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Abstract.
Background: Late-onset Alzheimer’s disease (AD) is highly heritable. The effect of many common genetic variants, single
nucleotide polymorphisms (SNPs), confer risk. Variants are clustered in areas of biology, notably immunity and inflammation,
cholesterol metabolism, endocytosis, and ubiquitination. Polygenic scores (PRS), which weight the sum of an individual’s
risk alleles, have been used to draw inferences about the pathological processes underpinning AD.
Objective: This paper aims to systematically review how AD PRS are being used to study a range of outcomes and phenotypes
related to neurodegeneration.
Methods: We searched the literature from July 2008–July 2018 following PRISMA guidelines.
Results: 57 studies met criteria. The AD PRS can distinguish AD cases from controls. The ability of AD PRS to predict
conversion from mild cognitive impairment (MCI) to AD was less clear. There was strong evidence of association between
AD PRS and cognitive impairment. AD PRS were correlated with a number of biological phenotypes associated with AD
pathology, such as neuroimaging changes and amyloid and tau measures. Pathway-specific polygenic scores were also
associated with AD-related biologically relevant phenotypes.
Conclusion: PRS can predict AD effectively and are associated with cognitive impairment. There is also evidence of
association between AD PRS and other phenotypes relevant to neurodegeneration. The associations between pathway specific
polygenic scores and phenotypic changes may allow us to define the biology of the disease in individuals and indicate
who may benefit from specific treatments. Longitudinal cohort studies are required to test the ability of PGS to delineate
pathway-specific disease activity.

Keywords: alleles, Alzheimer’s disease, amyloid-beta peptides, cognitive dysfunction, genome-wide association study,
multifactorial inheritance, neuroimaging, phenotype, precision medicine, single nucleotide polymorphism

INTRODUCTION

Alzheimer’s disease (AD) is a common neurode-
generative condition affecting people in later life. The
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heritability of late-onset AD is estimated to be almost
75% [1]. Genome-wide association studies (GWAS)
have identified a number of loci associated with AD.
The largest meta-analysis to date reported 25 loci
associated with increased risk for AD at genome-
wide significant level [2]. These common genetic
variants, known as single nucleotide polymorphisms
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(SNPs), have only a small effect on disease risk.
Polygenic risk scores (PRS) sum the weighted

allelic dosages across the genome, and have allowed
the exploration of how genetic risk for AD is manifest
in different populations [3]. However, genetic score
methodology varies greatly between studies. For
example, Escott-Price et al. analyzed over 200,000
SNPs, including APOE and reported an area under
the curve (AUC) value of 0.84 [4] whereas Tosto et
al. used only 21 SNPs excluding APOE resulting in
an AUC of 0.57 [5].

As GWAS allows all variants in the genome to be
tested for association simultaneously without any a
priori hypothesis, they have implicated a number of
areas of biology previously unconnected to AD. Path-
way analyses of genome-wide association data have
shown that the disease processes that underpin AD
are highly complex, involving a number of biologi-
cal processes, including immunity, lipid metabolism,
tau binding proteins, and amyloid-� protein precursor
metabolism [2, 6].

Since the PRS approach was first described, many
studies have investigated whether AD PRS are associ-
ated with a wide variety of phenotypes. To summarize
this literature, we undertook a systematic review to
identify studies that have used a PRS approach to
investigate phenotypes associated with genetic risk
for AD.

METHODS

The review was conducted in accordance with
the PRISMA guidelines for systematic reviews [7]
(please see PRISMA checklist in Supplementary
Materials).

Search strategy

We searched MEDLINE, PSYCHINFO, and
EMBASE literature from July 2008–July 2018. We
used a list of predetermined search terms listed in
Supplementary Table 1, and also manually searched
the reference lists of relevant articles.

Inclusion criteria:
• Longitudinal, cross-sectional or case-control

studies including genotyped data;
• Validated risk loci for AD identified and com-

bined into a PRS;
• Reported associations with AD case/control sta-

tus or another phenotype.

Exclusion criteria:
• Studies reporting associations with family his-

tory only;
• Studies reporting on genetic risk for other condi-

tions or loci that have not been previously shown
to increase risk of AD;

• Studies reporting the effect of only one locus
or gene (e.g., APOE), or APOE combined with
non-genetic risk factors;

• Non-English publications in the absence of
resources to translate, or an existing translation.

Article selection

All articles selected for inclusion were origi-
nal research reports written in English. The design
of the studies was cross-sectional, longitudinal or
observational. The initial search was conducted
by NM. Based on the eligibility criteria, two
reviewers (JH and SM) independently selected stud-
ies. Any discrepancies were resolved by a third
reviewer (VEP).

Data extraction

The reviewers (JH and SM) extracted data from the
studies independently and in duplicate. The extracts
included: 1) the type of study, 2) the discovery sam-
ple (study name, sample size and number of cases),
3) the target sample (study name, sample size, and
case number); and 4) the number of SNPs included
in the PRS (see data extraction form in Supplemen-
tary Material). Results that were reported in separate
papers were only included once.

RESULTS

Search results

The initial search produced 4,717 articles (see
PRISMA flow chart in Fig. 1). 1,322 were removed
as duplicates. A further 3,275 were excluded based
on their title and abstract. The reviewers (JH and
SM) reviewed the full text of the remaining 120 arti-
cles and applied strict inclusion criteria, excluding a
further 63. 57 articles were eligible for inclusion.

There was only one disagreement between raters
which was resolved by a third reviewer (VEP).

Study characteristics

There was a variety of study designs. Most were
case-control studies, comparing those with AD or
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Table 1
Summary of included studies by type of PRS

Correlates/Outcomes N Studies N Threshold N GWAS Significant
PRS Studies PRS Studies

AD risk prediction 15 5 10
MCI risk prediction or MCI conversion 4 2 2
MRI phenotypes 12 7 5
Cognition 21 5 16
CSF biomarkers 8 3 5
Other diseases/syndromes 4 2 2
Disease pathways 3 1 2

AD, Alzheimer’s disease; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; CSF,
cerebrospinal fluid; GWAS, genome-wide association study.

Fig. 1. PRISMA flow chart.

mild cognitive impairment (MCI) to healthy con-
trols [4, 5, 8–29]. Others were cross-sectional [20,
21, 30–58] and some were longitudinal [59–64]. The
majority included participants of European ances-

try from Europe, the US or Australia, although
some included Black African American [39, 44, 45],
Hispanic [5, 40], Caribbean [5], or Han Chinese par-
ticipants [13, 22, 57]. Sample size ranged from 66
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[65] to over one hundred thousand [47]. The articles
examined associations with several phenotypes. See
Table 1 for a summary of study characteristics.

PRS calculation

All studies computed PRS using SNPs that have
been associated with AD in large meta-analyses.
Most used the International Genomics of Alzheimer’s
Project (IGAP) [66] or another recent GWAS. There
were two approaches to identifying SNPs for inclu-
sion: 1) selecting SNPs that reached genome-wide
significance in meta-analysis, or 2) using p-value
thresholds, including a greater number of nominally
associated SNPs (please see Supplementary Tables 3
and 4 for a summary of PRS calculation). The num-
ber of studies using each approach is outlined in
Table 1. Two of the studies in Han Chinese popula-
tions choose to verify that the SNPs were associated
with AD in their population before computing PRS
[13, 22]. Most studies weighted PRS by effect size,
specifically the logarithm of the odds ratio or beta-
coefficient from the regression analysis model, as
described by Purcell and colleagues [67]. There were
five exceptions: one study weighted by explained
variance [37]; four studies created unweighted scores
by summing the number of risk loci [27, 39, 52,
68]. APOE was either included as a co-variate,
included in the PRS or excluded (see Supplementary
Tables 3 and 4).

Prediction of AD case/control status

15 studies used PRS to predict AD case/control sta-
tus with various statistical approaches. Some studies
used the area under the receiver operating character-
istic (ROC) curve, whereas others used time-to-event
analysis, odds ratios (OR), or a combination of meth-
ods. All found that PRS was able to discriminate cases
from controls, although prediction accuracy varied.

Of those studies reporting area under the curve
(AUC), five included APOE and achieved AUC rang-
ing from 0.62–0.84 [12, 15–17, 22, 69]. Four studies
excluded APOE and achieved AUC ranging from
0.57–0.75 [5, 12, 25, 30]. Of those studies using
time-to-event analysis, all four excluded APOE and
reported hazard ratios (HR) ranging from 1.11–2.36
[23, 35, 70]. Of those studies using ORs, two included
APOE in their PRS and reported OR ranging from
2.06–2.32 [12, 34]. Four studies excluded APOE and
reported OR ranging from 1.14–2.85 [5, 25, 30, 71].
For more detailed information including the details

of the samples and outcome measures used by each
study, please see Supplementary Tables 3 and 4.

Mild cognitive impairment to AD conversion

Eight studies assessed the ability of PRS to pre-
dict MCI to AD conversion. Three studies did not
report statistically significant results [11, 29, 37].
Rodriguez-Rodriguez et al. compared those in the 1st

and 3rd tertile of PRS (OR: 1.32, 95% CI: 0.57–3.06).
Neither of the hazard models used by Lacour et al. and
Andrews et al. produced significant results (Lacour
HR: 1.18, 95% CI: 0.37–2.0; Andrews HR: 1.05,
95% CI: 0.86–1.29) [29, 37]. However, Andrews et al
found their PRS was associated with an increased risk
of transitioning from normal cognition to dementia
(HR = 4.19, 95% CI: 1.72–10.20) [37]. Five studies
did report statistically significant results [18, 33, 35,
58, 64]. However, when APOE was removed, only
one study remained positive [58]. An additional study
evaluated genetic contributors to the Diagnostic and
Statistical Manual IV (DSM-IV) diagnosis of Cog-
nitive Impairment, No Dementia, which is similar
to MCI. They found no significant difference in the
frequency of risk alleles between cases and controls
(p = 0.710) [27].

Cognitive measures

Cognition and PRS were examined in 21 studies
[11, 26, 31, 33, 36, 39, 40, 44, 45, 50–52, 54, 56,
57, 59, 60, 62–64, 68]. While a variety of cogni-
tive measures were used, all but four studies reported
some significant associations with PRS. Most stud-
ies were in healthy older adults, although two studies
included participants with established AD/MCI [11,
26], two studies had young adult participants [51,
57], one study had adolescent participants [40] and
one included longitudinal data from children aged 11
[59]. There were some cross-sectional studies that
only reported associations with AD polygenic risk
and cognition at one timepoint [40, 50–52, 54, 55,
57, 68], whereas longitudinal studies were able to
report the correlations with change in cognition over
time [11, 26, 31, 33, 36, 44, 45, 56, 60, 62–64]. As
expected, most studies reported that the effects atten-
uated or were no longer significant when APOE was
excluded from the PRS. Please see Supplementary
Tables 3 and 4 for full details of cohorts and measures
used.
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MRI phenotypes

12 studies explored correlations between AD PRS
and MRI phenotypes. Most studies looked at subcor-
tical volumes [13, 30, 33, 40, 51]. Some also explored
cortical thickness [34, 41, 56], white matter metrics
[51], and functional MRI [13]. One study used algo-
rithms that assess spatial atrophy patterns in AD [43].
Most studies sampled healthy older adults, although
some included younger adults [51, 57], adolescents
[40], or a range of age groups [30]. Some studies
included some participants with MCI or AD [13, 30,
33] and one study sampled military veterans with
head injuries [56].

Of the six studies that explored subcortical vol-
umes, all reported significant negative correlations
between PRS and hippocampal volume [30, 33, 40,
51, 61, 72]. Hohman et al. only found a significant
association in participants who were negative for
amyloid on PET [28]. Lupton et al. reported a sig-
nificant negative association with amygdala volume
[30] but only in participants with diagnoses of MCI
or AD. Habes et al. trained an algorithm to detect the
spatial patterns of healthy brain aging and atrophy in
AD. They found a significant association AD PRS
and the spatial pattern AD atrophy [43].

Of those studies looking at cortical thickness [34,
41, 56, 57, 61], all but one [61] reported signifi-
cant associations between increased PRS and cortical
thinning. Studies either reported associations with
cortical thinning across multiple regions that are sus-
ceptible to AD pathology [34, 41, 56], or with cortical
thinning is specific regions such as the precuneus
[57].

Foley et al. assessed white matter, and iden-
tified reduced fractional anisotropy in the right
cingulum with increasing PRS [51]. Su et al.
explored changes in the default mode network
and reported changes in functional connectivity in
the left medial temporal gyrus and the right hip-
pocampal/parahippocampal gyrus in those with MCI.
However, there were no significant associations in
healthy controls [13].

Amyloid and tau biomarkers

Nine studies explored associations between PRS
and amyloid and tau biomarkers [8–10, 21, 25, 33,
35, 49, 60]. They were all case/control studies. One
study sampled those with autosomal dominant and
sporadic AD [25]. Another included participants
with normal pressure hydrocephalus [8]. The phe-

notypes included: cerebrospinal fluid (CSF) amyloid
and tau measures [10, 21, 25, 33, 35, 49]; postmortem
biomarkers or histology [8, 10, 35]; amyloid PET [33,
35].

A variety of analysis approaches were taken. Some
studies assessed each tau and amyloid biomarker
independently [9, 10], whereas others created com-
posite variables using CSF, PET, or histology
biomarkers [21, 25, 35, 49].

There were significant associations reported
between AD PRS and the following: increased CSF
tau and phosphorylated tau [9]; CSF A� [10]; lower
A�42/A�40 [49]; higher t-tau/A�42 and higher p-
tau/A�42 ratio [25, 49]; positive A� PET [33]; total
PET/CSF amyloid load and tau load [35]; post-
mortem soluble A�42 and λ-secretase activity [10];
postmortem amyloid plaques and neurofibrillary tan-
gles [60]. Some studies did not report significant
associations between AD PRS and CSF tau [10, 33]
or CSF A� [9, 33]. There was also no association
with microglial density on postmortem histology [60]
or amyloid deposition in brain biopsies of normal
pressure hydrocephalus patients [8]. Voyle et al. com-
bined CSF biomarkers with PRS to predict AD, but
the PRS did not improve prediction over and above
the CSF amyloid and tau [21].

Other diseases and syndromes

Other studies have explored associations between
AD PRS and other disorders or syndromes. Pilling
and colleagues reported significant negative corre-
lations with longevity [47], and red cell volume, a
measure of anemia [48]. However there were no sig-
nificant associations reported with depression [53] or
post-concussive syndrome [20].

Disease pathways

Four studies explored patterns associations
between AD pathway PRS and disease-related phe-
notypes. Each study used sets of SNPs based on
previous pathway analyses in AD [6, 73]. Some
used only Bonferroni-significant loci [23, 41, 42],
whereas others used a threshold-based PRS [32]. Var-
ious phenotypes were assessed including: MCI risk
[23], MRI phenotypes [23, 41], cognition [42], CSF
A� and tau [42], A� PET [42], and complement
markers [32].

Using PRS for the immune response, endocytosis,
cholesterol transport, hematopoietic cell lineage, pro-
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tein ubiquitination, hemostasis, clathrin/AP2 adaptor
complex, and protein folding pathway, Ahmad et
al. reported the immune response and clathrin/AP2
adaptor complex pathways showed nominal associ-
ations with white matter lesions, but this did not
withstand correction for multiple testing. The endo-
cytosis risk score was significantly associated with
risk of MCI [23]. Darst et al. used PRS for A�
clearance, cholesterol metabolism, and the immune
response. They found no association between cog-
nition and any PRS, even when APOE was included
[42]. A higher A� clearance PRS and cholesterol PRS
was associated with lower CSF A�42, a narrower
A�42/A�40 ratio, and greater A� PET deposition.
With APOE excluded, the only significant associ-
ations were between the cholesterol PRS and CSF
A�42/A�40 and the immune response PRS and CSF
tau, though not when corrected for multiple compar-
isons [42].

Two studies focused on the immune response PRS.
Corlier et al. found that the immune response PRS
was significantly associated with an overall mea-
sure of cortical thinning [41]. Morgan et al reported
that clusterin, C1 inhibitor, and C-reactive protein all
showed nominal association with the inflammation-
specific PRS. Plasma clusterin levels were associated
with the overall AD PRS [32].

Study quality

Overall, the articles had clear research questions
and used adequate methodology. Some studies used
small sample sizes [32, 49, 52, 65] and many studies
failed to describe sample ascertainment clearly. They
used standard outcome measures. Of those look-
ing at AD prediction, all but two [14, 22] reporting
using NINDS-ADRDA diagnostic criteria for AD.
Most studies weighted PRS by effect size or odds
ratio, although in some studies this was not clearly
described [14, 22]. Some studies had some overlap
between training and validation datasets which may
have inflated their results. Most studies attempted to
assess the contribution of APOE by either excluding
it from the PRS or including it as a co-variate. Some
studies included cohorts of non-European ancestry
[5, 22, 39, 44, 45]. These studies acknowledged that:
1) they may have had insufficient power in their
non-European samples or 2) PRS based on GWAS
conducted in European populations may not cap-
ture AD genetic risk among those of non-European
descent.

DISCUSSION

This paper systematically reviews how AD PRS are
associated with a range of phenotypes and outcomes.
Other papers have covered PRS methodology [3] and
some have reviewed the use of PRS in AD prediction
alone [74].

Since the advent of large-scale genetics consortia
such as the International Genomics of Alzheimer’s
Project (IGAP), our understanding of the genetic
underpinnings of AD has rapidly expanded. GWAS
have resulted in the identification of over 20 novel
genetic risk loci in addition to APOE �4 [2, 66]. Most
of these SNPs only increase AD risk incrementally.
Therefore, combining SNPs into PRS has proved an
important strategy for studying their effects. Some of
the studies included in this review used only the most
significant loci in their PRS. However, more recent
studies used liberal threshold-based PRS computed
from thousands of AD risk loci.

PRS in disease prediction

AD PRS have demonstrated strong predictive abil-
ity. Conservative PRS, including only genome-wide
significant SNPs, have achieved reasonable predic-
tion accuracy (AUC range: 57–72%) [4, 5, 12, 25,
69]. Threshold-based PRS, including many more
SNPs, have proved superior to both conservative
PRS and to APOE alone (AUC 75%) [4]. Predic-
tion accuracy is even greater using a threshold-based
PRS in histologically confirmed cases and controls
(AUC 84%) [17]. The findings for MCI conver-
sion prediction are more mixed. Of the three studies
reporting negative results, two had relatively low
power [11, 29]. Almost all the studies exploring PRS
prediction accuracy report that there is some over-
lap between cases and controls at high polygenic
risk. Moreover, in the absence of therapeutic conse-
quences, the clinical utility of these findings remains
limited.

Associations between AD PRS, phenotypes, and
biomarkers

Overall, the evidence from cross-sectional, case-
control and longitudinal cohort studies pointed
towards an association between PRS and a range of
AD-related phenotypes. Of these, cognition has been
the most widely investigated. While the methodology
and samples were diverse, the vast majority of stud-
ies reported significant associations [11, 26, 31, 33,
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36, 40, 44, 45, 50, 52, 54, 56, 60, 63, 64, 68, 69]. Of
the negative studies, one used a threshold-based PRS
[59] and another used a PRS including 15 Bonferroni-
significant risk SNPs [39] but both excluded APOE
entirely. The other two negative studies both used
samples of young adults [51, 57], suggesting that cog-
nitive changes related to AD genetic risk may not
manifest until later in life.

There was consistent evidence to support an asso-
ciation between AD PRS and changes in brain
structure, particularly in decreased hippocampal vol-
ume [30, 33, 40, 51, 61, 72] and reduced cortical
thickness [34, 41, 56, 57, 61]. This was reported
even in samples of young adults [40, 51], suggesting
that AD risk may manifest in brain structure decades
before the onset of disease. These studies provide
also found that the threshold based PRS yielded better
results. For example, Mormino et al. found an asso-
ciation between a threshold PRS and hippocampal
volume that was not present when only genome-wide
significant SNPs were used [33].

There were mixed findings for amyloid and tau
biomarkers. Of those studies exploring CSF, PET, or
histology biomarkers, all but one reported statistically
significant associations. However, findings were not
consistent across biomarkers. For example, one study
reported an association between CSF tau and phos-
phorylated tau but not A� [9], whereas another study
found the reverse [10]. Another study reported a sig-
nificant association with A� PET but not with CSF
A� or tau [33]. However, studies with postmortem
samples did find evidence of association between
AD PRS and soluble A�42 levels, λ-secretase activ-
ity [10], neuritic amyloid plaques and neurofibrillary
tangles [60]. PRS for other neuropsychiatric disor-
ders were not associated [60]. Moreover, AD PRS
was not associated with amyloid accumulation in
normal pressure hydrocephalus [8]. This suggests
that the genetic foundations of amyloid deposition
in other conditions may be distinct from those in
AD. In addition, there was no evidence for pleiotropy
between AD and depression [53].

PRS in disease pathways

GWAS have resulted in the identification of novel
genetic risk loci in addition to APOE �4,[2, 66] which
have been associated with a range of biological path-
ways including lipid metabolism, immune response,
and synaptic processes [6, 73]. AD is heterogeneous
and multifactorial. Polygenic profiling can allow indi-
vidual molecular sub-classification, by identifying

the pathways enriched for risk alleles for an individ-
ual. Four of the most recent studies included in this
review took this approach, suggesting that the field is
moving in this direction. They found some evidence
for association between pathway-specific polygenic
scores and MCI risk [23], cognition [42], brain struc-
ture [23, 41], CSF biomarkers [42], A� PET [42],
and serum complement markers [32]. The variance
that each of these pathways explains is small [42].
This will probably increase as discovery sample sizes
increase [75], but will be restricted as PRS do not cap-
ture the contributions of copy number variant or rare
SNPs.

Pathway-specific polygenic profiling could enable
personalized treatment of each individual with AD.
This could allow entrants to clinical trials and
biomarker studies to be stratified based on evidence
of involvement of specific disease pathways. More-
over, if polygenic risk profiles can give prognostic
information, they may aid decision making for indi-
viduals and clinicians. For example, a high PRS has
been associated with a more accelerated progression
from MCI to AD [11].

Strengths and limitations

We used a systematic and comprehensive search
strategy to avoid missing eligible studies. However,
we were not able to include studies that were not
in English-language journals. Another strength is
that articles were not limited to a particular sam-
pling framework or research design (e.g., longitudinal
studies or clinical samples), or to European ancestry
samples. We also included studies investigating broad
ranges of outcomes which enhanced our ability to
assess how AD polygenic risk is manifest. However,
results were not reported consistently across studies,
meaning only a narrative review was feasible, and we
were not able to assess for publication bias.

We identified a number of limitations in the studies
included in this review. In order to conduct a poly-
genic score analysis, two completely independent
datasets are required. Any overlap in the datasets will
inflate the associations found. Some studies appeared
to use sub-samples of the discovery sample as target
samples and not all attempted to account for this. A
number of studies used small sample sizes. Authors
often did not provide a clear description of sample
ascertainment, making it harder to put their findings
into the context of the wider literature. Standard-
ized effect estimates or confidence intervals were also
often omitted, which are required to compare effect
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sizes across studies. We have previously proposed a
reporting framework for studies which might assist
future researchers who synthesize data across such
studies [76].

Some studies explored similar phenotypes in
comparable samples but reported different results.
Heterogeneity may stem from the PRS or the study
design. Regarding the PRS, the exact list of SNPs
is likely to differ between studies. Some researchers
selected SNPs that reached genome-wide signifi-
cance, and others used a p-value threshold approach,
a key distinction. With threshold based PRS, exper-
imenters exclude SNPs with low imputation quality
scores. These vary depending on the array, imputa-
tion platform and pre- and post-imputation quality
control steps. In addition, even small differences in
population genetics may lead to distinctive linkage
disequilibrium (LD) structure and allele frequencies
[77]. Pruning, an essential part of PRS calculation,
relies on LD structure to retain SNPs that are most
associated with a trait while removing others that
are closely linked. Where LD structure diverges,
alternative SNPs will be selected. Furthermore, in dis-
ease pathway PRS, the gene sets are determined by
the databases used to define the pathways. Regard-
ing study design, there are other potential causes of
heterogeneity. There may be discrepancies in how
phenotypes are defined or measured, and different
approaches to data analysis. Finally, there are possi-
ble sources of bias. For example, disease prediction
studies using PRS can be affected by selection bias.
If the target dataset is enriched for AD or MCI cases,
this will affect the prediction accuracy.

Conclusions

PRS approach is an important approach used for
capturing the contribution of genome wide com-
mon variation of complex diseases. To the best of
our knowledge, this is the first review attempting
to collate information on how the use of the PRS
approach has informed our understanding of a vari-
ety of phenotypes associated with AD genetic risk.
PRS can predict AD and are associated with cogni-
tive impairment. There is also evidence of association
between AD PRS and other phenotypes relevant to
neurodegeneration. The associations between path-
way specific PRS and phenotypic changes may allow
us to define the biology of the disease in individuals,
heralding precision medicine in AD. However, longi-
tudinal cohort studies are required to test the ability

of PRS to delineate pathway-specific disease activ-
ity. In the absence of therapeutic consequences, the
clinical utility of PRS is limited.
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K-H, Klopp N, Wichmann H-E, Rüther E, Carrasquillo
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[27] Dubé JB, Johansen CT, Robinson JF, Lindsay J, Hachinski
V, Hegele RA (2013) Genetic determinants of “cogni-
tive impairment, no dementia.” J Alzheimers Dis 33,
831-840.

[28] Hohman TJ, Dumitrescu L, Oksol A, Wagener M, Gif-
ford KA, Jefferson AL, Alzheimer’s Disease Neuroimaging
Initiative (2017) APOE allele frequencies in suspected non-
amyloid pathophysiology (SNAP) and the prodromal stages
of Alzheimer’s Disease. PLoS One 12, e0188501.

[29] Lacour A, Espinosa A, Louwersheimer E, Heilmann S,
Hernández I, Wolfsgruber S, Fernández V, Wagner H,
Rosende-Roca M, Mauleón A, Moreno-Grau S, Vargas L,
Pijnenburg YAL, Koene T, Rodrı́guez-Gómez O, Ortega G,
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