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ABSTRACT

Motivation: Recent improvements in high-throughput Mass

Spectrometry (MS) technology have expedited genome-wide dis-

covery of protein–protein interactions by providing a capability

of detecting protein complexes in a physiological setting.

Computational inference of protein interaction networks and protein

complexes from MS data are challenging. Advances are required in

developing robust and seamlessly integrated procedures for

assessment of protein–protein interaction affinities, mathematical

representation of protein interaction networks, discovery of protein

complexes and evaluation of their biological relevance.

Results: A multi-step but easy-to-follow framework for identifying

protein complexes from MS pull-down data is introduced. It

assesses interaction affinity between two proteins based on

similarity of their co-purification patterns derived from MS data.

It constructs a protein interaction network by adopting a knowledge-

guided threshold selection method. Based on the network,

it identifies protein complexes and infers their core components

using a graph-theoretical approach. It deploys a statistical evaluation

procedure to assess biological relevance of each found complex.

On Saccharomyces cerevisiae pull-down data, the framework

outperformed other more complicated schemes by at least 10% in

F1-measure and identified 610 protein complexes with high-

functional homogeneity based on the enrichment in Gene Ontology

(GO) annotation. Manual examination of the complexes brought

forward the hypotheses on cause of false identifications. Namely,

co-purification of different protein complexes as mediated by a

common non-protein molecule, such as DNA, might be a source of

false positives. Protein identification bias in pull-down technology,

such as the hydrophilic bias could result in false negatives.

Contact: samatovan@ornl.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Cellular functions are carried out by intricate network of

interacting proteins (Alberts, 1998). In particular, groups of

proteins working together to achieve relatively distinct biologi-

cal functions through a series of protein interactions constitute

the fundamental units in the network of interacting proteins:

protein functional modules (Hartwell et al., 1999), or protein

complexes. From the network topological perspective, modular

structure of protein interaction networks are indicated by the

graph–theoretical property of high-clustering coefficient, i.e.

cliquishness (Barabasi and Oltvai, 2004). Accordingly, protein

complexes are typically interpreted as regions in the network,

where vertices are more densely connected to each other than to

the rest of the network (Bader and Hogue, 2003).
Protein complex identification inevitably depends on the

quality of the protein–protein interaction networks that are in

turn dependent on the experimental technologies for detecting

the interactions. Due to the ability to detect physiological

complexes in natural settings (Drewes and Bouwmeester, 2003;

Gavin et al., 2002), biochemical purification of proteins in

combination with high-throughput tandem Mass Spectrometry

(MS/MS) has become an important strategy for the genome-

wide identification of protein interactions (Butland et al., 2005;

Gavin et al., 2002, 2006; Krogan et al., 2006). This strategy is

commonly referred to as the pull-down technology, in which a

bait protein is used to pull-down associated prey proteins,

followed by the identification of the proteins through the MS/

MS analysis. Although promising, protein interaction network

construction and complex identification from pull-down data

still requires careful attention in handling errors and noise.

Although alternative approaches have been proposed

(Scholtens et al., 2005), identification of protein complexes

from pull-down data usually involves the following steps:

(i) assessment of pair-wise protein interaction affinities,

(ii) construction of a protein interaction network, (iii) identi-

fication of candidate protein complexes, and (iv) post-

evaluation and finalization of the complexes. Every step is

crucial and needs to be performed with great care. Also, all steps

are closely coupled and thus should be performed in a coherent

manner, as each subsequent step depends heavily on previous

steps. For example, different sets of complexes can be obtained

with different measurements of protein interaction affinity.
Assessment of protein interaction affinity is a process of

addressing biological variability and technical limitations that

often result in finding spurious interactions (false positives) and

missing some true interactions (false negatives). Assessment of
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protein interaction affinities from pull-down studies requires
special attention. Unlike technologies that produce a set of
binary (pair-wise) interactions such as yeast two-hybrid, the

pull-down approach purifies and analyzes whole protein
complexes, thus requiring specific topological assumptions
about bait and prey proteins to draw pair-wise protein

interactions. Commonly used topologies include the ‘spoke’
and ‘matrix’ models that define interactions between bait and
preys, and between all constituents in a complex, respectively

(Bader and Hogue, 2002). It is suspected that the spoke and the
matrix models tend to have high false negative rates and high
false positive rates, respectively. Our empirical evaluation using

known complexes from the Munich Information Center for
Protein Sequences (MIPS) database and the pull-down data
from (Gavin et al., 2006) indeed verifies this suspicion. Among

the 13 384 pair-wise protein interactions derived from the MIPS
complexes, the spoke model identified 2656 (19.8%) true
interactions, and introduced 5214 (39.0%) false interactions.
In contrast, although the matrix model was able to cover 9202

(68.8%) true interactions, it introduced 41 320 (308.7%) false
interactions.
For this reason, we are witnessing hybrid approaches that

combine the two models. ‘Socio-affinity’ index (Gavin et al.,
2006) is one such effort that computes affinity between proteins
by measuring the log-odds of the number of times two proteins

are observed together as bait and a prey, or a prey and a prey,
relative to what would be expected from their frequency in the
data set. However, such a method is most suitable for data sets

where all proteins appear as both baits and preys. Since we do
not always expect such reciprocal appearances, a modified
version based on the probabilistic framework of a naı̈ve Bayes

classifier has been developed and demonstrated to outperform
the socio-affinity index (Collins et al., 2007).
Protein complex identification usually relies on protein

interaction networks that are constructed from statistically
assessed pair-wise protein interaction affinities (Gilchrist et al.,
2004). Typically, a network is constructed by setting a threshold

for the pair-wise affinity. Such a network is usually represented
as an un-weighted graph, where vertices and edges correspond
to proteins and interactions between them, respectively. To be

more specific, an edge is drawn between two vertices (proteins)
if their affinity level is above a pre-selected threshold. In many
cases, an arbitrary and empirical threshold is used. However,

it should be noted that a choice of threshold can significantly
affect the integrity of the network and the protein complexes
derived from it. Once the initial candidate set of complexes is

found from the network, a rigorous post analysis should be
performed to derive the final results. This last step is critical in
revealing the dynamic organization property of the complexes

(Gavin et al., 2006), and associating complexes to underlying
biological roles.
In this article, we introduce a multi-step framework that

coherently integrates the aforementioned four steps for protein
complex identification. Not only do we advance each step, but
also provide an easy-to-follow scheme to integrate steps to

maximize the informativeness of the available data. For the
assessment of protein interaction affinity (Step 1), we suggest
comparing the co-purification patterns of two proteins across

different pull-down experiments. Our underlying assumption is

that similarity of co-purification patterns indicates the like-

lihood of protein–protein affinity. We adopt the Dice

coefficient to quantify such an affinity. Affinity scores thus

found are used to construct a protein interaction network

through a knowledge-guided information theoretic threshold-

ing method (Step 2). Specifically, the affinity threshold that

maximizes a balanced sensitivity and specificity of the resulting

interaction network with respect to the known evidences is

sought. From the network graph constructed with a chosen

threshold, we seek to find all maximal cliques as candidate

protein complexes (Step 3). A maximal clique is a clique that is

not contained in any other clique, while a clique is a complete

graph in which all vertices are pairwisely connected. Since we

assume that all interaction partners have similar co-purification

pattern, maximal cliques could serve as good candidate

complexes. However, due to high false negative rates (unde-

tected true interactions) of protein interactions found in pull-

down experiments (Yu et al., 2006) and the dynamic property

of protein complexes (Gavin et al., 2006), we note that a protein

complex can be represented by many nearly identical cliques,

similar to the complex isoforms described in Gavin et al. (2006).

For this, in Step 4, we propose an algorithm that merges the

isoforms (highly overlapped cliques) into single protein com-

plexes, and divide the proteins in a complex into core

components (common to most of the isoforms) and attachment

components (unique to specific isoforms).
We evaluate our proposed framework by comparing the

performance with those of the original iterative hierarchical

clustering-based method (IHC) (Gavin et al., 2006) and two

popular protein complex identification algorithms, the

Mollecular Complex Detection (MCODE) algorithm (Bader

and Hogue, 2003) and the Markov Clustering (MCL) algorithm

(Enright et al., 2002). In particular, we compare the recalls and

precisions for different methods based on the manually curated

complex data from MIPS.
Finally, we analyze the biological relevance of the identified

complexes. Based on the GO category enrichment analysis, the

complexes are associated with the most enriched GO categories

in order to assign each complex a predominant biological

function.

2 METHODS

2.1 Generation of protein by pull-down matrix

The pull-down data is transformed into a binary protein by pull-down

matrix, where each row corresponds to a protein and each column

corresponds to a pull-down experiment. A cell (i,j) in the matrix is one if

protein i is pulled down as a prey in the experiment j, and a zero,

otherwise.

2.2 Pair-wise affinity score calculation

The Dice coefficient is used to score the interaction affinity between two

proteins. With the matrix representation (Section 2.1), a protein is a

binary vector. For two protein vectors (i and j), the Dice coefficient is

computed by counting the number of elements (experiments) on which

both proteins take the same or different values. Specifically, let q denote

the number of elements that both protein i and j have ones. Let r denote

the number of elements that protein i has ones, but zero for protein j.

B.Zhang et al.
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Likewise, let s denote the number of elements that protein j has ones,

but zeros for protein i. Then the Dice coefficient is formally defined as,

Dði; jÞ ¼
2q

2qþ rþ s
:

For comparison, the socio-affinity (SA) score was calculated

according to Gavin et al. (2006), the Gilchrist score (GS) was calculated

according to Gilchrist et al. (2004) and the Purification Enrichment

(PE) score for the same data set was downloaded from http://

interactome-cmp.ucsf.edu.

2.3 Protein interaction network construction

A protein interaction network is represented as an undirected and un-

weighted graph. Generating one such graph from a pull-down data set

requires a pre-selected threshold of the pair-wise affinity scores. Since

an arbitrarily chosen threshold may result in poor complex identifica-

tions, we use manually annotated protein complexes in the MIPS

database (ftp://ftpmips.gsf.de/yeast/catalogues/complexcat) to guide

the threshold selection. In order to maximize both recall and precision,

we use F1-measure, which is the harmonic mean of recall and precision

with an equal weight, as the metric. A series of thresholds are tested and

the one that produces the best F1-measure is chosen. Specifically, given

a threshold, protein pairs are classified into four categories as shown

Table 1. Then recall, precision and F1-measure are calculated as shown

in Table 1.

2.4 Protein complex identification

As in Gavin et al. (2006), we define protein complexes as sets of

proteins where all pair-wise affinity scores are greater than a

predefined threshold. From a graph theoretical point of view, a complex

can be represented as a completely connected subgraph (or clique) of

proteins, where an edge corresponds to a pair-wise affinity between

proteins. Then protein complex identification is reduced to the maximal

clique finding problem. A maximal clique is a clique that is not part of

any other larger cliques, i.e. inclusion of any other vertex to a maximal

clique will violate its completeness. We apply our maximal clique finding

algorithm (Zhang et al., 2005) to enumerate cliques of size three or

higher from the protein interaction network.

In practice, maximal cliques found from a protein interaction

network need to be further processed. Due to technical errors as well

as the dynamic organization of the complexes, a number of almost

identical cliques can be produced. Merging these cliques into a single

bigger complex will not only reduce false negatives, but also help

revealing the dynamic organization of protein complexes.

The clique merging algorithm adopts the Meet/min coefficient

(Goldberg and Roth, 2003) as the similarity measure between two

cliques. For a given pair of cliques ci and cj, let q be the number of

proteins that belong to both ci and cj, and let r and s be the numbers of

proteins that only belong to ci or cj, respectively. The Meet/min

coefficient is then calculated by,

Mði; jÞ ¼
q

minðr; sÞ
;

where min(r,s) is the minimum of r and s.

The clique merging algorithm iterates over a series of sessions, where

in each session all candidate complexes are examined for potential

merges. The algorithm stops when no changes in the candidate

complex set between two consecutive sessions are observed. Initially,

the candidate complex set consists of cliques identified from

maximal clique algorithm, i.e. C0¼ {c1,c2, . . . ,cl}, where each ci is a

clique. During each session, for each ci, Meet/min coefficients between

ci and all other complexes are measured. Then the closest cj (complex

with the highest coefficient) is merged with ci if the coefficient is

above the given threshold, and new candidate complex ci [ cj is added

into the candidate complex set. At the end of the session, both ci
and cj are removed from the candidate set, and Ck becomes Ckþ1

if it was the k-th session. The algorithm takes a greedy approach

to suppress the explosion of a candidate complex set. It may

thus prevent some pairs of close (similar) complexes from being

merged. However, if the pair is closest at least in one direction

(ci is the closest to cj or cj is the closest to ci), it is guaranteed to

be merged.

Proteins in the merged complexes are further separated into core

proteins and attachment proteins. For each merged complex, we define

the core proteins as those present in 2/3 or more of the original cliques

used for the merging, and the other proteins are defined as attachment

proteins.

For comparison, the MCODE software was downloaded from http://

cbio.mskcc.org/�bader/software/mcode/, and the MCL software was

downloaded from http://micans.org/mcl/.

2.5 Evaluation of identified protein complexes

We use the enrichment analysis to evaluate the protein complexes

identified in this study based on the GO annotation downloaded from

the Gene Ontology website, http://geneontology.org/GO.current.

annotations.shtml. GO has a hierarchical structure, and a protein can

be mapped into multiple categories in the same or different hierarchies.

Since the aim of this study is to assess the biological relevance of each

inferred protein complex in terms of a consensus in GO categories, we

consider all categories in every level of the hierarchy for the evaluation

(Zhang et al., 2004).

In order to identify GO categories that are enriched in a protein

complex, we compare the statistical likelihood of proteins in the

complex in each GO category to those in the reference set, i.e. Ctotal.

Specifically, for a given protein complex and GO category X, let

m and K be the numbers of proteins in the complex and category

X, respectively. Let us further assume that k out of the m proteins in

the complex are in category X. Then category X is said to be

enriched if k exceeds its expected value, m(K/Ctotal). To assess

the significance of enrichment (P) for a given category, we

perform the hypergeometric test as described in (Zhang et al., 2005).

Namely,

P ¼
Xm

i¼k

Ctotal � K
m� i

� �
K
i

� �

Ctotal

m

� �

Finally, for a protein complex, we report the most significantly

enriched categories under biological process, molecular function and

cellular components, respectively.

Table 1. Contingency table for protein affinity scores

Within a known
protein complex

Not within a known
protein complex

Above the threshold True positive (TP) False positive (FP)
Below the threshold False negative (FN) True negative (TN)

recall ¼ TP
TPþFN, precision ¼ TP

TPþFP, and F1�measure ¼ 2�recall�precision
recallþprecision .
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3 RESULTS

We tested our method on the pull-down data in S.cerevisiae

(Gavin et al., 2006), where 3260 pull-down experiments are

stored among 1993 bait and 2760 prey proteins.

3.1 Evaluation of protein interaction affinity scores

We assessed our Dice coefficient-based scoring (DC) scheme

for protein interaction affinity by comparing its performance

with those of the socio-affinity (SA), Gilchrist score (GS), and

Purification Enrichment (PE). All four schemes are designed to

assign pair-wise affinity scores for all proteins identified in an

experiment. We investigated how each scheme successfully

distinguishes true interactions from false interactions. To be

more specific, with a selected threshold for each scheme, a pair

of proteins is classified to be of a true interaction if their affinity

score is above the threshold, or of a false interaction, otherwise.

The 267 manually annotated protein complexes downloaded

from the MIPS database were used to validate classifications.

The performances of the three approaches were compared by

the F1-measure. For a fair comparison, we chose a large variety

of thresholds within the score ranges for each scoring system.

DC and GS generated scores ranging from 0 to 1, while SA and

PE ranged from �3 to 22 and 0 to 30, respectively. Figure 1

shows the F1-measures for different scoring systems based on

different thresholds. DC and PE performed the best, with the

best F1-measure of 0.53 achieved at the thresholds of 0.15 and

1.5, respectively. SA achieved the best F1-measures of 0.43 at

the threshold of 4. GS seems very insensitive, the best

F1-measure of 0.25 was observed for thresholds varying from

0.05 to 0.5. We also calculated the F1-measure for the pair-wise

interactions derived from the spoke and matrix models. The

F1-measures for the spoke model and the matrix model were

0.25 and 0.29, respectively. These results indicate that DC and

PE best represent the affinity of protein interaction. Therefore,

we used these two scoring schemes for the network construction

in the following step.

3.2 Identification of candidate protein complexes

via clique enumeration

Based on the above result, we constructed two versions of yeast

protein interaction networks. Network D is based on the DC

threshold of 0.15, while Network P is based on the PE threshold

of 1.5. Network D has 2109 vertices and 16 169 edges, while

Network P has 4543 vertices and 37 000 edges.

Using the maximal clique finding algorithm, we identified

4123 and 19 242 cliques of size three or more from Network D

and Network P, respectively. There is a large amount of overlap

among the cliques. For example, the maximum clique

(the largest maximal clique) in Network D overlapped with 43

other maximal cliques, among which 25 overlaps covered more

than half of the proteins in the corresponding maximal cliques.

More severely, the maximum clique in Network P overlapped

with 10 954 other maximal cliques, among which 768 overlaps

covered more than half of the proteins in the corresponding

maximal cliques. We used the Meet/min coefficient to quantify

the overlap between two cliques, and found that 308 812 and

31 821 406 clique pairs showed a Meet/min coefficient of greater

than 0.5 in Network D and P, respectively. Many cliques

differed only in a few proteins. The high degree of overlap can be

partially attributed to the undetected true interactions (Yu et al.,

2006), which reflects the technical imperfection. However, it

may also reflect the dynamic organization of the protein

complexes (Gavin et al., 2006). Merging these overlapping

cliques into a single bigger complex may not only help reduce

false negatives, but also reveal interesting biological dynamics.

3.3 Production of protein complexes through merging

highly overlapping cliques

The final sets of protein complexes for Networks D and P were

produced by merging highly overlapping cliques. As per results,

851 and 622 complexes were inferred from Network D and

Network P, respectively. To assess the qualities of the identified

complexes, we evaluated the recall and precision using the

manually annotated protein complexes in the MIPS database,

and compared the clique merging (CM) results to those

generated from MCODE and MCL. As clearly delineated in

Figure 2C, DC outperformed PE for all the three complex

identification methods applied, even though they showed

similar results in the pair-wise based evaluation in 3.1. PE

generated higher recalls, but sacrificed significantly in precision.

Within the same scoring scheme, CM consistently beat

MCODE and MCL. DC was less sensitive to the complex

identification method, and both DC-CM and DC-MCL

combinations achieved better F1-measures than the SA-IHC

combination used in the original study. Unfortunately, as the

IHC procedure described in the article was hard to follow, we

were not able to test this algorithm on DC and PE. It is possible

that IHC may perform better with these scoring schemes as

they both outperformed SA in 3.1.
In order to explore the dynamic organization nature of the

protein complexes, we further separated proteins in the merged

complexes into more static core components and more dynamic

attachment components, as depicted in the four examples

Fig. 1. Performance evaluation of the protein interaction affinity

scoring schemes based on the MIPS complex catalogue. (A) Dice

coefficient (DC), (B) Socio-affinity index (SA), (C) Gilchrist et al.’s

score (GS), (D) Purification enrichment score (PE). Solid diamond,

open circle lines, and open triangle lines represent F1-measure, recall

and precision, respectively.
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in Figure 3. In complex A, all core proteins (purple) and

attachment proteins (green) belong to the DNA-directed RNA

polymerase I complex. Although we cannot exclude the

possibility of the dynamic organization of this complex, the

observation likely reflects technical errors that produced false

negatives in individual complex isoforms (maximal cliques).

In complex B, Ski complex proteins SKI2 and SKI3 were found

as attachments to the Exosome core. This has been reported in

the original analysis (Gavin et al., 2006), and the association is

critical to the cytoplasmic messenger RNA 30–50 decay (Orban

and Izaurralde, 2005). In complex C, protein BNI4 was found as

an attachment to the Septin ring complex. This attachment is

required for normal septin function in yeast (DeMarini et al.,

1997). In complex D, protein MEX67 was found as an

attachment to a core with the nuclear pore complex components,

supporting previous report that nuclear mRNA export requires

the interaction between MEX67 and the nuclear pore complex

protein MTR2 (Santos-Rosa et al., 1998). Cores and attach-

ments for all 851 complexes are listed in the Supplementary

Information.

3.4 Functional evaluation of inferred protein complexes

We evaluated the functional relevance of each of the 851

protein complexes identified from Network D using a

hypergeometric enrichment test against all GO categories.

610 complexes showed high functional homogeneity, with a

Bonferroni-adjusted P-value less than 0.05 in at least one of the

biological process, molecular function, and cellular component

categories. The most enriched GO categories for all the 851

complexes and associated P-values are listed in the

Supplementary Information.

4 DISCUSSION

4.1 Computational framework of protein complex

identification

With the wide-spreading interest of pull-down technology, a

seamless integration of computational steps in identifying

protein complexes from pull-down data is valuable. In this

article, we introduced one such multi-stage framework. We

particularly proposed a protein–protein interaction affinity-

scoring scheme and demonstrated how graph theoretical

approaches can be deployed to identify protein complexes.
We considered the affinity score between two proteins to

be correlated with the strength of their co-purifications

(co-appearances) over all pull-down experiments in which

either (or both) of the proteins is purified, and used the Dice

coefficient to quantify the affinity. Despite its simplicity, Dice

coefficient performs better than existing scoring schemes in

estimating the strength of protein interaction affinity, and

provides an easy but effective alternative in analyzing pull-

down data. Moreover, correlation based protein interaction

affinity measurement can be easily adopted for the

Fig. 2. Performance evaluation of the computationally predicted

protein complexes based on the MIPS complex catalog. Recall (A),

Precision (B), and F1-measure (C) of six protein complexes sets found

in this study through two different protein interaction affinity

scoring schemes DC (Dice coefficient) and PE (Purification enrichment

score), and three complex identification algorithms CM (Clique

merging), MCODE (Molecular complex detection algorithm) and

MCL (Markov clustering algorithm). The complexes predicted in the

original paper based on the Socio-affinity index (SA) and iterative

hierarchical clustering (IHC) is also plotted.

Fig. 3. Dynamic organization of protein complexes. Protein complexes

are decomposed into more static core proteins (purple) and more

dynamic attachment proteins (green).
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semi-quantitative pull-down data. Recent studies have revealed

the linear correlation between protein abundance and the

spectrum count in MS/MS (Liu et al., 2004; Zhang et al., 2006).

If such quantitative spectral counts for the preys from MS/MS

are available, the information can be incorporated in the pair-

wise affinity score calculation by simply replacing the Dice

coefficient with the Pearson’s correlation coefficient, for

example. In this way, each bait-prey association is weighted

by the prey abundance represented by corresponding spectral

count, instead of a simple binary assignment, and thus better

estimation of protein interaction affinity is expected.
Maximal clique enumeration-based algorithms have been

applied in identifying modules from various biological net-

works (Baldwin et al., 2005; Palla et al., 2005; Spirin and

Mirny, 2003; Zhang et al., 2006). Although the clique

enumeration problem is NP-hard, recent progresses in exact,

parallel and scalable computational solutions to this problem

have made its genome-scale application feasible (Zhang et al.,

2005, Park et al., 2007). As protein interaction networks are

usually sparse with a scale-free distribution (Barabasi and

Oltvai, 2004), even exact solutions can solve the problem

quickly. For the networks used in this study, exact enumer-

ations took less than 30 s on a regular computer with an Intel

Xeon Processor 3.06Ghz CPU and 1GB Memory. As clique-

based approaches require un-weighted graph as an input, how

to select a threshold to convert the originally weighted graph

into an un-weighted graph is a long-standing problem. Most

often, a threshold is chosen empirically. In this article, we have

employed the methods from the information retrieval field,

and developed a knowledge-based, systematic approach for

thresholding. One requirement of applying our method is the

availability of a benchmark dataset to calculate recalls,

precisions, and F1-measures. Since yeast is the most extensively

studied model organism, such benchmark can be found, and the

MIPS database was used for our study. Even in a case when no

such benchmark dataset is directly available in other organisms,

alternative approaches could be considered. For example, one

could use the protein complexes information in PDB (http://

www.rcsb.org/pdb), and infer protein complexes in the organ-

ism under study through BLAST or PSI-BLAST. Moreover,

one could use the GO-derived functional similarity scores

described in Lord et al. (2003), or the functional association

scores in the STRING database (http://string.embl.de/) to

assist the threshold selection. Although these scores do not

directly suggest physical interactions, correlation between

functional association and protein interaction has been

demonstrated in multiple studies.
Comparing to other complex identification algorithms, the

clique merging approach has an obvious advantage of

intuitiveness. For example, it might be possible to achieve

better performance for MCL by changing the parameters used

for the analysis, but setting the right parameters is non-trivial

without a thorough understanding of the algorithm. Similarly,

IHC might generate better results if DC or PE were used,

however, the procedure described in the original paper is not

easily reproducible. Although CM is much easier to follow than

IHC, it shares the important feature of being able to reveal the

dynamic organization of the protein complexes, a feature that is

missing in other complex identification algorithms such as

hierarchical clustering, MCL and MCODE.
Evaluating the biological relevance of identified protein

complexes is a crucial step in complex identification. In this

study, we evaluated the predicted complexes against the GO

annotation. The assumption behind GO-based evaluation is

that proteins belonging to a real biological complex should

possess a related molecular function, be located in a similar

cellular component, and be involved in an associated biological

process. As GO aims at a structured, controlled vocabulary

that describes gene products in terms of their associated

biological processes, cellular components and molecular func-

tions in a species-independent manner (Ashburner et al., 2000),

these evaluation methods should be applicable in any organ-

isms with a sufficiently good GO annotation. If the GO

annotation is not available, other evaluation approaches could

be used. For example, as proteins belong to a real complex

should be generally conserved through the evolution process to

act as an integrated functional unit, one could use the

‘phylogenetic correlation’ to evaluate the biological significance

of the complexes (Poyatos and Hurst, 2004).

4.2 Exploring possible sources of false identifications

As shown in Figure 3A, clique merging might help reduce false

negative identifications by integrating information from highly

overlapping cliques. Such kind of false negatives can be

attributed to the errors (undetected true interactions) in

individual pull-down experiments, and can be reduced by our

computational framework. Here we further explore other

possible sources of false positive and false negative identifica-

tions by manually going through the identified complexes. We

have found that co-purification of different protein complexes

as mediated by a common non-protein molecule, such as DNA,

might lead to false positives, while the protein identification

bias could generate false negatives.
The purification patterns of two proteins can be similar

if there exists a common non-protein molecule, such as DNA.

A protein may be a part of a complex that interacts with the

DNA, and the DNA pulls down the whole complex. Such an

interaction is likely maintained during the purification step.

Consequently, our scheme of assigning protein interaction can

detect both direct physical protein interactions and indirect

associations mediated by a non-protein molecule. One salient

example is complex 21 (see Supplementary Information), which

consists of several components that are intra-associated, but

inter-disassociated (Figure 4). In other words, proteins in the

same component physically interact, but proteins from different

components may not. However, different components in

complex 21 are found to interact with a common non-protein

molecule, DNA. These components include the RSC complex

(red), the RNA polymerase III complex (blue), the Mot1

complex (purple) and the Nucleosomal protein complex

(green).
An additional example is complex 39 (Supplementary table),

which includes proteins from independent components such as

the replication factor A complex (RFA1, RFA2 and RFA3),

the RecQ helicase-Topo III complex (TOP3), and the

DNA mismatch repair complex (MSH2, MSH3 and MSH6).
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Despite differences in their functional roles, these components

all bind to single strand DNAs. Other proteins in this complex

also interact with single strand DNAs and participate in DNA

repair process.
Although not archived in the current protein interaction

database, we cannot rule out the possibility of direct interaction

among the above complexes owing to the complexity of the cell.

However, the above examples suggest that association through

an additional molecule such as DNA or RNA is a possible

explanation for the co-purification. Treatment of protein

samples with nuclease to separate individual complexes

from their common interacting nucleic acids may help

distinguishing direct interactions from DNA or RNA-mediated

co-purification, and eliminating the later to reduce false

positives in complex identification.

While manually checking the identified complexes, we also

found that protein complexes with hydrophobic subunits are

usually incompletely identified, with the hydrophobic subunits

missing, and therefore generating high false negatives. For

example, complex 93 (see Supplementary Information) involves

seven subunits of the yeast vacuolar (H)-ATPases (V-ATPases),

which are ATP-dependent proton pumps that acidify intracel-

lular vacuolar compartments (Compton et al., 2006; Graham

et al., 2003). The V-ATPases consist of two separable domains:

V1 and V0. The V1 domain associates with the vacuolar

membrane and is composed of eight hydrophilic subunits

catalyzing ATP hydrolysis. The V0 subcomplex is hydrophobic,

composed of seven subunits and transports protons across the

membrane (Flannery et al., 2004). Complex 93 comprises six

out of the eight (75%) hydrophilic subunits (VMA4, VMA5,

VMA7, VMA8, VMA10 and VMA13), while only one out of

the seven (14%) hydrophobic subunits (VPH1).

This observation suggests the insensitivity of the current pull-

down technology in identifying hydrophobic proteins. We

empirically tested this by computing hydrophobicity using the

GRAVY score of proteins found in (1) the entire genome,

(2) the identified protein complexes, (3) the original pull-down

data and (4) the MIPS complexes. The GRAVY score is

measured by averaging hydrophobicity indices of all amino

acids in a protein (Kyte and Doolittle, 1982). Each amino

acid is given a hydrophobicity index between 4.6 and �4.6,

where 4.6 is the most hydrophobic and �4.6 is the most

hydrophilic. Figure 5 shows a hydrophilic bias in proteins

comprising the identified complexes. Hydrophobic proteins are

clearly under-represented in the identified complexes (solid

diamond line) as compared to the entire genome (shaded area).

Moreover, the bias is not generated in the computational

process for complex identification, as it exists in the original

pull-down data (cross line) as well. Analyzing the GRAVY

scores in known complexes taken from the MIPS database also

showed similar hydrophilic bias in proteins comprising those

complexes (circle line). This may suggest that the hydrophilic

bias is not unique to the pull-down technology; instead, it is

common to most of the analytical technologies used for

generating the data in the MIPS database. However, it is also

possible that hydrophobic proteins are less likely to take part in

multi-protein complexes. If the hydrophilic bias is truly caused

by the analytical technologies, it can’t be easily fixed by

computational analyses, and will require improvements from

the experimental side.
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