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Two experiments demonstrate how individual differences in working memory (WM) impact the strate-
gies used to solve complex math problems and how consequential testing situations alter strategy use. In
Experiment 1, individuals performed multistep math problems under low- or high-pressure conditions
and reported their problem-solving strategies. Under low-pressure conditions, the higher individuals’
WM, the more likely they were to use computationally demanding algorithms (vs. simpler shortcuts) to
solve the problems, and the more accurate their math performance. Under high-pressure conditions,
higher WM individuals used simpler (and less efficacious) problem-solving strategies, and their perfor-
mance accuracy suffered. Experiment 2 turned the tables by using a math task for which a simpler
strategy was optimal (produced accurate performance in few problem steps). Now, under low-pressure
conditions, the lower individuals’ WM, the better their performance (the more likely they relied on a
simple, but accurate, problem strategy). And, under pressure, higher WM individuals performed opti-
mally by using the simpler strategies lower WM individuals employed. WM availability influences how
individuals approach math problems, with the nature of the task performed and the performance
environment dictating skill success or failure.
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What determines successful performance on complex problem-
solving tasks ranging from mathematical computations to analog-
ical mappings? This question has been probed by individual dif-
ference researchers interested in understanding the role that
working memory (WM) plays in skill execution (Conway et al.,
2005; Engle, 2002), by social and cognitive psychologists exam-
ining the impact of negative or stressful environments on perfor-
mance outcomes (Ashcraft & Kirk, 2001; Beilock, Kulp, Holt, &
Carr, 2004; Schmader & Johns, 2003), and by developmental
psychologists examining math problem-solving performance as a
function of computational skill and arithmetic knowledge (Siegler,
1988a, 1988b; Siegler & Lemaire, 1997). Although these research
areas have yielded important conclusions regarding skill learning
and performance, these lines of work have—surprisingly—
operated largely in isolation. For example, although there is a
significant amount of research devoted to understanding the cog-
nitive construct of WM and how it relates to higher level functions,
such as general intellectual ability, less is known about how
individual differences in WM shape the strategies individuals call
upon to solve particular problems—especially when there are
multiple routes to problem solution (Price, Catrambone, & Engle,
2007; although see Reder & Schunn, 1999; Schunn & Reder,

2001). Moreover, even less work has focused on the interplay of
this type of cognitive control and environmentally induced stres-
sors (Miyake & Shah, 1999).

In the current work, we identify key differences in the strategies
individuals lower and higher in WM use to solve complex math-
ematical problems, and we explore how these strategies are im-
pacted by pressure-filled performance situations. Not only does
this work contribute to our understanding of how high-stress
situations impact performance, but also it speaks to how individual
differences in cognitive control shape one’s approach to problem
solving more generally. Such work is important for researchers
interested in developing models of executive functioning that
capture the complexity of real-world performance. Moreover, this
work is imperative to the development of training regimens and
performance strategies designed to maximize skill success and
minimize failure—especially in those situations in which incen-
tives for optimal performance are at their highest.

Why WM?

Successful performance on tasks ranging from mathematical
problem solving to sentence comprehension is thought to rely
heavily on WM (Conway et al., 2005; DeStefano & LeFevre,
2004; Stevenson & Carlson, 2003). If the capacity of the WM
system to oversee task-relevant information is disrupted, perfor-
mance may suffer (Beilock & Carr, 2005; Trbovich & LeFevre,
2003). Because of the central role that WM plays in complex
cognition, it is perhaps not surprising that diverse research areas
ranging from social psychology (Schmader & Johns, 2003) to
cognitive neuroscience (Kane & Engle, 2002) have emphasized the
positive role of WM and attentional control in high-level perfor-
mance. In fact, it has been suggested that “working memory is so
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central to human cognition that it is hard to find activities where it
is not involved” (Ericsson & Delaney, 1999, p. 259).

WM capacity can be thought of as a short-term memory system
involved in the control, regulation, and active maintenance of a
limited amount of information with immediate relevance to the
task at hand (Miyake & Shah, 1999). WM is also an individual
difference variable, meaning that some people have more of this
construct and some people have less. Despite knowledge of how
various aspects of WM (e.g., attentional control, inhibition) con-
tribute to skilled performance (Engle, 2002; Kane & Engle, 2000),
less is known about how individual differences in WM affect the
problem-solving strategies individuals use to solve complex, mul-
tistep problems such as those found in domains like math (Price et
al., 2007).

Dual Processes in Problem Solving

There is a literature that we can look to, however, for insights
concerning how WM might influence one’s approach to math
problem solving. Broadly speaking, dual-process theories propose
that two distinct processes—associative and rule-based proc-
esses—support performance in reasoning and decision-making
tasks such as the evaluation of persuasive arguments and judg-
ments of logic (Evans, 2003; Sloman, 1996; Smith & DeCoster,
2000; Stanovich & West, 2000). Associative processes consist of
similarity-based associations built up over repeated exposure to
concurrent events. These processes are believed to operate rela-
tively spontaneously and make few demands on WM resources
(Logan, 1988; Petty & Cacioppo, 1986; Rydell, McConnell,
Mackie, & Strain, 2006). Rule-based processes, on the other hand,
rely on symbolically represented explicit knowledge as conven-
tions to guide processing. The use of explicit rules to manipulate
problems and derive solutions is believed to place heavy demands
on WM (Carlson, 1997; Stevenson & Carlson, 2003).

Imagine that an individual is presented with the math-based
question, Does the answer to the problem (32 � 8) � 4 have a
remainder? Working through the step-by-step computations to
derive an answer (i.e., subtracting 8 from 32 and then dividing this
answer by 4 so as to conclude that the answer to the question is no)
relies heavily on rule-based processing. Here, one is using explicit
computations in a logically derived sequence to arrive at the
problem solution. If one instead perceives that all of the numbers
in the above equation are even, and although one has never seen
this specific problem before, one has in many past math problem-
solving experiences observed that remainders do not often result
when even numbers are subtracted and divided, then one could
conclude that the answer is likely to be no through more associa-
tive processing. Here, individuals are using a relatively spontane-
ous association between even numbers and a lack of remainders to
respond. This is a far simpler strategy that is not reliant on the
same types of rule-based processes as working through the step-
by-step computations.

Associative and rule-based processes often converge on the
same conclusion—as in the above math problem. However, this is
not always the case. For example, if one were asked whether the
answer to the problem (32 – 6) � 4 had a remainder, performing
the step-by-step problem-solving computations would result in a
yes response, whereas the use of the association between the
division of even numbers and the low likelihood of a remainder

would result in a no response. Such conflicting situations are of
special interest in the current work because they provide opportu-
nities for understanding differences in the problem-solving strat-
egies individuals use in particular situations.

Individual Differences in Problem-Solving Processes

To the extent that rule-based (but not associative) processes
depend heavily on WM, one might imagine that individual differ-
ences in WM would influence the process that is most readily and
effectively utilized (De Neys, 2006; Evans, 2003; Stanovich &
West, 2000). Specifically, individuals who come to the table with
less WM capacity to begin with might show a tendency to rely less
on rule-based processes and more on associative processes, pre-
cisely because these lower WM individuals have less of the cog-
nitive capacity necessary to support rule-based computations. In
contrast, higher WM individuals might rely more so on rule-based
processes for the very reason that lower WM individuals do not.
And, indeed, although not related to WM per se, in an examination
of individual differences in subtraction and addition performance,
Siegler (1988a) found that students could be classified into distinct
groups on the basis of their knowledge of a particular problem
(e.g., the ability to execute the correct problem-solving computa-
tion) and their retrieval threshold (i.e., the threshold set for directly
retrieving a problem answer from memory versus explicitly com-
puting an answer).

According to the distribution of associations model (Siegler,
1988b; Siegler & Shrager, 1984) and its successor, the adaptive
strategy choice model (Siegler & Lemaire, 1997; Siegler & Ship-
ley, 1995), individuals represent information about math problems
(e.g., 13 � 3) in an associative network that consists of a distri-
bution of associations between specific problems and possible
answers (Siegler, 1988b). These associations are built up over
repeated prior exposure to math problems and corresponding an-
swers. Whether a problem answer will be retrieved via its associ-
ation with problem operands depends on where one sets a mini-
mum confidence criterion (i.e., the minimum strength of
association required for an answer to be spontaneously produced)
and a maximum time limit before associatively based strategies are
abandoned.

Siegler (1988a) suggested that one source of retrieval threshold
difference may be previous experience in the use of complex,
rule-based strategies to solve particular problems. Because rule-
based strategy use is more resource intensive than is deriving
answers associatively, individuals who are able to successfully
execute such computations may set higher thresholds for retrieval,
resulting in an increased use of rule-based computations. In con-
trast, if individuals do not have the resources necessary to accu-
rately execute rule-based computations, they may be more likely to
rely on associatively derived answers (i.e., set lower thresholds for
retrieval). It is important to point out that Siegler’s models do not
apply solely to familiar problems or to problems one has seen in
the past. Experience with related problems or component problem
features should allow individuals to generalize problem-solving
strategies they have relied on in the past to new problems they
have never encountered (Siegler & Lemaire, 1997).

In terms of WM differences in math then, it may be that the
difficulty experienced by those lower in WM in implementing
complex, rule-based computations makes them more prone to rely
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on associatively derived strategies that make few demands on WM
and attentional control. Such a finding not only would demonstrate
that individual differences in WM influence math problem-solving
approaches, but also it would provide an explanation for a recently
discovered phenomenon in our laboratory and others in which
higher (but not lower) WM individuals are susceptible to skill
failure under pressure (Beilock & Carr, 2005; Gimmig, Huguet,
Caverni, & Cury, 2006).

Performance Under Pressure

Pressure-induced performance decrements, or choking under
pressure, has been defined as performing more poorly than ex-
pected given one’s skill level in situations in which incentives for
optimal performance are at a maximum (Baumeister, 1984;
Beilock & Carr, 2001, 2005; Beilock et al., 2004; Lewis & Linder,
1997; Masters, 1992). In WM intensive tasks, such as mathemat-
ical problem solving, it has been demonstrated that high-pressure
environments interfere with performance—and thus increase the
likelihood of choking—by consuming (via worries about the sit-
uation and its consequences) the WM resources individuals need to
perform at an optimal level (Beilock et al., 2004; Beilock, Rydell,
& McConnell, 2007; Cadinu, Maass, Rosabianca, & Kiesner,
2005).

Recently, Beilock and Carr (2005) explored susceptibility to
pressure-induced failure as a function of individual differences in
WM. Individuals lower and higher in WM performed a difficult
math task under both a low-pressure condition and a high-pressure
testing condition (in which there were negative monetary and
social consequences associated with poor performance). As one
might expect, individuals higher in WM outperformed their lower
capacity counterparts under low-pressure conditions. However,
when placed in a high-pressure testing situation, those highest in
WM were the ones most likely to fail. Higher WM individuals’
performance fell to the level of the lower WM individuals when
the pressure was on. Lower WM individuals’ performance did not
suffer under pressure.

Similar results regarding individual differences in WM and
susceptibility to pressure-induced failure have been found using
Raven’s Standard Progressive Matrices as a test bed (Gimmig et
al., 2006). In this task, individuals are presented with increasingly
difficult patterns that contain one missing segment and are asked to
choose which segment best completes the pattern from a number
of available options. Consistent with Beilock and Carr (2005),
Gimmig et al. found that the performance of higher (but not lower)
WM individuals was impaired under pressure. Moreover, this
performance decrement was limited to those problems that made
the greatest demands on WM—exactly what one would expect if
performance pressure taxes the resources higher WM individuals
normally use to solve difficult problems.

This work sheds light on how variation in the performer con-
tributes to skill success and failure. Nonetheless, it is still unclear
how pressure changes the high-level performance that higher WM
individuals normally exhibit or why individuals lower in WM are
spared from pressure-induced decrements. We believe that consid-
ering these issues from a dual-process perspective can help provide
answers to these questions. Specifically, if higher WM individuals
are more likely to rely on rule-based computations (Evans, 2003;
Kokis, Macpherson, Toplak, West, & Stanovich, 2002; Stanovich

& West, 2000), then to the extent that pressure co-opts the WM
resources needed to instantiate such problem-solving strategies,
this may be exactly what makes these individuals susceptible to
failure. In contrast, if lower WM individuals rely more heavily on
associatively derived answers (i.e., simpler shortcuts that rely on
previous associations between the components of a particular
problem and the likelihood of a given answer and make few
demands on WM and attentional control), then pressure-induced
consumption of WM should not disrupt performance.

Experiment 1

To address this issue, we turned to a math problem-solving task
used in previous explorations of pressure-induced failure: Gauss’s
modular arithmetic task (see Bogomolny, 1996). This task in-
volves judging the truth value of equations such as 34 � 18 (mod
4). To solve such equations, the middle number is subtracted from
the first number (i.e., 34 – 18), and this difference is then divided
by the last number (i.e., 16 � 4). If the dividend is a whole number
(here, 4), the statement is true. Those problems with remainders
are considered false. We chose this task because, although it is
based on common subtraction and division procedures, there are
associatively based shortcut strategies that can be used to derive
the correct answer (some of the time) without requiring a multistep
problem-solving algorithm. For example, if one concludes that
problems with even numbers are likely to be true because they
believe even numbers are associated less often with remainders in
division, this shortcut will produce the correct answer on some
trials (as in the previous example) but not in all trials (e.g., 52 �
16 [mod 8]). This type of shortcut strategy circumvents the need to
maintain and manipulate intermediate problem steps on line in
WM. However, because such shortcuts are not always appropriate,
their use should result in less accurate problem-solving perfor-
mance overall.

In Experiment 1, participants lower and higher in WM per-
formed the modular arithmetic task under either low-pressure or
high-pressure testing conditions. Following certain problems (un-
known ahead of time to participants), individuals were told to write
down their problem-solving strategies—that is, how they derived
the answer to the previous problem. If rule-based processing is
indeed a more accurate method for solving modular arithmetic,
then the tendency to use a rule-based, multistep algorithm in
contrast to a simpler shortcut should predict better math perfor-
mance under low-pressure conditions. And, if individual differ-
ences in WM affect the problem-solving strategies individuals use,
then those higher in WM should be more likely to rely on rule-
based processing and perform at a higher level than those lower in
WM—at least under low-pressure conditions. Finally, if pressure-
induced consumption of WM denies individuals the resources
necessary to compute demanding rule-based computations, then
those individuals who rely most heavily on such processes to begin
with (e.g., higher WM individuals) should be most likely to choke
under pressure.

It is an open question as to how these pressure-induced perfor-
mance decrements might occur. One possibility is that those higher
in WM persist in the use of a complex, rule-based strategy despite
the fact that the resources needed to support such computations are
no longer available. As a result, mistakes are made that lead to
poor performance. A second possibility is that pressure-induced
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consumption of WM prompts higher WM individuals to rely on
simpler associatively derived shortcut strategies (similar to those
used by their lower WM counterparts). This latter point is intrigu-
ing because it suggests that how one approaches a difficult prob-
lem is not only dependent on stable individual differences but also
on changes in response to environmental stressors. As a preview,
this is exactly what was found.

Method

Participants

Undergraduate students at a U.S. Midwestern university were
randomly assigned to either a low-pressure condition (n � 48) or
a high-pressure condition (n � 44). Ten additional participants
were tested but not included in the experiment for the following
reasons: (a) Four participants assigned to the high-pressure condi-
tion reported that they either did not believe the pressure manip-
ulation or knew about it ahead of time; (b) 2 participants’ scores on
the two WM measures used in the current work (Reading Span
[RSPAN] and Operation Span [OSPAN], see below) differed by
more than 20 points, suggesting that these tasks were unable to
capture consistent WM measures for these participants; and (c) 4
participants’ accuracy on the practice problems (explained below)
was less than 50% correct. This minimum accuracy criterion was
implemented to ensure that individuals were performing above
chance on the modular arithmetic task prior to the implementation
of any experimental manipulations (see Beilock et al., 2007; De-
Caro, Wieth, & Beilock, 2007).

WM scores were based on the average of participants’ scores on
two well-established measures of WM: Turner and Engle’s (1989)
OSPAN and a modified Daneman and Carpenter’s (1980) RSPAN.
The OSPAN involves solving a series of arithmetic equations
while attempting to remember a list of unrelated words. Individ-
uals are presented with one equation–word string at a time on a
computer (e.g., 5 � 2 � 2 � 8; DOG) and are asked to verify
aloud whether the equation is correct. Individuals then read the
word aloud. At the end of the series, individuals are prompted to
write down the sequence of words. The RSPAN involves reading
a series of sentence–letter strings (e.g., On warm sunny afternoons,
I like to walk in the park; F). In the RSPAN, individuals read the
sentence aloud and are asked to verify whether the sentence makes
sense. Individuals then read the letter aloud. At the end of the
series they write down the sequence of letters. In both the OSPAN
and RSPAN, each series consists of a random number of strings
between two and five. Individuals are tested on three series of each
length (12 series total). OSPAN and RSPAN scores (range: 0–42)
consist of the total number of words or letters recalled from
perfectly recalled trials. Span scores averaged across the two WM
tests ranged from 5.5 to 39.5 (M � 16.07, SE � 0.78).

Procedure

Individuals first filled out a consent form and were then set up
in front of a monitor controlled by a standard laboratory computer.
Participants were introduced to modular arithmetic through a se-
ries of written instructions presented on the computer screen.
Specifically, individuals were informed that they would be judging
the truth value of modular arithmetic problems presented on the

computer as quickly and as accurately as possible by mentally
computing the answers (i.e., without the use of paper). Participants
were then provided with two example problems and answers that
detailed an algorithm that could be used to solve the modular
arithmetic problems with 100% accuracy. These examples illus-
trated that there were two steps one could take to determine the
validity of the modular arithmetic problems, such as 38 � 19 (mod
4): First, the middle number is subtracted from the first number
(i.e., 38 � 19 � 19). Second, this difference is divided by the mod
number (i.e., 19 � 4). If the dividend is a whole number, the
statement is true. If the dividend is not a whole number (i.e., as in
the current example), the statement is false. Participants were told
that when they had derived an answer to a problem, to press the
corresponding T or F keys on the standard keyboard in front of
them.

Problems were of the form 45 � 27 (mod 9), with the value of
each of the initial two numbers less than 100 and the value of the
last number (i.e., the mod number) ranging from 2 to 9. Each
problem was presented once across the entire experiment. Half of
the modular arithmetic equations presented to participants were
true, and the rest were false. Additionally, each true problem had
a false correlate that only differed as a function of the number
involved in the mod statement. For example, if the true problem,
51 � 19 (mod 4), was presented, then a false correlate problem,
51 � 19 (mod 3), was also presented at some point in the same
problem block. This pairing was designed to equate the true and
false problems as much as possible in terms of the specific num-
bers used in each equation (Beilock & Carr, 2005; Beilock et al.,
2004).

All participants initially performed 12 practice problems to
familiarize them with the math task. All practice problems were
presented in a different random order to each participant. Each trial
began with a 500-ms fixation point at screen center, which was
immediately replaced by a math problem present until response.
After response, the word Correct or the word Incorrect appeared
for 1,000 ms, providing feedback. The screen then went blank for
a 1,000-ms intertrial interval. Following the practice trials, indi-
viduals performed the experimental problem block preceded by
instructions specific to the condition to which they had been
assigned.

Low-pressure condition. Participants were simply told to work
as quickly and as accurately as possible. Problems were presented
in the same manner as the practice trials with the exception that
individuals did not receive performance feedback. In addition,
prior to the experimental problem block, individuals were told that
the experimenters were interested in capturing the steps partici-
pants went through to derive answers to the problems and that,
after certain problems, they would be prompted to write down how
they solved the previous problem. Individuals were informed that
there were no right or wrong processes to use in solving the
problems and that the experimenters were interested in how indi-
viduals perform this type of math task, regardless of the processes
used. In addition, participants were explicitly told that they could
take as much time as they needed to write down how they solved
the problem. These instructions were designed to encourage par-
ticipants to report how they solved the problem without modifica-
tion. Participants performed two practice problems, each followed
by a strategy report, in order to ensure that they understood what
was being asked of them.
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Individuals performed 24 problems in the experimental block,
presented in a different order for each participant. Following 8 of
these problems (which were selected randomly, with the constraint
that only 1 problem was selected out of every 3 problems in a
sequence), participants were prompted by the computer to write
down the processes they used to solve the previous problem.
Specifically, appearing on the computer screen were the following
instructions:

Using the paper in front of you, please write down how you solved the
previous problem. Please write down your memory of all the steps and
processes you went through and any strategies you may have used in
solving the previous problem.

After writing down their problem-solving processes, participants
pressed the space bar on the keyboard to continue. Participants
were not aware of the specific problems after which they would be
prompted for strategy reports. Following completion of the exper-
imental block, participants were thanked and debriefed.

High-pressure condition. Individuals assigned to the high-
pressure condition took part in the same procedure as those in the
low-pressure condition, with some exceptions. Prior to the exper-
imental block of problems, participants were given a pressure
scenario that used several sources of pressure commonly experi-
enced in real-world testing situations: Monetary incentives (e.g.,
future scholarships, educational opportunities), peer pressure, and
social evaluation (e.g., admissions committees, parents, teachers,
and peers). This scenario has been previously established to be
highly effective in producing feelings of performance pressure and
anxiety in participants (Beilock & Carr, 2001, 2005; Beilock et al.,
2004; Markman, Maddox, & Worthy, 2006). These feelings do not
differ as a function of math ability, and thus these factors are not
confounded with response to pressure (Beilock & Carr, 2005;
Beilock et al., 2004). This is also true with respect to WM
capacity: As is stated below, posttest reports of perceived pressure
and state anxiety did not differ as a function of individual differ-
ences in WM.

Specifically, the pressure manipulation involved informing
individuals that the computer used a formula that equally takes
into account reaction time and accuracy in computing a modular
arithmetic score. Participants were told that if they could im-
prove their modular arithmetic score by 20% relative to the
preceding practice trials, they would receive $10. Participants
were also informed that receiving the monetary award was a
“team effort.” Specifically, participants were told that they had
been randomly paired with another individual, and to receive
their $10, not only did the participant presently in the experi-
ment have to improve in the next set of problems, but also the
individual they were paired with had to improve. Next, partic-
ipants were informed that this individual, “their partner,” had
already completed the experiment and had improved by the
required amount. If the participant presently in the experiment
improved by 20%, both the participant and his or her partner
would receive $10. However, if the present participant did not
improve by the required amount, neither the participant nor his
or her partner would receive the money. Finally, participants
were told that their performance would be videotaped during
the test situation so that local math teachers, students, and
professors in the area could examine their performance on this
new type of math task. Participants were additionally told that

their strategy reports, and the time involved in reporting such
strategies, was not considered part of the time involved in
solving the math problems and thus they should take as much
time as they needed to write down their problem-solving strat-
egies.

The experimenter set up the video camera on a tripod directly to
the right of participants, approximately 1 m away. The field of
view of the video camera included both the participant and the
computer screen. Participants then completed the experimental
block of problems. Afterward, the experimenter turned off the
camera and faced it away from the participants.

Following the high-pressure problem block, individuals in the
high-pressure condition filled out questionnaires that assessed their
feelings of anxiety and performance pressure. These question-
naires were designed to ensure that feelings of pressure and anx-
iety induced by the high-pressure situation did not differ as a
function of WM. Individuals first filled out the State Form of the
State–Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, &
Lushene, 1970). The STAI is a widely used measure of state
anxiety consisting of 20 questions designed to assess participants’
feelings at a particular moment in time. Individuals assign values
to statements such as, I feel calm and I feel at ease on a 4-point
scale ranging from 1 (not at all) to 4 (very much so). The State
Form of the STAI has been used in a number of studies investi-
gating the impact of anxiety on complex task performance (e.g.,
Tohill & Holyoak, 2000).

Following the STAI, participants answered questions related to
their perceptions of performance under pressure (Beilock et al.,
2004). Individuals were asked to rate on two 7-point scales (a) how
important they felt it was for them to perform at a high level in the
posttest (1 � not at all important to me; 7 � extremely important
to me) and (b) how much pressure they felt to perform at a high
level in the posttest (1 � very little performance pressure; 7 �
extreme performance pressure).

Reports regarding the importance of performing at a high level
in the high-pressure condition did not significantly differ as a
function of WM (n � 44; r � .26, p � .10; M � 4.95, SE � 0.18).
Although one might be concerned that this relation is approaching
significance, it is important to point out that importance reports
have not differentiated pressure conditions in previous work. For
example, using the same high-pressure scenario as the current
work, Beilock et al. (2004) found that both low-pressure partici-
pants (M � 4.63, SE � 0.21) and high-pressure participants (M �
5.03, SE � 0.19) reported that it was at least “moderately impor-
tant” to perform at a high level.

Most important, reports of perceived performance pressure (n �
44; r � .12, p � .44; M � 4.93, SE � 0.22) and state anxiety (n �
44; r � .13, p � .94; M � 49.21, SE � 1.24) that did reliably
discriminate low- and high-pressure performance in previous work
(see Beilock et al., 2004) did not significantly relate to WM in
current work. These reports were nearly identical to those taken
after high-pressure performance in Beilock et al.’s (2004) work
(pressure: M � 5.08, SE � 0.21; anxiety: M � 42.68, SE � 1.87)
and were substantially higher than low-pressure participants’ re-
ports in Beilock et al. (pressure: M � 3.95, SE � 0.24; anxiety:
M � 32.08, SE � 1.20). Thus, given the above pattern of self-
report data, it would be difficult to explain any of the WM
differences in the current work in terms of those variables shown
in previous work (e.g., perceived pressure, state anxiety) to reli-
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ably differentiate individuals performing under low- and high-
pressure conditions.

Results

WM and Math Performance

We began by examining modular arithmetic problem accuracy
as a function of individual differences in WM capacity and pres-
sure condition for the 24-problem experimental block of interest.
To do this, we regressed modular arithmetic accuracy on WM span
score (i.e., average of the RSPAN and OSPAN), pressure condi-
tion (dummy coded), and their interaction. This regression resulted
in no main effect of WM (� � .09), t(88) � .87, p � .39, no main
effect of pressure condition (� � .26), t(88) � 1.05, p � .30, and
a significant Working Memory � Pressure interaction (� � �.47),
t(88) � �1.95, p � .05. As can be seen in Figure 1, under
low-pressure conditions, the higher the individuals’ WM, the
higher their modular arithmetic accuracy (r � .39, p � .02). In
contrast, under high-pressure conditions, there was no relation
between WM span and math accuracy (r � �.10, p � .52). Thus,
more WM capacity benefits modular arithmetic task accuracy
when performing in a low-pressure situation. In contrast, there is
no relation between WM and accuracy when performing under
high-pressure testing conditions.

Analysis of reaction times (RTs) for trials on which responses were
correct neither contradicted the conclusions drawn from the accuracy
data nor did they indicate that the accuracy effects could be attributed
to a speed–accuracy trade-off. Specifically, regressing modular arith-
metic RTs (M � 5,638 ms, SE � 232 ms) on WM span score,
pressure condition, and their interaction produced no significant effect

of WM score (� � �.08), t(88) � �.76, p � .45, no significant effect
of pressure (� � .02), t(88) � 0.10, p � .92, and no Pressure �
Working Memory interaction (� � �.36), t(88) � �1.51, p � .13.
The lack of an interaction involving WM and pressure condition
suggests that the above-reported differences in accuracy were not
produced by a trade-off in RT. Moreover, the lack of RT effects is
consistent with previous modular arithmetic work in which perfor-
mance decrements under stress are consistently seen in accuracy (see
Beilock & Carr, 2005; Beilock et al., 2004).

Strategy Selection and Math Performance

The analyses conducted thus far show how individual differ-
ences in the performer and variations in the performance environ-
ment combine to impact skill execution. Nonetheless, from these
data alone, it is unclear as to how pressure changes the high-level
performance that higher WM individuals normally exhibit or why
individuals lower in WM are spared from pressure-induced failure.
We turn to the problem-solving strategy reports to address these
issues.

Strategies were coded independently by two experimenters un-
aware of participants’ WM scores or the specific pressure condi-
tion to which participants were assigned (� � .87). All disagree-
ments between the two raters were discussed, and if a consensus
could not be reached, a third judge rated the strategy. Each written
strategy was classified into one of the following three categories:

1. A WM intensive rule-based algorithm that involved a
series of step-by-step computations. Examples include
the following: “I subtracted the numbers in the 10s spot
first, then the numbers in the 1s spot and divided;” “I
subtracted the smaller number from the larger number,
figured out the answer and found it did not divide
equally, and I pressed F;” and “Looked at first number,
took second number and subtracted it from first. Basi-
cally just imagined that instead of equal sign it was a
minus sign. Took result and divided from third number.”

2. Estimation or guessing based on previous associations with
specific problem operands as a means to circumvent the
steps necessary to explicitly compute a problem solution.
Examples include the following: “Both numbers were even,
so the result of subtracting would be even and probably
divisible by the mod number;” “I knew the relation between
the two numbers already as being multiples of 3 and only
one multiple of 3 apart;” and “I know from seeing all the
numbers group together that there was no possible way I
could have gotten a number without a remainder.”

3. A statement that did not make sense or in which not
enough detail was given to code. Examples include the
following: “Math in head.” This last category occurred
relatively infrequently (i.e., 8% of all responses).

The percentage of strategy use in the first two categories was
computed for each participant by dividing the number of strategy
reports in that category by the total number of codable strategies.
Because the proportion of algorithm and shortcut strategy reports
represent inverses of each other, we only present the analyses for
the proportion of rule-based algorithm use below.

Figure 1. Mean modular arithmetic problem accuracy (% correct) as a
function of individual differences in working memory and pressure con-
dition. Nonstandardized coefficients are plotted at �1 standard deviation.
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We began by examining the relation between modular arith-
metic performance and rule-based algorithm use. If rule-based
processing leads to superior performance on our math task, then
greater algorithm use should relate to better math performance.
However, this may only hold under low-pressure conditions. To
the extent that high-stakes situations reduce available WM re-
sources (Beilock et al., 2004; Schmader & Johns, 2003), the use of
an explicit rule-based algorithm to solve an equation under pres-
sure may actually lead to worse performance than if one were to
use a less demanding shortcut strategy. That is, a shortcut strategy
that produces the right answer some of the time might lead to
better overall performance than might an explicit rule-based algo-
rithm if the computation of that algorithm is impaired due to
insufficient WM resources.

To address the above issues, we turned to the performance
measure shown in the previous set of analyses to be sensitive to
fluctuations in performance pressure: modular arithmetic accuracy.
We then regressed modular arithmetic accuracy on reported algo-
rithm use, pressure condition (dummy coded), and their interac-
tion. This regression resulted in no significant effect of pressure
condition (� � .37), t(88) � 1.41, p � .16, no significant effect of
algorithm use (� � �.01), t(88) � �0.08, p � .94, and a
significant Pressure Condition � Algorithm Use interaction (� �
�.59), t(88) � �2.26, p � .03. As can be seen in Figure 2, the
greater the proportion of algorithm use, the relatively better the
modular arithmetic performance under low-pressure conditions. In
contrast, under high-pressure testing conditions, the greater the
proportion of algorithm use, the relatively worse the performance.
Thus, greater use of a rule-based algorithm does lead to relatively
more accurate performance—as long as environmentally induced
stressors do not impact the resources necessary to support such
complex and working memory intensive computations.

Strategy Selection and WM

We demonstrated in our initial set of analyses that the higher
one’s WM, the better his or her math performance, but only under
low-pressure conditions. Our second set of analyses revealed that
the greater the proportion of explicit rule-based algorithm use, the
better one’s performance, but again, only in low-pressure situa-
tions. If higher WM individuals’ superior performance—at least
under low-pressure conditions—can be explained by a greater use
of rule-based processes, then this should be apparent in their
strategy reports. Moreover, these strategy reports should also lend
insight into why higher WM individuals’ performance is less
accurate in high-pressure than it is in low-pressure conditions.

To explore these ideas, we next regressed proportion of algorithm
use on WM span score, pressure condition (dummy coded), and their
interaction. This regression resulted in no significant effect of WM
(� � .10), t(88) � 0.98, p � .33, an effect of pressure condition that
approached significance (� � .43), t(88) � 1.76, p � .08, which was
qualified by a significant Working Memory � Pressure interaction
(� � �.50), t(88) � �2.05, p � .05. As seen in Figure 3, under
low-pressure conditions, the higher individuals’ WM, the greater their
rule-based algorithm use (r � .31, p � .04). In contrast, under
high-pressure conditions, there was no relation between WM span
score and algorithm use (r � �.11, p � .46). Higher WM individuals’
use of the rule-based algorithm was no different than their lower WM
counterparts when performing under pressure. This evidence of sim-
pler processing under pressure, together with the above analyses
directly linking algorithm use to performance accuracy, provides a
mechanistic account for why higher WM individuals under high-
pressure show poorer math performance compared with higher WM
individuals under low-pressure and why lower WM individuals do not
show a differential pattern of performance under low- and high-
pressure conditions.

Discussion

Despite known differences in how various aspects of executive
control (e.g., attentional control, inhibition) contribute to perfor-
mance (Engle, 2002), less is known about how these differences
manifest themselves in terms of the problem-solving strategies
lower versus higher WM individuals use to solve complex, mul-
tistep problems such as mathematical computations (Price et al.,
2007). The findings of Experiment 1 demonstrate that individual
differences in WM influence how people approach difficult prob-
lems and that consequential testing situations can alter these ap-
proaches. Using dual-process theories of reasoning as a jumping
board, we hypothesized that under low-pressure situations, the
higher one’s WM, the more likely he or she would be to rely on
accurate (but computationally demanding) rule-based processing
compared with simpler, associatively derived approaches. How-
ever, we also suggested that when pressure consumes the resources
on which higher WM individuals normally rely to support explicit
algorithm use, they might respond by using simpler (and less
accurate) strategies. This is exactly what we found.

Thus, pressure does not simply serve to disrupt complex prob-
lem solving per se. Rather, when faced with high-pressure circum-
stances, individuals with characteristically higher capacity ap-
proach problems as if their capacity was lower to begin with,
opting for simpler problem-solving strategies that alleviate the

Figure 2. Mean modular arithmetic problem accuracy (% correct) as a
function of the tendency to use rule-based algorithmic computations and
pressure condition. Nonstandardized coefficients are plotted at �1 standard
deviation.
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burden on WM. Is this a poor response to a stressful situation?
Because higher algorithm use under pressure led to relatively
poorer performance than did lower algorithm use under pressure
(see Figure 2), this strategy could be characterized as somewhat
adaptive. Nonetheless, lower algorithm use under pressure still
resulted in worse performance overall than did algorithm use when
pressure was absent. Thus, the reliance on a simpler associative
strategy seems limited in terms of performance success. Moreover,
when considering strategy efficacy, it is also important to take the
knowledge of the performer into consideration. As mentioned
previously, in Siegler’s (1988a) examination of students’ arith-
metic abilities, it was found that students differed in their problem
knowledge as well as in their thresholds for relying on associa-
tively based retrieval strategies. To the extent that a student has
high problem knowledge and favors accuracy above all else, then
a simpler association that only produces the right answer some of
the time would not be more optimal (in terms of producing the
correct problem answer) than would the use of a step-by-step
problem-solving algorithm.

At this point, one might wonder exactly how often an associatively
derived strategy would produce a correct answer on our modular
arithmetic problems. However, determining a comprehensive base
rate for associative strategy success proved difficult. First, it was hard
to determine whether certain associatively derived strategies would
always lead to the correct answer (e.g., “I know from seeing all the
numbers grouped together that there was no possible way I could have
gotten a number without a remainder”). Second, participants reported
multiple association strategies that could not be applied to all math
problems. For example, the strategy, “I rationalized that since the first
number was even and the second number was odd, the answer would
be an odd number that could not be divided by the mod number,

which was even,” could not be applied to problems with all even
or all odd numbers. Nonetheless, we did calculate an associatively
derived base rate for strategies whose success rates could be
definitively identified. Out of the 24 experimental problems pre-
sented to participants, a strategy of judging modular arithmetic
problems in which the first two numbers consisted of one even
number and one odd number and paired with an odd mod number
(e.g., 82 � 55 [mod 3]) to be true or paired with an even mod
number (e.g., 76 � 27 [mod 6]) to be false could be applied to 14
of the 24 experimental problems. A strategy of judging modular
arithmetic problems in which the first two numbers were both odd
and paired with an odd mod number (e.g., 63 � 27 [mod 9]) to be
true or paired with an even mod number (e.g., 53 � 35 [mod 6])
to be false could be applied to 8 of the problems. Third, a strategy
of judging equations in which the first two numbers were even and
the mod number was even (e.g., 92 � 36 [mod 6]) to be true or
paired with an odd mod number (e.g., 92 � 36 [mod 7]) to be false
could be applied to 2 problems. In total, a combination of these
strategies would result in success on our modular arithmetic prob-
lems 66% of the time. It should also be noted that some partici-
pants actually used the opposite assumption with respect to the last
two strategies (e.g., “If two even numbers were to be subtracted,
the division could only be true if the mod was an odd number,” or
“If two odd numbers were to be subtracted, the division could only
be true if the mod was an even number”). This specific combina-
tion resulted in an 80% success rate on our modular arithmetic
problems. Finally, the use of a multiple or factor approach in
which one ignores even–odd and instead judges problems in which
the mod number is not a factor of the other two numbers to be false
(e.g., 76 � 27 [mod 7]) resulted in a success rate of 58%. Thus,
while associatively derived shortcut strategies may circumvent the
need to maintain and manipulate intermediate problem steps on
line, they clearly do not produce the correct answer for all prob-
lems in our modular arithmetic task.

Admittedly, because Experiment 1’s strategy reports were open-
ended, this not only made it hard to determine a comprehensive base
rate of success for associatively derived strategies, but also coding
answers into either algorithm or simpler shortcuts left open the pos-
sibility that we were missing more nuanced differences in strategy use
as a function of WM. To address this, in Experiment 2 we turned to
a task in which problem-solving strategies were apparent from the
answers given (i.e., participants’ answers consisted of the formula
they used to derive their solution). If, under pressure, higher WM
individuals adopt problem-solving strategies that are of a similar type
to those used by their lower WM counterparts, this will be directly
evident from the answers reported.

Experiment 2

Individuals performed Luchins’s (1942) water jug task either
under low-pressure or high-pressure testing conditions in Experi-
ment 2. The goal of the water jug task is to derive a mathematical
formula resulting in a specified “goal” quantity of water with jugs
of various capacities by using the simplest strategy possible (see
Figure 4). The first three problems can only be solved by using a
difficult, WM demanding rule-based algorithm involving several
subtraction and multiplication steps (i.e., B � A � 2 � C). The
last three problems are solvable by this same difficult formula rule
or by a much simpler formula (e.g., A � C). Of interest is whether

Figure 3. Proportion of rule-based algorithm use (%) as a function of
individual differences in working memory and pressure condition. Non-
standardized coefficients are plotted at �1 standard deviation.
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individuals recognize this simpler shortcut when available or
whether they continue to use the same demanding formula. When
individuals persist in using the difficult strategy in lieu of the
simpler one, they exhibit mental set (McDaniel & Schlager, 1990).
Because the use of less effort to produce a correct answer is
generally better, and individuals were instructed to solve the prob-
lems using the simplest strategy possible, the tendency to break
mental set is considered success on this task (Gasper, 2003; cf.
Fantino, Jaworski, Case, & Stolarz-Fantino, 2003). It is important
to point out that although one might assume that continued use of
the same demanding formula on every problem would render
instantiation of that formula effortless, this is not necessarily the
case. This is because recognizing that the complex formula will
result in the goal quantity of water still involves performing a
series of step-by-step computations to derive an end state.

One can also consider performance on Luchins’s (1942) water
jug task from the standpoint of a dual-process framework. The use
of the necessary step-by-step computations to arrive at the solution
B � A � 2 � C involves the explicit manipulation of a series of
operands—a rule-based process. In contrast, immediately recog-
nizing that A � C equals the goal quantity relies on very different
processes—the retrieval of previously learned associations be-
tween these operands and the problem answer.

If lower WM individuals lack the ability to accurately compute
complex solutions, they may be more likely to rely on associatively
based strategies to recognize the simpler problem answer (e.g., 23 �
3 � 20). In contrast, higher WM individuals may compute the
complex solution—at least under low-pressure conditions—simply
because they have the resources to do so. Indeed, as mentioned in the
introduction, it has been demonstrated that those individuals least able
to carry out accurate math problem computations often are the most
likely to rely on associatively based retrieval strategies to circumvent
these demanding processes (Siegler, 1988a). Thus, under low-
pressure conditions, the lower individuals’ WM, the more likely they
may be to find the simple solution and break mental set. Although
such an idea might seem surprising given the emphasis placed on the
positive role of WM and attentional control (Conway et al., 2005), it
is consistent with the speculation that higher WM individuals use
cognitively demanding strategies to solve problems that could be
solved in more efficient ways (Barrett, Tugade, & Engle, 2004). And,
if pressure prompts higher WM individuals to use the shortcut strat-
egies that those with lower WM normally use, then individual differ-
ences in WM should not predict shortcut use under pressure because

everyone should rely on the simple shortcut in this more demanding
situation.

Method

Participants

One cannot look at the tendency to adopt a shortcut strategy
(i.e., break mental set) following difficult problem performance if
individuals do not perform the problems correctly to begin with
(i.e., if they never achieve mental set). Thus, only individuals who
correctly performed the first three problems (i.e., learned the
complex, rule-based formula) served as study participants. Similar
criteria have been used in previous research to ensure that only
individuals who achieve mental set serve as participants (Gasper,
2003). This resulted in 45 low-pressure participants and 46 high-
pressure participants (undergraduate students at the same U.S.
Midwestern university used in Experiment 1). Seven additional
participants were tested but not included in the experiment for the
same reasons as those in Experiment 1: (a) Four participants in the
pressure condition were excluded because they reported during the
experiment that they either did not believe the pressure manipu-
lation or knew about it ahead of time, and (b) 3 additional partic-
ipants were excluded because the scores of their two WM mea-
sures differed by more than 20 points, suggesting that the RSPAN
and the OSPAN were unable to capture consistent WM measures
for these participants. Again, WM scores were based on the
average of participants’ scores on the OSPAN and the RSPAN.
Span scores averaged across the two WM tests ranged from 5.0 to
39.5 (M � 17.08, SE � .75).1

Procedure

Participants first signed informed consent and then were intro-
duced to a computerized version of Luchins’s (1942) water jug
task. On the computer screen, individuals were shown four water
jug graphics labeled as Jug A, Jug B, Jug C, and Goal (see Figure
4). Individuals were instructed that the purpose of the task was to
obtain a specified goal quantity of water with jugs of various
capacities by using the simplest strategy possible. The water sup-
ply was unlimited.

Each problem appeared individually on the computer screen.
Participants were instructed to solve the problems in their head and
to use only their answer sheet to write down their final response—
the formula used to obtain the goal quantity of water. Once
participants had recorded their answer, they pressed the space bar

1 Thirty low-pressure participants and 40 high-pressure participants did not
perform the first three problems correctly and were not included in Experiment
2. It should be noted that span scores for these individuals (M � 14.22, SE �
.77) were lower than for those who were included in the experiment (M �
17.08, SE � .75), F(1, 159) � 6.90, p � .01. This is not surprising given that
greater WM should aid in the implementation of the complex computations
required to solve the first three problems. However, on average, those who did
not achieve mental set had lower WM scores than those who did, which
suggests that lower WM individuals were more likely to be excluded from the
analyses of Experiment 2. Nonetheless, the criteria of having to solve the first
three problems correctly did not appear to significantly alter the WM scores of
Experiment 2, given that the span means did not differ from those found in
Experiment 1 (M � 16.07, SE � .78; F � 1).

Figure 4. Water jug display. Participants derived a formula to obtain a
“goal” quantity of water by using jugs of various capacities. The first three
problems were only solvable by the formula B � A � 2 � C (i.e., Fill Jug
B, pour out enough to fill Jug A, then pour the remaining into Jug C twice,
leaving the goal quantity in Jug B). The last three problems were solvable
by this same difficult formula in addition to a much simpler formula (e.g.,
A � C). Individuals were informed that the water supply was unlimited and
that not all jugs needed to be used.
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on the keyboard to advance to the next problem. Individuals were
provided with a paper packet to record their answers. One page
was devoted to each problem so that participants could not readily
refer back to previous answers. In addition, individuals were told
that they did not necessarily have to use all the jugs to solve the
problems and that there may be more than one way to solve a
problem. During instructions, participants practiced the procedure,
and the experimenter answered any questions to ensure they un-
derstood the task. All individuals only saw one example problem
and answer: Jug A � 29, Jug B � 11, and Goal � 7. The example
problem with answer only used two of the jugs so as to limit the
similarity of the example to the experimental problem set. Partic-
ipants worked out the answer (i.e., A � 2 � B or 29 – 11 � 11),
and the experimenter checked to ensure they had computed it
correctly.

Individuals performed six experimental problems (see Table 1)
preceded by instructions specific to the low-pressure or high-
pressure condition to which they had been assigned (see below).
The first three experimental problems could only be solved with
the equation B – A – 2 � C. In the last three problems, two
problem solutions were possible: Individuals could continue to use
the difficult formula (i.e., B – A – 2 � C), or alternatively, they
could use a much simpler shortcut (i.e., A � C or A 	 C). Notably,
the difficult equation requires the maintenance and manipulation
of intermediate steps on line in WM.

Low-pressure condition. Prior to experimental problem per-
formance, individuals were simply informed to solve the problems
as quickly and as accurately as possible by using the simplest
equation possible. Following completion of the water jug task,
individuals were thanked and debriefed.

High-pressure condition. Prior to the experimental water jug
problems, participants were given a pressure scenario similar to
that used in Experiment 1. Specifically, individuals were told that
the problems they were about to perform had been given to other
university students the previous year and that the experimenters
had derived average scores for these problems on the basis of
students’ performance. Participants were informed that if they
could perform 20% better than the average student from the
previous year (in terms of both RT and accuracy), they would
receive $10. Participants were then given the exact same “team
effort” and video camera dialogue and manipulation used in Ex-
periment 1.

Following completion of the experimental water jug problems,
individuals in the high-pressure condition filled out the same
anxiety (STAI; Spielberger et al., 1970), importance, and perfor-

mance pressure questionnaires (Beilock et al., 2004) used in Ex-
periment 1 to ensure that lower versus higher WM individuals did
not differ in their feelings of anxiety and performance pressure
while performing the water jug task under the high-pressure con-
dition.

Indeed, reports regarding the importance of performing at a high
level (n � 46; r � �.13, p � .40; M � 4.43, SE � 0.24), as well
as reports of perceived performance pressure (n � 46; r � �.06,
p � .67; M � 4.93, SE � 0.19), and state anxiety (n � 45; r � .01,
p � .97; M � 50.91, SE � 1.48) did not differ as a function of WM
in the high-pressure condition.2 Thus, as in Experiment 1, it would
be difficult to explain any observed WM differences in perfor-
mance under pressure by general differences in perceived pressure
or anxiety.

Results

Problem-Solving Strategies

Of central interest were the strategies that individuals used to
solve the last three water jug problems. To reiterate, such problems
were solvable by either the demanding algorithm used to solve the
first three problems or by recognizing that a simpler, single-step
shortcut exists. Moreover, as mentioned above, only those indi-
viduals who solved the first three problems correctly (only solv-
able with the complex algorithm) were retained as participants.
One cannot look at the tendency to adopt a shortcut strategy (i.e.,
break mental set) following difficult problem performance if indi-
viduals do not perform the difficult problems correctly to begin
with (i.e., if they never achieve mental set). Moreover, equating
success on the first three problems across pressure condition and
individual differences in WM allowed us to test whether variation
in WM and the testing environment impacts the strategies individ-
uals rely on to solve the last three problems when the complex
algorithm is part of all individuals’ performance repertoire.

Because we were interested in examining the propensity of
shortcut strategy use when available, we began by regressing the
number of shortcut strategies used in the last three problems on
WM span score (i.e., average of RSPAN and OSPAN), pressure
condition (dummy coded), and their interaction. This regression
resulted in no significant effect of WM (� � �.09), t(87) �
�0.85, p � .40, no significant effect of pressure condition (� �
�.42), t(87) � �1.53, p � .13, and a significant Working Mem-
ory � Pressure interaction (� � .546), t(87) � 2.01, p � .05. As
can be seen in Figure 5, under low-pressure conditions, the higher
individuals’ WM, the less likely they were to recognize the short-
cut strategy (r � �.32, p � .04). In contrast, under high-pressure
conditions, there was no relation between WM span score and
shortcut strategy use (r � .11, p � .46). Thus, more WM capacity
leads to a lower likelihood of recognizing a shortcut strategy in a
low-stress situation. In contrast, under pressure, higher WM indi-
viduals’ shortcut strategy use equaled the level of their lower WM
counterparts.

It is important to note that when individuals were not using the
shortcut, they were using the complex algorithm that produced the
correct answer almost all of the time. In fact, out of 91 participants,

2 One participant did not fill out the STAI.

Table 1
Water Jug Problems

Problem

Jug

A B C Goal

1 23 96 3 67
2 11 48 6 25
3 20 59 4 31
4 23 49 3 20
5 15 39 3 18
6 14 36 8 6
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only 7 individuals reported one answer on the last three problems
that did not produce the goal quantity of water (i.e., �3% of all
answers). Thus, for a majority of the trials on which participants
were not using the simplest solution possible, they were still
coming up with a solution that worked roughly 97% of the time.

Problem-Solving RTs

The time to solve each problem was defined as the time from
problem onset until participants recorded their answer and pressed
the space bar to continue on to the next problem. We began by
comparing RTs in the first three and the last three water jug
problems for those participants with successful water jug solu-
tions—regardless of what strategy they used (i.e., WM intensive
algorithm vs. simpler strategy). Overall, problem-solving RTs
were rather long (first three problems: M � 54.74 s, SE � 2.96 s;
last three problems: M � 27.15 s, SE � 2.86 s) and a few RTs were
exceptionally long (e.g., 234 s). In order to ensure that such
outliers were not unduly influencing our results, we excluded
participants with RTs more than three standard deviations above
the mean of the first three and last three problems—three in total.3

In order to capture the within-subjects comparison of water jug
RTs from the first three problems to last three problems, we
performed a 2 (time: first three problems, last three problems) �
2 (condition: low pressure, high pressure) � 2 (WM: lower,
higher) repeated measures analysis of variance (ANOVA) with
lower versus higher WM span determined by a median split of the
average of the RSPAN and OSPAN scores.4 A significant three-
way interaction obtained, F(1, 77) � 7.48, p � .01, MSE �
25.43 � 107.

A 2 (time: first three problems, last three problems) � 2 (con-
dition: low pressure, high pressure) ANOVA for the lower WM
individuals resulted in only a main effect of time, F(1, 38) �
45.36, p � .001, MSE � 31.48 � 107, in which the first three
problems (M � 51.77 s, SE � 3.81 s) were solved more slowly
than the last three problems (M � 24.12 s, SE � 2.38 s). There was
no main effect of pressure (F � 1) and no Pressure � Time
interaction, F(1, 38) � 1.1, p � .30.

A similar ANOVA for the higher WM individuals resulted in a
significant Time � Pressure interaction, F(1, 39) � 9.69, p � .01,
MSE � 19.54 � 107. There was no significant difference in higher
WM individuals’ RTs for the first three problems as a function of
pressure condition, F(1, 39) � 3.33, p � .08, MSE � 45.74 � 107,
although the RTs under the high-pressure condition (M � 59.86 s,
SE � 5.40 s) were somewhat slower than RTs under the low-
pressure condition (M � 47.67 s, SE � 4.01 s). In contrast, there
was a significant difference in higher WM individuals’ RTs for the
last three problems as a function of pressure condition, F(1, 39) �
4.17, p � .05, MSE � 12.13 � 107 (low pressure: M � 28.79 s,
SE � 2.14 s; high pressure: M � 21.77 s, SE � 2.72 s). Thus,
pressure led to somewhat slower performance for the higher WM
individuals on the first three problems that could only be solved
with the difficult WM intensive algorithm but led to faster perfor-
mance on the last three problems that could be solved via either the
difficult algorithm or a simpler shortcut. This faster performance
under pressure is consistent with the notion that higher WM
individuals relied on the simpler solution under stress. And in fact,
if one looks at lower WM individuals’ performance on the last
three problems, they were relatively fast under both the low-
pressure condition (M � 24.22 s, 3.08 s) and the high-pressure
condition (M � 23.99 s, 3.84 s), suggesting that they persisted in
using the simpler shortcut regardless of the testing situation.

We also looked separately at RTs for correct solutions for the
first three problems and the last three problems as a function of
pressure condition and WM. We first regressed average problem-
solving RTs for the first three problems on WM span score,
pressure condition (dummy coded), and their interaction. This
regression resulted in no main effect of WM (� � �.02), t(77) �
�.14, p � .89, and a main effect of pressure condition that
approached significance (� � �.55), t(77) � �1.88, p � .07, in
which individuals tended to take longer to correctly solve the water
jug problems in the high-pressure condition (M � 53.88 s, SE �

3 Because there were so few problems in each time period (i.e., three),
participants missing RTs either because they got one wrong (n � 7) or
because their problem-solving RT was three standard deviations above the
group mean (n � 3) were excluded from this analysis so as to ensure that
our RT measure was based on the same number of observations per
participant (i.e., we did not want some participants with only one RT
observation and others with three). However, including these participants
would not have changed the reported pattern of results.

4 WM was treated as a median split (lower WM group: M � 11.38, SE �
.46; higher WM group: M � 22.72, SE � .86) in this analysis so as to
perform a repeated measures ANOVA that preserved the within-subject
comparison of RTs for the first and last three problems. Nonetheless,
regressing the RT difference from the first three to the last three problems
on WM (as a continuous variable), pressure condition, and their interaction,
resulted in the same significant pattern of performance as that reported in
the text.

Figure 5. Mean shortcut strategy use in the last three problems as a
function of individual differences in working memory and pressure con-
dition. Nonstandardized coefficients are plotted at �1 standard deviation.
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4.17 s) as compared with those in the low-pressure condition (M �
51.72 s, SE � 3.15 s). This main effect was qualified, however, by
a Working Memory � Pressure interaction (� � .645), t(77) �
2.21, p � .03. Under low-pressure conditions, the higher the WM,
the faster the individual solved the problem (r � �.31, p � .05;
�1 standard deviation from the WM mean, M � 57.87 s, and 	1
standard deviation from the WM mean, M � 44.95 s). In contrast,
there was no significant relationship between problem-solving RT
and WM under high-pressure conditions (r � .19, p � .20). Thus,
under normal low-pressure conditions, the higher individuals’
WM, the less time they spent solving the first three water jug
problems. Under pressure, problem-solving time did not differ as
a function of WM. This mirrors the findings of Experiment 1 and
of previous work (Beilock & Carr, 2005; Gimmig et al., 2006),
demonstrating that the performance advantage of those greater in
WM is eliminated in high-stress situations.5

Because individuals higher in WM solved the water jug prob-
lems faster—at least under low-pressure conditions—this brings
up the possibility that the use of the simpler shortcut solution on
our task may not have been any more efficient than producing the
complex algorithm for these participants. To explore this issue, we
looked at the relationship between problem-solving RT and WM in
the last three problems that could be solved either by a WM
intensive algorithm or by the simpler shortcut. We also added
shortcut strategy use as a factor. Specifically, we regressed
problem-solving RT on shortcut strategy use, WM, pressure con-
dition (dummy coded), and their interaction. This analysis only
produced a main effect of shortcut strategy use (� � �.75),
t(76) � �2.76, p � .01, in which the higher the shortcut strategy
use, the faster the RT. No other main effects or interactions were
significant (all ps 
 .26). To the extent that the use of the shortcut
is not only simpler (in terms of the number of problem-solving
steps) but also most efficient (in terms of problem-solving time),
then there should be a relation between shortcut use and RT such
that increased shortcut use is related to faster RT. And this relation
should not be dependent on WM. This is exactly what was found.
Not only does this analysis demonstrate that the use of the shortcut
was the quickest way to solve the problems (i.e., even more so than
implementing the demanding formula used previously), but also it
suggests that individuals did not merely arrive at the shortcut after
spending time searching for the multistep algorithm or computing
other possible solutions. If this were the case, it seems unlikely that
one would observe a negative relation between problem-solving
time and shortcut use. Thus, less WM availability—whether man-
ifested by the capacity an individual brings to the table to begin
with or the product of a high-pressure situation—serves to draw
individuals in the water jug task to the efficient simple equation.6

Discussion

Experiment 1 demonstrated that pressure prompted higher WM
individuals to use the simpler (and less efficacious) problem-
solving strategies of the type typically used by those lower in WM.
Experiment 2 directly examined this mechanism of performance
under pressure through the use of a math task in which problem-
solving strategies were apparent from the answers given. Results
demonstrated that under low-pressure conditions, individuals low-
est in WM were most likely to recognize the shortcut strategy
when available. Under pressure, higher WM individuals recog-

nized the shortcut strategy at a level equal to their lower WM
counterparts.

When individuals persist in using the difficult strategy in lieu of
the simpler one on this task, they exhibit mental set (McDaniel &
Schlager, 1990). Because, all things being equal, the use of less
effort (in terms of number of both problem-solving steps and time)
to produce a correct answer is generally better, the tendency to use
the simple formula is preferable on this task. Thus, unlike the
modular arithmetic task used in Experiment 1, the use of a simpler
strategy when available denotes successful performance in
Luchins’s (1942) water jug task. Although WM capacity has been
shown to be positively related to several higher level cognitive
functions such as general intellectual ability, reasoning, and ana-
lytic skill, and is touted as one of the most powerful predictive
constructs in psychology (Conway et al., 2005), the findings of
Experiment 2 demonstrate that for certain task types, the relation
between individual differences in WM and performance can be not
only absent but also reversed.

General Discussion

The current work demonstrates that individual differences in
WM affect how individuals approach math problem-solving tasks
and that these approaches can differ depending on the demands of
the environment under which performance takes place. Although
one might assume that higher WM capacity should provide greater
facility with on line computations and also support more effica-
cious strategy use (Schunn & Reder, 2001), we demonstrate that
those higher in WM are, ironically, less apt to use simple problem-
solving strategies than are their lower capacity counterparts—even
when such strategies produce the desired outcome. How can this
be explained?

5 One might wonder whether the fact that higher WM was associated
with faster RTs under low-pressure is indicative of higher WM individuals
learning the complex algorithm to a higher level than their lower WM
counterparts. This is despite the fact that, regardless of WM, only those
who solved the first three problems correctly were retained in the analyses.
Nonetheless, if this possibility were true, it could explain why, under
low-pressure conditions, the higher the individuals’ WM, the less likely
they were to abandon the complex algorithm for the simpler strategy. To
support such an idea, one would expect to see a significant relation between
problem-solving RT in the first three problems and shortcut strategy use.
That is, the shorter the RT in the first three problems, the less likely one
should be to rely on the simpler strategy in the last three problems.
However, such a relation did not occur (r � .20, ns).

6 Experiment 2 represents an ideal test bed for looking at the relation
between problem-solving RT and strategy use as both the complex algo-
rithm and simpler shortcut in the water jug task can lead to a correct
problem-solving solution. This is not the case in Experiment 1. Unlike a
correctly computed rule-based algorithm, associatively derived shortcuts
do not always lead to the correct answer. Thus, only looking at correct RTs
in Experiment 1 proves problematic for assessing the relation between
shortcut use and problem-solving time. Although one might propose that
such an analysis could be performed by taking into account incorrect
problem-solving RTs as well, this would entail making inferences about
performance on incorrect trials. The multiple correct solution paths of
Experiment 2 allow us to demonstrate that increased shortcut use is indeed
related to shorter problem-solving RTs in a way that the modular arithmetic
task used in Experiment 1 does not.
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Using dual-process theories of reasoning (for a review, see
Evans, 2003; Smith & DeCoster, 2000; Stanovich & West, 2000)
along with associative models of arithmetic (Siegler, 1988b;
Siegler & Lemaire, 1997; Siegler & Shipley, 1995; Siegler &
Shrager, 1984), we hypothesized that because lower WM individ-
uals have less capacity to compute demanding problem computa-
tions on line, they may be more likely to rely on associatively
derived answers that make few demands on attentional control
rather than complex rule-based computations. In contrast, because
those higher in WM are able to support demanding computations,
these individuals may be more likely to rely on rule-based algo-
rithms to derive problem solutions. And, to the extent that perfor-
mance pressure impacts those resources on which higher WM
individuals usually rely to compute rule-based algorithms, the
problem-solving strategies these individuals use may be different
under low-pressure and high-pressure situations. This is exactly
what we found.

In Experiment 1, individuals higher in WM outperformed their
lower capacity counterparts on the modular arithmetic task under
low-pressure conditions. Yet, higher WM individuals’ perfor-
mance equaled the level of lower WM individuals when under
pressure. Such a finding is consistent with work by Kane and
Engle (2002), who found that adding a demanding secondary task
to the performance of a proactive interference memory task essen-
tially made higher WM individuals look like their lower WM
counterparts (see also Rosen & Engle, 1997). It is also consistent
with work in our lab and in others that has examined the detri-
mental impact of pressure on performance (Beilock & Carr, 2005;
Gimmig et al., 2006).

Our findings, however, go beyond mere performance outcomes.
Reports of problem-solving strategies revealed that higher WM
individuals’ tendency to rely on computationally demanding rule-
based problem-solving strategies was just what made them sus-
ceptible to fail under pressure. Under low-pressure conditions,
higher WM individuals were more likely to report implementing
complex, multistep problem-solving algorithms. Lower WM indi-
viduals more often reported that they used a simpler strategy
involving a reliance on previous associations with problem oper-
ands to derive their answer (e.g., “Both numbers were even, so the
result of subtracting would be even and probably divisible by the
mod number”). This type of shortcut produced the correct answer
more often than chance yet did not result in a performance level
equal to those higher in WM. However, because such shortcut
strategies circumvent the need to maintain and manipulate inter-
mediate problem steps on line, they are relatively immune to
performance pressure’s negative impact. And, when under pres-
sure, higher WM individuals used simpler strategies as well.

The findings from Experiment 1 are consistent with work ex-
amining the relation between individual differences in general
fluid intelligence (gF) and performance on a challenging WM task
(i.e., the three-back task). J. R. Gray, Chabris, and Braver (2003)
had individuals view a series of words or faces (with a new
stimulus item appearing every few seconds) and instructed them to
indicate as quickly and as accurately as possible whether each new
stimulus matched the stimulus seen three items previously. Gray et
al. found that susceptibility to “lure” trials (i.e., two-back, four-
back, or five-back) correlated with gF such that individuals low in
gF were more likely to fall prey to lure trials than were those
higher in gF. Moreover, neural activity in the lateral prefrontal

cortex, thought to be involved in effortful reasoning, mediated the
relation between gF and performance on lure trials. Thus, in light
of the current work, higher gF individuals could be characterized
as using a high-effort, rule-based reasoning strategy to correctly
reject lures, whereas lower gF individuals appeared more likely to
rely on associations between the lure items and recency or famil-
iarity to make their judgments.

We turned the tables in Experiment 2 by presenting individuals
with a problem-solving task in which a simpler process rather than
a demanding algorithm produces optimal performance (Luchins,
1942). Not only does this type of task allow for the unconfounding
of the typical relation between successful performance and WM
capacity, but also it is advantageous because individuals’ problem-
solving strategies are apparent from the answers given (i.e., par-
ticipants’ problem-solving answers consisted of the formula they
used to derive their solution). Under low-pressure conditions,
lower WM individuals outperformed their higher WM counter-
parts, recognizing the simpler shortcut solution to solve the water
jug problems. But when put in a high-pressure situation thought to
tax the resources on which higher WM individuals normally rely
(Beilock & Carr, 2005), higher WM individuals used the simpler
strategy just like those lower in WM.

Although one might assume that higher WM capacity should
allow greater facility with on line computations and also support
more efficacious strategy use, in the current work we demonstrate
that those higher in WM are, ironically, less apt to use simple
performance strategies than are their lower capacity counter-
parts—even when such strategies produce optimal performance.
Given a scientific literature that emphasizes the positive aspects of
WM and attentional control (Miyake & Shah, 1999), one might
suppose that those higher in WM should always outperform their
lower WM counterparts. How can this be explained?

To the extent that higher WM individuals are especially good
both at focusing their attention on select task properties and at
ignoring others, these individuals may actually be worse at detect-
ing alternate problem solutions. Rationale for this idea comes from
Conway, Cowan, and Bunting’s (2001) investigation of the per-
formance of individuals lower and higher in WM in a dichotic
listening paradigm. Individuals were told to listen to a message in
one ear and to ignore a message in the other ear (in which their
name was sometimes mentioned). Lower WM individuals were
more likely to notice their name in the unattended ear than were
higher WM individuals, suggesting that lower WM individuals
were allocating attention to information both focal and disparate to
the task at hand. By analogy to the current work, higher WM
individuals may be especially good at focusing their attention on
certain task properties and at ignoring others, whereas lower WM
individuals may not be able to allocate attentional resources solely
to one task approach. As a result, low WM individuals may
actually be more likely to recognize alternative problem solutions.

Added support for this idea comes from recent work by Ricks,
Turley-Ames, and Wiley (in press) that examined verbal problem-
solving performance as a function of WM and domain-relevant
knowledge. Ricks et al. found that for individuals high in domain-
relevant knowledge that went down a wrong problem solution
path, performance was actually poorer the higher they were in
WM. Ricks et al. suggested that because high WM individuals are
essentially too good at maintaining attention to the wrong infor-
mation, they are less likely to abandon the wrong solution path to
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find the correct one. Thus, higher WM individuals may at times
have difficulty identifying the most efficient performance strate-
gies—at least until situation-induced pressures limit the WM re-
sources on which these individuals normally rely.

Our work also seems similar to research in the expertise litera-
ture showing that novices or individuals with intermediate problem
knowledge sometimes outperform their expert counterparts. For
example, in Chase and Simon’s (1973) classic study of expert and
novice chess players, experts recalled more chess pieces than did
their novice counterparts when chess boards were presented in
actual game-play configurations. However, novices somewhat out-
performed experts when chess boards were randomized. To the
extent that chess experts were attempting to represent nonexistent
meaningful patterns in the randomized boards that novices were
not, this may have disrupted their ability to remember randomized
boards for which such normality did not exist. Furthermore, in
X-ray diagnosis, although expert radiologists have better memory
for the atypical features of X-rays that they have seen, they are
worse than are novices at recognizing X-rays without such abnor-
malities (Myles-Worsley, Johnston, & Simons, 1988). The knowl-
edge that experts use to help them diagnose abnormalities seems to
hinder their ability to encode normal X-rays. In Experiment 2 of
the current work, we show that the advantages higher WM indi-
viduals usually possess as a result of their ability to compute
demanding algorithms may impede performance in situations in
which such computations are not needed.

Multiple Routes to Skill Failure

We have conceptualized performance pressure as either harming
or aiding performance via the consumption of WM resources that
could otherwise be allocated to math task execution. However, it
should be noted that there is a large body of work exploring
pressure-induced failure in well-learned skills that operate largely
outside of WM. And, indeed, this work suggests that a very
different mechanism underlies skill failure. According to explicit
monitoring theories (Baumeister, 1984; Beilock & Carr, 2001; R.
Gray, 2004; Lewis & Linder, 1997; Masters, 1992), performance
pressure increases self-consciousness about performing correctly,
which in turn induces individuals to increase the attention they
devote to controlling step-by-step performance in order to ensure
a positive outcome. Unfortunately, increased attention to proce-
duralized task control can backfire, disrupting what should have
been fluent, automatic execution (Beilock & Carr, 2001; Kimble &
Perlmuter, 1970; Langer & Imber, 1979). Support for explicit
monitoring theories comes mainly from complex sensorimotor
skills such as golf putting, soccer dribbling, and baseball batting
that become proceduralized with extended practice. Such skills are
not harmed when WM capacity is reduced, for example, by a
memory load or concurrent task, but they are hurt by directing
explicit attention to automatic processes that normally proceed
outside WM’s control (Beilock, Carr, MacMahon, & Starkes,
2002; R. Gray, 2004; Jackson, Ashford, & Norsworthy, 2006).

Because the problem-solving tasks in the current work are not
based on highly practiced proceduralized knowledge structures in
the same way that a well-learned golf putting or soccer dribbling
task might be (Beilock & Carr, 2001; Beilock et al., 2002; R. Gray,
2004; Jackson, Ashford, & Norsworthy, 2006; Lewis & Linder,
1997), pressure-induced attention to execution should not impact

performance—after all, there are no multistep procedures to dis-
rupt. In contrast, pressure-induced consumption of WM resources
does impact performance in the current experiments. Of course,
whether such an impact is harmful depends on whether the
problem-solving task being performed optimally requires explicit
rule-based computations (i.e., the demanding modular arithmetic
computations of Experiment 1) or does not (i.e., the simple short-
cut strategies for the water jug task in Experiment 2). Such ideas
underscore the importance of considering the multiple determi-
nants of the task, environment, and performer in capturing the
success and failure of complex skills (see also Markman, Maddox,
& Worthy, 2006).

Implications for High-Stakes Testing

Our work demonstrates that the advantages individuals higher in
WM have on the types of demanding math problems used in
Experiment 1 and those that high-stakes tests often embody (Stern-
berg, 2004) are just what make them susceptible to failure when
pressure is added. One might wonder how this could be the case,
given that high-stakes testing has been used to gauge students’
ability for many decades. Here we show how important testing
situations limit the efficacy of these evaluations. These results
align with recent concerns regarding the ability of admissions tests
to elicit optimal performance in underrepresented groups, espe-
cially high-achieving racial minorities and women in the math and
sciences (Atkinson, 2001; Beilock et al., 2007; Steele, 1997;
Sternberg & Williams, 1997). Such individuals feel added pressure
to perform at a high level, often in an effort to overcome well-
known and widely held stereotypes regarding the intelligence or
academic skill of the social groups to which they belong (Beilock
& Carr, 2005; Beilock, Jellison, Rydell, McConnell & Carr, 2006;
Beilock et al., 2007; Sternberg & Williams, 1997). The finding that
the more important a test is, the more likely the best performers
will take up the strategies of the worst demonstrates just how
perilous a strong reliance on test scores may be, especially for
those most in need (and deserving) of high-level performance to
advance in academics and beyond. Ironically, the conditions under
which admissions tests are conducted may impact the very con-
structs they are attempting to measure.

Conclusions

In two experiments, we capitalize on variations in the skill
execution environment and the demands of the task being per-
formed to identify key differences in the strategies that individuals
lower and higher in WM use to solve difficult math problems and
how consequential testing situations impact such strategy use.
Despite the well-established link between WM and performance,
less is known about how individual differences in executive func-
tioning manifest themselves in terms of the problem-solving strat-
egies lower versus higher WM individuals use to solve complex
problems (Price et al., 2007). Moreover, even less work has
examined how environmental factors such as stressful situations
impact problem solving across tasks with different computational
demands. We demonstrate that the availability of WM resources
influences how individuals approach math problems, and the de-
mands of the task being performed dictate whether such ap-
proaches will result in skill success or failure. Such research not
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only lends insight into the development of training and perfor-
mance strategies designed to reveal optimal performance when it is
most important, but also it highlights the importance of accounting
for the complexities of the real world in the development of
comprehensive theories of executive functioning.
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