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Abstract. Full control over the spatiotemporal structure of quantum states of

light is an important goal in quantum optics, to generate, for instance, single-

mode quantum pulses or to encode information on multiple modes, enhancing

channel capacities. Quantum light pulses feature an inherent, rich spectral

broadband-mode structure. In recent years, exploring the use of integrated

optics as well as source engineering has led to a deep understanding of the

pulse-mode structure of guided quantum states of light. In addition, several

groups have started to investigate the manipulation of quantum states by

means of single-photon frequency conversion. In this paper, we explore new

routes towards complete control of the inherent pulse-modes of ultrafast pulsed

quantum states by employing specifically designed nonlinear waveguides with

adapted dispersion properties. Starting from our recently proposed quantum

pulse gate (QPG), we further generalize the concept of spatiospectral engineering

for arbitrary χ (2)-based quantum processes. We analyse the sum-frequency

generation-based QPG and introduce the difference-frequency generation-based

quantum pulse shaper (QPS). Together, these versatile and robust integrated

optical devices allow for arbitrary manipulations of the pulse-mode structure

of ultrafast pulsed quantum states. The QPG can be utilized to select an
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arbitrary pulse mode from a multimode input state, whereas the QPS enables the

generation of specific pulse modes from an input wavepacket with a Gaussian-

shaped spectrum.
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1. Motivation

Ultrafast pulsed quantum states of light play an increasingly important role in quantum

information and quantum communication as they allow for efficient network synchronization

and high data transmission rates. In general, they feature a rich spectral mode structure, which

is most naturally described on a broadband pulse-mode basis. This is not a new result in either

classical or quantum optics [1]. For classical states, all basis sets are formally equivalent and no

specific choice can be distinguished. In contrast, it has been shown that pulsed quantum states

of light exhibit an inherent pulse-mode structure, which is solely determined by their generation

process [2]. Different kinds of applications require specifically tailored pulsed quantum states,

be it single-mode states for linear optical quantum computation [3] or multimode states for high-

capacity quantum information encoding. Thus, a thorough understanding of the spatiospectral

modal structure of ultrafast quantum states as well as the ability to exercise full control over that

structure is an important goal in today’s quantum optical research.

In this paper, we investigate the potential of engineered nonlinear waveguides for the

manipulation of pulsed quantum states, which cannot be achieved within the framework of

linear optics. Special emphasis is put on an accurate description of the χ (2)-process inside the

guide, which takes into account rigorously the spatial and spectral degrees of freedom. Thus

quantitative measures can be derived for the efficiency of practical quantum optical devices.
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This paper is organized as follows. In section 2, we review the state-of-the-art methods

for generating ultrafast pulsed quantum states and manipulating their inherent pulse-mode

structure in bulk crystals and waveguides. We briefly discuss the latest developments and

introduce new ideas by combining dispersion engineering techniques, which have become

established by now for photon-pair preparation, with current methods of state manipulation

utilizing χ (2)-nonlinearities. In this context, we analyse the experimental implementation of

our recently proposed quantum pulse gates (QPG) [4] and extend the formalism further by

presenting the concept of a quantum pulse shaper (QPS). In sections 3 and 4, we develop a

theoretical framework for our devices. We start with the linear operator transformations for sum-

and difference-frequency generation and derive the interaction Hamiltonian of these processes

considering spatial and temporal degrees of freedom. Our analysis results in a completely

quantitative model. Section 5 is dedicated to merging the derived theoretical framework with

dispersion engineering methods known from state preparation, thus paving the way for real-

world applications, the performance of which is investigated in section 6. Here, we introduce

realistic experimental parameters for our waveguide devices and demonstrate the capability to

fully control the pulse-mode structure of ultrafast pulsed quantum states of light. Finally, in

section 7, we highlight the most important results of this work, and end with an outlook on the

use of QPG and QPS in continuous variable quantum information processing.

2. Introduction

In recent years, different approaches have been introduced to prepare and manipulate ultrafast

pulsed quantum states of light. One of the most common sources for the generation of photonics

quantum states is parametric down-conversion (PDC) in nonlinear crystals. This is mainly due

to the rather simple experimental implementation of PDC sources and their ability to achieve

high photon-pair generation rates. When pumped by ultrafast pulses, PDC processes generate

pulsed bi-photons with broad spectra. However, these states are usually highly correlated due to

the constraints imposed by energy and momentum conservation [5, 6]. Hence, photon pairs

are typically emitted into many inter- and intra-correlated spatial-spectral modes, the exact

structure of which can be retrieved by applying a Schmidt decomposition to the biphoton

amplitude distribution [7]. Upon the detection of one of the photons, the other one is projected

onto a mixed state of all possible modes, rendering it ill-suited to linear optical quantum

computation applications [8]. The common way of overcoming this limitation has been to use

narrow-band spectral filtering to force the photons into one optical mode [9, 10]. However, this

approach prohibitively lowers the photon generation rate as most of the generated signal is lost

in the filtering process. It is thus not feasible in the case of large-scale quantum information

applications [8]. In addition, only in the limit of infinitely narrow filtering one monochromatic,

temporally de-localized mode is selected, and the photon’s pulse characteristic is lost.

2.1. Preparation of ultrafast pulsed quantum states with waveguides

Recently, two new developments have made it possible to tackle the aforementioned problems.

The use of integrated waveguide sources has a major impact on the structure of PDC photon

pair states. In a bulk crystal, the generated photons are emitted at the natural phase-matching

angles. This poses two problems. Firstly, the collection of photons pairs is experimentally

challenging and typically inefficient. Secondly, the pump field always couples to an infinite
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number of spectral–spatially correlated modes, and thus the probability of creating a photon

pair in one distinct mode becomes very low. In contrast, the emission in nonlinear waveguides

is restricted to a well-defined set of discrete spatial modes defined by the waveguide, ideally

allowing only the propagation of one individual mode in a single-mode waveguide4. It turns

out that the probability of generating a photon pair in a distinct spatial mode is enhanced by

several orders of magnitude [11, 12], since the total number of allowed modes is dramatically

reduced inside the waveguide. Moreover, it also leads to an effective decoupling of the spatial

from the spectral degree of freedom, since any spatial–spectral correlation necessitates more

than one spatial mode. Even if other spatial modes apart from the ground mode are guided in

the waveguide, modal waveguide dispersion usually ensures that both photons in those modes

are created at different frequencies. Thus they can readily be removed by applying broadband

spectral filters on the output state [13].

The second step on the way to achieving complete control over the modal structure of

the generated quantum states of light is spectral source engineering. It has been proposed

that by choosing adapted dispersion properties, photon pair generation can be tailored such

that the signal and the idler are emitted into a single spectral pulse mode each [8, 14]. Later

this was experimentally demonstrated for bulk crystal sources [15–17] and photonic crystal

fibre sources [18–20]. Only recently has this been realized in a waveguided PDC source

in a KTiOPO4 crystal [21]. In this setup, the use of a waveguiding structure has led to an

unprecedented brightness for sources of separable photon-pair states. Note that narrow-band

spectral filtering is not necessary with these sources as the generation process itself only allows

a single spectral pulse mode. Thus, the generated photon pairs are genuine quantum pulses and

are completely separable, spectrally as well as spatially.

2.2. Manipulation of the pulse-mode structure of ultrafast quantum states

Until now, research on the manipulation of pulsed quantum states has mostly focused on

shifting their central frequency. It has been shown that the sum-frequency generation (SFG)

of single photons, in combination with subsequent photodetection, surpasses the efficiency of

direct detection of near-infrared single photons [22–25]. Additionally, SFG has been proven

to conserve the quantum characteristics of the input photon [26–28] and has already been

utilized to implement measurement schemes with very high timing resolution, which overcomes

the long integration times of current single-photon detectors [16]. Only last year, SFG was

demonstrated for single-photon Fock states [29]. Note that recently also four-wave mixing in

photonic crystal fibres has also been employed to demonstrate coherent frequency translation of

single photons [30]. This highlights the broad interest in and numerous application possibilities

for these techniques. With more and more single-photon sources available in the visible

range, difference-frequency generation (DFG) has now attracted increasing interest. Recent

experiments employ DFG to implement wavelength interfaces for quantum networks [31–33],

which equivalently to the SFG process preserve the quantum characteristics of the input

state.

Despite this considerable progress, the generation of ultrafast pulsed quantum states with

a specific pulse-mode structure, be it the number of excited modes or their shape, has not been

4 Here we only consider guided modes, neglecting any contributions that could be present due to phase-matched

substrate modes. This simplification is justified, because the continuous distribution of substrate modes can be

easily filtered out by spectral or spatial filters.
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Figure 1. Schematic diagram of (a) a QPG and (b) a QPS. The QPG is based

on an engineered ultrafast SFG in nonlinear optical waveguides. By shaping an

ultrafast gating pulse, one specific pulse mode from a pulsed multimode input

state is selected and shifted to another frequency. Then it can easily be split off

while leaving the rest of the state untouched. The QPS is based on engineered

ultrafast difference-frequency generation in nonlinear optical waveguides. An

input pulse mode can be converted into an arbitrary output pulse mode by

nonlinear interaction with an ultrafast shaping pulse. The output pulse mode’s

shape is given by the mode of the shaping pulse.

explored yet. Although the rich inherent mode structure of ultrafast optical quantum states is

well known, before the QPG [4] there was no feasible way of controlling and manipulating the

different modes separately.

2.3. Quantum pulse gate (QPG) and quantum pulse shaper (QPS)

We now combine findings from the field of quantum-state generation with techniques from

state manipulation. Applying source engineering to frequency conversion reveals fascinating

possibilities to achieve the desired goal of complete control over the pulse-mode structure of

ultrafast quantum states. In [4], we have already proposed a QPG, a device based on engineered

ultrafast SFG in nonlinear waveguides. This device enables us to address different inherent pulse

modes of an ultrafast pulsed quantum state of light individually, as illustrated in figure 1(a). We

would like to highlight that the QPG operation does not have any impact on the residual pulse-

mode structure. This sets it apart from other experiments that focus on a direct manipulation

of the spectral broadband-mode structure of ultrafast pulsed quantum states and that employ

pulse shaping of photon-pair states [34–36]. This alternative approach also leads to highly

interesting results for entanglement-based applications. Still, the manipulation is not pulse mode

sensitive in the sense of accessing and separating out a single-mode quantum state with a specific

temporal profile. In contrast, the QPG achieves mode selection by shaping an ultrafast, coherent

gating pulse instead of the pulsed quantum state. The addressed mode is converted to the sum-

frequency of the input pulse and gating pulse and is thus easily accessible. In addition, different

orthogonal pulse modes can be interconverted into each other, rendering interference between

them possible.

In this paper, we elaborate on the QPG concept and come up with another fundamental

device, the QPS based on engineered ultrafast DFG. While the QPG addresses single pulse
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modes, the QPS enables us to convert an input quantum state with a Gaussian-shaped spectrum

into a single-mode quantum state with arbitrary shape (see figure 1(b)). Here, an arbitrarily

chosen pulse form of the coherent shaping pulse defines the output pulse mode. We would like

to mention that a similar idea of shaping quantum pulses by means of frequency conversion

with dispersion matching has been proposed in [37]. In contrast to this earlier work, we put

special emphasis on the engineering of the dispersion characteristics of the nonlinear medium

used, such that single-mode operation can be ensured, avoiding the insertion of any unwanted

vacuum contributions.

Using QPG and QPS, pulsed quantum states can be generated and selected with unit

efficiency in arbitrary pulse forms, and the encoding of quantum information in broadband

mode basis and the successive read-out become possible. Therefore QPG and QPS will enable

the implementation of quantum communication protocols, which exploit the rich pulse-mode

structure of ultrafast states.

3. Linear transformations for sum-frequency generation (SFG) and difference-frequency

generation (DFG) in comparison with parametric down-conversion

In this section, we qualitatively discuss the nonlinear three-wave mixing processes SFG, DFG

and PDC, highlighting their formal similarities as well as examining their differences. In such

a three-wave mixing process, three electrical fields interact inside a nonlinear medium, and the

interaction Hamiltonian in the rotating-wave approximation is of the form

Ĥ int ∝ χ (2)
∫

d3r Ê (+)
a (Er , t)Ê

(−)
b (Er , t)Ê (−)

c (Er , t)+ h.c. (1)

The Ê
(+)
i (Er , t) describe the positive frequency parts of the interacting electric fields and χ (2)

is the second-order nonlinearity of the medium. In PDC and single-photon SFG and DFG,

two of the three fields are generally considered quantum mechanically. The remaining field

is a bright, immutable pump field that can be treated classically. In this case, the interaction

Hamiltonian becomes bilinear and Heisenberg’s equation of motion yields linear input–output

transformations for the creation and annihilation operators. Depending on which of the three

fields is defined as a pump, one can distinguish between two flavours of processes that are

characterized by different linear operator transformations.

This can be derived when considering a single-mode approximation to equation (1),

Ĥ int ∝ âb̂†ĉ† + â†b̂ĉ. (2)

Firstly, we assume that the field Ea(Er , t) is the classical coherent pump field. We insert its

classical amplitude α into the above equation and find that

Ĥ int ∝ α b̂†ĉ† +α∗ b̂ĉ. (3)

The resulting operator formally corresponds to a two-mode squeezing operator (compare

e.g. [38]), which means that this case describes PDC. Depending on the pump power of

the bright field, either the photon pair characteristics (low-power regime) or the squeezer

characteristics (high-power regime) dominate the PDC output state. The linear transformations

between input and output operators evaluate to

b̂ → cosh(ζ )b̂ − sinh(ζ )ĉ†, (4)

ĉ → − sinh(ζ )b̂† + cosh(ζ )ĉ, (5)
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Figure 2. Schematic diagrams illustrating two different flavours of second-order

nonlinear process. All processes are pumped by a classical undepleted field at

a frequency ωp, and the dashed arrows indicate vacuum modes. (a) In a PDC

process, two photons are created and the evolution operator for this process is a

two-mode squeezing operator. (b, c) In an SFG or DFG process, one incoming

photon is annihilated and an outgoing photon at another frequency is created.

Assuming that the frequencies involved in the two processes are equal, one

can readily see that SFG and DFG are similar yet reversed processes, which

is indicated in the schematics by the different directions that the arrows point

to. The corresponding evolution operator for these processes is equivalent to a

beamsplitter. For further details, see the text.

where the parameter ζ depends on the pump power and is related to the amount of squeezing in

the generated pair state. This is discussed, for instance, in [39].

We find the other flavour of χ (2) processes by assuming that the field Eb(Er , t) corresponds

to the pump field. We substitute its classical amplitude β in (2) and obtain

Ĥ int ∝ β âĉ† +β∗ â†ĉ. (6)

This expression is formally equivalent to an optical beamsplitter Hamiltonian and we can use

the well-known beamsplitter input/output transformations for the operators â and ĉ,

â → cos(θ)â − i sin(θ)ĉ, (7)

ĉ → −i sin(θ)â + cos(θ)ĉ. (8)

We identify θ with the beamsplitter angle, which depends on the pump power and the

strength of the nonlinear interaction. This will be discussed later in great detail. We interpret this

χ (2)-process as a beamsplitter that diverts optical beams into different frequency output

ports depending on their initial frequency. Note that in single-photon quantum optics, this

Hamiltonian describes SFG as well as DFG. In classical nonlinear optics, however, DFG is

understood as a stimulated process. The bright pump field has the highest frequency and the

process is seeded with a weak input field, which is enhanced through continuous conversion

of pump photons. In that case, operator transformations similar to those for PDC are valid and

the process could also be interpreted as seeded PDC. In contrast, we assume a single (or a

few)-photon input state, which has the highest frequency and the ‘seed’ field is the bright field.

By pinning the pump field to a fixed value in our process model, we exclude that stimulation

can occur and the process becomes formally equivalent to SFG. Note that the usual no-pump-

depletion approximation (∂Ep/∂z = 0) needs to be interpreted as a no-pump-enhancement

approximation in this case. These findings are shown schematically in figure 2.

We move on to the derivation of the interaction Hamiltonian for quantum mechanical

frequency conversion inside an optical waveguide.
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4. Quantitative derivation of the SFG and DFG interaction Hamiltonian

4.1. Spatial mode considerations in a monochromatic approach

The interaction Hamiltonian of a frequency conversion process can be expressed as

Ĥ int = −deffε0

∫

d3r Ep(Er , t)Ê
(+)
i (Er , t)Ê (−)

o (Er , t)+ h.c., (9)

where deff denotes the effective nonlinearity, Ep is the classical pump field, and Ê
(+)
i and Ê (−)

o

denote the operator expressions for the input signal and the converted output, respectively. As

the interaction happens inside a nonlinear optical waveguide, the propagation of the fields is

restricted to one direction, which is given by the waveguide axis and which we define as the

z-direction. The ultrafast pump field then reads

Ep(Er , t)= Ap fp(x, y)

∫

dωpα(ωp)e
−iωpt+iβpz. (10)

Here, α(ωp) is the normalized spectral amplitude of the pump. The function fp(x, y) describes

the transverse spatial distribution of the pump field with
∫

d2r | fp(x, y)|2 = 1 and βp is

the propagation constant of the corresponding transverse mode. By requiring that the area

integration over the field intensity I = 1

2
c npε0|E |2, where np denotes the refractive index at

the pump frequency, corresponds to a power, we find that the amplitude Ap is related to the

average pump pulse peak power Pp by

Ap =
(

2Pp

c ε0np(ωp)|
∫

dωpα(ωp)|2
)1/2

. (11)

We implicitly make use of the slowly varying envelope approximation in this calculation, which

is valid as we consider only pulses with 1ω≪ ω0. This also means that we can neglect the

frequency dependence of the propagation constant βp in (10).

To derive expressions for the quantized fields in a nonlinear waveguide, we start from the

electric field operator for a propagating field in a dielectric with finite cross-section area A,

given in [40]. Note that we assume the wavevector components kx and ky of the quantum field

to have fixed, finite values.

Ê (+)(x, y, z, t)= i

∫

dω

(

h̄ω

4πε0c n(ω)A

)1/2

â(ω)e−iωt+i(kx x+ky y+kz z). (12)

In a nonlinear waveguide with field propagation along the z-direction, the solution of the

Helmholtz equation yields a discrete spectrum of valid propagation constants βmn = k(mn)
z and a

set of allowed, localized transverse modes { fmn(x, y)}, determined by the boundary conditions

of the guiding geometry. The indices m and n denote the order of the transverse mode in the

x- and y-directions. Each βmn corresponds to exactly one mode and, in the case of a symmetric

situation, the βmn for the corresponding modes (e.g. β01 and β10) become degenerate. For better

readability, we only use one index m to describe the modes. The spatial localization of the

fields implies continuous spectra of the individual wavevector components k(m)x and k(m)y , given

by f̃ m(kx , ky)= FT [ fm(x, y)].5 The electric field inside a nonlinear waveguide is accordingly

5 We deploy the symmetric definition of the Fourier transform, that is, f̃ (k)= 1√
2π

∫

dx f (x)e−ikx and accordingly

f (x)= 1√
2π

∫

dk f̃ (k)eikx .

New Journal of Physics 13 (2011) 065029 (http://www.njp.org/)

http://www.njp.org/


9

comprised of a superposition of quantum fields of the form given in (12), each corresponding to

a single propagation direction. Summing over the transverse waveguide modes and integrating

over k(m)x and k(m)y , we find that

Ê (+)(x, y, z, t)= i
∑

m

∫

dω

(

h̄ω

4πε0c nm(ω)

)1/2

âm(ω)e
−iωt+iβm z

×
∫

dk(m)x dk(m)y f̃ m(kx , ky)e
ik
(m)
x x+ik

(m)
y y. (13)

This can—due to the Fourier relationship between position and momentum—be written as

Ê (+)(x, y, z, t)= i
∑

m

2π fm(x, y)

∫

dω

(

h̄ω

4πε0c nm(ω)

)1/2

âm(ω)e
−iωt+iβm z. (14)

We would like to point out that we account for the cross-sectional area by the spatial

distributions fm(x, y), which are normalized such that
∫

dx dy| fm(x, y)|2 = 1 and which have

units of inverse metres. Moreover, we assume that within the frequency range of the considered

fields the variation in the spatial properties is negligible, due to the narrow-band approximation

1ω≪ ω0. We substitute the electric field operators into (9) and rephrase the interaction

Hamiltonian for single-photon frequency conversion as

Ĥ int =
deffh̄π

c
Ap

∑

l,m

√

ωiωo

ni,lno,m

∫

dx dy fp(x, y) fi,l(x, y) f ∗
o,m(x, y)

∫

dz ei(βp±βi,l∓βo,m)z

×
∫

dωp dωi dωoα(ωp)e
−i(ωp±ωi∓ωo)t âl(ωi)ĉ

†
m(ωo)+ h.c., (15)

where we discriminate between SFG and DFG. Here, labels i and o denote input and output

fields, whereas indices l and m describe the transverse spatial modes of input and output fields

respectively.

Now we move on to the calculation of the time evolution of the input quantum state during

the conversion process. Note that the interaction of the Hamilton operator of equation (15) is

time dependent and thus the exact solution has to take into account time-ordering effects. Here

we present an approximate solution that neglects time-ordering effects, in order to emphasize the

conceptual structure and to illustrate the main idea. In the appendix, we validate this approach

by comparing the approximate solution with rigorous calculations we performed. We find that

the shape of the mode functions does not change significantly when taking into account time

ordering, but the maximum conversion efficiency drops to 90%. Still, these findings confirm that

the analytical solution leads to reasonable results and can safely be applied. Hence, we write the

time evolution of the quantum state during the conversion process

|ψ〉out = Û (t)|ψ〉0 = exp

(

− i

h̄

∫

dt Ĥ int(t)

)

|ψ〉0. (16)

Thus, we need to perform a time integration of the interaction Hamiltonian given in (15). This

is a well-known procedure discussed, for PDC, in great detail in [8]. We only present the result
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here, as the calculation, including the waveguide aspects, is straightforward,

∫

dt Ĥ int(t)=
2deffh̄π

2

c
ApL

∑

l,m

√

ωiωo

ni,lno,m

1
√

A
(eff)
l,m

∫

dωi dωoα(ωio)φl,m(ωi, ωo)âl(ωi)ĉ
†

m(ωo)+h.c.

(17)

Here, L is the length of the nonlinear waveguide. The function α(ωio) is the spectral pump

distribution defined as α(ωo −ωi) for SFG and α(ωi −ωo) for DFG, respectively, whereas the

function φl,m(ωi, ωo) characterizes the phase-matching and is given by

φl,m(ωi, ωo)= sinc

(

1βl,m L

2

)

≈ exp

[

−0.193 ·
(

1βl,m L

2

)2
]

. (18)

The expression 1βl,m describes the phase-mismatch of the propagation constants and

evaluates to 1βl,m = βp +βi,l −βo,m − 2π

3
for SFG and 1βl,m = βp −βi,l +βo,m − 2π

3
for DFG,

respectively. Finally, 3 is an optional poling period for quasi-phase-matching inside the

waveguide. Following the usual conventions, we define an effective interaction area A
(eff)
l,m ,

1

A
(eff)
l,m

:=
[∫

dx dy fp(x, y) fi,l(x, y) f ∗
o,m(x, y)

]2

. (19)

Note that this should not be mistaken as a geometric area defined, for instance, by the waveguide

cross-section. Instead it describes the overlap of the transverse spatial modes of the three

interacting fields inside the nonlinear waveguide. This result also implies that simply using a

smaller waveguide—while not changing the modal overlap characteristics—will not alter A(eff)

and will therefore not have any impact on the efficiencies of the processes. The product of

pump distribution and phase-matching function is conveniently defined as the joint spectral

distribution function,

Gl,m(ωi, ωo)= 1

Nl,m

α(ωio)φl,m(ωi, ωo), (20)

which describes the mapping between input and output frequencies for a specific pair of spatial

modes l,m. The normalization factor Nl,m reads (
∫

dωi dωo|α(io)φl,m(ωi, ωo)|2)1/2.

4.2. Broadband pulse mode picture

The description derived so far has been in terms of monochromatic creation and annihilation

operators. However, since we concentrate on χ (2)-interactions between ultrafast pulses, a much

more natural approach is to consider broadband pulse modes. A suitable pulse-mode basis is

found by applying a Schmidt decomposition to the joint spectral distribution function,

Gl,m(ωi, ωo)=
∑

j

κ
(l,m)

j ϕ
(l,m)

j (ωi)ψ
(l,m)

j (ωo). (21)

Equation (21) yields two correlated sets of orthonormal broadband pulse-mode functions

{ϕ(l,m)(ωi)} and {ψ (l,m)(ωo)}. The diagonal values κ
(l,m)

j are the real and positive Schmidt

coefficients and satisfy
∑

j(κ
(l,m)

j )2 = 1. It is well known, for PDC, that the basis sets of the

Schmidt decomposition, and thus the modal structure of the photons, are uniquely defined [2].
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The same argument can also be applied here in the context of SFG and DFG. As for PDC, we

define broadband creation and annihilation operators,

Â j,l,m =
∫

dωi ϕ
(l,m)

j (ωi)âl(ωi), (22)

Ĉ j,l,m =
∫

dωoψ
(l,m)

j (ωo)ĉm(ωo). (23)

Substituting those, we rewrite the expression for the time-integrated interaction Hamiltonian

from (17), and arrive at the broadband pulse-mode picture,
∫

dt Ĥ int(t)= 2deffh̄π
2

c
ApL

∑

l,m

√

ωiωo

ni,lno,m

Nl,m
√

A
(eff)
l,m

∑

j

(κ
(l,m)

j Â j,l,mĈ
†
j,l,m + h.c.)

= h̄
∑

l,m

∑

j

θ j,l,m( Â j,l,mĈ
†
j,l,m + Â

†
j,l,mĈ j,l,m). (24)

By introducing the effective coupling constant θ j,l,m into (24), we reveal the simple beamsplitter

structure of the Hamiltonian [41], as already announced in (6). In contrast to a conventional

beamsplitter, however, this Hamiltonian does not couple two k-modes (or beam paths), but

rather two broadband pulse modes Â j,l,m and Ĉ j,l,m at different frequencies! This is a unique

feature of ultrafast frequency conversion processes and makes them ideal candidates for the

implementation of the QPG and QPS.

5. Pushing towards applications

5.1. General non-engineered SFG and DFG

QPG and QPS are unique in their single-mode operation on broadband pulse modes. In this

section, we discuss the implementation of genuine QPG or QPS in a feasible experimental setup.

We restrict the analysis to only one pair of transverse spatial modes (l,m), which simplifies the

notation but does not change the underlying physics. In the experimental setting, the selection

of one spatial mode can be accomplished by broadband spectral filtering [13]. In this case, the

time-integrated, effective SFG and DFG Hamiltonian from (24) reads
∫

dt Ĥ int(t)= h̄
∑

j

θ j( Â j Ĉ
†
j + Â

†
j Ĉ j), (25)

with the broadband operators defined as

Â j =
∫

dωi ϕ j(ωi)â(ωi), (26)

Ĉ j =
∫

dωoψ j(ωo)ĉ(ωo). (27)

The complete, orthonormal function sets {ϕ j(ωi)} and {ψ j(ωo)} represent the intrinsic pulse-

mode structure of the SFG or DFG processes, obtained from the Schmidt decomposition of

the joint spectral distribution function G(ωi, ωo)= α(ωio)φ(ωi, ωo). On the one hand, these

are determined by the pump pulse characteristics, but on the other hand they also depend
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Figure 3. Conversion efficiencies η j , joint spectral distribution functions

G(ωi, ωo) and Schmidt coefficients κ j for the first four pairs of pulse modes

( j = 0, . . . , 3). (a) Non-engineered process with several κ j 6= 0. For a given

overall beamsplitter angle θ , all modes are converted to a certain extent given

by η j = sin(κ j · θ)2. However, an overall unit efficiency can generally not be

accomplished. (b) Source-engineered process with one predominant κ j ≈ 1. By

choosing an appropriate θ , pulse mode ϕ(ωi) can be converted into pulse mode

ψ(ωo) with unit efficiency, allowing for QPG operation.

critically on the nonlinear waveguide’s material and modal dispersion properties. We have

already stressed the formal equivalence between the expression from (25) and a sum of optical

beamsplitter Hamiltonians. Hence the linear transformation for the broadband operators can be

readily written as

Â j → cos(θ j) Â j − i sin(θ j)Ĉ j , (28)

corresponding to a pulse mode conversion between ϕ j(ωi) and ψ j(ωo) with efficiency

η j = sin2(θ j). According to (24), the coupling constant θ j is given by

θ j = κ j · 2deffπ
2L N

c

√

2ωiωo

c ε0npnino|
∫

dωpα(ωp)|2

√

Pp

A(eff)
= κ j · θ. (29)

Here, θ is an overall beamsplitter angle defined by the process parameters. Its impact on the

different modes j is given by θ j , where, for each mode, the overall beamsplitter angle is

weighted with the corresponding Schmidt coefficient κ j . In figure 3(a), we illustrate a general,

non-engineered SFG. We show the joint spectral distribution function G(ωi, ωo) as well as

the Schmidt coefficients κ j for the first four pairs of pulse modes and plot the conversion

efficiencies η j versus the beamsplitter angle θ . It is obvious that for any given value of θ , all

pulse modes with κ j 6= 0 are converted to a certain extent. Yet, in general, single-mode operation

is not achievable, nor can conversion with η j = 1 for different pulse modes simultaneously be

accomplished. We note an exception to this rule: under certain conditions (e.g. a cw pump),

input and output modes are perfectly correlated. Then all κ j share the same value and all modes

are converted with the same efficiency. The process is then highly multimode but the overall

efficiency can reach unity for high pump powers.
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5.2. Source-engineered SFG and DFG: towards genuine QPG and QPS

We have shown that SFG and DFG in general are multimode processes. But for QPG and QPS

we require single-mode operation in order to avoid the signal degradation introduced by vacuum

contributions and to achieve unit efficiency. Reducing the intrinsic pulse-mode structure of a

χ (2)-nonlinear process to only one pair of modes has been extensively studied in PDC, where

source engineering led to the desired results [8, 15, 16]. Experimentally, this is accomplished

by group-velocity matching inside the nonlinear medium. If the pump and either the signal or

the idler share the same group velocity, the phase-matching function becomes parallel to one of

the axes when plotted in an (ωs, ωi)-diagram. Then, the Schmidt decomposition yields—given

that the process is pumped by an ultrafast pump—only one pair of pulse modes that is excited

with unit efficiency.

We transfer this insight to our analysis of SFG and DFG and employ it for spectral

engineering of the conversion. The time-integrated Hamiltonian from (25) for our special case

reduces to
∫

dt Ĥ int = h̄θ( ÂĈ† + Â†Ĉ) (30)

and can be interpreted as a beamsplitter operating on only one pair of pulse modes ϕ(ωi) and

ψ(ωo). As an example, we show an engineered case in figure 3(b), where pump and input

signals are group-velocity matched. Note that, in contrast to the previous non-engineered case,

the joint spectral distribution function now shows no spectral correlations between input and

output frequencies; that is, it is oriented along the axes of the diagram. As in PDC, this is

a direct consequence of the horizontally oriented phase-matching function and thus of the

group-velocity matching. The distribution of κ j reveals that only one coefficient, κ0, differs

significantly from zero. This is also reflected in the plot of the conversion efficiencies. Only a

single pulse mode is addressed and, by choosing θ = π

2
, converted with unit efficiency, and no

vacuum is coupled into the signal beam. Hence we find that by group-velocity matching the

pump and either the input or the output, we can achieve genuine single-mode operation and

therefore implement QPG and QPS. Note that the data in figure 3 have been calculated using

our modelling and realistic experimental parameters, which are specified in section 6.

Knowing how to achieve single-mode operation of SFG and DFG, the next step is to

investigate how we can exact complete control over the pulse modes ϕ(ωi) and ψ(ωo). A QPG

selects a specific pulse mode from an input state and a QPS generates an arbitrary pulse mode

from a Gaussian input mode. Hence, for QPG we require control over ϕ(ωi), whereas for QPS

we require the shaping of ψ(ωo), respectively. In figures 4(a)–(c), we consider QPG. Shown

are the phase-matching and pump functions as well as the resulting joint spectral distribution

function. Note that the axes are given wavelength units rather than frequency for convenience.

We find that the output mode ψ(ωo) is defined solely by the phase-matching. We performed

calculations for three different spectral shapes of the pump and it is obvious that the input

mode ϕ(ωi) has the form of the respective pump mode. Thus, in a QPG, spectrally shaping the

bright gating pulse leads to the selection of an arbitrary pulse mode. In contrast, figures 4(d)–(f)

illustrate the situation for QPS. Now, the pump and the output are group-velocity matched,

causing a vertical phase-matching function. Again we calculated three different spectral pump

distributions. We find that the spectral shape of the pump now defines the output mode ψ(ωo) of

the QPS and the input mode ϕ(ωi) is fixed by the phase-matching. Summing up these findings,
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Figure 4. Joint spectral distribution, pump and phase-matching function as well

as pulse modes ϕ(ωi) and ψ(ωo) for QPG (a–c) and QPS (d–f). Note that the

functions are plotted against wavelengths for reasons of convenience. In a QPG,

the intrinsic pulse mode ϕ(ωi) can be manipulated by shaping the bright gating

pulse, whereas the pulse mode ψ(ωo) is fixed by the phase-matching function.

Therefore, arbitrary input modes are mapped to the same output mode, allowing

for interference of formerly orthogonal modes. In contrast, in a QPS, shaping

the bright pulse defines the output pulse mode ψ(ωo). The input pulse mode is

now defined by the phase-matching function. Thus, an arbitrary mode can be

generated from an input that is matched to ϕ(ωi). The data presented here are

calculated using realistic experimental parameters, as specified in section 6.

we end up with the following correspondences,

α(ωp)→ ϕ(ωi), φ(ωi, ωo)→ ψ(ωo) for QPG, (31)

φ(ωi, ωo)→ ϕ(ωi), α(ωp)→ ψ(ωo) for QPS. (32)

We have demonstrated that we can achieve complete control over the required pulse mode of the

QPG or QPS by shaping the bright gating pulse or shaping pulse, respectively. Note, however,

that we considered only the intrinsic modes of the QPG and QPS, which do not necessarily have

to coincide with the pulse-mode structure of an input signal.
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Figure 5. (a) Mode-matched QPG. The bright gating pulse has the same duration

as the input signal, leading to matching of the input pulse-mode structure and

ϕ(ωi) of the QPG. Only a single pulse mode of the input—the one that overlaps

with ϕ(ωi)—is selected and converted with unit efficiency. (b) Mode-mismatch

in a QPG. The gating pulse and input signal have different durations, leading to

an overlap of ϕ(ωi) with all input signal modes with the same parity. Hence, all

of those modes are selected and converted to a certain degree. QPG operation is

then not possible.

5.3. Mode matching a QPG or a QPS

Given a specific QPG or QPS, the input signal’s pulse-mode structure must coincide with the

pulse modes {ϕ(ωi)} accepted by the device, in order to guarantee mode selectivity and high

conversion efficiency. We first discuss this for the QPG. We have shown that the QPG can be

easily adapted to a wide range of input signals by spectrally shaping the coherent gating pulse.

The output mode ψ(ωo) is solely defined by the phase-matching function and is independent of

the pump pulse shape. It can typically be approximated by a Gaussian spectrum [8]. Hence any

selected mode from an input state is mapped to the same output mode.

In figure 5(a), we illustrate this situation. The input signal and gating pulse share the same

duration and the QPG is mode-matched to the input. Only the desired mode from the input signal

is selected and converted with unit efficiency. In contrast, figure 5(b) demonstrates the impact

of a mode mismatch on the QPG operation. The gating pulse duration significantly differs from

the input pulse duration and the intrinsic QPG pulse mode ϕ(ωi) overlaps with all signal modes

of the same parity. We end up with a case similar to multimode SFG, with the only difference

being that the diverse conversion efficiencies for the modes are due to the different overlaps

between ϕ(ωi) and the corresponding signal-state modes. Because an overall efficiency of unity

cannot be achieved here and the process is not mode-selective anymore, it becomes clear that

careful mode-matching is vital for a successful QPG implementation.

The situation is different for QPS: the phase-matching function is vertical in the

(ωi, ωo)-plane (compare figures 4(c)–(f)) and the input mode ϕ(ωi) is now defined by the

phase-matching function alone. The QPS accepts only Gaussian input modes that are matched to

ϕ(ωi). However, shaping the bright pulse allows for defining the output mode ψ(ωo), rendering

it possible to generate any pulse mode from an input pulse with a Gaussian spectrum. If the

input state is not matched to ϕ(ωi), this does not change the spectral form of the output pulse.

The drawback is that it is not the complete input that gets converted and vacuum contributions

are introduced.

We note that the same physical nonlinear waveguide device could be used as QPG or QPS,

depending on whether SFG or DFG is implemented: this shows that QPG and QPG can be
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Figure 6. Group velocities of the fundamental waveguide modes in a Ti-

indiffused PPLN waveguide. For a 1550 nm input oriented along the ordinary

axis, an extraordinarily polarized pump pulse centred on 870 nm is group-

velocity matched. For a QPG, this consequently leads to an output at 557 nm

that has to be oriented along the ordinary axis. It becomes obvious that for a

wide range of input signal wavelengths, group-velocity matched gating pulses

can be found that still satisfy feasible experimental parameters.

seen as reverse operations of each other. The results illustrate that QPG and QPS are versatile

tools that can be easily adapted to a large range of input and output states, making them highly

flexible and appealing for many applications.

6. Performance of QPG and QPS considering realistic experimental parameters

We conclude our analysis demonstrating the experimental feasibility of a QPG and derive, with

the help of the theoretical model outlined in sections 3–5, an expression for the pump power for

maximally efficient operation. The results of the calculation apply to QPS as well, since both

devices can be implemented in the same nonlinear waveguide. SFG phase-matching implies an

existing DFG phase-matching; only the roles of input and output fields are interchanged. The

coupling constant θ is the same for both processes. The bright pulse, used as a gating or shaping

pulse depending on the application, will be called a pump in this paragraph for ease of reading.

The input field is at 1550 nm and the third field is referred to as the output.

As a key point for the experimental setup, we require that it can be operated at 1550 nm.

The constraint of group-velocity matching determines the pump wavelength as soon as the

input wavelength gets fixed, which in turn then also defines the output wavelengths due to

energy conservation. We assume that the conversion takes place in a Ti-indiffused PPLN

waveguide with a length of L = 10 mm and at a temperature of T = 190◦C to prevent the impact

of photorefraction. The effective Sellmeier equations for the three participating fields were

obtained by calculating the effective refractive indices of ordinary and extraordinary polarized

fields with a finite-element method described in [42]. The effective equations were then fitted

against the calculated values. Note that the following calculations are based on these effective

Sellmeier equations.
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Figure 7. Transverse spatial mode profiles of the fundamental waveguide modes

in a Ti-indiffused PPLN waveguide. The mode profiles were calculated using a

finite elements method. The overlap between the pump and the output exceeds

99% because the guiding for ordinarily polarized fields is not as strongly

pronounced as for extraordinarily polarized fields.

In figure 6, we plot the group velocities for the ordinary and extraordinary crystal axes

and assume for our modelling that all fields propagate in the fundamental transverse waveguide

mode. If the input light is ordinarily (TE-)polarized with a central wavelength of 1550 nm,

we find that the group-velocity matched pump has to be extraordinarily (TM-) polarized and

centred on 870 nm. The ordinarily polarized output is then at 557 nm. From figure 6, we can

clearly recognize that a group-velocity matched pump can be found for any input, as long as the

input is o-polarized. The effective refractive indices of the participating fields were calculated to

be np = 2.18, ni = 2.21 and no = 2.32 and we derive a periodic poling period of 3≈ 4.28µm

required for quasi-phase-matching inside the waveguide.

In figure 7, we plot the transverse spatial distributions of the input, pump and output

modes, also obtained with the finite-element method from [42]. From these we calculate the

effective interaction area A(eff) ≈ 64µm2. The conversion efficiency for a single-mode operation

is η = sin2(θ) and the condition for unit efficiency can be specified by

θ
!= π

2
, (33)

Pp
!=

(

c

4πdeffL N

)2
c ε0npnino|

∫

dωpα(ωp)|2 A(eff)

2ωiωo

. (34)

Assuming an input pulse duration of roughly 300 fs, we calculate a required pump peak power of

Pp ≈ 22 W for optimal conversion efficiency. If a pump laser system with a repetition frequency

of 76 MHz is used, we obtain an average pump power of Pav ≈ 0.5 mW inside the waveguide.

This leads to required average pump powers of a few mW in front of the QPG or QPS, taking

into account realistic waveguide coupling losses. These values are lower than formerly reported

pump powers for similar experiments [22–24, 27, 29], owing to the careful source engineering

that we applied to our process. This grants a significant advantage over experiments without

spectrally engineered SFG, even though we employ a cross-polarized process with an effective

nonlinearity that is lower by one order of magnitude than that of a process where all three fields

are oriented along the extraordinary crystal axis.
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7. Conclusion and outlook

In conclusion, we have presented a feasible way to achieve complete control over the pulse-

mode structure of ultrafast pulsed quantum states of light. We combined findings from

quantum state generation and techniques from state manipulation, by applying spectral-source

engineering and integrated optics to frequency conversion of ultrafast single photons. We

showed that single-mode ultrafast SFG and DFG in χ (2)-nonlinear materials are possible and

analysed two highly flexible and versatile devices, namely QPG and QPS. The QPG is based

on ultrafast SFG and offers the possibility of selecting arbitrary pulse modes from an ultrafast

multimode input state. The selected mode gets converted with unit efficiency and is mapped

onto a Gaussian output mode. The residual mode structure of the input is left intact, allowing

for cascaded operation to convert multiple modes. As all input modes are mapped onto the same

output mode, interference of formerly orthogonal states becomes possible. In contrast, the newly

introduced QPS is based on DFG and implements the reverse operation of a QPG. It enables us

to generate an arbitrary pulse form from a Gaussian input mode. The output mode is defined by a

bright shaping pulse; thus highly flexible state preparation can be achieved. We have presented

a quantitative analysis of QPG and QPS and derived feasible experimental parameters with

which the proposed devices can be implemented, rendering them practical instead of merely

conceptual.

As a final remark, we would like to point out that our analysis is in no way constrained to

single-photon states. Although we consider single-photon input states, the introduced concepts

can be generalized to classical and non-classical multi-photon states. In this framework, the

use of QPG and QPS provides us with an attractive opportunity to successively select and

spatially separate arbitrary pulse modes from a multimode input state while leaving the residual

beam intact. Employing a series of QPGs operating on the same pulse mode in each arm

of a multimode twin-beam squeezer source allows for a feasible implementation of non-

Gaussian operations and thus constitutes an important step towards the realization of multimode

continuous variable entanglement distillation. QPS, on the other hand, can be used to synthesize

multimode continuous variable Gaussian states in a mode-by-mode fashion. The prepared states

can then be transmitted as a bundle, since they do not interact with each other and since they all

experience the same dispersion during transmission and therefore stay orthogonal. This paves

the way for dense channel multiplexing in continuous variable quantum communication.
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Appendix. Impact of time ordering

Since the interaction of the Hamilton operator of equation (15) is time dependent, it might be

assumed that time-ordering effects have a major impact on the intrinsic mode structure of the

process, in particular if a perturbative solution is not sufficient. This case is associated with

unit conversion efficiency, needed for perfect QPG and QPS operation. In our analysis, we have

nevertheless deployed the approximate solution that neglects time ordering. The impact of time

ordering on the process of ultrafast PDC has been thoroughly investigated in [43], with the result
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Figure A.1. Input modes ϕ(ωi) as well as output modes ψ(ωo) of the considered

processes, obtained from the analytical solution (blue) and rigorous calculation

(red), respectively. Obviously, time ordering has only a small impact on the

actual mode shape. This can simply be corrected for in our schemes by adjusting

the spectrum of the bright pump pulse. Note that the oscillations in the output

modes originate from the sinc function that describes the phase matching.

that time ordering mostly affects the amplitudes but not the shapes of the intrinsic pulse modes.

In [37], the authors actually study a three-wave mixing process and find in their numerical

simulation no major discrepancy with their analytical solution. This already indicates that, at

least for low conversion efficiencies where a perturbative solution is sufficient, time ordering

can be neglected. However, since we aim at conversion efficiencies of unity and cannot conclude

for sure that the above results remain valid in our case, we performed rigorous numerical

simulations that take into account all time-ordering effects. Note that the results presented are all

obtained for the case of maximum conversion efficiency. Additionally, the simulated processes

are the ones discussed in this work. That is, the pump pulse and the input pulse are group-

velocity matched and the processes have decorrelated joint spectral distribution functions, as is

the case in figure 3(b).

Figure A.1 depicts the analytical as well as the rigorous input modes ϕana(ωi) and ϕrig(ωi)

and the corresponding output modes ψana(ωo) and ψrig(ωo), respectively. It nicely illustrates that

time ordering has only a slight impact on the shape of the modes, as expected from [43]. The

change in the modes can easily be compensated for, in our proposed scheme, by adjusting the

spectrum of the bright gating pulse. Note that the oscillations in the output modes originate from

the sinc function that describes the phase-matching. These also cause the slight multi-modeness

that can be seen in the Schmidt coefficients in figure A.2, where the first higher-order mode is

also excited with a certain probability. Comparing again analytical and rigorous solutions, we

find that time ordering slightly shifts the weights between the different modes. However, we

want to note that no new modes occur in the process due to time ordering. The main difference

is found when considering the maximum conversion efficiency. It turns out that this value

drops in the rigorous solution to 90%, instead of the unit efficiency obtained with the analytical

approach.

This behaviour will be thoroughly analysed in [44]. We want to stress here that all

characteristics introduced by the side lobes of the sinc function can be washed out through

careful design of the nonlinearity inside the waveguide, as shown in [45]. Therefore the device
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Figure A.2. Schmidt coefficients λk obtained from the analytical as well as the

rigorous solution. Time ordering causes a slight shift in the excitation of the

different modes. In addition, it leads to a drop in the maximum conversion

efficiency to 90%, as compared with the unit conversion efficiency reached in

the analytical solution.

performance calculated here only represents a lower bound and might be increased in the future,

for instance by implementing a Gaussian-shaped phase-matching function.

In conclusion, we find by comparing analytical and numerical solutions that the assumption

that time ordering can be neglected is, in fact, a rather good approximation, even for the cases

of high conversion efficiencies analysed in this work.
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