
From process improvement to people improvement: enabling learning in
software development

R. van Solingena,*, E. Berghoutb, R. Kustersc, J. Trienekensc

aQuality and Process Engineering Department, Fraunhofer Institute for Experimental Software Engineering, Sauerwiesen 6, D-67661 Kaiserslautern,

Germany
bDepartment of Information Systems and Software Engineering, Delft University of Technology, P.O. Box 356, 2600 AJ, Delft, The Netherlands

cDepartment of Information and Technology, Faculty Technology Management, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,

The Netherlands

Abstract

The importance of people factors for the success of software development is commonly accepted, because the success of a software project

is above all determined by having the right people on the right place at the right time. As software development is a knowledge intensive

industry; the `quality' of developers is primarily determined by their knowledge and skills. This paper presents a conceptual model of nine

`learning enablers' to facilitate learning in software projects. These enablers help identifying whether individual and/or organisational

learning is facilitated. The main question addressed in this paper is: `Which factors enable learning in software projects and to what extent?'

q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Learning; Process improvement; Knowledge management; Software development; People

1. Introduction

In 1994, software measurement was introduced in the R

and D department of Schlumberger RPS, by applying the

Goal/Question/Metric (GQM) approach [6,19]. One of the

RPS experiences was that the interpretation process of

measurements was most important [12]. During the inter-

pretation of measurement data, the project team analysed

and evaluated their day-to-day processes. Those interpreta-

tions were done in structured meetings called `feedback

sessions'. During feedback sessions measurement data is

interpreted, conclusions were drawn, and action points

were de®ned.

It appeared that the most important driver for improve-

ment in these industrial programmes was that the software

developers were actually learning how to improve their

activities. This led to the conclusion that establishing an

explicit learning process in software development projects

is the main challenge of today's industry. Consequently, a

research was started to identify guidelines for further opti-

misation and enablers of learning. These learning enablers

were identi®ed through studying various theories about

learning and have been validated in software improvement

projects. In this paper an overview of the main ®ndings is

given. Summarised the following research question is

addressed:

Which factors enable learning in software projects and to

what extent?

The validation of the conceptual model is a complex and

still an ongoing task. Therefore, this paper is focussed on the

presentation of elements of the conceptual model. These

elements are primarily based on seven case studies at

Schlumberger RPS and in line with experiences at Bosch,

Digital, DraÈger, Ericsson, Tokheim, Proctor and Gamble

and several other companies. However, this paper cannot

include a full analysis of all case studies. Only, typical case-

study conclusions are described in association with the

learning enablers. For more details of the case studies we

refer to Ref. [16].

In this paper, ®rst, a brief introduction to learning theory

is given. Second, a conceptual model is presented and the

factors for enabling learning are presented. The learning

factors are discussed in association with typical case-study

results. The paper ends with overall conclusions.

2. Learning theory

In this section learning theory is investigated. The most

Information and Software Technology 42 (2000) 965±971

0950-5849/00/$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.

PII: S0950-5849(00)00148-8

www.elsevier.nl/locate/infsof

* Corresponding author.

E-mail addresses: solingen@iese.fhg.de (R. van Solingen),

e.w.berghout@its.tudelft.nl (E. Berghout), r.j.kusters@tm.tue.nl

(R. Kusters), j.j.m.trienekens@tm.tue.nl (J. Trienekens).



essential concepts are described. Additional information can

be found in the particular references.

Learning is the process by which existing knowledge is

enriched or new knowledge is created [23]. Learning deals

with expanding knowledge. Knowledge is the personal abil-

ity that enables a person to perform a certain task [23]. This

ability is the product of information (I), experience (E), skill

(S) and attitude (A) of a person at a certain time

(K� I´ESA) [23]. Several classi®cations of the process of

learning are described in the literature. For example: cogni-

tive versus motor learning [5], declarative versus procedural

learning [2], explicit versus implicit learning [21], or ratio-

nalistic versus empirical learning [23].

Nonaka and Takeuchi distinguish four learning processes

[16]:

² `socialising': a learning process between people in which

implicit (tacit) knowledge is transferred by copying,

imitating, master/pupil relationships, and experiencing

by trial and error;

² `externalising': a learning process, individual or between

people, in which implicit knowledge is made explicit by

for example model building, dialogues, and hypothesis

formulation;

² `combining': a learning process in which explicit knowl-

edge from different sources is combined by for example:

studying, analysing, recon®guring, and integrating;

² `internalising': an individual learning process in which

explicit knowledge is made implicit through learning by

doing, creating routines, and enlarging operational ef®-

ciencies.

Although, all four learning processes are present during,

and relevant for software development, in this article we

focus on the explicit learning processes: externalising and

combining. With this decision in mind, this article continues

with an exploration of learning theory. Individual learning

will be considered ®rst, followed by group learning.

2.1. Individual learning

During individual learning, the knowledge of one single

person expands. Experiential Learning theory [10] de®nes

an explicit learning process, in which experiences are trans-

formed into knowledge, through model building and model

testing.

Experiences are divided into concrete experiences: obser-

vations like seeing, feeling or hearing, and abstract concep-

tualisations: theories and models about observations and

their relationships. Transformations are divided into re¯ec-

tive observations Ð analysing observations and developing

new models and theories, and active experiments Ð testing

models and theories in practice. According to Experiential

Learning theory, neither the experience nor the transforma-

tion alone is a suf®cient condition to achieve learning (Fig.

1).

Following the different classes of experience and trans-

formation, four different modes of learning are distin-

guished. These modes are:

² `divergent learning' during which observations are

analysed;

² `assimilative learning' during which models are built;

² `convergent learning' during which models are tested in

practice;

² `accommodative learning' during which experiments are

observed.

According to Kolb, the combination of these four modes

of learning produces the best conditions for learning. The

R. van Solingen et al. / Information and Software Technology 42 (2000) 965±971966

Fig. 1. Experiential Learning [10].



combination requires the learning process to include:

`observing phenomena, analysing them, developing models

and theories about them and testing these theories and

models in practice' [10].

2.2. Group learning

When considering learning in software development

projects, it is important to realise that work is performed

in a practical environment. Software development is carried

out within teams, projects, departments and companies; it

always concerns a group of people. The development

processes and improvement objectives are shared. The

learning process, therefore, demands `group learning'.

The term group learning indicates that a set of people,

over a period of time, share the same learning goals and

learning processes. In such a situation, knowledge has to

be shared among organisational members and to contribute

to the synergy of the organisation [9]. This is also often

termed: `organisational learning'. Organisational learning

is de®ned as a skilled process in which knowledge is

created, acquired, and transferred, and through which

behaviour is modi®ed based on the new knowledge and

insights [7]. It is important to note that organisations cannot

learn: the individual people can learn and learn together

[23].

This de®nition re¯ects that learning happens when new

insights arise. Such new insights are, however, not enough.

`Without accompanying changes in the way that work gets

done, only the potential for improvement exists' [7]. George

Huber states similarly that learning occurs when `the poten-

tial behaviours are changed' [8]. Behaviour does not need to

be changed for every situation, but the potential ways of

working need to be expanded. So, effective learning results

in altering (potential) behaviour. If behaviour is not chan-

ged, learning has apparently not occurred.

Argyris and SchoÈn identify two modes of learning [3]:

² Single loop learning. This is learning in which the actor

only learns within the con®nes of his or her theory in use.

There is a focus on the operational level: based on detect-

ing and correcting errors, competencies and routines.

² Double-loop learning. Double-loop learning starts when

an event is diagnosed as incompatible with the actors'

current theory in use. With double-loop learning current

theory and models are altered through new insights.

In practice, most organisations are only focussed on

single loop learning [4]. Optimisation is only done within

the current way of working. This in itself is not wrong.

Through repetitive experiences, organisations get skilled

in their work, and create competitive advantages based on

these skills. However, sometimes new approaches become

available that an organisation has no experience with. In

such cases, it might be better to switch to such a new

approach. This is double-loop learning, which many orga-

nisations tend to see as a threat because it con¯icts with

existing and established habits.

It is also dangerous for an organisation to constantly

adopt new ways of working, because all knowledge gained

until then might immediately become outdated. `The known

can be in many situations be preferred over the unknown'

[14]. A balance should be found in optimising current

processes (single loop learning) and experimenting with

new approaches to ®nd out whether those are much better

than existing ones (double-loop learning). So, learning

theory promotes a parallel application of optimisation of

current practices and experimentation with new ones.

The skills and capabilities of learning organisations are

[17]:

² `aspiration' Ð the capacity of individuals, teams, and

eventually larger organisations to orient toward what

they truly care about, and to change because they want

to, not just because they need to;

² `re¯ection and conversation' Ð the capacity to re¯ect on

patterns of behaviour and assumptions deeply hidden in a

persons behaviour, both individually and collectively;

² `conceptualisation' Ð the capacity to see larger systems

and forces at play and to construct public, testable ways

of expressing these views.

According to Senge, there are three categories of learning

skills. First, there is the motivation to learn and improve.

This includes having time for learning, learning objectives,

interest in learning, etc. Management commitment for learn-

ing tasks is also one of the aspects that falls under aspiration.

Second, there is the willingness to discuss deep assump-

tions. This is what Argyris and SchoÈn call `double-loop

learning'. Finally, there is conceptualisation, which corre-

sponds with model building and testing of the Experiential

Learning theory [10]. These three skills and capabilities for

establishing learning need to be addressed in software

development.

Learning theory supports that a learning method should

include making the goals for learning explicit [7]. De®ning

these goals is dif®cult, however, in a business environment

it makes sense to base them on business goals. These goals

will be different for different organisations. Differences are

for example: the market in which an organisation operates,

the type of product that is delivered, the organisation of the

development terms, or the country in which the products

will be used. Learning practices should be directed to the

goals of the organisation [7].

The ®nal aspect of organisational learning relevant for

this paper is based on a phenomenon called `creative

tension' [17]. This is the difference between the current

reality and a desired future. The gap between the current

reality and the desired future should not be too large,

because the objectives of the people become too abstract

and concrete actions towards improvement are not clearly

visible. On the other hand, the gap between current reality

R. van Solingen et al. / Information and Software Technology 42 (2000) 965±971 967



and the desired future should not be too small either,

because this will result in no action at all, since the need

for action might seem unnecessary. This creative tension

principle indicates to set reachable objectives for learning.

3. Conceptual model of enabling factors

Based on above theory a conceptual model has been

developed containing the most prominent enabling factors

for learning in software development. This paper does not

leave suf®cient space to clarify the complete construction

process of this conceptual model, which is mainly based on

learning enablers described in Refs. [7,13,15,17]. For details

on this construction process we refer to Ref. [20].

In Fig. 2, the conceptual model is depicted. In the centre

the three main stakeholders are visualised with their inter-

actions: software developers, management, and the learning

support team (GQM team [19]). The learning process of

these three groups of people is in¯uenced by several learn-

ing enablers. The learning processes use and change both

implicit and explicit knowledge. For more information on

the interaction between these stakeholders and the in¯uence

on their learning processes we refer to Ref. [18].

The nine learning enablers will subsequently be

described, together with what the enabler means within

the context of software development.

3.1. Enabler 1: climate of openness

A climate of openness addresses the establishment of an

environment in which free ¯ow of information, open

communication, sharing problems and lessons learned,

and open debate of ways to solve problems, is available.

Such a climate or `learning culture' could seem a simple

concept, however, turns out to be dif®cult to establish in

practice. Research has indicated that current structures for

control and management in organisations tend to disable

such a climate of openness and this consequently decreases

the commitment of developers [1,22]. The intrinsic motiva-

tion of developers is especially crucial for a creative and

learning oriented environment. Practical actions that

managers can take to increase the intrinsic motivation of

developers are grouped in the following six categories [1]:

² `Challenge', by matching the right developers with the

right job assignments in such a way that employees de®-

nitely do not feel bored, but neither are overwhelmed or

threatened by a loss of control.

² `Freedom', by giving developers autonomy concerning

the processes they apply. Management needs to set the

goals, preferably as unambiguous as possible, however,

the way to achieve these goals should be left to the devel-

opers themselves.

² `Resources', by carefully allocating time and money.

Time pressure can increase motivation as long as targets

are perceived as attainable. Money should be assigned

properly to prevent developers trying to ®nd additional

money themselves instead of doing their work.

² `Work-group features', by carefully designing teams that

are diverse, excited about their objectives, willing to

support team-mates through more dif®cult periods, and

where each member contributes a unique amount of

knowledge.

² `Supervisory encouragement', by praising creative

efforts spent by their developers. Encouragement is not

considered to be effective when given in extrinsic

rewards such as ®nancial bonuses. Freely and generously

recognising creative work by employees already implies

a signi®cant encouragement. Managers should also not

be sceptical towards new and rigorous ideas.

² `Organisational support', by establishing suf®cient orga-

nisational support for the developers in the organisation.

This organisational support should enable learning efforts

and supports learning processes. Furthermore, the value

of learning should be emphasised by the procedures and

systems in the organisation.

A climate of openness appears to be one of the most

crucial prerequisites for organisational learning. It requires

a context in which developers are willing to learn from their

mistakes and willing to discuss underlying causes and

models for these mistakes.

3.2. Enabler 2: scanning for knowledge

In the broadest sense this means that there should be a

continuous search for knowledge that could be relevant or

applicable in a particular learning situation. Scanning for

knowledge from previous products, competitor products,

similar products, or new methods is an important input to

the requirements phase of a software project. The main point

is that this loop does not build software product

requirements every time from scratch but attempts to learn

from previous experiences. Furthermore, knowledge can be

collected from previous projects that created similar

products. Carrying out ex post evaluations to ®nd out

R. van Solingen et al. / Information and Software Technology 42 (2000) 965±971968

Fig. 2. Conceptual model of enabling factors for learning.



whether a certain used process model was adequate, is a

good source of knowledge to increase learning effects.

Double-loop learning also requires scanning for knowledge.

Reading publications on achievements in software engineer-

ing by other software developers, is a way to scan knowl-

edge. This way, experiences from other organisation can be

assimilated into the own organisation. Having developers

attend conferences, seminars and training is also a possibi-

lity.

3.3. Enabler 3: information on context and current state of

the system

In order to learn, information is required on the current

status of the system under development and the organisa-

tional context. A ®rst step will be making processes explicit.

A second step will be measuring the performance of these

processes, or the current state of the product. Consequently,

the effects of improvement actions can be measured.

For example, in one of the case studies a software process

assessment was performed to make the status of current

processes explicit. Knowing what the capabilities of an

organisation are and making explicit which process actions

they can use contributes to this learning enabler. If for exam-

ple, process assessments indicate that con®guration

management is a weakness in the organisation, projects

that have high product maintainability targets will know

that they need to take some speci®c action.

3.4. Enabler 4: team learning

Team learning is an important part of an organisational

learning process. It means that learning is established within

groups that work together towards a shared vision and

mutual objectives. Joint formulation of learning objectives,

information sharing, discussion, and drawing conclusions

together take place within team learning.

Team learning can be used to ®nd out an appropriate

way in which product requirements need to be speci®ed

to let the ®nal product comply to them. It is also impor-

tant that development teams learn the behaviour of

different development processes. A speci®c process

may not always give the same effect within different

projects, for different products, with different team

members. These differences and the causes for them

should be determined. Measurement appears to be a

powerful mechanism to enable group learning, particu-

larly through the discussion on measurement results and

through challenging each others' interpretations [19].

3.5. Enabler 5: modelling of the system under control

In order to control the software system under develop-

ment, a model will be required from this system and its

in¯uencing factors. This can be done through process

modelling, and modelling of the relationship between the

product requirements and this process. Another example of

useful modelling is the modelling of user groups and their

mutual relationships to support the identi®cation of all

stakeholders [11].

In a case study, explicit models were made from the

process that was intended to be used [20]. Also, models

were made of the expected impacts of a particular process

action. In one of the companies, for example, they intro-

duced `incremental development' by which the product was

developed in three sequential increments, each expanding

the previous one with speci®c functionality. The expecta-

tions of this change were modelled by formulating improve-

ment hypotheses. The measurements showed indeed that

these expectations were legitimate.

3.6. Enabler 6: possibilities for control

In order to steer a process towards the desired outcomes,

possibilities for control should be available. This means that

during a software project (corrective) actions can be taken

whenever necessary. For example, when it appears that the

intended product reliability level can not be reached, it

should be possible to take action to improve that situation.

In a double-loop learning fashion, the available set of

process actions can be expanded with new ones that suit

the speci®c organisation.

3.7. Enabler 7: involved leadership

The role of management is extremely delicate in enabling

learning [1,7,17]. Insuf®cient attention from management

gives learning an inadequate priority. The opposite of too

much intervention from management normally leads to a

learning project that is insuf®ciently supported by the devel-

opers (they feel over-observed or paternalised).

In a learning organisation, managers and the role of the

manager differ from traditional production organisations.

Senge [17] states the following differences: the manager is

a designer of the learning organisation, a teacher regarding

the view on reality, and a steward for the people they

manage.

In the case studies it was observed that practical imple-

mentation of such a different management style is a dif®cult

process, because both the manager and the developers were

used to a different style. In an organisation where a manager

always de®nes all detailed procedures that are to be used,

and the manager suddenly leaves this freedom for the

process to the developers, it is likely that developers also

cannot cope with this freedom. Such a change in

management style should therefore be carefully planned

and a transition should be established. However, in creative

intellectual work such management styles are often already

present.

3.8. Enabler 8: explicit goal de®nition

In order to have clear targets towards learning, particular

goals should be de®ned and made explicit. Learning

R. van Solingen et al. / Information and Software Technology 42 (2000) 965±971 969



processes bene®t if it is clear what the goals are and in

which area learning is required to attain these goals. Both

product and process goals should be stated explicitly. For

example, regarding process goals, measurement goals are

de®ned to monitor the performance of speci®c process

actions, and the measurements are analysed explicitly to

learn the effects of such a process action. For double-loop

learning, explicit learning goals are de®ned to learn effects

of process actions with which no experience exists. Expec-

tations (hypotheses) should be explicitly speci®ed regarding

attainment of these learning goals, because expectations can

be compared to actual values and reasons for differences can

be identi®ed.

An example of the use of explicit goals for learning was

the identi®cation of re-use effects in one of the case-study

organisations [19]. The project team de®ned the explicit

goal to measure the effects of software re-use on product

reliability. Their expectation was that this contribution was

high. The measurements showed indeed that the defect level

of fully re-used modules was remarkably low. An important

learning point from this project was the indirect effect of re-

use on reliability. The project team learned that they were

more strictly reviewing and testing re-used modules,

because their con®dence in these modules was initially

lower, than the one they had developed themselves. The

project team learned that both direct and indirect effects

of re-use largely in¯uence product reliability, and learned

furthermore what these effects are.

3.9. Enabler 9: monitoring performance gap

Monitoring the differences between targeted and actual

situation is an important prerequisite for learning. This

monitoring both contains the identi®cation of what is

going well and what needs improvement. Through monitor-

ing, developers get feedback on their way of working and

learn where to improve. Again, monitoring a possible

performance gap is not only done for both the product and

development processes.

For example, in one of the case-study companies the

following problem occurred. Due to the large number of

countries being supplied and the large differences in govern-

ment regulations across the countries, it was dif®cult to

address all country speci®c requirements. This caused

many `change requests' after product release to the national

representatives. A solution to this problem was to develop

the country speci®c requirements in closer co-operation

with the national representatives and, furthermore, use

these requirements as input to the architecture of the product

design. Consequently, as a result a product-architecture was

designed that was capable of attaching country-speci®c

customisations to the product after release.

4. Conclusions

As stated earlier in this paper, the importance and impact

of people factors on the success of software development is

commonly accepted. Knowledge and skills are an important

input to a software development project, however, are also

an important output, because they are continuously

enhanced over time. To some extent developers always

learn during software development projects and learning is

also an important prerequisite to improve software develop-

ment practices. Creating an organisational structure, in

which effective learning is established, is a major challenge.

We have illustrated that this is not a repeatable process for

which only a procedure or manual needs to be written. On

the contrary, managing the learning process of software

developers appears to be a dif®cult and complex task, for

which a speci®c management style is required. Establishing

an eager and learning orientated environment is, essential.

However, facilitating learning is not easy.

In order to do so, a conceptual model including nine

`learning enablers' is presented in this paper. This concep-

tual model is based on learning theory and based on experi-

ences in various case studies. A ®rst validation of this model

has taken place [20]. The conceptual model could seem

trivial in terms of elements. One could state that the enablers

are vague and do not yet point out exactly `what' needs to be

done and `how'. Based on extensive literature research and

work in practice, this is as far as we have come. We will

continue our research on establishing learning organisations

for software development.

This paper contains several points of attention for soft-

ware managers in practice. By making the learning factors

explicit, this paper hopefully contributes to improving the

learning conditions in software organisations. We recom-

mend that software development line managers and project

managers consider these learning enablers continuously in

their daily practice in order to increase the learning effec-

tiveness of their developers. After all, it is those people that

make the product.

References

[1] T.M. Amabile, How to kill creativity, Harvard Business Review

September/October (1998) 77±87.

[2] J.R. Anderson, Cognitive Psychology and its Implications, 3rd ed.,

Freeman, New York, 1990.

[3] C. Argyris, D.A. SchoÈn, Organizational Learning: a Theory of Action

Perspective, Addison-Wesley, Reading, MA, 1978.

[4] C. Argyris, On Organizational Learning, Blackwell Publishers,

Oxford, UK, 1992.

[5] K. Ayas, Design for Learning for Innovation, Eburon, Delft, 1997.

[6] V.R. Basili, D.M. Weiss, A methodology for collecting valid software

engineering data, IEEE Transactions on Software Engineering SE-10

(6) (1984) 728±738.

[7] D.A. Garvin, Building a learning organisation, Harvard Business

Review July/August (1993) 81±91.

[8] G.P. Huber, Organisational learning: the contributing processes and

the literatures, Organization Science 2 (1) (1991) 88±115.

[9] M. Jelinek, Institutionalizing Innovation, Praeger, New York, 1979.

[10] D.A. Kolb, Experiential Learning, Prentice-Hall, Englewood Cliffs,

NJ, 1984.

R. van Solingen et al. / Information and Software Technology 42 (2000) 965±971970



[11] R. Kusters, R. van Solingen, J. Trienekens, Identifying Embedded

software quality: two approaches, Quality and Reliability Engineering

International, Wiley, New York, 1999 (pp. 485±492).

[12] F. van Latum, M. Oivo, B. Hoisl, G. Ruhe, No improvement without

feedback: experiences from goal oriented measurement at Schlum-

berger, Proceedings of the 5th European Workshop on Software

Process Technology (EWSPT96), Nancy, France, Lecture Notes in

Computer Science, vol. 1149, Springer, Berlin, 1996, pp. 167±182.

[13] A.C.J. de Leeuw, Organisations, Management, Analysis, Design and

Change: a Systems Perspective, van Gorcum, Assen, The Nether-

lands, 1986 (in Dutch).

[14] J.G. March, Exploration and exploitation in organizational learning,

Organization Science 2 (1) (1991) 71±87.

[15] E. Nevis, A. DiBella, J. Gould, Understanding organisations as learn-

ing systems, Sloan Management Review Winter pp. 73±85 (1995).

[16] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company, Oxford

University Press, New York, 1995.

[17] P.M. Senge, The Fifth Discipline: the Art and Practice of the Learning

Organisation, Doubleday, New York, 1990.

[18] R. van Solingen, E.W. Berghout, E. Kooiman, Assessing feedback of

measurement data: relating Schlumberger RPS practice to learning

theory, Proceedings of the 4th International Software Metrics Sympo-

sium (Metrics'97), Albuquerque, 5±7 November, IEEE CS, Silver

Spring, MD, 1997, pp. 152±164.

[19] R. van Solingen, E.W. Berghout, The Goal/Question/Metric Method:

a Practical Guide for Quality Improvement of Software Development,

McGraw-Hill, New York, 1999 (http://www.gqm.nl/; ISBN

0077095537).

[20] R. van Solingen, Product Focused Software Process Improvement:

SPI in the Embedded Software Domain, BETA Research Series, no.

32, Downloadable from http://www.gqm.nl/, Eindhoven University of

Technology, ISBN 90-386-0613-3, February, 2000.

[21] J. Swieringa, A.F.M. Wierdsma, On the way to a learning organisa-

tion: on learning and education in organisations (in Dutch), Wolters

Noordhoff Management, 1990.

[22] D. Ulrich, Intellectual capital� competence £ commitment, Sloan

Management Review Winter (1998) 15±26.

[23] M. Weggeman, Knowledge Management (in Dutch), Scriptum

Management, 1997.

R. van Solingen et al. / Information and Software Technology 42 (2000) 965±971 971


