi-
oneering research groups in mHealth sensing domains.
Specifically, we cover works from Campbell’s lab that
focus on developing mobile sensing technology capable
of accessing mental health [1], [10], [84], [201], [209],
[242], [246], [295], [310], [311], Murphy’s works on
decision making and interventions in mHealth [18], [43],
[142], [143], [247], [277], [300], [301], Choudhury’s
works on the mHealth sensing systems for people’s con-
text, activities and social networks [9]–[11], [49], [62],
[84], [88], [136], [138], [139], [141], [146], [246], [311],
[316], [317], as well as Mascolo’s works on mobile and
wearable systems design to human behaviour understand-
ing from mHealth perspectives [5], [14], [114], [115],
[329], [332]. Of-course, we also include and discuss
works from other important groups.

• Later, publications are selected from leading technical
conferences and journals in the related areas, such as
IEEE Internet of Things Journal [45], [153], [195],
[224], [235], [281], IEEE Communications Magazine [1],
[46], [52], [67], [237], IEEE Pervasive Computing [9],
[331], IEEE Sensors [211], [249], [279], [334], IEEE
Transactions on Mobile Computing [57], [236], [284],
Proceedings of the ACM Transactions on Interactive,
Mobile, Wearable and Ubiquitous Technologies (aka.,
ACM UbiComp) [4], [7], [43], [56], [83], [84], [87], [88],
[220], [246], [272], [282], [286], [296], [310], [360], as
well some medical journals such as JAMA [20], [35],
[127], [218], Journal of Medical Internet Research [54],
[78], [80], [82], [98], [107], [137], [208], [266], [274],
New England Journal of Medicine [70], [251], the Lancet
[97], [128], [337], Nature and Nature Communication
[79], [118], [121], [139], [240], Frontiers in neuroscience
[81], [335]. Of-course, we also include and discuss works
from other important journals and conferences.

• Finally, we also cover the publications contributed by
the related projects funded by National Science Foun-
dation (NSF), National Institute of Health (NIH) and
other funding agency. Actually, we pay special attentions
to the works from Mobile Sensor Data to Knowledge
(MD2K) [361]1 which was established by the National
Institutes of Health Big Data to Knowledge Initiative, and
also the Trustworthy Health & Wellness (THaW)2 that

1https://md2k.org/research-agenda/pubs.html
2https://thaw.org/, https://www.zotero.org/groups/2647330/thaw/library

https://md2k.org/research-agenda/pubs.html
https://thaw.org/
https://www.zotero.org/groups/2647330/thaw/library
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aims at “Making mobile health effective and secure” 3.
Based on the above procedures, we collect, review and discuss
related works in mHealth sensing areas.

C. Scientific Methods in Taxonomy Systems

In this paper, we followed a “Descriptive and Mapping
Reviews” 4 pattern to organize the survey, where we extracted
a body of knowledge from existing research works on mHealth
sensing. The body of knowledge included a list of health issues
related to mHealth sensing and the publications, two taxonomy
systems summarizing and classifying the research topics in
mHealth sensing area.

Actually, we first reviewed the existing mHealth sensing
apps from the perspectives of health issues, where a particular
attention to the significant health issues that have been widely
studied in mHealth sensing has been paid. We summarized
and generated the list of health issues that we took care of
from the collected publications (see also in Appendix B). We
also discussed the important health issues, such as addictive
behaviors, that we might ignore in this survey.

For the two taxonomy systems, we followed simple “Nar-
rative Reviews” 5 strategies on classifying literature works:
(1) what technical problems they aimed to solve in the paper
(objectives), and (2) how they solved the problem (method-
ologies). With these two strategies in mind, we develop
the taxonomy systems on “mHealth Sensing Objectives” and
“D&I Issues of mHealth Sensing” that classify the existing
works according to their sensing problems and solutions
respectively. Of-course the interplays between objectives and
D&I issues are also discussed in an ad-hoc manner. After-all,
we demonstrate our visions in the area.

3https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=137188
4Chapter 9 Methods for Literature Reviews, Handbook of eHealth Evalua-

tion: An Evidence-based Approach [Internet], https://www.ncbi.nlm.nih.gov/
books/NBK481583/

5Samuel J. Stratton, MD, MPH, Literature Reviews: Methods and Applica-
tions, https://www.cambridge.org/core/services/aop-cambridge-core/content/
view/70581E0B68B491693E8360DE39E0D6E4/S1049023X19004588a.pdf/
literature_reviews_methods_and_applications.pdf

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=137188
https://www.ncbi.nlm.nih.gov/books/NBK481583/
https://www.ncbi.nlm.nih.gov/books/NBK481583/
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/70581E0B68B491693E8360DE39E0D6E4/S1049023X19004588a.pdf/literature_reviews_methods_and_applications.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/70581E0B68B491693E8360DE39E0D6E4/S1049023X19004588a.pdf/literature_reviews_methods_and_applications.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/70581E0B68B491693E8360DE39E0D6E4/S1049023X19004588a.pdf/literature_reviews_methods_and_applications.pdf
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