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ABSTRACT

Motivation: An important application of protein microarray data

analysis is identifying a serodiagnostic antigen set that can reliably

detect patterns and classify antigen expression profiles. This work

addresses this problem using antibody responses to protein markers

measured by a novel high-throughput microarray technology. The

findings from this study have direct relevance to rapid, broad-based

diagnostic and vaccine development.

Results: Protein microarray chips are probed with sera from

individuals infected with the bacteria Francisella tularensis, a

category A biodefense pathogen. A two-step approach to the

diagnostic process is presented (1) feature (antigen) selection and

(2) classification using antigen response measurements obtained

from F.tularensis microarrays (244 antigens, 46 infected and

54 healthy human sera measurements). To select antigens, a

ranking scheme based on the identification of significant immune

responses and differential expression analysis is described.

Classification methods including k-nearest neighbors, support

vector machines (SVM) and k-Means clustering are applied

to training data using selected antigen sets of various sizes.

SVM based models yield prediction accuracy rates in the range of

�90% on validation data, when antigen set sizes are between 25

and 50. These results strongly indicate that the top-ranked antigens

can be considered high-priority candidates for diagnostic

development.

Availability: All software programs are written in R and available at

http://www.igb.uci.edu/index.php?page¼tools and at http://www.

r-project.org

Contact: pfbaldi@uci.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A fundamental problem in disease diagnostics is to identify a

serodiagnostic antigen set whose expression profiles can be used

to reliably diagnose infectious disease and potentially form the

basis for the development of vaccines against that disease.

The need to identify these antigens is further heightened by the

urgency for more rapidly assessing the prevalence and spread of

infectious diseases due to the emergence of new strains of

infectious organisms and the recent concerns related to

bioterrorism.
In response to these needs, a novel high-throughput

approach has been developed to rapidly convert genome

sequence information from infectious bacteria and viruses

into the proteins that are encoded by each of the genes (Davies

et al., 2005a; Sundaresh et al., 2006). This approach enables

fast, comprehensive, and high-throughput analysis of immune

responses to infectious disease antigens that can be applied to

the discovery and development of serodiagnostic tests. All of

the individual proteins from an infectious microorganism are

printed onto a microarray chip and the chip is probed with sera

from vaccinated or infected humans and animals and the

antibody reactivity against each antigen can be quantified to

obtain immunodominant antigen profiles. Thus, the proteome

microarrays can be used to interrogate the entire proteome of

any infectious microorganism, potentially comprising thou-

sands of antigens each. Once the microarrays are fabricated

they can be produced in large numbers, enabling large numbers

of sera to be conveniently probed while consuming small

quantities of individual sera (52�l/test). To the best of our

knowledge, no other method of serodiagnostic antigen dis-

covery can quantitatively and comprehensively interrogate the

humoral immune response on an antigen specific basis against

bacteria, parasites and viral proteomes with large numbers of

individual patients’ sera and with comparable accuracy,

efficiency and speed.

In particular, this study analyzes the antigen expression

profiles for Francisella tularensis, which is the etiological agent

of tularemia, a serious and sometimes fatal disease of humans

and animals (Ellis et al., 2002; Isherwood et al., 2005; Larsson

et al., 2005). It is a category A biodefense pathogen and there is

concern over its illegitimate use as an agent of bioterrorism or

biological warfare (Dennis et al., 2001). Until recently, little was

known of the genetic makeup of this bacterium. This was

resolved by the determination of the genome sequence of*To whom correspondence should be addressed.
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F.tularensis strain Schu S4 (Karlsson et al., 2000; Prior et al.,

2001).
Among the National Institutes of Health Biodefense research

goals is the objective to identify new F.tularensis vaccine

candidates that can prevent or modulate infection both before
and after exposure. In addition, the NIAID Biodefense Effort

has called for initiatives to identify and characterize adaptive
immune responses that occur after initial exposure to

F.tularensis and to develop rapid, inexpensive and broad-

based clinical diagnostics approaches for tularemia.
The main focus of this article is to (1) identify serodiagnostic

subsets of antigens for a given pathogen whose expression

profiles reliably support classification and diagnosis of healthy
and disease samples; (2) build classification models and

investigate the effects of varying the sizes of serodiagnostic
antigen subsets on prediction accuracy; (3) compare the

performance of different classification models; and finally

(4) validate and generalize their predictive power in the
presence of new, unseen cases.

2 MATERIALS AND METHODS

2.1 Immunoblots and microarrays

Protein microarray chips consisting of 1741 F.tularensis antigens are

fabricated as described previously in Davies et al. (2005a). These large

chips are probed using a representative set of infected human samples to

generate a smaller chip comprising 244 of the most reactive proteins

determined by average signal intensity. Briefly, this is a three step

process involving: (1) PCR amplification of each ORF, (2) in vivo

recombination cloning and (3) in vitro transcription/translation and

microarray chip printing.

Custom PCR primers comprising 20 bp of gene-specific sequence

with 33 bp of ‘adapter’ sequences are used in PCRs with F.tularensis,

SchuS4 strain, genomic DNA as template. The adapter sequences,

which become incorporated into the termini flanking the amplified

gene, are homologous to the cloning site of the linearized T7 expression

vector pXT7 (Davies et al., 2005a) and allow the PCR products to be

cloned by in vivo homologous recombination in competent DH5� cells.

The resulting fusion protein also incorporates a 50 polyhistidine epitope,

an ATG translation start codon and a 30 hemagglutinin epitope and T7

terminator. Sequence-confirmed plasmids are expressed in 5 h in vitro

transcription–translation reactions (RTS 100 kits from Roche) accord-

ing to the manufacturer’s instructions. Protein expression is monitored

either by dot blot or microarray using monoclonal antipolyhistidine

(clone His-1 from Sigma) and antihemagglutinin (clone 3F10, Roche).

Microarrays are printed onto nitrocellulose coated glass slides FAST

slides (Whatman) using an Omni Grid 100 microarray printer

(Genomic Solutions). Prior to array staining, the sera are diluted to

1/200 in protein array blocking buffer (Whatman) containing

Escherichia coli lysate at a final concentration of 30% (final

concentration 4–5mg/ml) and incubated at room temperature for

30min with constant mixing. The arrays are rehydrated in blocking

buffer for 30min and probed with the pretreated sera overnight

at 4�C with constant agitation. The slides are then washed five

times in tris(hydroxymethyl)aminomethane (Tris) buffer containing

0.05% (v/v) tween 20, and incubated in biotin-conjugated goat

antihuman immunoglobulin diluted 1/200 in blocking buffer; the

secondary antibodies are obtained from Jackson Immuno Research

and are anti-IgG, Fc-� chain-specific. After washing, bound antibodies

are detected by incubation with streptavidin-conjugated PBXL-3

(Martek). The slides are then washed three times in Tris buffer

containing 0.05% (v/v) tween 20 and three times in Tris buffer without

tween followed by a final water wash. The slides are air dried under

brief centrifugation and examined in a Perkin Elmer ScanArray

Express HT microarray scanner. Intensities are quantified using

QuantArray software. All signal intensities are corrected for spot-

specific background.

2.2 F.tularensis sera measurements

Sera are acquired from 46 individuals in the US diagnosed with

tularemia (Table 1). All sera are banked diagnostic samples submitted

to Centers for Disease Control and Prevention (CDC) and tested for

F.tularensis specific antibodies using a standard microagglutination

assay, with titres 4 1:128 positive. The clinical form of the disease

[ulceroglandular (n¼ 20) or pneumonic (n¼ 21) tularemia] and speci-

men timing with respect to symptom onset is known from submission

forms accompanying the diagnostic specimen. Sera are drawn from the

majority of the 46 individuals within 1 month of symptom onset.

Subspecies responsible for infection [type A (n¼ 10) or type B (n¼ 5)] is

identified for those cases of tularemia, where a culture is also obtained

from the patient and the F.tularensis subspecies identified by

biochemical subtyping (glycerol fermentation). Control sera are

obtained from healthy blood donors in the US of which, 54 sera

probed using protein microarrays, are used in this study.

The F.tularensis data set thus comprises measurements of 244 antigens

in 100 human sera. In addition, seven internal controls (cell-free

expression reactions lacking template gene) are spotted on the array.

2.3 Diagnostic engine

A two-step approach is adopted for building a diagnostic engine that

reliably classifies healthy and infected samples—feature selection

i.e. selecting the most relevant antigens that determine the diagnosis,

followed by classification i.e. determining a pattern linking the selected

antigens’ profiles to the diagnosis.

There are several important reasons for narrowing down a small set

of antigens from an entire proteome. First, identification of the most

immunodominant antigens in a given disease is a vital step toward

understanding the biology of the pathogen and the disease and

consequently boosting research efforts in both diagnostic antigen

discovery and subunit vaccine development. Second, it becomes

possible to obtain significant antigen profiles for several pathogens

on a single chip simultaneously, vastly reducing the cost of diagnosis

for a single sample. Third, computational diagnostic models

typically perform better when irrelevant variables or features are

removed during parameter optimization, especially when data are

limited.

2.3.1 Data preprocessing and normalization Each serum is

measured in duplicate. If missing values are present in any one of the

replicated measurements, it is replaced with the other value. Data are

normalized using a log-variant (asinh) transformation called ‘vsn’

(Durbin et al., 2002; Huber et al., 2002) so that experimental variations

are minimized and the measurements are in the same range and scale.

The measurement error model (Rocke and Durbin, 2001) that is

Table 1. F.tularensis data: number of sera in each category

Diagnostic group Number of sera Training set Validation set

Infected 46 34 12

Healthy 54 41 13

Total 100 75 25
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assumed by this transformation is appropriate for signals from protein

microarrays (Sundaresh et al., 2006).

Since the dataset contains expression profiles of 244 of the 1741

F.tularensis antigens that generated some immune response, only the

seven known true-negative intra-array control signals (cell-free expres-

sion reactions lacking template gene) are used as ‘house-keeping’ probes

to obtain the scale and offset parameters. The transformation function

‘vsn’ is then applied to the whole dataset using these parameters. This

method calibrates the measurements and renders the variance relatively

independent of the mean signal. Figure 1 shows the effects of applying

the ‘vsn’ (asinh) transformation on the intra-array controls. The ‘vsn’

transformation resembles the log transformation for large signal

intensities and is defined for zero and negative intensities that may

occur after background subtraction.

If experiments to obtain measurements for each serum sample are

replicated, they are averaged, as is the case in the F.tularensis data set.

In addition, the seven intra-array control signals are averaged to obtain

an estimate for the array-specific background signal.

2.3.2 Differential expression analysis After normalization, sig-

nificant immune responses within diagnostic subgroups as well as

differential immune responses across subgroups are determined by

conducting a series of statistical tests (t-tests). In these tests, the sample

variance of the measurements of each protein is substituted with a

Bayes-regularized estimate (Baldi and Hatfield, 2002; Baldi and Long,

2001) that takes into account the variance of neighboring proteins,

i.e. proteins with similar expression levels. A web implementation called

Cyber-T is available at http://www.igb.uci.edu/index.php?page¼tools.

Statistical tests that use the Bayes-regularized estimate of the variance

have been shown to effectively determine differential expression in both

DNA (Hatfield et al., 2002; Hung et al., 2002; Long et al., 2001) and

protein microarray expression measurements (Sundaresh et al., 2006) to

correct unrealistically inflated or deflated sample variances, especially

when replications are low. The Bayes-regularized t-test generates a list

of antigens, ranked by their P-values, which are differentially expressed

between two groups. An independent study (Choe et al., 2005) that

analyzed a spiked microarray data set with known concentrations

reported that Cyber-T outperforms other differential expression

estimation methods including standard t-tests and SAM (Tusher

et al., 2001). P-values pwd and pwh associated with the strength of

immune responses of an antigen within each group disease (d) and

healthy (h), respectively, are obtained by comparing expressions of

the antigens in that group with the corresponding array-specific

background signal. P-values representing the strength of differential

expression for each antigen between groups (pb) are also computed.

2.3.3 Feature selection Feature selection has been applied to the

feature space prior to classification in the context of DNA microarray

data (Ding and Peng, 2005; Golub et al., 1999) to filter out variables

that are irrelevant with respect to determining the class and studies

have shown that removing them can improve prediction accuracy.

Let us now assume that the data are randomly partitioned into a

training set and validation set, each of which includes measurements

from both diagnostic groups (Table 1). Using the training set, the values

pwd, pwh and pb are computed for each antigen. Features that are to be

Fig. 1. Normalizing the data set using known true-negative signals (cell-free expression reactions lacking template gene). The upper panel shows the

variation in the average raw intra-array control signal across the 100 measurements. The lower panel shows the normalized and ‘vsn’ transformed

average control signal.
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used in the classifier are selected based on a ranking measure computed

for each antigen as follows:

(1) Presence of response in disease sera: rank antigens in the disease

group based on the strength of the within array response

compared with intra-array controls (i.e. lowest pwd ! highest

rankd).

(2) Significant differential expression: rank antigens based on

significantly greater expression in the disease group compared

with the healthy group as determined by the Bayes-regularized

t-test (i.e. lowest pb! highest rankd4h).

Intuitively, both ranking measurements aim to pick up antigens that

specifically show a significant immune response in the disease group.

The final rank for each antigen is computed as the sum of the two

ranking measures. The top x antigens (x is provided by the user) with

the highest rank are included in the set (S) to be used in the classifier. If

two or more antigens have the same rank, they are both added. Further

refinements of this ranking scheme include assigning weights (indicating

relative importance) to each of the measures prior to combining them or

using P-values and corresponding false discovery rate estimates as

cutoffs.

2.3.4 Classification and clustering For DNA microarray data

analysis, there has been extensive work done to demonstrate the

reliability of automated machine learning techniques for class predic-

tion, notably in cancer classification (Golub et al., 1999; Lee and Lee,

2003; Nguyen and Rocke, 2002; Tibshirani et al., 2002). Techniques for

class prediction and clustering have also been applied to other protein

microarray technologies. Belov et al. (2006) applied discriminant

functions analysis to CD (cluster of differentiation) antibody micro-

arrays to diagnose various forms of leukemias and lymphomas.

Groathouse et al. (2006) used unsupervised classification techniques

such as hierarchical clustering and self-organizing maps (SOM) to

identify disease (leprosy) state specific patterns in native-based protein

arrays. Binder et al. (2006) demonstrated the effectiveness of the k-

nearest neighbor method applied to profiles from microarrays contain-

ing protein-coated beads for the identification of autoimmune diseases.

We tried different machine learning methods and report the compara-

tive results for three of them—two supervised methods, k-nearest

neighbor (k-NN) and support vector machines (SVM) (Vapnik, 1995)

and one unsupervised method, K-means clustering. In addition, their

performance is assessed across a range of feature set sizes.

k-NN determines the k nearest measurements (with known class) to

the unknown measurement that needs to be classified. Typically,

Euclidean distance is used to compute distance between two measure-

ment vectors. The majority class is assigned to the unknown case. The

algorithm does not explicitly build a classification model. The implicit

model comprises the signals of the selected features in the training set.

The classifier accuracy on the training set is determined by applying

leave-one-out-cross-validation. Each measurement in the validation set

is assigned the majority class belonging to its closest ‘k’ neighbors in the

training set. An analysis using k¼ {3,5,9} neighbors showed no notable

differences in performance and for the rest of the article, the results of

k¼ 5 are presented.

SVM is a classification method that aims to maximize generalization

accuracy and minimize classification error by determining a maximum

margin hyperplane in feature space separating two classes. Non-linear

classification in SVMs is achieved by the use of a kernel. A preliminary

investigation of kernel functions indicated that the performance of

linear and polynomial kernels was comparable for this data set, while

RBF tended to overfit the data. We therefore present results generated

using the linear kernel in the following sections.

K-Means clusters data by minimizing intracluster distance between

members of a cluster and the cluster’s centroid (mean). In the given

context, the number of clusters, a required input, is trivially equal to

k¼ 2. Once the clusters are determined, the specific diagnostic class

label is assigned to the clusters such that the total prediction accuracy is

maximized. This allows for the computation of classification accuracy

measures such as sensitivity and specificity. The primary reason for

including k-means in this work is to assess the performance of an

unsupervised learning approach, which is useful in situations where

class labels are not available for this kind of data (e.g. new virus strain).

2.3.5 Validation procedure Repeated random subsampling or

repeated holdout, a commonly used technique (Dudoit et al., 2002), is

employed for generating training and validation/holdout sets and

assessing classification accuracy. The training and validation sets are

stratified, meaning that they each have approximately the same

proportions of classes or diagnostic cases as in the original data set.

Unlike in m-fold cross-validation, validation sets may contain over-

lapping samples. However, the advantage of using this approach is that,

given limited data, it affords the flexibility of simultaneously generating

larger validation set sizes and conducting any desired number of

repetitions, thus reducing discreteness of classification error rates and

shrinking confidence intervals for the mean estimates (Dudoit et al.,

2002; Mitchell, 1997). It is important to note that antigen selection is

performed on the training set only.

2.3.6 Machine learning procedure A simple algorithm for the

feature selection and classification approach is presented below. The

input is a table with a set of A antigens, nd and nh measurements in each

diagnostic group respectively. R is the number of iterations or runs.

‘Classifier’ refers to a classification or clustering model.

For each run r, r¼ 1,2,. . .,R,

(1) Randomly partition data into subsets Tr and Vr for feature

selection/training and validation, respectively.

(2) Generate significance measures for each antigen a2A in Tr for

both within group response (compared with intra-array controls),

(pwd, pwh,) and differential expression between groups (pb) using

Bayes-regularized t-tests.

(3) Perform feature selection based on the ranking scheme described

earlier. Generate top ranking antigen sets s2S, e.g. top 10, top 25

antigens. For each top ranking antigen set, s2S,

(i) Train y classifiers Cr,1, Cr,2, . . . , Cr,y on training data Tr using

the signals of antigens in s2S

(ii) Compute training accuracy of Cr,1, Cr,2, . . . , Cr,y on Tr using the

signals of antigens in s2S

(iii) Compute validation accuracy of Cr,1, Cr,2, . . . , Cr,y on Vr using

the signals of antigens in s2S

Finally, training and validation accuracy of each classifier are averaged

across all R runs.

2.3.7 Parameters and initializations R¼ 10 runs are conducted.

In each run, the data are randomly partitioned into Tr and Vr in the

ratio of 3:1, ensuring a reasonable number of measurements for training

and validation respectively. The actual distribution is shown in Table 1.

2.3.8 Software All software programs used for these analyses are

written using the statistical software R. Normalization and variance

stabilization is performed using the ‘vsn’ package described in

Huber et al. (2002). The program to perform Bayes-regularized

t-tests is available for download at http://www.igb.uci.edu/?page¼

tools&subPage¼dmss. k-NN, SVM and k-means implementations are

available in the packages ‘class’, ‘e1071’ and ‘stats’, respectively at

http://www.R-project.org.
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3 RESULTS

3.1 Antigen selection

In each run, the top x¼ {10, 25, 50, 100, 150} antigens are
selected based on the ranking scheme described. Table 2

presents antigens that are in the top 25 list in all 10 runs.
Table A of Supplementary Materials presents antigens in the

top 50 list in all 10 runs.
Figure 2 shows the elevated responses of top ranking antigen

signals in infected sera. These antigens appear in the top 25 list
in all 10 runs. The intra-array control is also included. The

difference in the control signal is negligible as is expected when
the measurements are calibrated.

3.1.1 The �h statistic (Huber et al., 2002) The bars in

Figure 2 represent the difference (�h) between mean ‘vsn’
transformed disease sera signals and healthy sera signals, used

in the Bayes-regularized t-test to compute differential expres-
sion. The P-values (pb) from the t-test are used to determine one

of the two measures that make up the cumulative ranking score

proposed earlier. For ‘vsn’ transformed data, this ih statistic

coincides with the log-ratio for high intensities and the

difference for near-zero intensities. It should be noted that

Figure 2 depicts the mean difference when all sera (both

training and validation sets) are used. When performing the

differential expression analysis on randomly generated training

subsets, antigens are selected based on the mean difference

between disease and healthy sera in that particular training set.

3.1.2 Immune responses in disease subtypes Since the clinical

status of some of the patients is known with respect to whether

the infection was pneumonic (lung infection) or ulceroglandular

(cutaneous), and whether the infection was from the virulent

Type A strain or the less virulent Type B strain, the differences

in immunoreactivity in these patient groups can also be

examined.
Figures 3 and 4 show the immune responses in the specific

infection subgroups and enable us to visually appreciate some

of the differences. For example, antigen FTT1484 is more

reactive in the ulceroglandular group compared to pneumonic

group of sera. Similarly, antigen FTT0975 shows a stronger

Fig. 2. Differential expression between mean ‘vsn’ transformed disease

and healthy sera signals for antigens appearing in the top 25 list in all 10

runs (Table 2). Bars represent the �h statistic (see text). ‘Control’ is the

mean intra-array background/true negative signal.

Fig. 3. Immune responses in pneumonic and ulceroglandular disease

subgroups compared to mean ‘vsn’ transformed healthy sera signals for

antigens in Table 2. Bars represent the �h statistic. ‘Control’ refers to

the mean intra-array background/true negative signal.

Table 2. Antigens that appear in the top 25 list in all 10 runs using the

proposed ranking scheme

Antigen No. of times

in top 25 list

No. of times

in top 10 list

FTT1116 10 10

FTT0106 10 10

FTT1484 10 10

FTT1314 10 10

FTT1696 10 10

FTT0472 10 10

FTT0956 10 8

FTT0077 10 8

FTT0101 10 7

FTT1163 10 6

FTT0949 10 3

FTT0989 10 1

FTT1540 10 1

FTT0975 10 0

FTT1775 10 0

Fig. 4. Immune responses in Type A and Type B disease sub-groups

compared to mean ‘vsn’ transformed healthy sera signals for antigens in

Table 2. Bars represent the �h statistic. ‘Control’ refers to the mean

intra-array background/true negative signal.
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response in Type B infected subjects. This can be confirmed by
more rigorous assessment, using statistical tests, to determine

which responses in each of the subgroups are significantly
different (outside the scope of this work). The following section

explores how these selected lists of antigens help in improving

class prediction. It is of particular interest to observe whether
smaller numbers of antigens are effectively able to summarize

the information in the proteome for reliable diagnosis of
F.tularensis disease in human sera.

3.2 Classification/clustering

Figure 5 shows the performance of the classification/clustering
techniques on the training and validation sets. Prediction

accuracy rates (%) are averaged across the 10 runs and

presented in terms of total accuracy, sensitivity and specificity.
The primary aim is to observe the expected levels of prediction

accuracy using the selected antigens’ signals. If smaller antigen

sets are able to capture immune response information
required for diagnosis as reliably as, if not better than, larger

sets, then antigens occurring with high frequency in these
smaller sets can be considered high-priority candidates for

further evaluation.
Given the available data, a limited analysis is also conducted

to compare methods when different feature set sizes are used

for training. When comparing methods, the variance corrected
resampled paired t-test (Nadeau and Bengio, 2003) is applied,

to account for the overlapping test samples. Berrar et al. (2006)
noted that this correction, while drastically improving the Type

I error of the t-test, might cause a decrease in power, especially

when the training set is not �5–10 times larger than the test set.
P-values are therefore reported when both borderline and

significant differences in accuracy measures are observed.
Holm–Bonferroni correction is applied because c¼ 3 methods

are compared across six feature set sizes, resulting in

@ ¼ 1=2� cðc� 1Þ � 6¼ 18 multiple comparisons.

3.2.1 Total accuracy Total accuracy refers to the percentage
of cases in the validation set that are correctly classified as

either infected or healthy sera. Figure 5f shows a decline in
accuracy as the feature set size increases, particularly beyond

50 antigens. The decline is apparent for k-NN and even more so

for k-means since both use distance measures that can be
sensitive to noise in the feature set. The validation accuracy of

k-means (�60%) is lower than SVM (�85%), when no feature

selection is performed (borderline significant P¼ 0.003,
Fig. 6d). As expected, the performance of k-means, an

unsupervised learning method, steadily improves with feature
selection, which is based on criteria that uses class label

information. SVM is fairly robust to changes in feature set size

and also appears to be resistant to overfitting when linear and
polynomial (data not shown) kernels are used.

3.2.2 Sensitivity and specificity Both SVM and k-NN

methods diagnose cases with higher average specificity
(495%) than sensitivity (80–90%) (Fig. 5b and d) on validation

data, using the top 10–50 antigens. One reason for this could be

the variation in immune responses in infected samples due to
genetic factors such as MHC haplotype, disease subtype,

specimen timing with respect to onset of symptoms and

F.tularensis strain. Milder infections may not show significantly

different responses from uninfected samples. High sensitivity is

observed when �25–50 antigens are selected for model building

(Fig. 5b). In addition to the noise removed when feature

selection is applied, the increased sensitivity when feature set

size is small is probably because the antigens are selected

based on disease-specific responses. The sensitivity of k-NN

decreases rapidly (Fig. 6e) as the feature set size increases

but the difference is not statistically significant when com-

pared with other methods. We also note a decrease in

specificity on the validation set as feature set size increases,

(Fig. 5d) with k-means performing worse than both k-NN

(P50.002) and SVM (P50.003) when all features are used

(Fig. 6f).

3.2.3 Diagnostic antigen discovery Given the high prediction
accuracy rates in the 90% range with the available data, when

the feature set size is �25–50 antigens (Fig. 6-upper panel), the

F.tularensis antigens occurring with the highest frequency in the

top 25 list can be regarded as a high-priority serodiagnostic

antigen set. Figure 2 presents these antigens ordered by the ih

statistic. The mechanisms responsible for particularly elevated

responses to FTT0077, FTT1696 and FTT0472, or to other

antigens in specific disease subgroups, require further investiga-

tion. Here, all antigens in Figure 2 are further validated

through proteomic analyses aimed at predicting localization

as shown in Table 3. An extended table containing

antigens appearing in top 50 list in all 10 runs is available in

Table A (Supplementary Material). Some of the immunodo-

minant antigens shown in Table 3 are not immunologically

unique to Francisella. For example, GroEL from other

bacterial species is regularly identified as being reactive with

human sera (Chen et al., 2004; Cole et al., 2005). A potential

extension of this study would be to focus on the proteins which

are either unique to Francisella or investigate whether the

proteins have significant sequence diversity from other bacterial

homologs so they are more likely to be immunologically

distinct.

Table 3 also discusses the likely cellular location of the

proteins. As a gram-negative bacterium, F.tularensis contains

both helical transmembrane (TMH) proteins and transmem-

brane beta-barrel proteins (TMBs). TMH proteins are found in

the bacterial inner membrane, while TMBs localize in the outer

membrane. To predict TMH proteins we look at the localiza-

tion predictions in conjunction with the number of predicted

transmembrane segments from TMHMM (Krogh et al., 2001).

To predict TMBs, we consider the localization predictions,

combined with the output from three publicly available TMB

screening tools: PRED-TMBB (Bagos et al., 2004),

TMB-HUNT (Garrow et al., 2005) and ProfTMB (Bigelow

et al., 2004). All three TMB screening tools provide a numerical

confidence in their output. For the antigens submitted, scores

generated by each tool are normalized to 0–1 intervals. Two

independent computational tools are used to predict localiza-

tion: PSORTb (Gardy et al., 2005) and a SVM based predictor

(Wang et al., 2005). Both predictors are designed specifically

for gram-negative bacteria. It is not altogether surprising that

many top antigens are predicted to be surface or membrane

associated proteins, which are highly visible to the host immune
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system and hence more likely to trigger an initial immune

response. In several pathogens that have been studied using the
same techniques, it has been observed that a large number of

top antigens are predicted to be membrane proteins (�50%)

(data not shown). It must be noted that PSORT relies partly on

the presence of signal sequences to identify likely exported

proteins. However, there are many proteins exported via other
systems, which may not be identified using PSORT. For

example, FTT1314 is almost certainly on the surface since this

is the location of type IV pili. Predicting subcellular localization

Fig. 5. Prediction accuracy of classification (%) models averaged over 10 runs for different feature subset sizes. *Without antigen/feature selection

i.e. all 244 antigens þ1 averaged control used by classifier for training and validation.
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is also complex because some proteins, like GroEL, which are

clearly predominately cytoplasmic, can be found on the surface

under some conditions (Bergonzelli et al., 2006; Garduno et al.,

1998). One protein, FTT0949, is predicted to be encoded by a

pseudogene in F.tularensis subspecies holarctica OSU18

(type B) (Petrosino et al., 2006) and tularensis SchuS4 (type

A). This is interesting since evidence of its immunoreactivity

suggests that it is expressed in vivo in the infected patient. The

immunoprotemics data does not only indicate possible protec-

tive antigens, but also genes that are expressed in vivo.

Therefore, some of the proteins identified might well play

roles in virulence. The most obvious example of this is

FTT1314. Type IV pili are strongly implicated in virulence of

F.tularensis (Forslund et al., 2006).

4 DISCUSSION AND CONCLUSIONS

The foundation of the array platform is a high-throughput

PCR and homologous-recombination cloning methodology

that enables the genes of any sequenced pathogen to be

cloned quickly and efficiently. Genomes of pathogens compris-

ing several thousand genes can be cloned in relatively short

time. This gives the capability of screening the whole proteome

for immunoreactive targets. It also means that the platform is

not restricted to screening just known antigens. Conventional

proteomic methodologies use 2D gels to separate bacterial cell

components followed by the identification of immunoreactive

spots by mass spectrometry. These methods are only able to

sample proteins which are produced by the bacterium in broth

culture in the laboratory. Different proteins that are only

expressed in an animal or human host will not be available for

analysis. In contrast, the protein microarray technology studied

here samples each protein equally and allows the entire

proteome to be interrogated in an unbiased manner.

Completely novel antigens are discovered leading to a more

comprehensive data set. Moreover, the arrays are fabricated

from proteins expressed in cell-free transcription/translation

reactions that are printed directly without further purification.

This considerably alleviates the bottleneck associated with

protein purification, particularly when thousands of antigens

are required. More than 12 500 proteins from at least 14

microorganisms including vaccinia virus (Crotty et al., 2003;

Davies et al., 2005a, b), Leptospira interrogans, Mycobacterium

tuberculosis, Plasmodium falciparum (Doolan et al., 2003;

Sundaresh et al., 2006), Plasmodium vivax, Burkholderia

pseudomallei, Coxiella burnetii, Borrelia burgdorferi and

C.trachomatis, orthopox viruses, herpes viruses and papilloma

viruses have already been cloned, expressed and printed.
Using this array technology, it has been demonstrated that

signals measuring strong antigen-antibody binding activity can

be computationally analyzed to determine infection. The

screening process for identifying immunodominant antigens

occurs in stages. Initially, chips containing 1741 F.tularensis

antigens are probed with sera and the top 244 antigens with the

Fig. 6. Box plots summarizing validation accuracy (total accuracy, sensitivity and specificity) of classification methods. Upper panels show

validation accuracy (%) when 25 top-antigens are selected for training. Lower panels show accuracy (%) when no feature selection is performed.
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Table 3. Summary of the immunoreactive antigens identified in this study that are part of the serodiagnostic antigen set. The probability that a signal peptide is present in the amino acid

sequence is determined by SignalP 3.0 (Bendtsen et al., 2004) using Hidden Markov Models (HMM) where the prediction is given as a probability. Predicted TMH count comes from the

TMHMM predictor (Krogh et al., 2001). The TMB screening values come from normalizing the numeric confidence outputs for each predictor: TMB-HUNT (Garrow et al., 2005), ProfTMBB

(Bigelow et al., 2004) and PRED-TMBB (Bagos et al., 2004). The most likely TMB or TMH proteins in this set, i.e. FTT0106 and FTT1775, respectively, are highlighted in bold. The intracellular

localization is predicted by PSORTb (Gardy et al., 2005) and an SVM based predictor (Wang et al., 2005)

FTT# Description SignalP 3.0 TMHMM

helix

count

TMB screening Localization

TMB-HUNT Prof-TMBB PRED-TMBB PSORTb SVM By function*

FTT1116 Preprotein translocase family protein 1.00 2 0.33 0.00 0.72 unknown inner mem mem

FTT0106 Efflux protein, RND family, MFP subunit 0.67 2 0.87 0.81 0.47 cyto mem outer mem mem

FTT1484 Pyruvate dehydrogenase, E2 cmpt. 0.00 0 0.03 0.96 0.74 cyto mem cyto cyto

FTT1314 Type IV pili fiber building block protein 0.86 1 0.17 0.79 0.37 unknown extracellular surface

FTT1696 Chaperone protein, GroEL 0.00 0 0.00 0.79 1.00 cyto cyto cyto

FTT0472 Acetyl-CoA carboxylase,

biotin carboxyl carrier protein subunit

0.09 0 0.12 0.78 0.80 unknown cyto cyto

FTT0956 Hypothetical membrane protein 0.99 1 0.44 0.59 0.29 unknown periplasmic mem

FTT0077 Dihydrolipoamide succinyltransferase cmpt. 0.00 0 0.01 0.79 0.54 cyto cyto cyto

FTT0101 Conserved membrane hypothetical protein 1.00 1 0.08 0.63 0.18 cyto mem periplasmic mem

FTT1163 Hypothetical membrane protein 0.27 2 0.53 0.00 0.26 cyto mem inner mem mem

FTT0949 Pseudogene 1.00 1 0.30 0.48 0.28 unknown cyto mem

FTT0989 Hypothetical protein 0.94 1 0.19 0.49 0.26 unknown outer mem mem

FTT1540 Hypothetical protein 1.00 0 0.43 0.82 0.18 unknown extracellular mem

FTT0975 Hypothetical protein 1.00 0 0.34 0.71 0.45 unknown extracellular mem

FTT1775 Chloride channel protein 0.79 11 0.17 0.82 0.48 cyto mem inner mem mem

*In addition, antigens are identified as likely membrane proteins based on similarity with other proteins of membrane localization, or presence of a signal sequence, presence of membrane spanning domains predicted by

TMHMM, presence of a lipid attachment (prosite domain ps0013). Abbreviations: cyto,cytoplasmic; mem,membrane.
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highest signal intensity are used to build a second chip so that
more specific measurements can be obtained. The next stage of

analysis employs more stringent criteria based on robust
statistical techniques, which enable identifying candidate

serodiagnostic antigen sets. A comparative study of different
computational techniques for classification highlights the

effects of varying antigen set sizes on predictive power. When

signals of 25–50 antigens are used for classifier training, SVM
based models perform well overall yielding prediction rates of

�90%. For a validation set containing n¼ 25 cases, this
accuracy level corresponds to a misdiagnosis of �2–3 cases. An

investigation of support vectors identified in the models did not

yield any association with available patient information such as
disease subtype and specimen timing with respect to symptom

onset. SVM models are found to be on average more specific
than sensitive, making this an important consideration in the

specific application that this test is used for. A large
population-wide study will provide better estimates of the

cost-effectiveness of these diagnostic tests and enable a more

rigorous comparison of different computational techniques for
disease diagnosis. Finally, the immunodominant antigens,

presented as high-priority candidates for diagnostic develop-
ment, can be further evaluated using proteomic analysis

techniques.
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