
From Pixels to Actions:

Learning to Drive a Car with Deep Neural Networks

Jonas Heylen∗ Seppe Iven‡ Bert De Brabandere‡

Jose Oramas M.‡ Luc Van Gool‡ Tinne Tuytelaars‡

∗TRACE-Leuven ‡KU Leuven, ESAT-PSI, imec

Abstract

The promise of self-driving cars promotes several advan-

tages, e.g. they have the ability to outperform human drivers

while being safer. Here we take a deeper look into some as-

pects from algorithms aimed at making this promise a real-

ity. More specifically, we analyze an end-to-end neural net-

work to predict a car’s steering actions on a highway based

on images taken from a single car-mounted camera. We fo-

cus our analysis on several aspects which could have a sig-

nificant impact on the performance of the system. These as-

pects are: the input data format, the temporal dependencies

between consecutive inputs, and the origin of the data. We

show that, for the task at hand, regression networks outper-

form their classifier counterparts. In addition, there seems

to be a small difference between networks that use coloured

images and ones that use grayscale images as input. For

the second aspect, by feeding the network three concate-

nated images, we get a significant decrease of 30% in mean

squared error. For the third aspect, by using simulation data

we are able to train networks that have a performance com-

parable to networks trained on real-life datasets. We also

qualitatively demonstrate that the standard metrics that are

used to evaluate networks do not necessarily accurately re-

flect a system’s driving behaviour. We show that a promis-

ing confusion matrix may result in poor driving behaviour

while a very ill-looking confusion matrix may result in good

driving behaviour.

1. Introduction

Neural networks have gained a lot of popularity from

their successes in the ImageNet Large Scale Visual Recog-

nition Competition, e.g.[15]. They have since been applied

in many different areas, often resulting in substantial im-

provements. In this paper, we develop an end-to-end system

to control a self-driving car. Given the wide range of sys-

tems and components required for self-driving vehicles, we

focus on a simplified version of the problem focusing only

Figure 1: Process flow of our system.

on the steering of the car while it is driving on a highway.

This is illustrated in Figure 1.

Most state-of-the-art works follow a mediated percep-

tion approach, which is based on object detection to make

driving decisions [3, 17, 19]. In contrast, a reduced amount

of research addresses direct end-to-end mapping of images

to driving actions. Therefore, the main contribution of this

work is an analysis on several important aspects that must

be taken into account when developing end-to-end vision

systems for autonomous navigation.

The first aspect we analyze is the format of the input data

that is being fed into the network. We look into the influ-

ence of the quantization granularity of the steering wheel

angle’s measurements onto the system’s performance. We

also verify the color format of the input images and com-

pare performance when using colour VS. grayscale images.

This shows us to what extent the system can make use of

the information that lies within the colour of the images.

The second aspect analyzes the effect of exploiting tem-

poral consistency that can be found in successive input im-

ages. We compare two techniques that can give the network

more capabilities to utilize this information. The first tech-

nique consists of concatenating multiple subsequent images

and feeding them to the network as a single input. This

leads to an increased input size, but the architecture of the

network remains the same. The second technique consists

of inserting recurrent neural network layers into the archi-

tectures that we use. By definition, recurrent layers can re-

tain information between consecutive inputs and thus utilize

the temporal information.

The final aspect is the origin/nature of the data. We ex-

periment with the applications of artificially generated or

simulated data, which can hold many advantages over real-

world data. If a simulator is sufficiently advanced and mim-

ics the circumstances of the real world well enough, it can

be used to train the neural networks and this would reduce

the need for real-world data to train on. In a simulator it

is very simple and cheap to gather data and the settings of

this data are easy to change. This leads to bigger and more

diverse datasets, which can be used to train more robust and

better performing networks.

Finally, we revisit the question of whether the perfor-

mance metrics that are used on datasets, are a good indica-

tor of a network’s real driving behaviour. This can only be

reviewed by actually driving on the road or in a simulator.

The remaining sections of this paper are organized as fol-

lows: Section 2 positions our paper with respect to related

work. Section 3 introduces the methodology followed in

our analysis. Section 4 presents the experiments conducted

as part of our analysis and their results. Finally, Section 5

draws conclusions.

2. Related Work

The related work regarding self-driving cars can be di-

vided into two categories: mediated perception approaches

and end-to-end approaches. We position our work with re-

spect to these two categories.

Mediated Perception Approaches: Most state-of-the-

art systems use a mediated perception approach [3, 17, 19].

These approaches rely on the detection and classification

of surrounding objects such as traffic signs, cars, roads,

buildings and pedestrians. They parse the entire scene into

an internal map of the surroundings and use this to make

driving decisions. A common practice in this type of ap-

proaches is that objects and other scene elements that are

considered ”relevant” need to be pre-defined. Towards this

goal a significant amount of efforts have focused on de-

signing specialized algorithms to detect individual objects

[2, 5, 6, 9, 12, 18, 29, 33]. Another common characteristic

of mediated perception approaches is their requirement of

multiple sensors for reliable object detection and classifica-

tion. Examples of these sensors include cameras, lasers and

radar. Mediated approaches usually consist of two steps:

i) detection of ”relevant” visual elements, and ii) decision

making based on those elements. This has both advantages

and disadvantages. One the one hand, a disadvantage is that

it is possible that a designer fails to identify certain relevant

objects. Moreover, it is also possible that useful informa-

tion may get lost between the two steps. The objects that

are to be detected are usually hand-picked. Because of this,

certain detected objects may not be important for the deci-

sion making while other meaningful objects may not be de-

tected and this may deteriorate the system’s performance.

On the other hand, an advantage is that this level of indi-

rection makes it easier for the network to focus on certain

details. For example, it is important to detect if a pedestrian

has the intention to cross the street and a mediated percep-

tion approach can use a network that specializes in detecting

this. But for an end-to-end network, it may be difficult to

learn that it is important or to notice this type of situations.

Different from mediated perception approaches, we focus

on end-to-end systems where the network is given the task

of identifying which visual elements are important for the

task at hand. Therefore, no object or any other visual ele-

ment needs to be pre-defined or hand-picked. In addition,

we focus our analysis on the setting where the only input

sensor is a colour camera.

End-to-end Approaches: In end-to-end systems, im-

ages are directly mapped to driving decisions with the use

of machine learning algorithms. Our system uses this ap-

proach. Examples of such approaches are [1, 14, 16, 21,

22]. Sometimes multiple cameras are used to create recov-

ery cases or a simple real-world simulator. As said earlier,

a disadvantage of end-to-end approaches is that they lack

a second processing step or controller that makes decisions.

Because of this, the system does not keep track of the bigger

picture. This makes it difficult to teach the network certain

specific things, for example to abruptly avoid any children

that run in front of the car. This is difficult because unless

the dataset is artificially created, there are few such situa-

tions in the dataset while many different situations should

be present to create a robust system. Another disadvantage

is that the driving behaviour in the training data has a direct

influence as the network learns this imperfect driving style,

such as driving too close to the right lane markings. If possi-

ble, the images and measurements should be very carefully

selected or corrected. This is less of a problem for mediated

perception approaches than it is for end-to-end approaches.

Other Related Problems: An additional motivation for

the use of end-to-end systems can be found in related prob-

lems. [13] uses an end-to-end neural network based on cam-

era images to fly a drone through a room. They stress that

using pretrained networks is a good alternative to learning

from scratch for end-to-end networks. It saves training time

and requires less data because it is less prone to overfit-

ting. They also stress that training LSTM networks using

a limited time window produces better performance than

when training it on all previous input samples. Moreover,

[13] indicates that there is a clear trend in which LSTM

networks outperform standard feedforward networks. [34]

also used LSTMs combined with other techniques to tackle

end-to-end driving. Another observation is that recovery

cases have a big impact on performance. Following the

same directions, [25] demonstrates that it is possible for

networks trained on simulation data to be generalized to the

real world. Taking these works into account, it is plausible

to assume that many observations and conclusions drawn

from the autonomous drone problem, such as the general-

ization of simulators and the better performance of LSTM

networks, also hold for our problem. Finally, motivation

for incorporating inter-frame dependencies is found in lan-

guage modeling. Just like different words in a sentence

are also related in order to convey meaning, the input im-

ages are temporally dependent because they are consecu-

tive frames of a video. It is proven that LSTMs can outper-

form standard feedforward neural networks on such tasks

[30, 31].

3. Methodology

Our basic system is set-up as follows: images from the

camera are fed into the network and the network predicts

the steering angle from these image(s). During training, the

steering wheel angle measurements, i.e. annotations, are

also fed to the network. An illustration of our system is

given in Figure 1.

Network Architectures: Throughout our experiments,

the neural networks that we use can vary in two areas: their

main architecture and their output layer. The main architec-

ture is a variation of either the NVIDIA [1], AlexNet [15]

or VGG19 architecture [28]. Note that for the Alexnet ar-

chitecture, we removed the dropout of the final two dense

layers and reduced their sizes to 500 and 200 neurons as this

resulted in better performance. The output layer of the net-

work depends on its type (regression or classification) and,

for a classification network, on the amount of classes. In

our analysis we conduct experiments with both, classifica-

tion and regression, types. For the case of the classification

type, we quantize the steering angle measurements into dis-

crete values, which represents the class labels. This quanti-

zation is needed as input when training a classifier network

and allows to balance the data through sample weighting.

This weighting acts as a coefficient for the network’s learn-

ing rate for each sample. A sample’s weight is directly re-

lated to the class that it belongs to when quantized. These

class weights are defined as 1 divided by the amount of sam-

ples in the training set that belong to that class, multiplied

by a constant so that the smallest class weight is equal to

1. Sample weighting is done for both classifier networks

and regression networks. Note that for the latter, the class

is used, to which the continuous value would be mapped.

This weighting is done to ensure that the network is equally

trained on all classes, in the hope that it learns to handle

all these different situations well. Otherwise, the network

might be biased toward a certain class.

Dataset: We train and evaluate different networks on

the Comma.ai dataset [26], which consists of 7.25 hours of

driving, most of which is done on highways and during day-

time. Images are captured at 20 Hz which results in approx-

imately 552,000 images. We discarded the few sequences

that were made during the night due to their high imbalance

when compared to those captured during daytime. In addi-

tion, in order to focus on sequences with continuous / un-

interrupted driving, we limit ourselves to only considering

images that were captured while driving on highways. The

remaining data is then split into two mutually exclusive par-

titions: a training set of 161,500 images and a validation set

of 10,700 images. This is done on a random per-file basis

to ensure independence between training and validation and

to ensure that both sets contain various traffic and weather

conditions. These two datasets are used in all conducted

experiments.

Performance Metric: We evaluate performance of our

networks using the following performance metrics: accu-

racy, mean class accuracy (MCA), mean absolute error

(MAE) and mean squared error (MSE) metrics. We base

our conclusions on the MSE metric, since it allows us to

take the magnitude of the error into account and assign a

higher loss to larger errors than MAE does. This is de-

sirable since this may lead to better driving behaviour, as

we assume that it is easier for the system to recover from

many small mistakes than from a few big mistakes. A large

prediction error could result in a big sudden change of the

steering wheel angle. For example, larger errors create dan-

gerous situations as the car might swerve onto an adjacent

lane or go off-road.

For every metric individually, the best performance over

all epochs is chosen. These values are then compared be-

tween networks and the best network is selected based on

the MSE metric. Note that the absolute performances are

of relatively low importance to us and that we are more in-

terested in the relative performances between the different

network variants in our experiments. After analyzing the

high-level aspects of our problem, better performance can

later be achieved by optimizing around the results of these

experiments.

Models used in this analysis are publicly available at our

project website1.

4. Experiments

In this section, we evaluate the three high-level aspects

mentioned earlier. These aspects are the format of the in-

put data (Section 4.1), the temporal dependencies between

consecutive inputs (Section 4.2) and the origin of the data

(Section 4.3).

4.1. Input Data Format

Quantization granularity: In this first experiment, we

look into the influence that the specifications of the class

quantization procedure have on the system’s performance.

These specifications consist of the amount of classes and

1http://homes.esat.kuleuven.be/˜jheylen/

FromPixelsToActions/FPTA.html

Figure 2: Mapping of angle measurements from continuous

values (outside) to discrete class-labels (inside) for 7 and 17

classes, respectively.

the mapping from the input range to these classes. We

compare classifier networks with varying degrees of input

measurement granularity. We also compare them to regres-

sion networks, which can be seen as having infinitely many

classes, although using a different loss function. It is plau-

sible that the granularity has a significant impact on the sys-

tem’s performance. For metrics such as global accuracy and

mean class accuracy, this is obvious since it is more difficult

to choose the right class for a fine quantization configura-

tion that has a higher number of classes. Coarse-grained

classes however have a bigger quantization error and this

influences the magnitude of the error. For metrics where

the magnitude of the error is taken into account, such as

MSE and MAE, it is possible that configurations with many

fine-grained classes will perform better. Because classifier

networks are trained with categorical cross entropy as loss

function, we expect them to perform well when compared

using class accuracy as metric. On the other hand, regres-

sion networks will probably outperform the classifier net-

works on metrics that take the error distance into account,

as their loss function (e.g. MSE) also uses the error dis-

tance.

We conduct this experiment by comparing a coarse-

grained quantization scheme with 7 classes and a finer-

grained scheme with 17 classes. We do this for both clas-

sifier and regression networks. The mapping from angles

to classes can be found in Figure 2 for 7 and 17 classes,

respectively. All of these networks are tested on the three

architectures previously explained and evaluated following

the methodology discussed in Section 3. The difference be-

tween 7 and 17 for regression is in the class weighting. Each

sample is given a weight based on their relative occurrences

in 7 or 17 classes. (Similar to class weighting for the clas-

sification networks.) Also, to be able to compare regression

vs classification, the predicted regression outputs were dis-

cretized into 7 and 17 classes to calculate MCA in the same

way this happened for the classification networks.

The results of this experiment are found in Figures 3

through 6. Several observations can be made. First, it

is logica that the coarse-grained scheme scores better on

the accuracy and MCA metric. More importantly, we see

that regression networks significantly outperform classifier

networks on the MAE and MSE metrics, which we have

discussed and concluded to be the most important metrics.

This aligns with our expectations, since regression networks

have a loss function that takes the error magnitude into ac-

count. Finally, we notice that class weighting does not have

a significant impact on the performance of regression net-

works. A possible explanation is that this is due to their

loss function, which also takes the error magnitude into ac-

count. Samples which are less common generally will get a

higher loss, as their steering angle is mostly predicted a lot

worse than common samples.

C
la

ss
ifi

ca
tio

n
7

C
la

ss
ifi

ca
tio

n
17

R
eg

re
ss

io
n

7

R
eg

re
ss

io
n

17

0

10

20

30

40

A
cc

u
ra

cy

37
39 40

20 20 20

41
39 40

21 21 21

Alexnet

Nvidia

VGG19

Figure 3: Classification ac-

curacy of the granularity ex-

periment.

C
la

ss
ifi

ca
tio

n
7

C
la

ss
ifi

ca
tio

n
17

R
eg

re
ss

io
n

7

R
eg

re
ss

io
n

17

0

10

20

30

40

M
C

A

38 38

43

19 19

23

38 39
41

21
19

22

Alexnet

Nvidia

VGG19

Figure 4: Mean class accu-

racy (MCA) of the granular-

ity experiment.

C
la

ss
ifi

ca
tio

n
7

C
la

ss
ifi

ca
tio

n
17

R
eg

re
ss

io
n

7

R
eg

re
ss

io
n

17

0

200

400

600

800

1000

1200

M
S
E

912

1032

864

975
1056

916

737
809 834

721

820
743

Alexnet

Nvidia

VGG19

Figure 5: Mean squared er-

ror (MSE) of the granularity

experiment.
C
la

ss
ifi

ca
tio

n
7

C
la

ss
ifi

ca
tio

n
17

R
eg

re
ss

io
n

7

R
eg

re
ss

io
n

17

0

5

10

15

20

25

M
A

E

22.5
23.3

21.2

23.523.7
21.7

20.120.820.3 20.220.920.2

Alexnet

Nvidia

VGG19

Figure 6: Mean absolute er-

ror (MAE) of the granular-

ity experiment.

Image Colour Scheme: Next, we investigate to what

extent our system can exploit the colour information that

is present in the input images. We start off by comparing

coloured images to grayscale ones. The images from the

dataset already have the RGB colour scheme. Since our

previous network proved regression networks to outperform

classifier networks in the problem at hand, we focus this

experiment on regression networks.

The results from this experiment can be found in Fig-

ures 7 through 10. From these results, it can be observed

that there is no significant difference in performance be-

tween networks that use coloured and grayscale images as

input. This suggests that, for the task at hand, the system is

not able to take much advantage of the colour information.

Therefore, it is not worthwhile to investigate this aspect any

further and compare different colour schemes.

4.2. Incorporating Temporal Dependencies

In this second high-level aspect, we evaluate methods

that enable our system to take advantage of information that

co-occurs in consecutive inputs. This could lead to signif-

C
ol

ou
re

d

G
ra

ys
ca

le

0

10

20

30

40

A
cc

u
ra

cy

41
39

21 21

41
38

22
20

Alexnet, 7, reg.

Nvidia, 7, reg.

Alexnet, 17, reg.

Nvidia, 17, reg.

Figure 7: Classification ac-

curacy of the colour experi-

ment.

C
ol

ou
re

d

G
ra

ys
ca

le

0

10

20

30

40

M
C

A

38 39

21
19

38 38

21
19

Alexnet, 7, reg.

Nvidia, 7, reg.

Alexnet, 17, reg.

Nvidia, 17, reg.

Figure 8: Mean class accu-

racy (MCA) of the colour

experiment.

C
ol

ou
re

d

G
ra

ys
ca

le

0

200

400

600

800

1000

M
S
E

737
809

721

820

717

849

752

877

Alexnet, 7, reg.

Nvidia, 7, reg.

Alexnet, 17, reg.

Nvidia, 17, reg.

Figure 9: Mean square error

(MSE) of the colour experi-

ment.

C
ol

ou
re

d

G
ra

ys
ca

le

0

5

10

15

20

M
A

E

20.1 20.8 20.2
20.9

19.5
21.2

19.9
21.6

Alexnet, 7, reg.

Nvidia, 7, reg.

Alexnet, 17, reg.

Nvidia, 17, reg.

Figure 10: Mean absolute

error (MAE) of the colour

experiment.

icant increase in performance as the input images are ob-

tained from successive frames of a video which introduces

temporal consistencies.

Stacked frames: In the first method we evaluate, we

concatenate multiple subsequent input images to create a

stacked image. Then, we feed this stacked image to the

network as a single input. We refer to this method as

stacked. This means that for image it at time/frame t , im-

ages it−1, it−2, . . . will be concatenated. To measure the

influence of this stacked input, the input size must be the

only variable. For this reason, the images are concatenated

in the depth (channel) dimension and not in a new, 4th di-

mension. For example, stacking two previous images to the

current RGB image of 160x320x3 pixels would change its

size to 160x320x9 pixels. By doing this, the architecture

stays the same since the first layer remains a 2D convolu-

tion layer. The only change in our basic pipeline, are the

dimensions of the input image and the size of the convolu-

tion kernels, whose depth is automatically adjusted as they

take the whole depth of the input into account. We ex-

pect that by taking advantage of the temporal information

between consecutive inputs, the network should be able to

outperform networks that perform independent predictions

by taking single images as inputs.

For our experiment, we compare single images to

stacked frames of size 3, 6 and 9. This means that 2, 5 or

8 preceding images have been concatenated, respectively.

The results can be found in figures 11 through 14.

These results show that feeding the network stacked

frames increases the performance on all metrics. Looking

at MSE, we see a significant decrease of about 30% when

comparing single images to stacked frames of 3 images. We

Si
ng

le

St
ac

ke
d

3

St
ac

ke
d

6

St
ac

ke
d

9

0

10

20

30

40

50

A
cc

u
ra

cy

41
39

21 21

47
44

23
21

47
45

29
25

47
45

26
24

Alexnet, 7, reg. Nvidia, 7, reg. Alexnet, 17, reg. Nvidia, 17, reg.

Figure 11: Classification accuracy of the stacking experi-

ment.

Si
ng

le

St
ac

ke
d

3

St
ac

ke
d

6

St
ac

ke
d

9

0

10

20

30

40

50

M
C

A

38 39

21
19

49

44

27

20

48
46

28

24

47 46

26 25

Alexnet, 7, reg. Nvidia, 7, reg. Alexnet, 17, reg. Nvidia, 17, reg.

Figure 12: Mean class accuracy (MCA) of the stacking ex-

periment.

Si
ng

le

St
ac

ke
d

3

St
ac

ke
d

6

St
ac

ke
d

9

0

200

400

600

800

M
S
E

737

809

721

820

391

558

481
542

452
511 488 505

453
491

414

574

Alexnet, 7, reg. Nvidia, 7, reg. Alexnet, 17, reg. Nvidia, 17, reg.

Figure 13: Mean square error (MSE) of the stacking exper-

iment.

Si
ng

le

St
ac

ke
d

3

St
ac

ke
d

6

St
ac

ke
d

9

0

5

10

15

20

M
A

E

20.1 20.8 20.2
20.9

14.9

17.2 16.7 17.3

15.4
16.5 15.8 16.2 15.6 16.2

15.4

17.3

Alexnet, 7, reg. Nvidia, 7, reg. Alexnet, 17, reg. Nvidia, 17, reg.

Figure 14: Mean absolute error (MAE) of the stacking ex-

periment.

assume that this is because the network can make a predic-

tion based on the average information of multiple images.

For a single image, the predicted value may be too high or

too low. For concatenated images, the combined informa-

tion could cancel each other out, giving a better ’averaged’

prediction.

We see that further increasing the amount of concatenated

images only leads to small improvements with diminishing

returns. Assuming that the network averages the images in

some way, we do not want to increase this amount because

the network loses responsiveness. For instance, if a sudden

event were to happen, such as a person jumping in front of

the car, it would get filtered out by the averaging. The sys-

tem would only respond to it after several frames, when the

event is present in many previous input frames. This would

be a reason to desire an increased frame rate. Even though

the consecutive images would be more correlated, it would

result in a quicker response of the system.

Based on these observations, in our setting the configura-

tion with 3 concatenated frames is preferable. It offers a

significant boost in performance while the system remains

relatively responsive.

Recurrent layers: In the second technique, we modify

our architecture to include recurrent neural network layers.

The type of layers that we use, are Long-term short-memory

(LSTM) layers. By definition, these layers allow to capture

the temporal information between consecutive inputs. Tra-

ditional recurrent NN layers suffer from the vanishing gra-

dient problem [10] but LSTM layers deal with this through

the use an internal forget gate. The activation function of the

recurrent part of a LSTM block is the unity function. This

way the gradient does not vanish nor explode. The LSTM

is thus able to retain information over a long period of time.

Many different types and modified versions of LSTMs can

be found in the literature [7, 8, 11]. We use the version im-

plemented in Keras [4].

The networks are trained on an input vector that consists of

the input image and a number of preceding images, just like

the stacked frames. Together with our training methodol-

ogy, this results in a time window. Due to the randomization

in our training, this is not a sliding window but a window

at a random point of time for every input sample. As ex-

plained in [13], this has the effect of decorrelating the sam-

ples and leads to higher variance and slower convergence

during training, but gets rid of the sequential bias.

We compared many variations of the NVIDIA architec-

ture [1]. We experimented with a configuration where we

changed one or both of the two dense layers to LSTM lay-

ers, one where we added an LSTM layer after the dense lay-

ers and one where we changed the output layer to LSTM.

Training these networks from scratch led to very poor per-

formance. Perhaps, this might be caused by the fact that as

the LSTM offers increased capabilities, it also has more pa-

rameters that need to be learned. We hypothesize that our

dataset is too small to do this, especially without data aug-

mentation.

Therefore, we load a pretrained network when we create a

LSTM network. This pretrained network is the NVIDIA

network variant from our granularity experiment with the

corresponding output type. Depending on the exact archi-

tecture of the LSTM network, the weights of corresponding

layers are copied. Weights of non-corresponding layers are

initialized as usual. The weights of the convolutional layers

are frozen as they have already been trained to detect the

important features and this reduces the training time.

Again we tested the variations of the NVIDIA architecture

described above. We found that on pretrained networks, the

performance usually remains the same. The results show

that the incorporation of LSTM layers did not increase nor

reduce the network’s performance. It is unclear why this

happens and future research could conduct more detailed

experiments regarding the incorporation of LSTM layers.

4.3. Application of Simulated Data

A last aspect we investigate is the origin of the data. Up

until now, training and evaluation of our system was done

using real-world datasets. Here we look into the advantages

of a simulator over a real-world dataset and the uses of such

a simulator. We research the impact of recovery cases on a

network’s performance and verify if the performance met-

rics that are typically used are a good indicator of a net-

work’s real driving behaviour.

A simulator brings many advantages. Some examples

are that data gathering is easy, cheap and can be automated.

Recovery cases can easily be included in the dataset. In-

frequently occurring situations can be simulated and added

to the dataset. Driving conditions such as the weather and

traffic can be set as desired. Testing in simulators is safe,

cheap and easy.

Udacity Simulator: First the Udacity simulator [32] is

used to generate three datasets. This simulator is very mini-

malistic and has no other cars, pedestrians, or complex traf-

fic situations. Only simple test-tracks are implemented. The

first dataset is gathered by manually driving around the first

test-track in the simulator. The second dataset consists of

recovery cases only. It is gathered by diverging from the

road, after which the recovery to the middle of the road is

recorded. This process is repeated many times to get a suf-

ficiently large dataset. A third validation dataset is gathered

by driving around the track in the same way as with the first

dataset. For the following experiments, the NVIDIA archi-

tecture [1] with a regression output is used and no sample

weighting is applied during training.

Training on Simulated Data: The first experiment tests

the performance of a network trained solely on the first

dataset. After training, the best epoch is selected based on

MCA. The confusion matrix and MCA are shown in Fig-

ure 16. The metrics are comparable to other runs on the real

dataset. As the confusion matrix has a dense diagonal, good

real-time driving performance is expected. When driving in

the simulator, the network starts off quite well and stays

nicely in the middle of the road. When it encounters a more

difficult sharp turn, the network slightly miss-predicts some

frames. The car deviates from the middle of the road and is

not able to recover from its miss-predictions, eventually go-

ing completely off-track. We conclude that despite promis-

ing performance on the traditional metrics, the system fails

to keep the car on the road.

Recovery Cases: The second experiment evaluates the

influence of adding recovery data. First a new network is

trained solely on the recovery dataset. The confusion matrix

Sequence: Network trained from recovery cases only

Figure 15: Some video sequences showing the evaluated model driving in the Udacity simulator when considering only data

depicting recovery cases. The car does not stay exactly in the middle of the road. The car wobbles softly from one side to the

other side of the road during the straight parts of the track. Surprisingly, it handles the sharp turns quite well. Please refer to

the supplementary material for the video version of similar sequences.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Predicted label

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

T
ru

e
 l
a
b
e
l

51 14 10 9 4 2 2 1 1 1 1 1 1 1 1 0 0

30 15 6 6 0 0 0 3 12 15 0 6 3 3 0 0 0

 3 7 15 36 16 4 11 1 1 3 3 0 0 0 0 0 0

 2 6 12 28 21 12 9 7 2 0 0 0 0 0 1 0 0

 1 2 0 8 29 23 17 12 1 5 3 1 1 0 0 0 0

 0 0 1 0 7 42 24 15 2 5 3 0 0 0 0 0 0

 0 0 0 0 3 14 34 36 10 1 2 0 0 0 0 0 0

 0 0 0 0 0 2 12 62 16 6 0 0 0 1 0 0 0

 0 0 0 0 0 0 2 22 40 31 2 1 0 0 0 0 0

 0 1 0 0 0 0 2 6 16 53 19 1 0 0 0 0 0

 0 0 0 0 0 0 1 4 10 29 33 15 5 2 2 0 0

 0 0 0 0 0 0 1 4 4 11 15 28 34 1 1 0 0

 0 0 0 0 1 0 1 1 1 5 19 20 28 18 5 0 1

 0 0 0 0 0 0 0 7 7 13 10 3 0 7 10 20 23

 0 0 0 0 0 0 0 10 2 0 18 5 0 15 45 2 2

 0 0 0 0 0 0 0 18 5 0 0 36 18 0 14 9 0

 0 0 0 0 1 1 0 2 0 1 4 2 5 4 9 38 34

Normalized Confusion Matrix: epoch_9

#
Im

gs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

186

33

74

122

198

245

369

442

211

321

242

169

137

30

40

22

159

eval images

Figure 16: Confusion matrix for NN trained without recov-

ery data. Mean class accuracy (MCA) is 32.5%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Predicted label

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

T
ru

e
 l
a
b
e
l

59 4 2 5 2 1 2 3 1 3 3 3 0 0 1 2 12

42 0 3 12 0 6 3 0 0 0 3 3 0 0 3 6 18

58 11 5 7 0 1 1 0 0 4 0 0 1 3 1 3 4

76 1 2 1 0 1 1 1 1 2 3 1 4 2 2 1 2

47 5 6 5 2 6 5 3 2 3 2 2 4 2 2 1 6

56 10 4 6 5 4 4 1 2 1 0 0 0 1 1 2 2

63 4 7 6 3 4 2 2 1 1 1 1 0 0 1 1 3

28 5 10 8 7 7 11 7 3 3 2 2 1 2 2 0 2

 9 3 6 6 5 7 3 8 0 6 11 7 6 8 4 4 8

 3 2 3 2 3 4 2 5 4 11 12 9 8 6 8 4 14

 8 4 1 1 2 1 0 2 2 2 2 4 5 6 7 7 46

 5 1 1 1 1 1 1 1 1 4 11 7 6 6 4 2 49

17 1 5 3 3 1 3 0 1 2 5 7 4 7 4 9 30

 3 0 10 7 3 3 7 13 7 0 0 0 3 10 0 0 33

12 2 2 0 0 0 2 2 5 0 2 0 0 10 2 8 50

18 9 9 0 0 5 0 5 9 5 5 5 9 5 9 0 9

11 2 3 4 1 4 1 2 1 1 2 1 1 4 7 3 51

Normalized Confusion Matrix: epoch_7

#
Im

gs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

186

33

74

122

198

245

369

442

211

321

242

169

137

30

40

22

159

eval images

Figure 17: Confusion matrix for NN trained with only re-

covery data. Mean class accuracy (MCA) is 9.9%.

is shown in Figure 17 together with its MCA. As can be ex-

pected, the confusion matrix is focused on steering sharply

to the left or right. As it does not look very promising and

the MCA is very low, it is expected this network will not

perform very well during real-time driving. Despite the low

performance on these metrics, the network manages to keep

the car on track. The car however does not stay exactly in

the middle of the road. Instead, it diverts from the centre of

the road, after which it recovers back towards the middle. It

then diverts towards the other side and back to the middle

again, and so on. The car thus wobbles softly during the

straight parts of the track, but handles the sharp turns sur-

prisingly well.

A third network is trained on both datasets and has a con-

fusion matrix similar to the first network. In the simulator,

it performs quite well, driving smoothly in the middle of

the lane on the straight parts as well as in sharp turns. We

conclude that recovery cases have a significant impact on

the system’s driving behaviour. By adding these recovery

cases, the driving performance of the system is improved

while its performance on metrics deteriorates. This again

suggests that the standard metrics might not be a good tool

to accurately assess a network’s driving behaviour. Please

refer to the supplementary material for videos depicting the

cases discussed above.

GTA V Simulator: As an extension to the simplistic

Udacity, GTA V [24, 20] is integrated as a more realistic

simulator platform. Next to being nearly photo-realistic,

GTA V provides a big driving playground of a vast 126

km2 with various lighting and weather conditions, many

different cars, and divers traffic scenes. A big dataset with

42 hours of driving is available at [23]. This data also in-

cludes recovery cases. This dataset is composed by 600k

images split into 430k training images and 58k validation

images. A NVIDIA [1] and an AlexNet [15] regression net-

work, as described above, are trained on the dataset with

sample weights based on 17 classes. Since the NVIDIA net-

work performs better, only this one is discussed below. The

network shows performance metrics similar to the NVIDIA

regression network trained on the real-world dataset. We

evaluate real-time driving performance on an easy, non-

urban road with clear lane markings. The network per-

forms quite well and stays around the centre of the lane.

When approaching a road with vague lane markings, such

as a small bridge, the car deviates towards the opposite lane

(Figure 18 middle). When it reaches a three-way crossing

(Figure 18 bottom), the network can not decide whether to

go left or right, as it was equally trained on both cases. Be-

cause of this, it drives straight and goes off-road. In an ur-

Sequence: Road covered by shadows

Sequence: Road with vaguely marked lines

Sequence: Three-way road crossing

Figure 18: Some video sequences showing the evaluated model driving in the GTA V simulator. We show some difficult

cases: road covered by shadows (top), roads with vague lane markings, e.g. a bridge (middle), and a dark three-way crossing

(bottom). Please refer to the supplementary material for the video version of these sequences.

ban environment, the network struggles with the same prob-

lem, resulting in poor real-time performance. Please refer

to the supplementary material for videos depicting the cases

discussed above.

Again, observations from this experiment suggest that

current metrics are not always representative for real-time

driving performance. In this regard, further research must

be conducted towards developing new performance metrics

and setting up automatic testing environments that are able

to match performance at training time and performance dur-

ing real-time driving. Some possible metrics could be dis-

tance from the middle of the lane, smoothness of driving

(penalizing abrupt braking or turning), or a metric based on

how long the car stays on the road without accidents.

5. Conclusion

In this paper, we analyzed an end-to-end neural network

to predict the steering actions of a car on a highway from an

input captured by a single car-mounted camera. Our analy-

sis covered several high-level aspects of the neural network.

These aspects were the format of the input data, the tempo-

ral dependencies between consecutive inputs and the appli-

cation of simulated data.

Regarding the first aspect, we showed that the amount of

classes of a classifier does not seem to have a big influence

on the performance and that regression networks outper-

form classifier networks. This is likely due to the nature of

their loss function which, similar to the metrics we use for

evaluation, takes the magnitude of a prediction error into ac-

count. Moreover, we showed that, for the task at hand, there

is no major difference between networks that use coloured

images and ones that use grayscale images.

Regarding the second aspect, while we were unsuccessful in

improving performance by implementing LSTM layers, the

stacked frames approach delivered good results. By feed-

ing the network 3 concatenated images, we got a significant

decrease of 30% in mean square error (MSE). Further in-

creasing the amount of concatenated images only brought

diminishing returns that did not outweigh the drawbacks.

Regarding the third aspect, we were able to gather simulated

data and train networks that have a performance compara-

ble to the networks that we trained on real-life datasets. We

have qualitatively shown the importance of recovery cases.

We also qualitatively showed that the standard metrics that

are used to evaluate networks that are trained on datasets -

accuracy, MCA, MAE, MSE - do not necessarily reflect a

system’s driving behaviour. We have shown that a promis-

ing confusion matrix may result in poor driving behaviour

while a very ill-looking confusion matrix may result in good

driving behaviour. A structured framework is needed that

allows to quantitatively measure more meaningful metrics.

Finally, in future work we will explore domain adaptation

and adversarial methods [27] as an alternative for adapting

available data to the desired testing domain and further im-

prove performance.

Acknowledgments: The authors thank Toyota for their generous

support. This work was partially supported by the FWO SBO

project OmniDrone, the KUL Grant PDM/16/131 and a NVIDIA

Academic Hardware Grant.

References

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,

J. Zhang, et al. End to end learning for self-driving cars.

arXiv preprint arXiv:1604.07316, 2016.

[2] T. P. Cao and G. Deng. Real-time vision-based stop sign

detection system on fpga. In Computing: Techniques and

Applications, 2008. DICTA’08. Digital Image, pages 465–

471. IEEE, 2008.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving:

Learning affordance for direct perception in autonomous

driving. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2722–2730, 2015.

[4] F. Chollet et al. Keras. https://keras.io/layers/

recurrent/\#lstm, 2015. [Online; accessed 08-May-

2017].

[5] J. M. Collado, C. Hilario, A. De la Escalera, and J. M.

Armingol. Model based vehicle detection for intelligent ve-

hicles. In Intelligent Vehicles Symposium, 2004 IEEE, pages

572–577. IEEE, 2004.

[6] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedes-

trian detection: An evaluation of the state of the art. IEEE

transactions on pattern analysis and machine intelligence,

34(4):743–761, 2012.

[7] F. A. Gers and J. Schmidhuber. Recurrent nets that time and

count. In Neural Networks, 2000. IJCNN 2000, Proceedings

of the IEEE-INNS-ENNS International Joint Conference on,

volume 3, pages 189–194. IEEE, 2000.

[8] A. Graves and J. Schmidhuber. Framewise phoneme clas-

sification with bidirectional lstm and other neural network

architectures. Neural Networks, 18(5):602–610, 2005.

[9] C. Hilario, J. M. Collado, J. M. Armingol, and A. de la Es-

calera. Pedestrian detection for intelligent vehicles based on

active contour models and stereo vision. In International

Conference on Computer Aided Systems Theory, pages 537–

542. Springer, 2005.

[10] S. Hochreiter. The vanishing gradient problem during learn-

ing recurrent neural nets and problem solutions. Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 6(02):107–116, 1998.

[11] S. Hochreiter and J. Schmidhuber. Lstm can solve hard long

time lag problems. In Advances in neural information pro-

cessing systems, pages 473–479, 1997.

[12] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar,

K. Rosaen, and R. Vasudevan. Driving in the matrix: Can

virtual worlds replace human-generated annotations for real

world tasks? In IEEE International Conference on Robotics

and Automation, pages 1–8, 2017.

[13] K. Kelchtermans and T. Tuytelaars. How hard is it to cross

the room?–training (recurrent) neural networks to steer a uav.

arXiv preprint arXiv:1702.07600, 2017.

[14] J. Kim and J. Canny. Interpretable learning for self-

driving cars by visualizing causal attention. arXiv preprint

arXiv:1703.10631, 2017.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[16] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-

road obstacle avoidance through end-to-end learning. In

NIPS, pages 739–746, 2005.

[17] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,

S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, et al.

Towards fully autonomous driving: Systems and algorithms.

In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages

163–168. IEEE, 2011.

[18] H. Liu and B. Ran. Vision-based stop sign detection and

recognition system for intelligent vehicles. Transportation

Research Record: Journal of the Transportation Research

Board, (1748):161–166, 2001.

[19] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans,

and L. V. Gool. Fast scene understanding for autonomous

driving. In IEEE Symposium on Intelligent Vehicles, 2017.

[20] OpenAI. Universe, measurement and training for artifi-

cial intelligence. https://universe.openai.com/.

[Online; accessed 19-May-2017].

[21] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and

C. Cadena. From perception to decision: A data-driven

approach to end-to-end motion planning for autonomous

ground robots. arXiv preprint arXiv:1609.07910, 2016.

[22] D. A. Pomerleau. Alvinn, an autonomous land vehicle in a

neural network. Technical report, Carnegie Mellon Univer-

sity, Computer Science Department, 1989.

[23] C. Quiter. deepdrive.io gta v dataset.

https://archive.org/details/

deepdrive-baseline-uint8.

[24] Rockstar Games Inc. Grand Theft Auto V, 2015.

[25] F. Sadeghi and S. Levine. (cad)2 rl: Real single-

image flight without a single real image. arXiv preprint

arXiv:1611.04201, 2016.

[26] E. Santana and G. Hotz. Learning a driving simulator. arXiv

preprint arXiv:1608.01230, 2016.

[27] E. Santana and G. Hotz. Learning a driving simulator. CoRR,

abs/1608.01230, 2016.

[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[29] Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection:

A review. IEEE transactions on pattern analysis and ma-

chine intelligence, 28(5):694–711, 2006.

[30] M. Sundermeyer, I. Oparin, J.-L. Gauvain, B. Freiberg,

R. Schlüter, and H. Ney. Comparison of feedforward and

recurrent neural network language models. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE Inter-

national Conference on, pages 8430–8434. IEEE, 2013.

[31] M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural net-

works for language modeling. In Interspeech, pages 194–

197, 2012.

[32] Udacity. Self-driving car simulator. https://github.

com/udacity/self-driving-car-sim, 2017.

[33] B. Völz, K. Behrendt, H. Mielenz, I. Gilitschenski, R. Sieg-

wart, and J. Nieto. A data-driven approach for pedestrian

intention estimation. In Intelligent Transportation Systems

(ITSC), 2016 IEEE 19th International Conference on, pages

2607–2612. IEEE, 2016.

[34] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning

of driving models from large-scale video datasets. arXiv

preprint arXiv:1612.01079, 2016.

