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Abstract

Consumer digital cameras use tone-mapping to produce

compact, narrow-gamut images that are nonetheless visu-

ally pleasing. In doing so, they discard or distort substantial

radiometric signal that could otherwise be used for com-

puter vision. Existing methods attempt to undo these ef-

fects through deterministic maps that de-render the reported

narrow-gamut colors back to their original wide-gamut sen-

sor measurements. Deterministic approaches are unreli-

able, however, because the reverse narrow-to-wide map-

ping is one-to-many and has inherent uncertainty. Our so-

lution is to use probabilistic maps, providing uncertainty

estimates useful to many applications. We use a non-

parametric Bayesian regression technique—local Gaussian

process regression—to learn for each pixel’s narrow-gamut

color a probability distribution over the scene colors that

could have created it. Using a variety of consumer cameras

we show that these distributions, once learned from train-

ing data, are effective in simple probabilistic adaptations of

two popular applications: multi-exposure imaging and pho-

tometric stereo. Our results on these applications are better

than those of corresponding deterministic approaches, es-

pecially for saturated and out-of-gamut colors.

1. Introduction

Most digital images produced by consumer cameras and

shared online exist in narrow-gamut, low-dynamic range

formats.1 This is efficient for storage, transmission, and

display, but it is unfortunate for computer vision systems

that seek to interpret this data radiometrically when learn-

ing object appearance models for recognition, reconstruct-

ing scene models for virtual tourism, or performing other vi-

sual tasks with Internet images. Indeed, most computer vi-

sion algorithms are based, either implicitly or explicitly, on

the assumption that image measurements are proportional

to the spectral radiance of the scene (called scene color

hereafter), and when a consumer camera renders its digital

1Typically sRGB color space with JPEG encoding: IEC 10918-1:1994

and IEC 61966-2-1:1999
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Figure 1. RAW and JPEG values for different exposures of the

same spectral scene radiance collected by a consumer digital cam-

era (DMC-LX3, Panasonic Inc.), along with normalized-RGB vi-

sualizations of the reported JPEG colors at a subset of exposures.

Apart from sensor saturation, RAW values are linear in exposure

and proportional to spectral irradiance; but narrow-gamut JPEG

values are severely distorted by tone-mapping. Given only JPEG

values, what can we say about the unknown RAW values—and

thus the scene color—that induced it? How can we use all of the

JPEG color information, including when some JPEG channels are

saturated (regions A and C)? We answer these questions by pro-

viding a confidence level for each RAW estimate (bottom plot),

which can be used for radiometry-based computer vision.

linear color measurements to a narrow-gamut output color

space (called rendered color hereafter), this proportionality

is almost always destroyed. Fig. 1 shows an example.

Existing approaches to color de-rendering attempt to

undo the effects of a camera’s color processing pipeline

through “radiometric calibration” [6, 20, 22], in which ren-

dered colors (i.e., those reported in a camera’s JPEG out-

1



put) are reverse-mapped to corresponding scene colors (i.e.,

those that would have been reported by the same cam-

era’s RAW output) using a learned deterministic function.

This approach is unreliable, because it ignores the inherent

uncertainty caused by the loss of information. A typical

camera renders many distinct sensor measurements to the

same small neighborhood of narrow-gamut output colors

(see Fig. 2, right) and, once these output colors are quan-

tized, the reverse mapping becomes one-to-many in some

regions and cannot be deterministically undone.

How can we know which predictions are unreliable? As

supported by Fig. 2, one expects the one-to-many effect to

be greatest near the edges of the output gamut (i.e., near

zero or 255 in an 8-bit JPEG file), and practitioners try to

mitigate it using heuristics such as ignoring all JPEG pix-

els having values above or below certain thresholds in one

or more of their channels. This trick improves the relia-

bility of deterministic radiometric calibration, but it raises

the question of how to choose thresholds for a given cam-

era. (“Should I only discard pixels with values 0 or 255,

or should I be more conservative?”)2 A more fundamental

concern is that this heuristic works by discarding informa-

tion that would otherwise be useful. Referring to Fig. 1,

such a heuristic would ignore all JPEG measurements in re-

gions A and C, even though these clearly tell us something

about the latent scene color.

To overcome these limitations, we introduce a proba-

bilistic approach for de-rendering. This method produces

from each rendered (JPEG) color a probability distribution

over the (wide gamut, high dynamic range) scene colors

that could have induced it. The method relies on an offline

calibration procedure involving registered RAW and JPEG

image pairs, and from these it infers a statistical relation-

ship between rendered colors and scene colors using local

Gaussian process regression. This probabilistic approach

provides a measure of confidence, based on the variance

of the output distribution, for every predicted scene color,

thereby eliminating the need for heuristic thresholds and

making better use of the scene radiance information that

is embedded in an Internet image. The offline calibration

procedure is required only once for each different imaging

mode of each camera, thus many per-camera de-rendering

models could be stored in an online database and accessed

on demand using camera model and mode information em-

bedded in the metadata of an Internet image.3

We evaluate our approach in a few different ways. First,

2Our experiments in Fig. 4 and those of [18] reveal significant variation

between models and suggest the answer is often the latter.
3As has been done for lens distortion by PTLens (accessed Mar 27,

2012): http://www.epaperpress.com/ptlens/
4The boundary of the output sRGB gamut is determined automatically

from image data in two steps. The edge directions of the parallelepiped

are extracted from RAW metadata using dcraw[5], and then its scale is

computed as a robust fit to RAW-JPEG correspondences.
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Figure 2. 3D visualization of color rendering. The black cube in-

dicates the set of possible RAW color sensor measurements, and

the red parallelepiped shows the boundary of the output sRGB

gamut to which all RAW colors must be tone-mapped.4Left: Data

from Fig. 1, with black circles the scene color x at different expo-

sure times. Corresponding RAW values x̃ (magenta) are clipped

due to sensor saturation, and they are tone-mapped to rendered

colors y (blue) within the output sRGB gamut. Right: Ren-

dered colors (blue) in small neighborhoods of [127, 127, 127] and

[253, 253, 253] in a JPEG image, connected (through cyan lines)

to their corresponding RAW measurements (magenta).

we assess our ability to recover wide-gamut scene col-

ors from JPEG sRGB observations in four different con-

sumer cameras. Next, we employ our probabilistic de-

rendering model in relatively straightforward probabilistic

adaptations of two established applications: high-dynamic

range imaging with an exposure-stack of images (e.g., [20])

and three-dimensional reconstruction via Lambertian pho-

tometric stereo (e.g., [33]). In all cases, a probabilistic ap-

proach significantly improves our ability to infer radiomet-

ric scene structure from tone-mapped images.

1.1. Related work

There is a history of radiometric calibration for com-

puter vision, the goal of which is to invert non-linear trans-

formations of scene lightness and color that occur during

imaging. The most common approach is to assume that the

non-linearity can be described by a collection of three “ra-

diometric response functions”, which are monotonic deter-

ministic functions that separately affect the measurements

in each output color channel [20, 22, 6, 10]. The benefit

of this approach is that it enables “self-calibration” through

analysis of edge profiles [19] and image statistics [7, 16]

or, assuming white balance is fixed or happens per-channel

in the output color space [12], by making use of multiple

illuminations or exposures [20, 22, 6, 9, 28, 30]. For the

case of multiple exposures, Pal et al. [24] have proposed a

generalization that allows the shapes of the radiometric re-

sponse functions to change between exposures, while being

governed by statistical priors that give preference to smooth

and monotonic functions.

A significant limitation of the monotonic per-channel

model is that it cannot recover out-of-gamut chromaticities.

This can be explained using Fig. 2(left), which is a three-

http://www.epaperpress.com/ptlens/


dimensional visualization of Fig. 1. When an out-of-gamut

scene color x = (xR, xG, xB) is rendered to a within-

gamut output color y = (yR, yG, yB), the traditional per-

channel approach attempts to undo it by computing the es-

timate x̂ = {f c(yc)}c=R,G,B using positive-valued, mono-

tonic functions f c(·). This estimate cannot always be accu-

rate because it is restricted to lie within the cone defined by

the radial extension of the output sRGB gamut.

Chakrabarti et al. [3] show that more accurate determin-

istic models can be fit using an offline calibration procedure

involving registered RAW and JPEG sRGB images. They

consider multivariate polynomial models for the forward

map from scene color x to output color y, and while they

find reasonable fits for most cameras, the residual errors re-

main quite high at 4-6 times most camera noise levels. Lin

et al. [18] perform a thorough, larger-scale study and ob-

tain significantly improved fits using radial basis functions,

which are more flexible. Both approaches avoid the restric-

tions of per-channel response functions and can theoreti-

cally recover out-of-gamut chromaticities; but they remain

deterministic, reporting a single color value instead of a dis-

tribution and not allowing for uncertainty prediction.

We represent uncertainty by employing a Bayesian non-

parametric regression scheme, which allows the data to de-

termine the form of the mapping. Specifically, we adapt

the method of Urtasun and Darrell [32], which learns a lo-

cal Gaussian process for the neighborhood around each test

point, in the spirit of locally-weighted regression [4].

2. A probabilistic de-rendering model

We begin with a model for the forward color process-

ing pipeline of a typical consumer digital camera; then we

describe our representation for the reverse mapping. Both

models ignore de-mosaicking, flare removal, noise removal,

and sharpening since these have significantly less impact on

the output than non-linear tone-mapping. More details on

these secondary issues can be found elsewhere [3, 2, 25, 14].

An important assumption underlying our model is that

the forward rendering operation is spatially-uniform, mean-

ing that its effect on a RAW color vector is the same regard-

less of where it occurs on the image plane. This assump-

tion is shared by almost all de-rendering techniques and is

reasonable at present; but if spatially-varying tone-mapping

operators become more common, relaxing this assumption

may become a useful direction for future work.

2.1. Forward (rendering) model

Referring to Fig. 3, the forward model begins with

three idealized spectral sensors with sensitivity profiles

{πc(λ)}c=R,G,B that sample the spectral irradiance inci-

dent on the sensor plane. These sensors are idealized in

that they do not saturate and have infinite dynamic range,

and we refer to their output x = {xc}c=R,G,B as the scene
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Figure 3. The forward color processing model used in this paper,

along with our notation for it. Lesser effects, such as flare removal,

de-mosaicking, and vignetting are ignored and treated as noise.

color. Practical sensors have limited dynamic range, so

scene colors are clipped as they are recorded. In some con-

sumer cameras these recorded sensor measurements x̃ =
{x̃c}c=R,G,B are made available through a RAW output

format, and in others they only exist internally. Empirical

studies suggest that the RAW values (in the absence of clip-

ping) are proportional to incident irradiance and related by

a linear transform to measurements that would be obtained

by the CIE standard observer [3, 2, 15] (also see Fig. 1).

For this reason, they provide a “relative scene-referred im-

age” [12] and can be used directly by computer vision sys-

tems to reason about spectral irradiance.

Two linear transforms are applied to the sensor measure-

ments. The first (W ) is scene-dependent and induces white

balance, and the second (C) is a fixed transformation to

an internal working color space. Then, most importantly,

the linearly transformed RAW values CW x̃ are rendered

to colors y = {yc}c=R,G,B in the narrow-gamut output

sRGB color space through a non-linear map f : R3 → R
3.

This map has evolved to produce visually-pleasing results

at the expense of physical accuracy, and since the qual-

ity of a camera’s color rendering process plays a signifi-

cant role in determining its commercial value, there is a

dis-incentive for manufacturers to share its details. In our

model, the map f includes the per-channel non-linearity

(approximately a gamma of 2.2) that is part of the sRGB

standard (IEC 61966-2-1:1999).

The left of Fig. 2 shows signal values at various stages

of this forward model for a consumer camera (DMC-LX3,

Panasonic Inc.). Recall that the black box in this plot repre-

sents the range of possible RAW values x̃, and the red par-

allelepiped marks the boundary of the output sRGB gamut.

The plot shows color signals produced using different ex-

posure times for a simple static scene consisting of a uni-

form planar patch under constant illumination, with spatial-

averaging over all patch pixels to thoroughly suppress the

effects of noise, demosaicking, and JPEG compression. The

scene colors x (black) lie a line that extends well beyond the

cube as the exposure time grows large, and the chromatic-

ity of the patch is such that all scene colors lie outside the

sRGB gamut. The wide-gamut RAW values x̃ (magenta)

are very close to these scene colors for low exposures, but



they are clipped for longer exposures when the intensity

grows large. The rendered colors y = f(CW x̃) (blue)

lie within the output gamut, and are significantly affected

by the combined effects of sensor saturation, white balance,

and the color space transform. Interestingly, these rendered

colors are relatively far inside the boundary of the sRGB

gamut, so the conventional wisdom in radiometric calibra-

tion that one should discard pixels with very small or very

large JPEG values as being “clipped” is unlikely to detect

and properly treat them.

2.2. Inverse (de­rendering) model

Our goal is to infer, for each possible rendered color y,

the original scene color x that created it. As information is

lost in the forward rendering process, exact recovery is not

possible and thus any deterministic function that predicts a

single point estimate is bound to be wrong much of the time.

For that reason, we propose to estimate a distribution over

the space of possible scene colors. Specifically, we seek a

representation of p(x|y) from which we can either obtain a

MAP estimate of x or directly employ Bayesian inference

as desired for a given application (see Sec. 3.1 and Sec. 3.2).

We model the underlying de-rendering function, denoted

z, using Gaussian process (GP) regression [27]. Given a

training set {D = (yi,xi), i = 1, · · · , N}, composed

of inputs yi and noisy outputs xi, we model the outputs

{xc
i}c=R,G,B in each channel separately as coming from a

latent function zc that has a prior distribution described by

a GP, and is corrupted by additive noise ǫi:

xc
i = zc(yi) + ǫi, ǫi ∝ N (0, σ2

n). (1)

The latent function z serves as the inverse of the forward

rendering map composed of the color rendering function,

color transform, and white balance operations depicted in

Fig. 3. We will learn it using images in which the white

balance has been fixed to remove scene-dependence.

The classic GP regression paradigm uses a single set of

hyper-parameters controlling the smoothness of the inferred

function. However, our analysis of camera data has revealed

that such globally-defined (i.e., stationary) smoothness is

inadequate because there is significantly different behavior

in different regions of the sRGB gamut (see right of Fig. 2.)

Instead, the variance of z should be allowed to vary over

local neighborhoods of the sRGB color space.

Several extensions to the classic GP have been proposed

to model input-varying noise [26, 32, 21]. Here, we employ

a local GP regression model, which exploits the observa-

tion that, for compact radial covariance functions, only the

points close to a test point have significant influence on the

results [32]. Given a training dataset and a test point, the

method identifies a local neighborhood of the test point, and

performs prediction with the model either pre-trained based

on some local cluster (“offline local GP”), or learned on the

fly using neighbor points just detected (“online local GP”).5

More precisely, given training set D and a test sRGB color

y, we infer a test distribution of RAW values x conditioned

on y by identifying a local neighborhood of y in D, denoted

DN(y), and computing

px(x|y) =
∏

c

pGP (x
c|DN(y),y), (2)

where pGP (x|D,y) is the conditional GP likelihood of x

using training data D for sRGB colors y.

3. Working with photometric uncertainty

Linear measurements of scene radiance are crucial for

many computer vision tasks (shape from shading, image-

based rendering, deblurring, color constancy, intrinsic im-

ages, etc.), and the output of our de-rendering model can

be readily used in probabilistic approaches to these tasks.

Here we describe two such tasks and show how modeling

photometric uncertainty leads to more robust results.

3.1. Probabilistic wide­gamut imaging

Many applications that use Internet images operate by

inferring radiometric scene properties from multiple ob-

servations of the same scene point. For example, multi-

ple observations under different illuminations can be ex-

ploited for inferring diffuse object color [23] or more gen-

eral BRDFs [11]. To explore the benefits of modeling pho-

tometric uncertainty in such cases, we consider an example

scenario motivated by traditional HDR imaging with expo-

sure stacks [20, 6]. Given as input multiple exposures of

the same stationary scene, we seek to combine them into

one floating-point, HDR, and wide-gamut image.

Assume we are given a sequence of sRGB vectors cap-

tured at shutter speeds of {α1, α2, . . . , αN} seconds. Rep-

resent these by {y1, . . . ,yN}. We would like to predict the

RAW color, x0 say, that would have been obtained with a

shutter speed of α0 seconds. Note that α0 need not be one

of the shutter speeds used to capture the sRGB input.

Given a training set D, for each sRGB value y we esti-

mate the conditional distributions pxi
(xi|yi) for the RAW

value xi that would have been obtained with shutter speed

αi. Then, to obtain x0, we combine them using

px0
(x0|y1, . . . ,yN ) =

∏

i

px0
(x0|yi)

=
∏

i

αi

α0
pxi

(
αi

α0
x0|yi

)
. (3)

5To handle multimodality in the mapping, [32] shows how clustering

may be performed in both input and output spaces for the training data,

and a set of local regressors returned. However we believe that our inverse

map does not have multimodal structure, and we found that a single local

regressor provided adequate results. Implementation details with regard to

online and offline models are described in Sec. 4.



Since each channel pxi
(xi|yi) is modeled by a Gaus-

sian process, this expression represents the product of

Gaussian distributions, so the conditional distribution

px0
(x0|y1, . . . ,yN ) =

∏
i px0

(x0|yi) will be Gaussian as

well. Our output for x0, therefore, is the mean and variance

of this Gaussian distribution.

This application reveals the power of a probabilistic

model: it provides a distribution rather than a point esti-

mate. For applications that combine multiple independent

measurements, this provides a natural way to assign more

weight to the estimates that have smaller variance.

3.2. Probabilistic Lambertian photometric stereo

When illumination varies, another way that multiple ob-

servations of the same scene can be used is to recover light-

ing information and/or scene geometry. This may be useful

when using Internet images for weather recovery [29], ge-

ometric camera calibration [17], or 3D reconstruction [1].

To quantitatively assess the utility of uncertainty modeling

in these types of applications we consider the toy problem

of recovering from JPEG images three-dimensional scene

shape using Lambertian photometric stereo.

Lambertian photometric stereo is a technique for esti-

mating the surface normals of a Lambertian object by ob-

serving that object under different lighting conditions and a

fixed viewpoint [33]. Suppose there are N different direc-

tional lighting conditions, with li ∈ R
3 the direction and

strength of the ith source. Consider a single color channel

of single pixel in the image plane; denote by Ii the linear

intensity recorded in that channel under the ith light direc-

tion; and let n ∈ S
2 and ρ ∈ R

+ be the normal direction

and the albedo of the surface patch at the back-projection of

this pixel. The Lambertian reflectance model provides the

relation ρ〈li,n〉 = Ii, and the goal of photometric stereo is

to infer the material ρ and shape n given the set {li, Ii}.

Defining a pseudo-normal b , ρn, the relation between

the observed intensity and the scene parameters becomes

lTi b = Ii. (4)

Given three or more {li, Ii}-pairs, the traditional Lamber-

tian photometric stereo estimates pseudo-normal b (and

thus ρ and n) in a least-squares sense:

b = (LTL)−1LT I, (5)

where L and I are the matrix and vector formed by stacking

the light directions li and measurements Ii, respectively.

The linear relation between intensity I and scene radi-

ance is crucial in photometric stereo. One can use RAW

measurements when they are available, but for Internet-

based vision tasks that rely on sRGB images, one must first

de-render the colors to achieve this linearity. In our case, the

de-rendering result for each pixel is described as a Gaus-

sian random variable Ii ∼ N (µi, σ
2
i ), and Eq. (4) can be

re-written as

lTi b = µi + σiǫi, ǫi ∼ N (0, 1). (6)

From this it follows (e.g., [13]) that the maximum likeli-

hood estimate of the pseudo-normal b is obtained through

weighted least-squares, with weights given by the recipro-

cal of the variance. That is,

b = (LTWL)−1LTWµ, (7)

with W = diag{σ−2
i }Ni=1.

Once again we see that distributions provided by a proba-

bilistic de-rendering system can be employed very naturally

to selectively weight measurements for improved accuracy

and robustness.

4. Evaluation

For training, we collect for each camera model densely

sampled corresponding measurements of scene color and

rendered color. We obtain these by capturing a set of reg-

istered RAW and JPEG images of a standard color chart

(140-patch Digital ColorChecker SG, X-Rite Inc.). To ob-

tain a complete coverage of the RAW space, we use various

camera exposure settings (from all-black to all-white) and

various illumination spectra (a tungsten lamp sequentially

filtered by 16 distinct gels). This provides a very dense

set of RAW/JPEG pairs and more observations of saturated

colors than is available in existing databases [3, 18]. We

average the RAW and JPEG pixel values within each of the

140 color patches in each image to thoroughly suppress the

effects of demosaicking, noise, and compression, and all in

all, we obtain between 30,000 and 50,000 RAW/JPEG color

pairs {x̃i,yi} for each camera.

Scene colors x are obtained from RAW values x̃ us-

ing dcraw [5] for demosaicking without white balance or

a color space transform, which produces 16-bit uncom-

pressed color images in the color space defined by the cam-

era’s spectral filters. RAW values corresponding to satu-

rated sensor measurements are discarded and replaced by

estimates of scene color x extrapolated from RAW mea-

surements by the same camera under the same illuminant

but with lower camera exposure settings.

Three of the cameras—two point-and-shoot models

(Canon Powershot S90; Panasonic DMC-LX3) and a digital

SLR (Canon EOS 40D)—provide simultaneous RAW and

JPEG output, allowing training from each of these camera’s

data on its own. We also evaluate a fourth camera (Fuji

FinePix J10) that provides only JPEG output, and for this

we use one of the RAW-capable cameras (the Panasonic) as

a proxy to collect the registered RAW images.

For GP regression we use the GPML toolkit.6 We im-

6Available online at http://www.gaussianprocess.org/gpml/.

http://www.gaussianprocess.org/gpml/


RMSE Rel. RMSE

All Out-of-gamut All Out-of-gamut

CANON 40D-baseline .05 .09 .31 .36

CANON 40D-ours .02 .03 .07 .09

CANON S90-baseline .08 .14 .32 .49

CANON S90-ours .03 .04 .13 .14

PANASONIC-baseline .14 .09 .64 .56

PANASONIC-ours .04 .03 .13 .16

FUJI-baseline .24 n/a 1.46 n/a

FUJI-ours .13 n/a .39 n/a

Table 1. Accuracy of single-image RAW prediction. Root-mean-

squared error (RMSE) and relative RMSE of the mean values out-

put by our GP model compared to those of a polynomial base-

line [3]. We separately show errors over all RAW test colors, and

those only over RAW colors that are outside of the sRGB gamut.

plemented and tested both online and offline methods. For

the offline local GP, we cluster the training data inputs into

exemplars using k-means and learn a local regressor per ex-

emplar. At test time, we use the prediction of the model

from the test point’s closest exemplar. The performance of

both methods are about the same, but the complexity of the

latter is significantly lower. In all experiments described in

the following, we use offline local GP with k = 10 clusters

and output the nearest cluster as the DN(y) neighborhood

for a test point.

We also tested linear and squared exponential (SE) ker-

nels and found the latter to provide superior performance,

perhaps because of the nonlinear nature of the rendering

operation. The parameters of the SE kernel, as well as the

parameters of the additive noise covariance on the outputs,

were estimated via maximum likelihood for each local GP.

4.1. De­rendering

To begin, we evaluate our ability to hallucinate scene col-

ors from a single narrow-gamut sRGB image. We use as a

baseline a deterministic representation based on [3], which

suggests a forward rendering model composed of a linear

map C followed by per-channel polynomials. Since our aim

is to recover the reverse mapping we invert this model nu-

merically. We only consider the best point estimate (Gaus-

sian mean, and MAP) and ignore for now the uncertainty

output of our model. In this scenario, the derendering re-

sults of the proposed GP are similar to an RBF model like

that of Lin et al. [18].7 (The benefit over [18] of providing

confidence levels will be evaluated subsequently.)

For each camera, we split the data points into training

and testing sets at random, training on 5000 pairs {xi,yi}
and testing on the rest. This experiment is designed to

provide insight into the predictive power of our model, as

compared to the baseline. We report in Table 1 both root-

mean-squared error (RMSE) and relative RMSE between

7While Lin et al. fit a per-channel nonlinear function followed by a

linear kernel RBF, our approach models both effects simultaneously using

a squared exponential kernel.

the ground truth scene color and each model’s prediction.

Because our dataset is dominated by lower-valued RGB col-

ors, relative RMSE provides a more meaningful measure of

the error by accounting for the total brightness of the RGB

vectors. We separately report the errors corresponding to

RAW test points that are outside of the sRGB gamut (e.g.,

29% of our RAW colors captured with the Canon 40D are

outside the sRGB gamut) because, as suggested by Fig. 2,

these are more affected by color rendering.

Based on these results we can say the following: 1) our

model achieves significantly lower mean errors than the de-

terministic baseline on all four cameras; 2) overall the er-

rors are higher for the Fuji camera, perhaps due to differ-

ences between its spectral filters and those of our (Pana-

sonic) RAW proxy; and 3) our model performs equally well

for scene colors that are inside and outside of the sRGB

gamut (note that we cannot identify them for the Fuji).

4.2. Wide gamut imaging

Here we follow a different experimental paradigm. We

hold out all 22 images of an exposure sequence taken un-

der a single illumination, and we train on a randomly sam-

pled subset of 5000 points from the rest. We repeat this

for all 16 illuminants and average the results. Comparisons

are made to a deterministic HDR algorithm similar to [6]

but with offline pre-calibration using either the polynomial

model of [3] or the RBF model similar to [18].

Results are shown in Fig. 4, where we see that the GP

model consistently outperform both HDR baselines, espe-

cially for out-of-gamut colors. As discussed earlier, prac-

titioners often seek to improve the performance of deter-

ministic HDR by applying thresholds to discard JPEG mea-

surements that are near the boundaries of the sRGB gamut.

We evaluate this approach by systematically reducing the

interval of 8-bit JPEG values that are used as input, starting

with all of them ([0, 255]), then discarding the lowest and

highest graylevels (i.e., using only values in [1, 254]), and

so on. The performance of deterministic approaches im-

proves dramatically as the thresholds are tightened, but the

optimal thresholds seem be different for different cameras.

In contrast, the performance obtained with our probabilistic

approach is small and uniform over all test intervals, a prop-

erty that follows from its proper accounting of uncertainty.

The advantage of the GP model becomes more clear

when we separately consider the errors for out-of-gamut

chromaticities. These scene colors tend to be poorly esti-

mated by deterministic approaches, which are constrained

to providing a single point estimate instead of distribution

that fits the one-to-many map. By explicitly modeling these

distributions, the GP model provides predictions for out-of-

gamut chromaticities that are almost as accurate as those

within the sRGB gamut.
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Figure 4. Wide-gamut imaging: Estimating wide-gamut linear

scene colors from a 22-image exposure sequences of sRGB JPEG

images. Plots show relative RMSE in predicted scene colors aver-

aged over 16 runs with input sequences of the same scene under

distinct illuminations. Horizontal axis reveals performance change

when reduced input JPEG intervals are selected using different

thresholds. Label GP (red) refers to our algorithm; Per-channel

(blue) refers to use of [3]; and RBF (black) is similar to [18].

4.3. Photometric Stereo

Finally, we evaluate our model in the context of proba-

bilistic Lambertian photometric stereo. We use the Canon

40D to collect JPEG images of a wooden sphere from a

fixed (approximately orthographic) viewpoint under direc-

tional lighting from twenty different known directions. We

apply the algorithm from Sec. 3.2 to estimate a surface nor-

mal for each pixel that back-projects to the sphere’s surface.

Since the shape of the surface can be determined from its

occluding contour in the orthographic image plane we can

compare our results directly to ground truth.

The angular error (degrees) in the estimated surface nor-

mal at each pixel is displayed in the left of Fig. 5. The

maximum likelihood estimates obtained with the proposed

GP model are more accurate than those estimated by the

baseline, in which JPEG values are deterministically de-

rendered via [3] prior to least-squares estimation of the sur-

face normals. The baseline method yields inaccurate esti-

mates of the surface normals when the JPEG images contain

near-saturated values. The third column shows the error that

results from a second baseline using gamma-inversed JPEG

values (a gamma parameter of 2.2 is assumed), and such er-

rors are much larger, as expected. Quantitively, the average

angular error of the proposed GP model is 3.41◦, for base-

line model the error is 4.54◦, and for gamma-inversed JPEG

the error is 8.92◦. The improved accuracy of the probabilis-

tic approach is also apparent in the right of Fig. 5, which

shows horizontal cross-sections of the depth-maps obtained

by integrating the normal fields using [8].

5. Conclusion

Most images captured and shared online are not in linear

(RAW) formats, but are instead in narrow-gamut (sRGB)

formats with colors that are severely distorted by cameras’

color rendering processes. In order for computer vision sys-

tems to maximally exploit the color information in these

images, they must first undo the color distortions as much

as possible. This paper advocates a probabilistic approach

to color de-rendering, one that embraces the multivalued na-

ture of the de-rendering map by providing for each rendered

sRGB color a distribution over the latent linear scene colors

that could have induced it. An advantage of this approach

is that it does not require discarding any image data using

ad-hoc thresholds. Instead, it allows making use of all ren-

dered color information by providing for each de-rendered

color a measure of its uncertainty.

Our experimental results suggest that a probabilistic rep-

resentation can be useful when combining per-image esti-

mates of linear scene color, and when recovering the shape

of Lambertian surfaces via photometry. The output of our

approach—a mean and variance over scene colors for each

sRGB image color—may have a practical impact for prob-

abilistic adaptations of other computer vision tasks as well

(deblurring, dehazing, matching and stitching, color con-

stancy, image-based modeling, object recognition, etc.).

One direction worth exploring is the use of spatial structure

in the input sRGB image(s), such as edges and textures, to

further constrain the de-rendered scene colors. This is in

the spirit of [31], and it begs the question of how well a

full-gamut linear scene color image can be recovered from

a single tone-mapped sRGB one.
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Figure 5. Photometric stereo: The left three figures show the angular errors, in degrees, in the per-pixel surface normals obtained using the

proposed method, the deterministic baseline, and the gamma-inversed JPEG values. The right figure shows one-dimensional cross sections

through surfaces obtained by integrating each set of surface normals, as compared to the ground truth shape.
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