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Constraint-based approaches to scheduling have typically
formulated the problem as one of finding a consistent as-
signment of start times for each goal activity. In contrast,
we are pursuing an approach that operates with a prob-
lem formulation more akin to least-commitment frameworks,
where the objective is to post sufficient additional prece-
dence constraints between pairs of activities contending for
the same resources to ensure feasibility with respect to time
and resource constraints. One noteworthy characteristic of
this Precedence Constraint Posting (PCP) approach, is that
solutions generated in this way generally encapsulate a set of
feasible schedules (i.e., a solution contains the sets of activ-
ity start times that remain consistent with posted sequencing
constraints). Such solutions can offer advantages when there
is temporal uncertainty associated with executing activities.

In this paper, we consider the problem of generating tem-
porally flexible schedules that possess good robustness prop-
erties. We first introduce the concept of a Partial Order
Schedule (POS), a type of temporally flexible schedule in
which each embedded temporal solution is also guaranteed
to be resource feasible, as a target class of solutions that ex-
ploit flexibility in a robust way. We then present and an-
alyze two PCP-based methods for generatingPOSs. The
first method uses a pure least commitment approach, where
the set of all possible time-feasible schedules is successively
winnowed into a smaller resource-feasible set. The second
method alternatively utilizes a focused analysis of one pos-
sible solution, and first generates a single, resource-feasible,
fixed-times schedule. This point solution is then transformed
into aPOS in a second post processing phase. Somewhat
surprisingly, this second method is found to be a quite effec-
tive means of generating robust schedules.

Keywords: Scheduling, Robustness, Constraint Program-
ming.

1. Introduction

In most practical scheduling environments, off-line
solutions can have a very limited lifetime and schedul-
ing has to consider the on-line process of responding to
unexpected and evolving circumstances. In such envi-
ronments, insurance of robust response is generally the
first concern. Unfortunately, the lack of guidance that
might be provided by a schedule often leads to myopic,
sub-optimal decision-making.

One way to address this problem isreactively,
through schedule repair. To keep pace with execution,
the repair process must be fast, so that the execution of
the schedule can be re-started as soon as possible. To
be maximally effective, a repair should also be com-
plete in the sense of accounting for all changes that
have occurred, while attempting to avoid the introduc-
tion of new changes. As these two goals can be con-
flicting, a compromise solution is often required. Dif-
ferent approaches exist and they tend to favor either
timeliness [33] or completeness [16] of the reactive re-
sponse.

An alternative,proactiveapproach to managing exe-
cution in dynamic environments is to focus on building
schedules that retain flexibility and are able to absorb
some amount of unexpected events without reschedul-
ing. One technique consists of factoring time and/or
resource redundancy into the schedule, taking into ac-
count the types and nature of uncertainty present in the
target domain [11]. Alternatively, it is sometimes pos-
sible to construct an explicit set of contingencies (i.e., a
set of complementary solutions) and use the most suit-
able with respect to the actual evolution of the envi-
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ronment [15]. Both of these proactive techniques pre-
sume an awareness of the possible events that can oc-
cur in the operating environment, and in some cases,
these knowledge requirements can present a barrier to
their use.

In this paper, we consider a less knowledge inten-
sive approach to generating robust schedules: to sim-
ply build schedules that retain flexibility where prob-
lem constraints allow. We take two solution properties
– the flexibility to absorb unexpected events and a so-
lution structure that promotes localized change – as
our primary solution robustness objectives, to promote
both high reactivity and solution stability as execution
proceeds.

We develop and analyze two methods for producing
temporally flexible schedules. Both methods follow a
general Precedence Constraint Posting (PCP) schedul-
ing strategy, which aims at the construction of a par-
tially ordered solution, and proceeds by iteratively in-
troducing sequencing constraints between pairs of ac-
tivities that are competing for the same resources. The
two methods considered differ in the way that they
detect and analyze potential resource conflicts. The
first method uses a pure least commitment approach.
It computes upper and lower bounds on resource us-
age across all possible executions according to the ex-
act computations proposed in [25] (referred to as the
resource envelope), and successively winnows the total
set of time feasible solutions into a smaller resource-
feasible set. The second method, alternatively, takes
the opposite extreme approach. It utilizes a focused
analysis of one possible execution (the early start time
profile) as in [6,8], and establishes resource feasibil-
ity for a specific single-point solution (the early start
time solution). This second approach is coupled with a
post-processing phase which then transforms this ini-
tially generated point solution into a temporally flexi-
ble schedule.

The paper is organized as it follows. We first review
basic concepts of constraint-based scheduling and the
particular approach that underlies our work: Prece-
dence Constraint Posting. We then introduce the notion
of Partial Order Schedules as a target class of solutions
that exploit temporal flexibility in a robust way. Next
we describe the two PCP-based scheduling methods
mentioned above. These are evaluated on a challeng-
ing benchmark from the Operations Research (OR) lit-
erature, and the solution sets produced in each case are
compared with respect to solution robustness proper-
ties. Finally, we draw some conclusions about the pro-
posed solving methods.

A preliminary version of this work appeared in [29].
The current paper extends this work in several ways.
First, it emphasizes the key role of constraint pro-
gramming in formulating precedence constraint post-
ing methods and in generatingPOSs. Second, the pa-
per includes a more comprehensive experimental anal-
ysis using a larger size benchmark problem set. Finally,
the paper extrapolates from the results of the compari-
son, and summarizes the broader characteristics of the
two-stepSolve & Robustifymodel for generating ro-
bust schedules.

2. Constraint-based Scheduling

Our approach is characterized by the use of the Con-
straint Satisfaction Problem paradigm (CSP): a CSP
consists of a network of constraints defined over a set
of variables where a solution is an assignment to the
variables that satisfies all constraints.

Constraints do not simply represent the problem
but also play an important role in the solving pro-
cess by effectively narrowing the space of possible so-
lutions. Constraint satisfaction and propagation rules
have been successfully used to model, solve and rea-
son about many classes of problems in such diverse ar-
eas as scheduling, temporal reasoning, resource allo-
cation, network optimization and graphical interfaces.
In particular, CSP approaches have proven to be an ef-
fective way to model and solve complex scheduling
problems (see for instance [17,32,33,5,3,8]). The use
of variables and constraints provides representational
flexibility and reasoning power. For example, variables
can represent the start and the end times of an activ-
ity, and these variables can be constrained in arbitrary
ways.

In the remainder of this section we first provide a
formal definition of Constraint Satisfaction Problem
and then an overview of the different ways in which
this paradigm has been used to solve scheduling prob-
lems.

2.1. Constraint Satisfaction Problem

A constraint satisfaction problem, CSP, consists of
a finite set of variables, each associated with a domain
of values, and a set of constraints that define the rela-
tion between the values that the variables can assume.
Therefore a CSP is defined by the tuple〈V,D, C〉
where:

- V = {v1, v2, . . . , vn} is a set ofn variables;
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- D = {D1, D2, . . . , Dn} is the set of correspond-
ing domains for any variable, that is,v1 ∈ D1,
v2 ∈ D2 andvn ∈ Dn;

- C = {c1, c2, . . . , cm}, is a set ofm constraints,
ck(v1, v2, . . . , vn), that are predicates defined on
the Cartesian product of the variable domains,
D1 ×D2 × . . .×Dn.

A solutionis a value assignment to each variable, from
its domain,

(λ1, λ2, . . . , λn) ∈ D1 ×D2 × . . .×Dn

such that the set of constraints is satisfied. A funda-
mental aspect of constraint satisfaction problems is
that a CSP instance〈V,D, C〉 can be conceptualized
as a constraint graph,G = {V,E}. For every variable
vi ∈ V, there is a corresponding node inV . For every
set of variables connected by a constraintcj ∈ C, there
is a corresponding hyper-edge in E. In the particular
case in which only binary constraints (each constraint
involves at most two variables) are defined the hyper-
edges become simple edges. In the following sections
we consider a particular type of binary CSP: the Sim-
ple Temporal Problem, or STP, [12].

Constraint Programming is an approach to solving
combinatorial optimization problems based on the CSP
representation [24,21,35]. This framework is based
on the combination of sophisticated search technolo-
gies and constraint propagation. Constraint propaga-
tion consists of using constraints actively to prune the
search space. These propagation techniques are gener-
ally polynomial w.r.t. the size of the problem and aim
at reducing the domains of variables involved in the
constraints by removing the values that cannot be part
of any feasible solution. Different techniques with dif-
ferent pruning power have been defined for different
types of constraint.

As described in [13], “in general, constraint satisfac-
tion tasks, like finding one or all solutions or the best
solution, are computationally intractable, NP-hard”.
For this reason a polynomial constraint propagation
process cannot be complete, that is, some infeasible
values may still sit in the domains of the variables and
thus decisions are necessary to find a complete feasible
valuation of the variables.

2.2. CSP approaches to Scheduling Problems

Scheduling problems are very hard problems: for
instance simple scheduling problems like job-shop
scheduling are NP-hard [18]. Therefore, scheduling
represents an important application for constraint di-

rected search, requiring the definition of heuristic com-
mitments and propagation techniques. A first attempt
to model scheduling problems like CSP instances is
given in [31] where the authors describe a graph based
formalism to represent a job-shop scheduling problem.

Different constraint programming approaches have
been developed in this direction, for instance, the
reader can refer to [3] for a thorough analysis of dif-
ferent constraint based techniques for scheduling prob-
lems. The work of Constraint directed Scheduling of
the 80’s (see for example [17,32,33]) has developed
into Constraint-based Scheduling approaches in the
late 90’s (see [2,27,5]). These approaches are based
on the representation of a scheduling problem and the
search for a solution to it by focusing upon the con-
straints in the problem. The search for a solution to a
CSP can be viewed as modifying the constraint graph
G = {V, E} by addition and removal of constraints,
where the constraint graph is an evolving representa-
tion of the search state, and a solution is a state with a
single value remaining in the domain of each variable,
and all constraints are satisfied.

Research in constraint-based scheduling (e.g., [32,
26]) has typically formulated the problem as that of
finding a consistent assignment of start times for each
goal activity. Under this model, decision variables are
time points that designate the start times of various
activities and CSP search focuses on determinating a
consistent assignment of start time values. In contrast,
we are investigating approaches to scheduling that op-
erate with a problem formulation more akin to least-
commitment frameworks. In this formulation, referred
to asPrecedence Constraint Posting[34], the goal is
to post sufficient additional precedence constraints be-
tween pairs of activities for the purpose of pruning all
inconsistent allocations of resources to activities. The
following section is dedicated to discussion of these
approaches.

3. Precedence Constraint Posting

In this paper we follow a different research trend
with respect to solving scheduling problems, that is
based on the general concept of “temporal flexibil-
ity”. This approach, introduced in [34,10] for prob-
lems with binary resources and then extended to more
general problems in an amount of later work, is based
on the fact that the relevant events on a scheduling
problem can be represented in a temporal CSP, usu-
ally called Simple Temporal Problem (STP) [12]. The
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Fig. 1. Precedence Constraint Posting Schema

search schema used in this approach focuses on deci-
sion variables which represent conflicts in the use of
the available resources; the solving process proceeds
by ordering pair of activities until all the current re-
source violations are removed. This approach is usu-
ally referred to as the Precedence Constraint Posting,
PCP, because it revolves around imposing precedence
constraints to solve the resource conflicts, rather than
fixing rigid values to the start times.

The general schema of these approaches is provided
in Fig. 1. The approach consists of representing, an-
alyzing, and solving different aspects of the problem
in two separate layers. In the former the temporal as-
pects of the scheduling problem like activity durations,
constraints between pairs of activities, due dates, re-
lease time, etc., are considered. The second layer, in-
stead, represents and analyzes the resource aspects of
the problem.1 Let us now explain the details of the two
layers.

Time layer. The temporal aspects of the scheduling
problems are represented through an STP (simple tem-
poral problem) network [12]. This is a temporal graph
in which the set of nodes represents a set of temporal
variables named time points,tpi, while temporal con-
straints, of the formtpi − tpj ≤ dij , define the dis-
tances among them. Each time point has initially a do-
main of possible values equal to[0,H] whereH is the
horizon of the problem (generallyH can be infinite).

The problem is represented by associating with each
activity a pair of time points which represent, respec-
tively, the start and the end time of the activity. A
temporal constraint between two time-points may de-
fine either ordering constraints between two activi-
ties (when the two time-points do not belong to the
same activity) or activity durations (when the two time-
points belong to the same activity).

1A similar distinction between temporal and resource aspects of
the scheduling problem is introduced in [16].

By propagating the temporal constraints it is possi-
ble to bound the domains of each time point,tpi ∈
[lbi, ubi]. In the case of empty domains for one or more
time points the temporal graph does not admit any so-
lution. In [12] it has been proved that it is possible to
completely propagate the whole set of temporal con-
straints in polynomial time,O(n3), and, moreover, a
solution can be obtained selecting for each time point
its lower bound value,tpi = lbi (this solution is named
theearliest start-time solution).

The temporal layer then, considering the temporal
aspects of a scheduling problem, provides, in polyno-
mial time (using constraint propagation) a set of solu-
tions defined by a temporal graph. This result is taken
as input in the second layer. In fact, at this stage we
have a set of temporal solutions (time feasible) that
need to also be proven to be resource feasible.

Resource layer. This layer takes into account the
other aspect of the scheduling problem, namely re-
sources. The problem is that there are constraints on
resource utilization (i.e., capacity). Resources can be
single or multi capacitive, and reusable or consumable.

The input of this layer is a temporally flexible so-
lution – a set of temporal solutions (see also Fig. 1).
Like in the previous layer it is possible to use constraint
propagation (i.e. resource propagation) to reduce the
search space. Even though there are different method-
ologies described in the literature, see [27,22], these
are not sufficient in general. In fact these are not com-
plete, that is, they are not able to prune all inconsistent
temporal solutions. Therefore, it is necessary to intro-
duce a method for deciding among the possible alter-
natives.

For this reason a PCP procedure uses aResource
Profile to analyze resource usage over time and de-
tect periods of resource violations and the set of ac-
tivities, or contention peaks, which create this situa-
tion. The procedure then proceeds to post additional
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constraints on the time layer to level (or solve) one or
more detected contention peaks. These new constraints
are propagated in the time layer to check the temporal
consistency. Then the time layer provides a new tem-
porally flexible solution that is analyzed again using
the resource profiles. The search stops when either the
temporal graph becomes inconsistent or the resource
profiles are consistent with the resource capacities.

Remarks. The outcome of a PCP solver is a STP that
not only contains the temporal constraints belonging to
the initial problem, but also the additional precedences
which have been added during the resolution process.
The goal of PCP approaches is to retain the temporal
flexibility of the underlying temporal network as much
as possible (somehow maximizing the domain size of
the time points).

This kind of flexible solutions can offer advantages
when there is uncertainty associated with executing ac-
tivities. Unfortunately, exploiting this flexibility might
often lead to other kinds of inconsistencies. This is due
to the fact that not all allocations in time allowed by
the temporal network are also resource consistent, and
there might be many value assignments to time points
which, though temporally consistent, could trigger re-
source conflict in the solution. For this reason, in the
next section we introduce a solution paradigm to go
beyond flexible schedules.

4. Flexible Solutions, Robustness, and Partial
Order Schedules

In any given scheduling domain, there can be differ-
ent sources of executional uncertainty: durations may
not be exactly known, there may be less resource ca-
pacity than expected (e.g., in a factory context, due to
a breakdown of a sub-set of the available machines),
or new tasks may need to be taken into account pur-
suant to new requests and/or goals. Current research
approaches are based on different meanings of robust
solutions, e.g., the ability of preserving solution qual-
ities and/or solution stability. The concept of robust-
ness pursued in this work can be viewed as execution-
oriented; a solution to a scheduling problem will be
consideredrobust if it provides two general features:
(1) the ability to absorb exogenous and/or unforeseen
events without loss of consistency, and (2) the abil-
ity to keep the pace with the execution guaranteeing a
prompt answer to the various events.

We base our approach on the generation of flexible
schedules, i.e., schedules that retain temporal flexibil-

schedule

repairs
changes

execution monitoring

scheduler

(a) General rescheduling phase

schedule

scheduler

"hard & slow"

"light & fast"

repairs
changes

execution monitoring

scheduler

(b) Rescheduling phase using a
flexible solution

Fig. 2. Rescheduling actions during the execution

ity. We expect a flexible schedule to be easy to change,
and the intuition is that the degree of flexibility in this
schedule is indicative of its robustness. Figure 2 un-
derlines the importance of having a flexible solution.
In Fig. 2(a) a schedule is given to an executor (it can
be either a machine or a human) that manages the dif-
ferent activities. If something happens (i.e., an unfore-
seen event occurs) the executor will give feedback to
a scheduler module asking for a new solution. Then,
once a new solution is computed, it is given back to the
executor. In Fig. 2(b), instead, the execution of a flexi-
ble schedule is highlighted. The substantial difference
in this case is that the use of flexible solutions allows
the introduction of two separate phases of reschedul-
ing: the first consists of facing the change by immedi-
ate means like its propagation over the set of activities.
In practice, in this phase the flexibility characteristics
of the solution are exploited (for this reason we named
this modulelight & fast scheduler). Of course it is not
always possible to face an unforeseen event by using
only “light” adjustments. In this case, it will be nec-
essary to ask for a more complete scheduling phase.
This will involve a greater number of operations than
in the light phase. This module has been namedhard
& slow scheduling. It is worth noting that the use of
flexible schedules makes it possible to bypass the last,
more complicated, phase in favor of a prompt answer.2

Depending on the scheduling problem considered we
can have very different behaviors of the two scheduler
modules: for instance, in the next sections, we discuss
the RCPSP/max problem. This problem implies an ex-
ponential complexity for the hard & slow module while

2However the reader should note that these solutions are in general
sub-optimal.
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for the light & fast module a polynomial approach is
sufficient.

Our approach adopts a graph formulation of the
scheduling problem and focuses on generation ofPar-
tial Order Schedules(POSs).

Definition 1 (Partial Order Schedule) A Partial Or-
der SchedulePOS for a problemP is an activity net-
work, such that any possible temporal solution is also
a resource-consistent assignment.

Within a POS, each activity retains a set of feasible
start times, and these options provide a basis for re-
sponding to unexpected disruptions.

An attractive property of aPOS is that reactive re-
sponse to many external changes can be accomplished
via simple propagation in an underlying temporal net-
work (a polynomial time calculation); only when an
external change exhausts all options for an activity is
necessary to recompute a new schedule from scratch.
In fact the augmented duration of an activity, as well as
a greater release time, can be modeled as a new tem-
poral constraint to post on the graph. To propagate all
the effects of the new edge over the entire graph it is
necessary to achieve thearc-consistencyof the graph
(that is, ensure that any activity has a legal allocation
with respect the temporal constraints of the problem).

It is worth noting that, even though the propagation
process does not consider consistency with respect re-
source changes, it is guaranteed to obtain a feasible so-
lution by definition. Therefore a partial order schedule
provides a means to find a new solution and ensures
that it can be computed in a fast way.

Example 1 Figure 3 summarizes the aspects intro-
duced so far. We have a problem, Fig. 3(a), with
four activities {a,b,c,d} which require respectively
{1,1,2,1} resource units during their execution (note
the double height of activity c, representing the higher
resource demand). The activity network describes prece-
dence constraints{a ≺ b, a ≺ c, a ≺ d}. Moreover,
supposing that the only available resource has maxi-
mum capacity equal to 2, we have a resource conflict
among the activities{b,c,d}. For this problem we con-
sider two alternative solutions: a fixed-time solution
and a partial order schedule, Fig. 3(c). While the fixed-
time solution consists of a complete activity allocation
the other one consists of a further ordering of the sub-
set of activities{b,c,d}: {b ≺ c, d ≺ c}. For the fixed-
time schedule it is the case that any perturbation cre-
ates a conflict and requires a rescheduling phase. On
the other hand, thePOS is able to preserve the con-

a d

c

b

(a) Problem

a d cb

(b) Fixed-time schedule

a d

c

b

(c) POS

Fig. 3. Types of scheduling solutions

sistency of the solution thanks to the additional con-
straints: delay of any of the activities does not require
rescheduling to reinforce solution consistency.

Before concluding we make a further remark about
partial order schedules. In [31] the authors introduce
the disjunctive graph representation of the classical job
shop scheduling problem and describe how a solution
can be achieved by solving all the disjunctive con-
straints and transforming each into a conjunctive one.
Also in our case, solving all disjunctive constraints is
required to achieve aPOS. Now, the disjunctive graph
representation can be extended to the more general
case where multi-capacity resources are defined. In
this case “disjunctive” hyper-constraints among activ-
ities that use the same resource are introduced. Based
on this representation we can note that a partial or-
der schedule is obtained once any disjunctive hyper-
constraint is solved. In this case, a set of precedence
constraints is posted to solve each hyper-constraint.

5. Partial Order Schedules: a constraint-based
approach

The ability to manage precedence constraints dur-
ing the solving process represents the main reason
for which we have pursued a PCP approach. In fact,
solutions generated in this way generally represent
a set of feasible schedules (i.e., the sets of activity
start times that remain consistent with posted sequenc-
ing constraints), as opposed to a single assignment of
start times. In the following sections we will describe
several algorithms, in whichPOSs are produced by
adding new precedence constraints.

The remainder of this section is dedicated to de-
scribe the basic framework and the heuristics that are
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used for the analysis of the resource profile and the
synthesis of new constraints. However, one important
issue that needs to be explored is how to compute these
profiles. In fact, the input temporal graph represents
a set of solutions, possibly infinite, and to consider
all the possible combinations is impossible in practice.
A possible affordable alternative consists of comput-
ing bounds for the resource utilization. Examples of
bounds can be found in [14,9,22,25]. It is worth noting
that considering resource bounds assures generation of
a partial order schedule at the end of the search process.
In fact, the search can stop when the resource profile is
consistent with respect to the capacity constraints; this
implies that all temporal solutions represented by the
temporal graph are also resource feasible.

A different approach to dealing with resources con-
sists of focusing attention on a specific temporal solu-
tion and its resource utilization. Even though the prece-
dence constraint posting method produces a temporal
graph when the resource utilization is consistent with
resource capacity, this graph, in general, is not aPOS.
Indeed, this process only assures that the final graph
contains at least one resource feasible solution (the one
for which the resource utilization is considered); some
of the temporal solutions may not be resource feasible.
Thus it is necessary to add a method which is capa-
ble of transforming the resulting temporal graph into a
partial order schedule.

(a) Bounds of the resource uti-
lization for the set of solutions
defined by a temporal graph

(b) Resource utilization of a
single temporal solution

Fig. 4. Two different ways to consider the resource utilization

Figure 4 summarizes the two alternative resource
profiles. In the first case resource bounds are used to
consider all the temporal solutions and their associated
resource utilization (Fig. 4(a)). Alternatively, only one
temporal solution of the set is considered in the sec-
ond case (Fig. 4(b)). This allows reasoning about one
precise resource profile but, in fact, produces temporal
graphs that are not in generalPOSs.

We proceed now by introducing the reference schedul-
ing problem (RCPSP/max) and then the core compo-
nents that need to be explained to complete the descrip-
tion of the approach. In Section 6 we will discuss how
different ways of computing and using resource pro-
files lead to different PCP-style algorithms.

5.1. The Reference Scheduling Problem:RCPSP/max

We adopt the Resource-Constrained Project Schedul-
ing Problem with minimum and maximum time lags,
RCPSP/max, as a reference problem [4]. The basic en-
tities of interest in this problem areactivities. The set
of activities is denoted byA = {a1, a2, . . . an} where
each activity has a fixedprocessing time, or duration,
pi and must be scheduled without preemption.

A scheduleis an assignment of start times to activ-
ities a1, a2, . . . an, i.e. a vectorS = (s1, s2, . . . , sn)
wheresi denotes the start time of activityai. The time
at which activityai has been completely processed is
called itscompletion timeand is denoted byei. Since
we assume that processing times are deterministic and
preemption is not permitted, completion times are de-
termined by:

ei = si + pi (1)

Schedules are subject to two types of constraints,
temporal constraintsandresource constraints. In their
most general form temporal constraints designate ar-
bitrary minimum and maximum time lags between the
start times of any two activities,

lmin
ij ≤ sj − si ≤ lmax

ij (2)

where lmin
ij and lmax

ij are the minimum and maxi-
mum time lag of activityaj relative toai. A schedule
S = (s1, s2, . . . , sn) is time feasible, if all inequali-
ties given by the activity precedences/time lags 2 and
durations 1 hold for start timessi.

During their processing, activities require specific
resource units from a setR = {r1 . . . rm} of resources.
Resources arereusable, i.e. they are released when no
longer required by an activity and are then available for
use by another activity. Each activityai requires of the
use ofreqik units of the resourcerk during its process-
ing timepi. Each resourcerk has a limited capacity of
capk units.

A scheduleS is resource feasibleif at each timet
the demand for each resourcerk ∈ R does not exceed
its capacitycapk, i.e.

QS
k (t) =

∑

si≤t<ei

reqik ≤ capk. (3)
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A scheduleS is calledfeasibleif it is both time and
resource feasible.

TheRCPSP/max problem is a very complex schedul-
ing problem: in fact not only the optimization version
but also the feasibility problem is NP-hard [4]. The rea-
son for this NP-hardness result lies in the presence of
maximum time-lags. In fact these constraints imply the
presence of deadline constraints, transforming feasibil-
ity problems for precedence-constrained scheduling to
scheduling problems with time windows.

It is worth remarking that the start times and the
end times of each activity correspond to the time
points of the time-layer described above. Moreover
each time point will have an associated resource pro-
duction/consumptionru: given an activityai and the
resourcerk, the start time has a resource production
ru = reqik whereas the end time has a consumption
ru = −reqik.

It is also worth noticing that when in the following
we say that a precedence constraint is added between
two activities,ai ≺ aj , it means that a precedence con-
straint is added between the end time ofai and the start
time ofaj , i.e.,sj ≥ ei.

5.2. The Core Constraint-based Framework

The core of the implemented framework is based
on the greedy procedure described in Algorithm 1.
Within this framework, a solution is generated by pro-
gressively detecting time periods where resource de-
mand is higher than resource capacity and posting se-
quencing constraints between competing activities to
reduce demand and eliminate capacity conflicts. As ex-
plained above, after the current situation is initialized
with the input problem,S0 ← P, the procedure builds
an estimate of the required resource profile according
to the current temporal precedences in the network.
This analysis can highlight contention peaks, where re-
source needs are greater than resource availability. If
there are resource violations new constraints are syn-
thesized and posted on the current situation. The search
proceeds until either the temporal graph becomes in-
consistent or a solution is found.

5.2.1. How to identify conflicts
The starting point in identifying the possible con-

flicts in a situation is to compute the possible con-
tention peaks. A couple of definitions are necessary be-
fore proceeding:

Algorithm 1 GREEDYPCP(P)
Input: a problemP
Output: a solutionS (or the empty set otherwise)

S0 ← P
if Exists an unresolvable conflict inS0 then

S ← ∅
else

Cs ← CONFLICTSET(S0)
if Cs = ∅ then

S ← S0

else
{ai ≺ aj} ← LEVELINGCONSTRAINT(Cs)
S0 ← S0 ∪ {ai ≺ aj}
S ← GREEDYPCP(S0)

return S

1. a contention peakis a set of activities whose si-
multaneous execution exceeds the resource ca-
pacity. A contention peak designates a conflict of
a certain size (corresponding to the number of ac-
tivities in the peak);

2. aconflict is a pair of activities〈ai, aj〉 belonging
to the same contention peak.

In Algorithm 1 the functionCONFLICTSET(S0) col-
lects all peaks in the current schedule, ranks them,
picks the most critical one and then selects a conflict
from this last peak. The conflict is solved by ordering
the conflicting activities with a new precedence con-
straint,ai ≺ aj . In the remainder of this section we
describe first how conflicts can be extracted from con-
tention peaks and, second, how to select and solve the
more critical conflict. The discussion of how to to iden-
tify contention peaks is deferred until Section 6.

A first way to extract a conflict from a peak is
by pairwise selection[34]. This consists of collecting
any competing pair of activities associated with each
peak. The myopic consideration on any pair of activ-
ities in a peak can, however, lead to an over commit-
ment. For example, consider a resourcerk with capac-
ity capk = 4 and three activitiesa1, a2 anda3 com-
peting for this resource. Assume that each activity re-
quires respectively1, 2 and 3 units of the resource.
Taking into account all possible pairs of activities will
lead to consideration of the pair〈a1, a2〉. But the se-
quencing of this pair will not resolve the conflict be-
cause the combined capacity requirement does not ex-
ceed the capacity.

An enhanced conflict selection procedure which can
avoid this problem is based on the identification of
Minimal Critical Sets[23] inside each contention peak.
A Minimal Critical Set, MCS, isa contention peak with
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the property that no proper subset of activities con-
tained in theMCS is itself a conflict. The important ad-
vantage of isolatingMCSs is that a single precedence
relation between any pair of activities (or conflict) in
the MCS eliminates the resource conflict. Let us con-
sider again the previous example: in this case the only
MCS is {a2, a3} and both the precedence constraints
a2 ≺ a3 anda3 ≺ a2 level the peak. Application of
this method can be seen generally as a filtering step. In-
deed, it extracts from each contention peak those sub-
sets that are necessary to solve.

MCS analysis has been used in [23], whereMCSs are
seen as particular cliques that are collected via system-
atic search of an activity “intersection graph” (which
is constructed starting from the temporal information).
The unfortunate drawback of this approach is the expo-
nential nature of the intersection graph search, which
prohibits the use of this basic approach on scheduling
problems of any interesting size. In [7], it is shown that
much of the advantage of this type of global conflict
analysis can be retained by using an approximate pro-
cedure for computingMCSs. In particular the authors
define two polynomial strategies for samplingMCSs
from a peak of sizep. Both strategies first sort the ac-
tivities in each peak according to their resource us-
age (largest first), then they collect theMCSs by vis-
iting such a list. The two methods are namedlinear
andquadraticaccording to their complexity (they re-
spectively collectO(p) andO(p2) elements). In what
follows we utilize three different operators for gath-
ering conflicts: the simplepairwise selection, and the
increasingly accuratelinear andquadratic MCS sam-
pling strategy.

5.2.2. Select and solve conflicts
The basic idea is to resolve the conflict that is the

most “dangerous” and solve it with a commitment
as small as possible. More specifically, the following
heuristics are assumed:

Ranking conflicts: for evaluatingMCSs we have used
the heuristic estimatorK() described in [23]. The
heuristic estimatorK() chooses theMCS with
highest value. A conflict is unsolvable if no pair
of activities in the conflict can be ordered. Basi-
cally,K() will measure how close a given conflict
is to being unsolvable.

Slack-based conflict resolution:to choose an order
between the selected pair of activities we ap-
ply dominance conditionsthat analyze the recip-
rocal flexibility between activities [34]. In the
case where both orderings are feasible, the choice
which retains the most temporal slack is taken.

These two heuristics have been selected because they
adopt a minimal commitment strategy with respect to
preserving temporal slack, and this again favors tem-
poral flexibility.

6. Two Profile-Based Solution Methods

As suggested previously, different solution methods
can be specified by varying the approach taken to gen-
eration and use of resource profiles. Here, we consider
two extreme approaches: (1) a pure least commitment
approach, which uses the resource envelope compu-
tation introduced in [25] to anticipate all possible re-
source conflicts and establish ordering constraints on
this basis, and (2) an “inside-out” approach which uses
the focused analysis of early start time profiles intro-
duced in [6] to first establish a resource-feasible early
start time solution and then applies a chaining pro-
cedure to expand this early start time solution into a
POS.

Figure 5 gives a sketched view of both approaches to
buildingPOSs investigated in this paper with respect
to the underlying search space. The different sets rep-
resent temporal solutions associated to a graph obtain-
able by posting new constraints on the initial schedul-
ing problem. The use of the resource envelope (on the

least commitment

Fig. 5. Two Profile-Based Solution Approaches

left hand picture) implies an iterative reduction of the
space of all the possible temporal solutions until this
set contains only feasible solutions. On the contrary,
the inside-out procedure first computes a single solu-
tion (a point in the search space) then generalizes the
result to obtain a set of solutions (see the right hand
picture in Fig. 5). Thus on one hand the envelope-based
approach considers all temporal solutions at each stage
and tries to select decisions which reduce as minimally
as possible this set (i.e. least commitment). Conversely,
in the two step procedure the final objective, i.e. to ob-
tain a partial order schedule, is neglected in the first
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step where the actual goal is to find a feasible fixed-
time solution. Only in the successive phase the aim
of building flexible solutions is taken under considera-
tion.

6.1. Least-Commitment Generation Using Envelopes

The perspective of a “pure” least commitment ap-
proach to scheduling consists of carrying out a refine-
ment search that incrementally restricts a partial solu-
tion (the possible temporal solutionsτ ∈ ST ) with re-
source conflicts until a set of solutions (aPOS in our
case) is identified that is resource consistent. A useful
technical result has been introduced in [25]. This po-
tentially can contribute to the effectiveness of this type
of approach with an exact computation of the so-called
Resource Envelope. According to the terminology in-
troduced previously we can define the Resource Enve-
lope as follows:

Definition 2 (Resource Envelope)Let ST be the set
of temporal solutions and letτ be inST . For each re-
sourcerk we define the Resource Envelope in terms of
two functions:

Lmax
k (t) = max

τ∈ST

{Qτ
k(t)}

Lmin
k (t) = min

τ∈ST

{Qτ
k(t)}

By definition the Resource Envelope represents the
tightest possible resource-level bound for a flexible
plan.

A brief introduction of the resource envelope as de-
scribed in [25] requires, given a time instantt, the fol-
lowing partition of the set of time points (or events):

- Bt: the set of eventstpi which must have occurred
by the instantt (i.e., lst(tpi) ≤ t);

- Et: the set of eventstpi which can occur at timet
(i.e.,est(tpi) ≤ t < lst(tpi));

- At: the set of eventstpi which have to occur after
time t (i.e.,est(tpi) > t).

where an eventtpi is either the start time or the end
time of an activityal and, given a resourcerk, it has as-
sociated a resource usage valueruik respectively equal
to−reqlk andreqlk.

Based on this partition, the contribution of any time
point tpi to the maximum (minimum) resource value
can be computed according to which of the three sets
the eventtpi belongs to. In fact, since the time points
in Bt are those which happen before or at timet, they
all contribute - with the associated resource usageruik

- to the value of the resource profile ofrk in the in-
stantt. By the same argument we can exclude from
this computation the events inAt, as they happen af-
ter t. Thus it is evident that the maximum (minimum)
resource value depends on the maximum (minimum)
contribution that the events inEt may give: the maxi-
mum resource usage at timet is:

Lmax
k (t) =

∑

tpi∈Bt

ruik +
∑

tpi∈Pmax(Et)

ruik (4)

wherePmax(Et) is a subset ofEt which gives the
maximum contribution that any combination of ele-
ments in Et can give. Thus a fundamental step is
to calculate the subsetPmax(Et): a trivial and, un-
fortunately, expensive approach consists of enumer-
ating all possible combinations. Indeed this approach
might require exponential CPU-time to compute the
resource bounds which makes this approach unrealis-
tic. A method to overcome this problem has been intro-
duced in [25] where the author describes a polynomial
algorithm to compute the setPmax (Pmin).

Integration of the envelope computation into a PCP
algorithm is quite natural. It can be used to restrict re-
source profile bounds, in accordance with the current
temporal constraints in the underlying STP. The advan-
tage of using the resource envelope is that all possible
temporal allocations are taken into account at each step
of the solving process. In the remainder of this section
we describe how peak detection has been performed
starting from an envelope.

6.1.1. Detecting peaks on resource envelopes
Envelope characteristics can be used as a means to

analyze the current situation for possible flaws. Indeed,
if the value of the resource envelope does not respect
the capacity constraints then the current situation is not
admissible, or more precisely, there exists at least a
temporal solution which is not feasible. At this point
it is necessary to extract from the current situation the
set of activities orcontention peakwhich leads to a re-
source conflict.

In [29] we introduced a collection method based on
the analysis of setsBt, Et, At, andPmax(Et). It also
assumes that each activity simply uses resources; with-
out production and/or consumption. It is worth noting
that the sets above are collected during the resource en-
velope computation thus their use does not imply any
additional computational overhead.

In this method the two first steps to collect con-
tention peaks consist of computing the resource enve-
lope and matching it with the resource capacity to find
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possible intervals of over-allocation. Then in the fol-
lowing step, the contention peaks are collected accord-
ing to the following rules:

1. pick any activityai such that the time point as-
sociated with its start time is inPmax(Et) while
the time point associated with its end time is not
in Pmax(Et), that is:

{ai|sti ∈ Pmax(Et) ∧ eti /∈ Pmax(Et)}.
2. to avoid collecting redundant contention peaks,

the collection of a new contention peak is per-
formed only if:

(a) there exists at least an activityai such that
the time point associated to its end time,eti,
moves fromAt−1 to Bt∪Et (i.e.eti ∈ At−1∩
(Bt ∪ Et));

(b) there exists at least an activityaj such that
the time point associated to its start time,stj ,
moved in toPmax since the last time a conflict
peak has been collected.

The first rule is necessary to identify if an activityai is
contributing to the value ofLmax

k (t). In fact when its
end time will belong toPmax the start time will belong
to Pmax∪Bt. Thus the effects of the two events will be
balanced out, giving a void contribution to the resource
envelope value.

1

a4

a1

a3 a5

a2

Fig. 6. Resource Envelope: detection of maximal peaks

The second rule is necessary to avoid the collec-
tion of redundant peaks. Let us consider the example
in Fig. 6: here there are five activities each one requir-
ing the same binary resource. The arrows represent the
possible interval of allocation of each activity. If peaks
were collected considering only the interval of over al-
location, we would have the following result:{a1, a2},
{a1, a2, a3}, {a1, a4} and{a1, a4, a5}. It is possible to
note that the first and the third set are subsets of, re-
spectively, the second and the fourth. Considering in-
stead the changes into bothAt andBt, we are able to
compute non-redundant sets; in the case of the example
{a1, a2, a3} and{a1, a4, a5}.

6.2. Inside-Out Generation Using Early Start Profiles

A quite different analysis of resource profiles has
been proposed in [6]. In that paper an algorithm called
ESTA (for Earliest Start Time Algorithm) was first pro-
posed which reasons with the earliest start time profile:

Definition 3 (Earliest Start Time Profile) Let beest(tpi)
the earliest time value for the time pointtpi. For each
resourcerk we define the Earliest Start Time Profile as
the function:

Qest
k (t) =

∑

∀tpi:est(tpi)6t

ruik

This method computes the resource profile accord-
ing to one precise temporal solution: the Earliest Start
Time Solution, that is, the solution obtained by allocat-
ing each activity to its temporal lower bound. This can
be easily computed when an activity network is given
by just computing the shortest path distance between
the temporal source and each activity of the problem
(for further details see [12]). This method exploits the
fact that unlike the Resource Envelope, it analyzes a
well-defined scenario instead of the range of all possi-
ble temporal behaviors.

It is worth noting that the key difference between the
earliest start time approach with respect to the resource
envelope approach is that while the latter gives a mea-
sure of the worst-case hypothesis, the former identifies
“actual” conflicts in a particular situation (earliest start
time solution). In other words, the envelope-based ap-
proach considers whatmayhappen in such a situation
relative to the entire set of possible solutions; the ear-
liest start-time approach, instead, considers whatwill
happen in such a particular case.

As in the case of the resource envelope analysis in
the particular case of activities that only use resources,
we can use a peak detection approach that avoids sam-
pling peaks which are subsets of other peaks. Specifi-
cally, we follow a strategy of collecting sets of maxi-
mal peaks, i.e., sets of activities such that none of the
sets is a subset of the others (see [8] for a detailed de-
scription).

The limitation of this approach with respect to our
broader purpose of producing aPOS is that it ensures
resource-consistency of only one solution of the prob-
lem, the earliest start time solution. Using a PCP com-
putation for solving, we always have a set of tempo-
rally consistent solutionsST . However,ESTA will not
synthesize a set of solutions for the problem (i.e.,ST *
S), but the single solution in the earliest start time of
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Algorithm 2 Chaining procedure
Input: a problemP and one of its fixed-time schedulesS
Output: A partial order solutionPOS
POS← P
Sort all the activities according to their start times inS
Initialize the all chains with the dummy activitya0

for all resourcerk do
for all activity ai do

for 1 to reqik do
chain ← SELECTCHAIN(ai, rk)
ak ← last(chain)
POS←POS∪{ak ≺ ai}
last(chain) ← ai

return POS

the resulting STP. Below, we describe a method for
overcoming this limitation and generalizing an early
start time solution into a partial ordered schedule. This
will enable direct comparison with thePOS produced
by the envelope-based approach.

6.2.1. Producing a POS with Chaining
A first method for producing flexible solutions from

an early start time solution has been introduced in [6].
It consists of a flexible solution where achainof activ-
ities is associated with each unit of each resource.

In this section we generalize that method for the
more generalRCPSP/max scheduling problem consid-
ered in this paper (see Algorithm 2). Given a earliest
start solution, a transformation method, namedchain-
ing, is defined that proceeds to create sets of chains of
activities. This operation is accomplished by deleting
all previously posted leveling constraints and using the
resource profiles of the earliest start solution to post a
new set of constraints. The basic idea is to “stretch”
earliest start time solution into a set of solutions con-
sistent with the initial problem constraints.

The first step is to consider a resourcerk with ca-
pacity capk as a setRk of capk single capacity sub-
resources. In this light the second step is to ensure that
each activity is allocated to the same subset ofRk. This
step can be viewed in Fig. 7: on the left there is the
resource profile of a resourcerk, each activity is rep-
resented with a different color. The second step main-
tains the same subset of sub-resources for each activity
over time. For instance, in the center of Fig. 7 the light
gray activities are re-drawn in the way such that they
are always allocated on the fourth sub-resource. The
last step then is to build a chain for each sub resource
in Rk. On the right of Fig. 7 this step is represented
by the added constraints. This explains why the second
step is needed. Indeed if the chain is built taking into

Fig. 7. Chaining method: intuition

account only the resource profile, there can be a prob-
lem with the relation between the light gray activity
and the white one. In fact, using the chain building pro-
cedure just described, one should add a constraint be-
tween them, but that will not be sound. The second step
allows this problem to be avoided, taking into account
the different allocation on the set of sub-resourcesRk.

Algorithm 2 uses a set of queues, or chains, to rep-
resent each capacity unit of the resourcerk. The al-
gorithm starts by sorting the set of activities accord-
ing to their start time in the solutionS. Then it pro-
ceeds to allocate the capacity units needed for each ac-
tivity. It selects only the capacity units available at the
start time of the activity. Then when an activity is al-
located to a chain, a new constraint between this activ-
ity and the previous one in the queue is posted. Letm
andmaxcap = maxm

k=1 capk be respectively the num-
ber of resources and the maximum capacity among the
resources, the complexity of the chaining algorithm is
O(n log n + n ·m ·maxcap).

6.3. Summary of PCP Algorithm Variants

In closing the section we remark again that by
working with different resource profiles we have cre-
ated two orthogonal approaches to generating aPOS:
EBA (from Envelope Based Algorithm) andESTA. One
of them has required a post processing phase to be
adapted to the current purpose (from the adaptation, the
nameESTAC). Given these two basic PCP configura-
tions, recall that conflicts can be extracted from peaks
according to three different strategies: pairwise selec-
tion, MCS linear sampling andMCS quadratic sam-
pling. The combination of these three methods with
the two different approaches to maintaining resource
information thus leads to six different configurations:
three based on the resource envelope,EBA, EBA+MCS

linear, EBA+MCS quadratic, and three based on the
earliest start time profile,ESTAC , ESTAC+MCS linear,
ESTAC+MCS quadratic. The next section presents a
discussion of the results obtained testing the six ap-
proaches on a significant scheduling problem bench-
mark: RPCSP/max.
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7. Experimental Analysis

In this section we provide an empirical evaluation of
the methods introduced above. First of all we introduce
and analyze metrics to capture desirable properties of
robust partial order schedules. Once a pair of metrics
is introduced we analyze the results obtained applying
the methods on differentRCPSP/max benchmarks.

7.1. Metrics to Compare Partial Order Schedules

It is intuitive that the quality of a partial order sched-
ule is tightly related to the set of solutions that it rep-
resents. In fact the greater the number of solutions, the
greater the expected ability of facing scheduling uncer-
tainty. Furthermore, another aspect to consider in the
analysis of the solutions clustered into a partial order
schedule is the distribution of these alternatives. This
distribution will be the result of the configuration given
by the constraints present in the solution.

A first measure to consider the aspects above is
taken from [1]. In this work the authors describe a met-
ric, namedflex, that can be defined as it follows:

flex =
|{(ai, aj)|ai ⊀ aj ∧ aj ⊀ ai}|

n(n− 1)
(5)

where n is the number of activities and the set
{(ai, aj)|ai ⊀ aj ∧ aj ⊀ ai} contains all the pairs of
activities for which no precedence relation is defined.
This measure counts thenumber of pairs of activities
in the solution which are not reciprocally related by
simple precedence constraints. It provides a first anal-
ysis of the configuration of the solution. The rationale
is that when two activities are not related it is possi-
ble to move one without moving the other one. Hence,
the higher the value offlex the lower the degree of
interaction among the activities.

Unfortunatelyflex is able to give only a qualita-
tive evaluation of the solution. In fact it considers only
whether a “path” exists between two activities, not how
long it is. Even though this may be sufficient for a
scheduling problem with no time lag constraints like
the one used in [1], in a problem like theRCPSP/max
it is necessary to integrate the flexibility measure de-
scribed above with an other one that also takes into ac-
count this quantitative aspect of the problem (or solu-
tion).

Before introducing a different measure, it is worth
noting that in order to compare two or morePOSs it
is also necessary to have a finite number of solutions.
This is possible assuming that all the activities in a

given problem must be completed within a specified,
finite, horizon.Hence, it follows that within the same
horizonH, the greater the number of solutions repre-
sented in aPOS, the greater its robustness. The goal
then is to compute a fair bound (or horizon) that does
not introduce any bias in the evaluation of a solution
(therefore a time interval that allows all the activities to
be executed). A possible alternative is the following:

H =
n∑

i=1

pi +
∑

∀(i,j)
lmin
ij (6)

that is, the sum of all activity processing timespi plus
the sum of all the minimal time lagslmin

ij . The minimal
time lags are taken into account to guarantee the min-
imal distance between pairs of activities. In fact con-
sidering the activities in a complete sequence (i.e., the
sum of all durations) may not be sufficient.

The presence of a fixed horizon allows introduction
of a further metric taken from [6]: this is defined as the
average width, relative to the temporal horizon, of the
temporal slack associated with each pair of activities
(ai, aj):

fldt =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (7)

whereH is the horizon of the problem defined above,
n is the number of activities,slack(ai, aj) is the width
of the allowed distance interval between the end time
of activityai and the start time of activityaj , and100 is
a scaling factor.3 This metric characterizes thefluidity
of a solution, i.e., the ability to use flexibility to absorb
temporal variation in the execution of activities. Fur-
thermore it considers that a temporal variation involv-
ing an activity is absorbed by the temporal flexibility of
the solution instead of generating deleterious domino
effects (the higher the value offldt, the lower the risk,
i.e., the higher the probability of localized changes).

In order to produce an evaluation of the two crite-
ria fldt andflex that is independent from the problem
dimension, we present the normalization of the results
according to an upper bound. The latter is obtained for
each metricµ() considering the valueµ(P) that is the
quality of the initial network that represents the tempo-
ral aspect of the problem. In fact, for each metric the
addition of precedence constraints between activities
that are necessary to establish a resource-consistent so-
lution can only reduce the initial valueµ(P). Then the

3In the original work this was defined as robustness, using the
symbolRB, of a solution.
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normalized value for the solutionS of the problemP
will have the following form:

|µ(S)| = µ(S)
µ(P)

(8)

where the higher|flex| or |fldt| value the better.

7.2. Results Analysis

In this section we present a comparison of each algo-
rithm on the benchmark problems defined in [20]. This
benchmark consists of four sets j10, j20, j30, and j100.
The first three are composed of 270 problem instances
of different size10 × 5, 20 × 5 and30 × 5 (number
of activities× number of resources). The benchmark
j100 is instead composed of 540 instances each of 100
activities and 5 resources.

The results obtained are subdivided according to the
benchmark set in Table 1. First, we observe that none
of the six tested strategies are able to solve all the prob-
lems in the benchmark sets (% column). This is pos-
sible because all the strategies are based on an incom-
plete search schema. To take into account these differ-
ent solving capabilities the rest of the experimental re-
sults are computed with respect to the subset of prob-
lem instances solved by all the six approaches.

In the following results analysis we distinguish two
complementary aspects of the different techniques:
(1) the capabilities of the solving process and (2) the
quality of the solutions obtained.

Solving capabilities. As shown before we have dif-
ferent capabilities in terms of number of solved prob-
lem with respect to theEBA andESTAC variants. In par-
ticular it is worth noting the lack of scalability of the
EBAs. The reader can see that we have 97.78% (best
EBA result) vs. 98.15% (bestESTAC result) in the case
of j10, 89.63% vs 96.67% in the case of j20, 43.33%
vs. 97.04% in the case of j30, and 27.04% vs. 99.26%
in the case of j100.

Another aspect to consider in evaluating solving
process capabilities is the required CPU-time (shown
in seconds). The results obtained for theEBA variants
are worse than the CPU values obtained forESTACs.
In fact the larger the benchmark size the larger the dif-
ference in required CPU times. The results range from
a ratio of 5.5 (in the case of j10) to one of about 400
(in the case of j100).

These facts induce further observations about the ba-
sic strategies behind the two algorithms.EBA removes
all possible resource conflicts from a problemP by
posting precedence constraints and relying on an en-

velope computation that produces thetightestpossible
resource-level bounds for a flexible schedule. When
these bounds are less than or equal to the resource
capacities, we have a resource-feasible partial order
ready tofaceexecutional uncertainty. However, in or-
der to remove all possible conflictsEBA has to im-
pose more precedence constraints than doesESTAC

(see columns labeled withpc, posted constraints), with
the risk of overcommitment in the final solution.

Solution qualities. For the evaluation of the solution
qualities we have taken into account three different
measures:flex, fldt, andmk.

The first two are directly correlated to solution ro-
bustness. Considering these measures in the case of
the smaller benchmarks j10, j20, and j30, we have a
very small difference in general between the results ob-
tained withEBAs andESTACs, even though theESTAC

variants present a better behavior. A completely differ-
ent result comes considering the benchmark j100: in
this case theEBA variants seem more suitable than the
ESTACs, for obtaining robust solutions. Notwithstand-
ing in evaluating this result, we have to keep in consid-
eration also the different solving capabilities (27.04%
vs 99.26%) and the fact that this evalution is done on
the subset of common solved instances. Therefore it
seems to us that the number of instances taken into ac-
count are too few to make strong claims in the case of
the benchmark j100.

On the other hand, as previously explained,ESTAC

is a two step procedure: theESTA step creates a par-
ticular partial order that guarantees only the existence
of the early start time solution; the chaining step con-
verts this partial order into aPOS. It is worth remind-
ing that the number of precedence constraints is always
O(n) and for each resource, theform of the partial or-
der graph is a set ofparallel chains. These last obser-
vations probably identify the main factors which en-
able a more robust solution behavior, i.e.,ESTAC solu-
tions can be seen as a set oflayers, one for each unit
of resource capacity, which canslide independently to
hedge against unexpected temporal shifts.

The last aspect we present in this evaluation is the
makespan of the solutions. First of all it is necessary
to clarify what we mean for makespan of a partial or-
der schedule. In fact aPOS represents several fixed-
time schedules each with a different makespan. In
this case we consider the minimum makespan among
the makespans of the solutions in thePOS, i.e. the
makespan of the earliest start time solution of the
POS. The results in Table 1 show as theESTAC vari-
ants outperform theEBA ones. In particular we can
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Table 1

Results on the four benchmarks

j10 j20
% mk cpu pc |flex| |fldt| % mk cpu pc |flex| |fldt|

EBA 77.04 58.31 0.11 11.54 0.14 0.63 50.74 96.48 1.37 33.40 0.16 0.64

EBA+MCS linear 85.19 55.29 0.18 11.12 0.17 0.65 71.11 92.65 1.83 32.87 0.15 0.60

EBA+MCS quadratic 97.78 55.47 0.19 12.38 0.16 0.65 89.63 94.03 1.99 34.98 0.13 0.58

ESTAC 96.30 47.35 0.02 6.40 0.19 0.67 95.56 72.90 0.12 18.69 0.20 0.65

ESTAC+MCS linear 98.15 46.63 0.03 6.23 0.20 0.66 96.67 72.45 0.18 17.49 0.20 0.65

ESTAC+MCS quadratic 98.15 46.70 0.03 6.26 0.20 0.68 96.67 72.75 0.19 17.40 0.19 0.64

j30 j100
% mk cpu pc |flex| |fldt| % mk cpu pc |flex| |fldt|

EBA 43.33 118.17 7.53 63.29 0.23 0.69 21.11 501.61 33.00 53.67 0.13 0.72

EBA+MCS linear 68.89 112.14 8.82 56.84 0.18 0.59 26.11 606.31 78.64 73.41 0.13 0.58

EBA+MCS quadratic 82.22 116.10 10.94 59.64 0.16 0.56 27.04 632.27 183.79 76.88 0.11 0.56

ESTAC 96.30 79.21 0.41 35.10 0.25 0.60 99.26 374.24 0.48 68.47 0.07 0.50

ESTAC+MCS linear 96.67 78.45 0.74 34.07 0.26 0.62 99.44 374.22 0.48 67.94 0.07 0.50

ESTAC+MCS quadratic 97.04 78.55 0.83 34.00 0.25 0.64 99.26 374.35 0.48 68.18 0.07 0.50

note that the larger the problem size the larger the gap
between the two methodologies, e.g., in the case of
benchmark j100 we have an average value of 501.61
for the bestEBA variant against 374.22 obtained with
ESTAC + MCS linear.

8. Discussion: the Solve & Robustify model

In this paper, different needs – and, dually, differ-
ent trade-offs between quality and computational times
– are addressed by different algorithms or combina-
tions of solving techniques in a meta-heuristic schema.
The results in Table 1 have shown theESTAC vari-
ants be better suited to generating robust solutions.
Even thoughEBA methods directly produce partial or-
der schedules considering this aim at each step of the
solving process, theESTAC methods yield solutions
that are no less robust (in terms of the measuresflex
andfldt). Moreover these methods show better perfor-
mance when problem size is increased. They are able,
in fact, to limit the increase in CPU times and maintain
a high percentage of solved instances.

This two-step approach, which we refer to asSolve
& Robustify, is based on the assumption of indepen-
dence between the classical scheduling objectives –
like minimizing the makespan – and the need to ob-
tain a robust (or flexible) solution. Even though this as-
sumption is in general not true, the two step approach
can allow exploitation ofstate-of-the-artschedulers to
obtain optimal solutions with respect to the classical

objectives. Then, in a next step, a flexible solution can
be generated trying to preserve the optimality of the
starting schedule. Preserving optimality can be very
important when a low degree of uncertainty is present.
In this case the actual execution of the problem remains
“close” to theexpected value problem(i.e., the prob-
lem as described in input). Therefore, the characteris-
tics of aPOS tend to maintain, due to necessary re-
pairs, a new allocation of the activities that is close to
the original schedule. It is intuitive that the closer the
two allocations are the less loss that is incurred in ob-
jective function values.

solve

fail

solutionproblem robustify

Fig. 8. Solve & Robustify model

Figure 8 shows a possible sketch of the two step ap-
proach. This model is based on the use of two separate
modules: a greedy solver that has the aim of finding
an initial fixed-time solution, and a “robustify” mod-
ule where a partial order schedule is synthesized from
this solution. Different variants of the two step ap-
proach can be obtained by different combinations of
the two modules. As the figure highlights, only in the
first phase, in which the search for a solution occurs, is
it possible to fail (i.e., when it is not possible to find a
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first fixed-time schedule). In the Robustify step in con-
trast, whenever a starting schedule exists, it is always
possible to generate aPOS.

A further remark concerns the generation of flexi-
ble schedules. In the case of multi-capacitive resource
problems, we have in general more than one possible
POS corresponding to a fixed-time schedule. On the
contrary in the case of binary resources, i.e. job shop
problem, a fixed-time solution also gives a unique “lin-
earization” of all the activities. This aspect of multi-
capacitive resource problems has supported and sug-
gested the idea of exploring the space of possible
POSs obtainable from the same fixed-time schedule
with the aim of increasing robustness characteristics
[28,30]. A different chaining algorithm is described in
[19] where the authors usePOSs and their flexibility
characteristics to apply a local search approach with
the aim of optimizing schedule makespan.

9. Conclusion

Research in constraint-based scheduling has typi-
cally formulated the problem as one of finding a con-
sistent assignment of start times for each goal activity.
In contrast, we are investigating approaches to schedul-
ing that operate with a problem formulation more akin
to least-commitment frameworks: the Precedence Con-
straint Posting procedure. In this approach the goal is
to post sufficient additional precedence constraints be-
tween pairs of activities contending for the same re-
sources to ensure feasibility with respect to time and
capacity constraints. Solutions generated in this way
generally represent a set of feasible schedules by using
a temporally flexible graph.

Exploiting this flexibility, in this work we have in-
vestigated two orthogonal PCP approaches (EBA and
ESTAC) to building scheduling solutions that hedge
against unexpected events. The two approaches are
based on two different methods for maintaining pro-
file information: one that considers all temporal solu-
tions (the resource envelope) and one that analyzes the
profile for a precise temporal solution (the earliest start
time solution).

To evaluate the quality of respective solutions we in-
troduced two measures that capture desirable proper-
ties of robust solutions,fldt andflex, correlated to the
degree of schedule robustness that is retained in gener-
ated solutions. Considering comparative performance
on a set of benchmark project scheduling problems, we
have shown that the two stepESTAC procedure, which

first computes a single-point solution and then trans-
lates it into a temporally flexible partial order sched-
ule, is a more effective approach than the pure, least-
commitmentEBA approach. In fact, the first step pre-
serves the effectiveness of theESTA approach, while
the second step has been shown to be capable of re-
instating temporal flexibility in a way that produces a
final schedule with better robustness properties.
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