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Abstract—Petri nets and Interval Temporal Logic (ITL) are
two formalisms for the specification and analysis of concurrent
computing systems. Petri nets allow for a direct expression
of causality aspects in system behaviour and in particular
support system verification based on partial order reductions
or invariant-based techniques. ITL, on the other hand, supports
system verification by proving that the formula describing a
system implies the formula describing a correctness require-
ment.

It would therefore be desirable to establish a strong se-
mantical link between these two models, thus allowing one
to apply diverse analytical methods and techniques to a given
system design. We have recently proposed such a semantical
link between the propositional version of ITL (PITL) and Box
Algebra (BA), which is a compositional model of basic (low-
level) Petri nets supporting handshake action synchronisation
between concurrent processes. In this paper, we extend this
result by considering a compositional model of (high-level)
Petri nets where concurrent processes communicate through
shared variables. The main result is a method for translating a
design expressed using a high-level Petri net into a semantically
equivalent ITL formula.

Keywords-concurrency; ITL; Petri nets; relations between
models; compositional translation; behavioural consistency.

I. INTRODUCTION

Petri nets [23] and temporal logics [6], [18] are two
formalisms for the specification and analysis of concurrent
computing systems. Petri nets allow for a direct expression
of causality aspects in system behaviour and in particular
support system verification based on net unfoldings or
invariant-based techniques. Temporal logics such as Interval
Temporal Logic (ITL) [20], [22], on the other hand, support
system verification by proving that the formula describing a
system implies the formula describing a correctness require-
ment.

Establishing a strong semantical connection between these
two models appears quite desirable as it would allow apply-
ing diverse analytical methods and techniques to a given
system design. We have recently proposed in [5], [14] such
a semantical link between the propositional version of ITL
(PITL) and Box Algebra (BA) [1] which is a compositional
model of basic (low-level) Petri nets supporting handshake
action synchronisation between concurrent processes. Fo-
cusing on the Box Algebra facilitated the development of

such a link as this model supports Petri nets built using
composition operators inspired by common programming
constructs, including sequence, iteration, parallel composi-
tion and choice, which are also very similar to the basic
composition operators of ITL. Such a similarity facilitated
the development of a very efficient (linear) representation
of composite nets in terms of the derived logic formulas.

To formalise a semantical link between BA and ITL,
for every logic formula we introduced a step sequence
semantics which records variables changing their values at
each computational step. This allowed us to compare its
behaviour with the step sequences of the corresponding Petri
net and conclude their full equivalence (similar to the key
result of this paper, Theorem 1). In essence, the latter stated
that any property which can be captured within the step
sequence model can be analysed using either of the two
equivalent representations, i.e., a Petri net or a logic formula.

In this paper, we extend the approach of [5], [14] by
considering a compositional model of (high-level) Petri
nets [2], [13] where concurrent processes communicate
through shared variables of arbitrary types. (In addition, the
variables can be used to carry out local computations.) The
main result is a method for translating a design expressed
using a high-level Petri net into a semantically equivalent
ITL formula. The key idea behind the presented solution
is to use in ITL formulas typed variables corresponding
to the shared variables from the Box Algebra, and then to
implement a mechanism of mutual exclusion for accessing
these variables based on special control variables (such
a mutually exclusive access is inherent in Petri nets but
absent in ITL). This leads to a compositional, elegant and
conservative solution in which concurrent processes evolve
in parallel unless they compete for the same resource(s).

A. Some related work

Different kinds of logics have been previously used as
formalisms for expressing correctness properties of systems
specified using Petri nets. When it comes to the relationship
between logics and Petri nets, we feel that the work on the
connections between linear logic [9] and Place Transition
nets has been the closest one. However, the main concern
there is the handling of multiple token occurrences in net



places. This, however, is not a feature of boxes considered
in this paper; they can never contain multiple tokens in indi-
vidual places. Another way to combine logics and Petri nets
is reported in [24] and characterises Petri net languages in
terms of second-order logical formulas. More recently, [25]
has developed an algorithm for model checking monadic
second-order formulas on 1-safe Petri nets.

B. Paper organisation

The paper is organised as follows: The following two
sections introduce BASV, or the Box Algebra with shared
variables, and the fragment of ITL used in this paper. Both
are illustrated using the same small running example (the
technical report [15] provides more extensive example and
the proof of Theorem 4.1). Section IV defines formally
the method in which we associate equivalent ITL formulae
with BASV, and establishes the correctness of the proposed
method. The paper ends with concluding remarks.

C. Notations

N denotes the set of all positive integers, N0 = N ∪ {0}
and Nω = N0 ∪ {ω}, where ω denotes the first transfinite
ordinal. We extend to Nω the standard arithmetic comparison
operators; moreover, � is ≤ without the pair (ω, ω).

II. BOX ALGEBRA

In this paper we consider Box Algebra with shared vari-
ables (BASV), which is a simple sub-model of BA [1] sup-
porting interprocess communication using shared variables.

The syntax of BASV-expressions E, sequential expres-
sions S, and parallel expressions P is as follows:

S ::= stop | d | S2S′ | S ;S′ | JS ~ S′ ~ S′′K
P ::= S1 ‖S2 ‖ . . . ‖Sk
E ::= P using ∆

where d is an action, and ∆ = δ1, . . . , δm (m ≥ 0) is a list
of declarations of shared variables. Each declaration has the
form τx:x = initx, where x is a variable, τx is a data type
for x, and initx ∈ τx is the default initial value of x.1

We will denote by X the set of all shared variables
declared in ∆. Each action d is a well-formed Boolean ex-
pression (predicate) which can involve constants, operators
and terms of the form ′x and x′, where x is a variable in
X . The set of all such variables will be denoted by vard.

In the above syntax, stop stands for a blocked process,
S2S′ for non-deterministic choice composition, S ;S′ for
sequential composition, JS ~ S′ ~ S′′K for a loop (with an
initial part S, iterated part S′, and terminal part S′′), and

Ebasv = S1 ‖S2 ‖ . . . ‖Sk using ∆ (1)

1We deliberately avoid here a full introduction of various (application-
oriented) data types, and only assume that each data type τ is a set of
values with associated operators which yield values of this type or some
other known type.

for a parallel composition of k sequential processes which
can communicate and synchronise using the shared variables
X declared in ∆. To simplify formal notations, we will
assume that each action occurring in Ebasv is unique. This is
a harmless assumption since one can always add a conjunct
(k = k) to the k-th action appearing in Ebasv (i.e., (1 = 1)
to the first action, (2 = 2) to the second action, etc).

A. Box nets with shared variables

The semantics of BASV-expressions is given through a
mapping box () into Petri nets called BASV-boxes. We will
approach the definition of such a mapping in two stages
corresponding intuitively to the two-stage definition of a
BASV-expression Ebasv in (1).

The first part of the definition of Ebasv yields the se-
quential sub-expressions Si which capture the control flow
aspects in the execution involving the actions occurring in
each individual sequential sub-system, and then puts them in
parallel, producing the net representing a parallel expression

Eflow = S1 ‖S2 ‖ . . . ‖Sk . (2)

The second part, leading to Ebasv declares the shared vari-
ables needed in particular for interprocess communication.

B. Deriving the net representing Eflow

A Petri net representing Eflow , called a box, is a very sim-
ple net (basically it is a collection of finite state machines).

Each box net is a tuple Σ = (P, T, F, `) where P and
T are disjoint finite sets of respectively places (representing
local control states) and transitions; F ⊆ (P ×T )∪ (T ×P )
is a flow relation; and ` : P → {e, i, x} is a labelling for
places, i.e., e for ’entry’, i for ’inner’, and x for ’exit’.

If the labelling of a place p is e, i or x, then p is an entry,
internal or exit place, respectively. For every place p, we
use •p to denote its pre-set comprising all transitions t such
that there is an arc from t to p, i.e., (t, p) ∈ F . The pre-
set •t of a transition t is defined analogously. The post-sets
p• and t• are defined in a similar way. The pre- and post-
set notation extends in the usual way to sets R of places
and transitions, e.g., •R =

⋃
r∈R

•r. By convention, •Σ and
Σ• denote respectively the sets of entry and exit places of
Σ which can be thought of as interfaces allowing one to
compose boxes.

For each operator in Eflow , there is a matching operator
on boxes (see [5] for formal definitions). Below, the Σi’s are
boxes with disjoint sets of nodes, each with a single entry
place and a single exit place:
• Σ1 2Σ2 glues together the entry places of the two

boxes creating a new entry place, as well as their exit
places creating a new exit place.

• Σ1 ;Σ2 glues together the exit place of Σ1 with the
entry place of Σ2. The entry place of the composite
box is the entry place of Σ1, and the exit place is the
exit place of Σ2.
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Figure 1. The diagrams of box(stop), box(d), box(a ; b), box(c2 (a ; b)), and box(Ja ~ (b ; c) ~ dK).

• JΣ1 ~ Σ2 ~ Σ3K glues the exit places of Σ1 and Σ2

with the entry places of Σ2 and Σ3. The entry place is
that of Σ1 and the exit place is that of Σ3.

• Σ1 ‖ . . . ‖Σk puts next to each other the boxes
Σ1, . . . ,Σk. The exit and entry status of all places is
retained.

We define a mapping box (.) from the sequential expres-
sions to boxes compositionally. For the blocked expression
stop and an action d we have:

box (stop) = ({p, p′},∅,∅, {p 7→ e, p′ 7→ x})
box (d) = ({p, p′}, {d}, {(p, d), (d, p)},

{p 7→ e, p′ 7→ x}) .

In other words, box (stop) consists just of two places, and
box (d) of two places with transition d joining them (see
Figure 1). Moreover, for any sequential expressions, we have
(see Figure 1 for examples):

box (S2S′) = box (S)2 box (S′)

box (S ;S′) = box (S) ; box (S′)

box (JS ~ S′ ~ S′′K = Jbox (S) ~ box (S′) ~ box (S′′)K.

And the box corresponding to Eflow as in (2) is

box (Eflow ) = box (S1)‖ . . . ‖ box (Sk) .

C. Deriving the net representing Ebasv

To construct the BASV-box of Ebasv as in (1), we add to
box (Eflow ) high-level places representing the data variables
X declared in ∆. More precisely, we add a set of places X
and assume that each place x ∈ X is a high-level place of
type τx. Intuitively, such a place will store the current value
of variable x ∈ X . We do not add any new transitions,
but rather connect the existing ones with the newly added
places. The BASV-box corresponding to Ebasv , denoted by
box (Ebasv ), is obtained from box (Eflow ) by adding the
high-level places X and then, for every transition d (with
guard d), adding the arcs (x, d) labelled ′x and (d, x) labelled
x′, for every variable x ∈ vard.

D. Adding the initial marking

A marking (in other words, a state) of the BASV-box
box (Ebasv ) consists of two parts reflecting the different
nature of places derived from: (i) the control-flow part Eflow

of Ebasv ; and (ii) the variable declarations ∆. Each such
marking is a pair M = (M, θ), where M is a set of places
(carrying a token •) of box (Eflow ), and θ is a mapping
assigning a value in τx, for every x ∈ X . The initial marking
M0 = (M0, θ0) of box (Ebasv ) is defined as follows (see for
example Figure 2(a)): (i) M0 is the set •box (Eflow ) of all
entry places of box (Eflow ); and (ii) θ0(x) = initx, for every
x ∈ X . In what follows, we will use B = (box (Ebasv ),M0)
to denote BASV-box box (Ebasv ) together with the initial
marking M0.

E. Executing BASV-box B
The execution semantics of the BASV-box B is given

through the set of its step sequences. We start by specifying
what it means to execute instances of single transitions.

As B contains high-level places, we cannot just execute
a transition since it is in general a shorthand for possibly
infinitely many different basic activities. We therefore have
to introduce substitutions which turn high-level transitions
into concrete (executable) instances called transition oc-
currences. In what follows, a (satisfying) substitution for
a transition d of B is any mapping % with the domain
{′x | x ∈ vard} ∪ {x′ | x ∈ vard} such that d (considered
here as a predicate) evaluates to true if each ′x is replaced
by %(′x), and each x′ is replaced by %(x′).

Let M = (M, θ) be a marking of B, and % be a
substitution for a transition d of B. Then d : % is a transition
occurrence enabled at M if •d ⊆M and θ(x) = %(′x), for
all x ∈ vard.

Suppose now that M = (M, θ) is a marking of the Petri
net B and U = {d1 : %1, . . . , dm : %m} for m ≥ 0, is a set of
transition occurrences, each such transition occurrence being
enabled at M, such that •di ∩ •dj = vardi ∩ vardj = ∅,
for all i 6= j (i.e., a single place can be accessed by at most
one executed transition). Then U is a step enabled at the
marking M which can be executed, leading to a marking
M̃ = (M̃, θ̃) such that M̃ = M \ •U ∪ U• and, for all



x ∈ X (we denote this by M[U〉M̃ or M[U〉):

θ̃(x) =

{
%i(x

′) if x ∈ vardi (i ≤ m)
θ(x) otherwise .

As far as the semantics B is concerned, only sequences
of executed steps which start from its initial marking M0

need to be considered. We will assume that each such step
sequence is infinite, which is a harmless requirement as
any finite step sequence can be extended by an infinite
sequence of empty steps (note that M[∅〉M for every
marking M). A step sequence of B is any infinite sequence
γ =M0U1M1U2M2 . . . such that we have:

M0[U1〉M1[U2〉M2 . . .

We denote this by γ ∈ stepseq(B). Note that the step
sequences of stepseq(B) provide a complete account of the
behaviour of the BASV-box B.

a) initial marking
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Figure 2. An execution of a Petri net corresponding to the BASV-expression
ProdCons. Note that the actions used in ProdCons play the role of
Petri net transitions and the corresponding predicates play the role of the
transition guards. For brevity we omit in the diagrams all the transition
guards as well as the labels ′buf on arcs out-going from place buf , and
the labels buf ′ on arcs incoming to buf .

F. Running example and its Petri net representation

Let us consider a very simple concurrent system consist-
ing of two sequential processes, a producer and a consumer,
synchronising through a shared (buffer) variable buf which
initially holds 2 items. The two processes follow a simple
scenario: (i) the producer inserts 4 items into the buffer and
terminates; (ii) the consumer waits for the new items to be
inserted as it needs to consume 3 items in order to proceed;

and (iii) the consumer terminates its operation (note that
if the buffer contained at least 6 items at this point, the
consumer could also consume 6 items before terminating).
This example can easily be written using the following
BASV-expression, where INT:buf =2 is a declaration of a
shared variable buf of type INT initialised to 2:

ProdCons = a ; (b2 c) ‖ d using INT:buf =2 (3)

In the above, the sequential sub-expressions, Cons =
a ; (b2 c) and Prod = d, use the following atomic actions
(basically, guarded commands) describing enabling condi-
tions w.r.t. the current value of buf , and the effect (if any)
of their executions on the variable buf declared in the BASV-
expression ProdCons:
• a = 〈′buf ≥ 3∧ buf ′ = ′buf −3〉 can only be executed

if the current value of buf (represented by ′buf ) is at
least 3, and if a is executed then the next value of
buf (represented by buf ′) is the current value of buf
minus 3;

• b = 〈true〉 can be enabled without accessing buf ; it
does not affect buf ;

• c = 〈′buf ≥ 6∧buf ′ = ′buf −6〉 can only be executed
if the current value of buf is at least 6, and if c is
executed then buf is decremented by 6; and

• d = 〈buf ′ = ′buf +4〉 can be enabled without accessing
buf , and if d is executed then buf is incremented by 4.

A Petri net corresponding to the BASV-expression
ProdCons is obtained by first associating simple nets with
the sequential sub-systems, Prod and Cons, and adding
a high-level data place buf representing the buffer. The
buffer place is then connected to those transitions (actions
of ProdCons) which access the buffer variable buf . The
resulting BASV-box for ProdCons is depicted in Figure 2(a)
together with its initial marking (a token • in each entry
place and the initial value of buf in the corresponding
high-level place). (Note that we omitted the obvious net
variables on arcs adjacent to place buf as well as all the
transition guards.) In such a marking only transition d can
be executed, leading to the net depicted in Figure 2(b). Then,
after executing transitions a and b we obtain respectively the
nets shown in Figure 2(c) and Figure 2(d).

III. INTERVAL TEMPORAL LOGIC

We now provide the syntax and semantics of a fragment
of ITL, including only those constructs (basic and derived)
which are used in the subsequent translation of the BASV-
expression Ebasv .

Let V be a countable set of Boolean control variables,
and V̂ be a countable set of data variables (together with
associated value domains and operations). The formulas of
the fragment of the ITL logic we need are defined by:

φ ::= flip(v) | skipst(W ) | φ ∧ φ′ |
φ ∨ φ′ | φ ;φ′ | φ∗ | inf | e



where v ∈ V and W is a finite subset of V ∪ V̂ . The
intuition behind the above constructs is as follows: (i) flip(v)
inverts the value of Boolean control variable v over a unit
interval; (ii) skipst(W ) keeps the values of the variables
in W over a unit interval (in the examples, we will use
skipst(w1, . . . , wm) to denote skipst({w1, . . . , wm})); (iii)
“ ; ” is a sequential composition operator (called chop); (iv)
“∗” is an iterative version of chop; (v) inf indicates an infinite
interval; and (vi) e is a well-formed Boolean expression
involving data variables x and terms ©x as well as suitable
operations on x and ©x (note that ©x refers to the value
of x in the next state).

A state is a mapping which assigns values to the variables
V ∪ V̂ , and an interval σ is a possibly infinite non-empty
sequence of states. Its length, |σ|, is ω if σ is infinite,
and otherwise its number of states minus 1. To simplify
definitions, we denote σ as 〈σ0, σ1, . . . , σ|σ|〉, where σ|σ| is
undefined if σ is infinite. Then, for 0 ≤ i � j ≤ |σ|: σi..j =
〈σi, . . . , σj〉, σi = 〈σ0, . . . , σi〉 and σ(i) = 〈σi, . . . , σ|σ|〉.

The meaning of formulas is given by the satisfaction
relation |=:
• σ |= flip(v) iff |σ| = 1 and σ1(v) = ¬σ0(v).
• σ |= skipst({w1, . . . , wm}) iff |σ| = 1 and σ1(wi) =
σ0(wi), for i ≤ m.

• σ |= φ ∨ φ′ iff σ |= φ or σ |= φ′.
• σ |= φ ∧ φ′ iff σ |= φ and σ |= φ′.
• σ |= φ ;φ′ iff one of the following holds:

– |σ| = ω and σ |= φ.
– there is r � |σ| with σr |= φ and σ(r) |= φ′.

• σ |= φ∗ iff one of the following holds:
– |σ| = 0.
– there are 0 = r0 ≤ . . . ≤ rn−1 � rn = |σ| such

that, for all 1 ≤ l ≤ n, σrl−1..rl |= φ.
– |σ| = ω and there are infinitely many integers 0 =
r0 ≤ r1 ≤ . . . such that lim

i→∞
ri = ω and for all

l ≥ 1, σrl−1..rl |= φ.
• σ |= inf iff |σ| = ω.
• σ |= e iff e evaluates to true if each x is replaced by
σ0(x), and each ©x is replaced by σ1(x).

IV. FROM BASV TO ITL

We will now translate a BASV-expression Ebasv defined
as in (1) into a semantically equivalent ITL formula. Recall
that we assumed that no action d occurs in Ebasv more than
once. Below, for each x ∈ X declared in (1), we denote
cvarx = {d | x ∈ vard}. That is, cvarx are the control
variables which correspond to the transitions accessing the
data variable x.

A key idea inspired by [4] is to represent transition d by a
separate Boolean variable d, and then to model an execution
of d by the change of the value of d together with a suitable
update of the data variables in vard. In what follows, the set
of actions occurring within Si is denoted by Vi. Moreover,

for each action d occurring in Ebasv , itl(d) is a formula
obtained from d by replacing each ′x by x, and each x′ by
©x. The translation is then given by:

itl(Ebasv ) = itl1(S1) ∧ . . . ∧ itlk(Sk)
∧∧
x∈X((x = initx) ∧ Ctrl∗x) ,

where we have (below i ≤ k, and d is an action which
occurs in Si):

itl i(stop)
= skipst(Vi)

∗ ∧ inf

itl i(d)
= skipst(Vi)

∗ ;
skipst(Vi \ {vard}) ∧ flip(d) ∧ itl(d) ;
skipst(Vi)

∗

itl i(S2S′)
= itl i(S) ∨ itl i(S

′)

itl i(S ;S′)
= itl i(S) ; itl i(S

′)

itl i([S ~ S′ ~ S′′])
= itl i(S) ; itl i(S

′)∗ ; itl i(S
′′)

Ctrlx
= skipst(cvarx ∪ {x}) ∨∨

d∈cvarx
(flip(d) ∧ skipst(cvarx \ {d}))

Intuitively, the value of a variable d is kept unchanged
unless we simulate an execution of action d by flipping the
value of d. Note that we define itl i(Si) rather than itl(Si)
since the translation relies on ‘knowing’ the variables present
in Si in order to correctly map any stop occurring within
Si into a suitable formula. The semantics of the formula
F = itl(Ebasv ) is then captured by the set intervals(F) =
intervals(itl(Ebasv )) of all the infinite intervals over which
F is satisfied.

A. ITL representation of the running example

The relevant states of a BASV-box are those reachable
from the initial one, and its possible executions can be
represented by sequences of executed transitions (or sets of
transitions, called steps). In the ITL context, however, a state
is a mapping which assigns values to a set of variables, and
possible executions are represented by sequences of such
assignments, called intervals. Our solution relates these two
rather different ways of representing the states and execu-
tions of concurrent systems. It is realised by associating with
each transition t of the BASV-box representing ProdCons
a distinct Boolean (control) variable, also denoted by t,
and then by representing each execution of transition t
by flipping the value of variable t; otherwise the value of
variable t is kept unchanged. The integer (data) variable buf
is also used in the ITL formula corresponding to ProdCons
and is kept unchanged when not accessed by any currently



Prod = skipst(d)∗ ;

flip(d) ∧ (©buf = buf + 4) ;

skipst(d)∗

Ctrlbuf = skipst(a, c, d, buf ) ∨
(flip(a) ∧ skipst(c, d)) ∨
(flip(c) ∧ skipst(a, d)) ∨
(flip(d) ∧ skipst(a, c))

Cons = skipst(a, b, c)∗ ;

skipst(b, c) ∧ flip(a)∧
(buf ≥ 3 ∧©buf = buf − 3) ;

skipst(a, b, c)∗

;

skipst(a, b, c)∗ ;
skipst(a, c) ∧ flip(b) ;
skipst(a, b, c)∗

∨
skipst(a, b, c)∗ ;
skipst(a, b) ∧ flip(c)∧

(buf ≥ 6 ∧©buf = buf − 6) ;
skipst(a, b, c)∗


Figure 3. Formulas used in the definition of ProdCons in (4).

executed transition t (or, equivalently, if variable t is not
flipped).

The intended behaviour of the BASV-expression
ProdCons, and consequently the actual behaviour of the
corresponding Petri net, can be captured by the following
ITL formula:

ProdCons = Prod ∧ Cons ∧ (buf = 2) ∧ Ctrl∗buf (4)

where the various formulas used are given in Figure 3 where,
e.g., flip(d) means that the Boolean variable d is flipped,
and skipst(a, b, c) means that the variables a, b, c are kept
unchanged over a unit interval.

A key idea behind the above formula is to link the
control flow of ProdCons with the data-related aspects
involving the buffer variable. Intuitively, this is achieved by
joining together the flipping of control variables with the
corresponding manipulation of buf , e.g., as in

flip(d) ∧ (©buf = buf + 4) .

Moreover, when constructing the formula in (4) we have
to ensure that the following hold throughout the entire
execution: (i) at most one action/transition coming from
a single sequential process is executed at any given point
(this is achieved by using sub-formulas like skipst(a, b, c)
and skipst(b, c) in the first two lines of Cons); and (ii) at
most one action/transition accessing the buffer variable is
executed at any given point; moreover, if none is executed
then buf does not change its value (this is achieved by
adding Ctrl∗buf which effectively implements a mutually
exclusive access to buf ).

B. Main result

Recall that step sequences of stepseq(B) provide a com-
plete account of the behaviour of the BASV-box B. Similarly,
intervals(F) provide a complete account of the behaviour
of the ITL formula F . Our aim now is to show that these

two semantical captures, i.e., stepseq(B) and intervals(F)
are very closely related; in fact, they are in essence identical.

Before we can formulate the desired equivalence result,
we need to discuss the very nature of such a relationship. The
reason is that the two sets of behaviours in stepseq(B) and
intervals(F) are strictly speaking different and so cannot
be directly compared. To be able to make a meaningful
comparison, we will now show how the intervals belonging
to intervals(F) can be interpreted as step sequences. Let σ
be an interval over which the formula F is satisfied, i.e.,

σ = 〈σ0, σ1, σ2, . . .〉 ∈ intervals(F) . (5)

We then denote by σsseq an infinite sequence

σsseq = N0R1N1R2N2 . . . (6)

defined as follows:
• Each Ri is a set of transitions of B (i.e., the control

variables of F) such that, for each transition d, d ∈
Ri iff σi−1(d) 6= σi(d). Moreover, we denote by #i(d)
the number of times d occurs in the sequence R1 . . . Ri.

• EachNi is a pair (Ni, ψi) such that Ni is a set of places
of box (Eflow ) and ψi is a valuation for the variables
in X; moreover, N0 =M0.

• For all places p of box (Eflow ) and i ≥ 1,

Ni(p) = M0(p)−
∑
d∈p•

#i(d) +
∑
d∈•p

#i(d) ,

where we identify the set Ni with its characteristic
function.

• For all i ≥ 1, ψi = σi|X .
Then

stepseq(F) = {σsseq | σ ∈ intervals(F)}

is the set of step sequences induced by the ITL formula F .
In other words, we interpret each flipping of the value of a
control variable d as an execution of the transition d in B.



Moreover, the valuations of data variables carry over without
change from the states of σ to the corresponding markings
of σsseq . The only more involved aspect of the definition of
σsseq relates to a control place p. In such a case, we simply
take into account the initial marking of a place p in B and
then calculate the marking resulting from the execution of
the steps R1 . . . Ri. We then obtain a key result which states
that F and B basically capture the same sets of behaviours.

Theorem 4.1: stepseq(F) = stepseq(B).
Sketch of the proof: To show the inclusion stepseq(F) ⊆
stepseq(B), suppose that σ and σsseq ∈ stepseq(F) are
respectively as in (5) and (6). We will demonstrate that
(M0 =)N0[R1〉N1 in B which, together with

σ(i)
sseq = NiRi+1Ni+1Ri+2Ni+3 . . .

for all i ≥ 1, suffices to prove by induction that σsseq ∈
stepseq(B).

To show N0[R1〉N1 we proceed as follows. First of all,
the results of [5] and the fact that the construction of F is
a conservative extension of that presented in [5], imply that
if we disregard all the aspects related to the data variables
(effectively, if we assume that X = ∅ and each action in the
BASV-expression Ebasv as in (1) is equivalent to true) then
N0[R1〉N1 does hold. This means that all the requirements
related to the enabledness and execution of the step R1 w.r.t.
the non-data places are satisfied.

Take now a data place x ∈ X , and have two cases.
Case 1: R1∩cvarx = ∅. Then, from the definition of Ctrlx
it follows that σ0(x) = σ1(x) and so ψ0(x) = ψ1(x), as
required by the net semantics.
Case 2: R1 ∩ cvarx 6= ∅. Then, again due to Ctrlx, there
is d such that R1 ∩ cvarx = {d}. Then it must be the case
that itl(d) holds over the unit interval 〈σ0, σ1〉. Therefore,
ψ0(x) = σ0(x) does not block the execution of transition d
and if d (and R1) is executed at N0, the value of x will be
as specified by ψ1(x) = σ1(x).
From the above it follows that R1 is not blocked by the data
places, and its execution updates the data variables as given
by ψ1(x). Therefore N0[R1〉N1.

To show stepseq(F) ⊇ stepseq(B), suppose that

γ =M0U1M1U2M2 . . . ∈ stepseq(B)

is a step sequence such that Mi = (Mi, θi), for all i ≥ 0.
We then define an interval

γinvl = 〈σ0σ1σ2 . . .〉

such that σi|X = θi, for every i ≥ 0, and, for all transitions
d: σi(d) = 0 if d occurred an even number of times in
U1 . . . Ui, and σi(d) = 1 otherwise. For example, if we take
the step sequence γ illustrated in Figure 2, then we obtain

γinvl :

variables γinvl0 γinvl1 γinvl2 γinvl3 . . .

a 0 0 1 1 . . .

b 0 0 0 1 . . .

c 0 0 0 0 . . .

d 0 1 1 1 . . .

buf 2 6 3 3 . . .

Note that in γinvl all the control variables start with the
value 0. However, it would be possible to start with any
other combination of Boolean values obtaining an interval
behaving in the desired way.

It is easy to see that γ = (γinvl)sseq . Hence it suffices
to demonstrate that γinvl ∈ intervals(F). To show this, we
again take advantage of the results established in [5], in order
to conclude that γinvl would belong to intervals(F) if we
replaced all the itl(d)’s and Ctrlx’s within F by true .

We then observe that γinvl |= Ctrlx, for each x ∈ X ,
which follows from the definition of step enabledness and
execution in B. More precisely, we have: (i) vard∩vard′ =
∅, for all distinct d, d′ ∈ Ui; and (ii) executing Ui has no
effect on x if x /∈ vard, for all d ∈ Ui.

Finally, a formula itl(d) is satisfied over any finite interval
where the variable d is flipped. This follows from the fact
that itl(d) always occurs in conjunction with flip(d), and
the flipping of d corresponds to the execution of transition
d, as we already noted. Hence γinvl ∈ stepseq(F) which
completes the proof.

V. CONCLUSION

In this paper we considered a compositional model of
(high-level) Petri nets where concurrent processes commu-
nicate through shared variables. The main result is a method
for translating a design expressed using a high-level Petri net
into semantically equivalent formula of ITL.

The results presented in this paper demonstrate that one
can develop a very close structural connection between
BASV and ITL. It is therefore important to further investigate
the extent to which such a connection could be generalised
and exploited. In particular, we plan to investigate what
is the subset of ITL which can be modelled by BASV. A
long-term goal is the development of a hybrid verification
methodology combining logic and Petri net techniques. For
example, sequential algorithms and infinite data structures,
as well as various forms of fairness, could be treated by
ITL techniques [3], [4], [11], [21], while intensive parallel
or communicating aspects of systems could be treated by
net unfoldings [8], [12] or other Petri net techniques.
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