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1 Introduction

Dark Matter (DM) direct detection, where DM scatters on a target nucleus, is well de-

scribed by Effective Field Theory (EFT) [1–18], which is essential to compare results of

different direct detection experiments [19]. The maximal momentum exchange between

DM and the nucleus is qmax . 200 MeV, see figure 1. This means that one is able to

use chiral counting, with an expansion parameter q/ΛChEFT . 0.3 to organize different

contributions in the nucleon EFT for each of the operators coupling DM to quarks and

gluons [1, 16, 20–24]. In this paper we rewrite the leading-order (LO) results in the chiral

expansion of ref. [1] in terms of single-nucleon form factors. We also extend these results to
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Figure 1. The momentum exchange distributions for DM scattering on a representative light

nucleus, 19F, (left) and heavy nucleus, Xe, (right) for spin-dependent scattering. The Wilson

coefficient of the operator is set to (1 TeV)−2 in both cases and we summed the contributions of the

xenon isotopes weighted by their natural abundances. The curves of different thicknesses correspond

to different dark matter masses in GeV as shown in the plot legends. The approximate experimental

thresholds are denoted by dashed vertical lines. For fluorine, we use the PICO threshold region

ER > 3.3 keV [28] while for LUX, we use the approximate region ER ∈ [3, 50] keV [29].

higher orders in the (q/ΛChEFT)2 expansion up to the order where two-nucleon currents are

expected to become important (for the discussion of two-nucleon currents and numerical

estimates see [16–18, 25, 26]). We give several numerical examples illustrating that it is not

always justified to use momentum-independent coefficients in the nonrelativistic EFT for

DM interactions with nucleons [3–5]. One needs to include the light-meson poles when DM

couples to axial quark current or to the QCD anomaly term, to capture the leading effects

of the strong interactions. Similarly, assuming that only one of the norelativistic EFT

operators contributes may be equally hard to justify in a more complete UV theory. From

a particle-physics point of view it is easier to interpret the results of DM direct detection

experiments if one uses an EFT where DM couples to quark and gluons.

Our starting point is thus the interaction Lagrangian between DM and the SM quarks,

gluons, and photon, given by a sum of higher dimension operators,

Lχ =
∑

a,d

Ĉ(d)
a Q(d)

a , where Ĉ(d)
a =

C(d)
a

Λd−4
. (1.1)

Here the C(d)
a are dimensionless Wilson coefficients, while Λ can be identified with the mass

of the mediators between DM and the SM (for couplings of order unity). The sums run over

the dimensions of the operators, d = 5, 6, 7 and the operator labels, a. Depending on the

operator, the label ‘a’ either denotes an operator number or a number and a flavor index if

the operator contains a SM fermion bilinear. We keep all the operators of dimensions five

and six, and all the operators of dimension seven that couple DM to gluons. Among the

dimension-seven operators that couple DM to quarks we exclude from the discussion the
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operators that are additionally suppressed by derivatives but have otherwise the same chiral

structure as the dimension-six operators (for the treatment of these operators see [27]).

There are two dimension-five operators,

Q(5)
1 =

e

8π2
(χ̄σµνχ)Fµν , Q(5)

2 =
e

8π2
(χ̄σµνiγ5χ)Fµν , (1.2)

where Fµν is the electromagnetic field strength tensor and χ is the DM field, assumed here

to be a Dirac particle. The magnetic dipole operator Q(5)
1 is CP even, while the electric

dipole operator Q(5)
2 is CP odd. The dimension-six operators are

Q(6)
1,q = (χ̄γµχ)(q̄γµq) , Q(6)

2,q = (χ̄γµγ5χ)(q̄γµq) , (1.3)

Q(6)
3,q = (χ̄γµχ)(q̄γµγ5q) , Q(6)

4,q = (χ̄γµγ5χ)(q̄γµγ5q) , (1.4)

and we also include a subset of the dimension-seven operators, namely1

Q(7)
1 =

αs
12π

(χ̄χ)GaµνGaµν , Q(7)
2 =

αs
12π

(χ̄iγ5χ)GaµνGaµν , (1.5)

Q(7)
3 =

αs
8π

(χ̄χ)GaµνG̃aµν , Q(7)
4 =

αs
8π

(χ̄iγ5χ)GaµνG̃aµν , (1.6)

Q(7)
5,q = mq(χ̄χ)(q̄q) , Q(7)

6,q = mq(χ̄iγ5χ)(q̄q) , (1.7)

Q(7)
7,q = mq(χ̄χ)(q̄iγ5q) , Q(7)

8,q = mq(χ̄iγ5χ)(q̄iγ5q) , (1.8)

Q(7)
9,q = mq(χ̄σ

µνχ)(q̄σµνq) , Q(7)
10,q = mq(χ̄iσ

µνγ5χ)(q̄σµνq) . (1.9)

Here Gaµν is the QCD field strength tensor, while G̃µν = 1
2εµνρσG

ρσ is its dual, and a =

1, . . . , 8 are the adjoint color indices. Moreover, q = u, d, s denote the light quarks (we limit

ourselves to flavor conserving operators). Note that we include two more dimension-seven

operators than in [1], so that we have all the operators included in [30]. The remaining

dimension-seven operators coupling DM to quarks are listed in [27], while the effect of

dimension-seven operators coupling DM to photons is discussed in [31]. There are also the

leptonic equivalents of the operators Q(6)
1,q , . . . ,Q

(6)
4,q , and Q(7)

5,q , . . . ,Q
(7)
10,q, with q → `.

The aim of this paper is to provide compact expressions for the non-perturbative

matching at µ ' 2 GeV between the EFT with three quark flavors, given by eq. (1.1), and

the theory of DM interacting with nonrelativistic nucleons, given by

LNR =
∑

i,N

cNi (q2)ONi . (1.10)

For each operator the matching is done using the heavy baryon chiral perturbation theory

expansion [32] up to the order for which the scattering amplitudes are still parametrically

dominated by single-nucleon currents. The relevant Galilean-invariant operators with at

1Note that the definition of the operator Q(7)
8,q differs by a sign from the definition used in [1].

– 3 –



J
H
E
P
1
1
(
2
0
1
7
)
0
5
9

χ χ

N N

k2k1

p1 p2

Figure 2. The kinematics of DM scattering on nucleons, χ(p1)N(k1)→ χ(p2)N(k2).

most two derivatives are

ON1 = 1χ1N , ON2 =
(
v⊥
)2

1χ1N , (1.11)

ON3 = 1χ ~SN ·
(
~v⊥×

i~q

mN

)
, ON4 = ~Sχ · ~SN , (1.12)

ON5 = ~Sχ ·
(
~v⊥ ×

i~q

mN

)
1N , ON6 =

(
~Sχ ·

~q

mN

)(
~SN ·

~q

mN

)
, (1.13)

ON7 = 1χ
(
~SN · ~v⊥

)
, ON8 =

(
~Sχ · ~v⊥

)
1N , (1.14)

ON9 = ~Sχ ·
(
i~q

mN
× ~SN

)
, ON10 = −1χ

(
~SN ·

i~q

mN

)
, (1.15)

ON11 = −
(
~Sχ ·

i~q

mN

)
1N , ON12 = ~Sχ ·

(
~SN × ~v⊥

)
, (1.16)

ON13 = −
(
~Sχ · ~v⊥

)(
~SN ·

i~q

mN

)
, ON14 = −

(
~Sχ ·

i~q

mN

)(
~SN · ~v⊥

)
, (1.17)

and in addition

ON2b =
(
~SN · ~v⊥

)(
~Sχ · ~v⊥

)
, (1.18)

where N = p, n. At next-to-leading order (NLO) we also need one operator with three

derivatives,

ON15 = −
(
~Sχ ·

~q

mN

)((
~SN × ~v⊥

)
· ~q

mN

)
. (1.19)

Our definition of momentum exchange differs from [5] by a minus sign, cf. figure 2,

~q = ~k2 − ~k1 = ~p1 − ~p2 , ~v⊥ =
(
~p1 + ~p2

)
/(2mχ)−

(
~k1 + ~k2

)
/(2mN ) , (1.20)

while the operators coincide with those defined in [5]. Each insertion of ~q is accompanied

by a factor of 1/mN , so that all of the above operators have the same dimensionality.

This paper is organized as follows: in section 2 we give the matching conditions for

fermionic DM and in section 3 for scalar DM, while in section 4 we present several examples

illustrating the importance of keeping all terms of the same chiral order. Section 5 contains

our conclusions. The numerical values of the form factors are collected in appendix A, ap-

pendix B contains the nonrelativistic expansion of the fermionic DM and nucleon currents,

appendix C the extended NLO operator basis, appendix D the NLO results for scalar

DM, while appendix E gives the results for fermionic DM in terms of coefficients of the

nonrelativistic operators.

– 4 –



J
H
E
P
1
1
(
2
0
1
7
)
0
5
9

2 Fermionic dark matter

The hadronization of operators Q(6)
1,q , . . . ,Q

(7)
10,q, in eqs. (1.3)–(1.9) leads at LO in the chiral

expansion only to single-nucleon currents [1]. The scattering of DM on a nucleus with mass

number A is given by a sum of A-nucleon irreducible amplitudes with one DM current

insertion. These amplitudes scale as MA,χ ∼ (q/ΛChEFT)ν where the power counting

exponent ν is given explicitly in [1]. This counting was first derived by Weinberg in [21] —

see also [16, 22]. In the case of our EFT basis, the matrix elements of the operators scale

as qνLO , with [1, 27]

[Q(6)
1,q ]LO ∼ 1, [Q(6)

2,q ]LO ∼ q, [Q(6)
3,q ]LO ∼ q, [Q(6)

4,q ]LO ∼ 1,

[Q(7)
1 ]LO ∼ 1, [Q(7)

2 ]LO ∼ q, [Q(7)
3 ]LO ∼ q, [Q(7)

4 ]LO ∼ q2,

[Q(7)
5,q ]LO ∼ q2, [Q(7)

6,q ]LO ∼ q3, [Q(7)
7,q ]LO ∼ q, [Q(7)

8,q ]LO ∼ q2,

[Q(7)
9,q ]LO ∼ 1, [Q(7)

10,q]LO ∼ q,

(2.1)

counting mq ∼ m2
π ∼ q2, and not displaying a common scaling factor. The LO contributions

are either due to scattering of DM on a single nucleon (the first diagram in figure 3), or

on a pion that attaches to the nucleon (the second diagram), or both. The contributions

from DM scattering on two-nucleon currents arise at O(qνLO+1) for O(6)
2,q , O

(7)
5,q , and O(7)

6,q , at

O(qνLO+2) for O(6)
1,q , and at O(qνLO+3) for all the other operators. Up to these orders, the

hadronization of the operators Q(6)
1,q , . . . ,Q

(7)
10,q can thus be described by using form factors

for single-nucleon currents.

The form factors are given by

〈N ′|q̄γµq|N〉 = ū′N

[
F
q/N
1 (q2)γµ +

i

2mN
F
q/N
2 (q2)σµνqν

]
uN , (2.2)

〈N ′|q̄γµγ5q|N〉 = ū′N

[
F
q/N
A (q2)γµγ5 +

1

2mN
F
q/N
P ′ (q2)γ5q

µ

]
uN , (2.3)

〈N ′|mq q̄q|N〉 = F
q/N
S (q2) ū′NuN , (2.4)

〈N ′|mq q̄iγ5q|N〉 = F
q/N
P (q2) ū′N iγ5uN , (2.5)

〈N ′| αs
12π

GaµνGaµν |N〉 = FNG (q2) ū′NuN , (2.6)

〈N ′|αs
8π
GaµνG̃aµν |N〉 = FN

G̃
(q2) ū′N iγ5uN , (2.7)

〈N ′|mq q̄σ
µνq|N〉 = ū′N

[
F
q/N
T,0 (q2)σµν +

i

2mN
γ[µqν]F

q/N
T,1 (q2)

+
i

m2
N

q[µk
ν]
12F

q/N
T,2 (q2)

]
uN ,

(2.8)

where we have suppressed the dependence of nucleon states on their momenta, i.e. 〈N ′| ≡
〈N(k2)|, |N〉 ≡ |N(k1)〉, and similarly, ū′N ≡ ūN (k2), uN ≡ uN (k1). The momentum

exchange is qµ = kµ2 −kµ1 , while kµ12 = kµ1 +kµ2 . The form factors Fi are functions of q2 only.

The axial current, the pseudoscalar current, and the CP-odd gluonic current receive

contributions from light pseudoscalar meson exchanges corresponding to the second dia-

– 5 –
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Figure 3. The chirally leading diagrams for DM-nucleus scattering (the first and second diagrams),

and a representative diagram for two-nucleon scattering (the third diagram). The effective DM-

nucleon and DM-meson interactions are denoted by a circle, the dashed line denotes a pion, and

the dots represent the remaining A− 2 nucleon lines.

gram in figure 3. For small momenta exchanges, q ∼ mπ, one can expand the form factors

in q2, as

F
q/N
i (q2) =

LO︷ ︸︸ ︷
m2
N

m2
π − q2

a
q/N
i,π +

m2
N

m2
η − q2

a
q/N
i,η +

NLO︷︸︸︷
b
q/N
i + · · · , i = P, P ′, (2.9)

FN
G̃

(q2) =
q2

m2
π − q2

aN
G̃,π

+
q2

m2
η − q2

aN
G̃,η

+ bN
G̃

︸ ︷︷ ︸
LO

+ cN
G̃
q2

︸ ︷︷ ︸
NLO

+ · · · , (2.10)

where we kept both the pion and eta poles and denoted the order of the various terms

in chiral counting. The coefficients ai, bi, ci are momentum-independent constants. Note

that the pion and eta poles for the GG̃ operator are suppressed by q2 and are thus of the

same chiral order as the constant term, bN
G̃

. All the other form factors do not have a light

pseudoscalar pole and can be Taylor expanded2 around q2 = 0,

F
q/N
i (q2) = F

q/N
i (0)︸ ︷︷ ︸

LO

+F
′ q/N
i (0)q2

︸ ︷︷ ︸
NLO

+ · · · , (2.11)

where the prime on F denotes a derivative with respect to q2. The values of F
q/N
i (0),

F
′ q/N
i (0), and ai, bi, ci are collected in appendix A.

The size of the form factors that do not have light-meson poles are, at zero recoil,

F
q/N
1,2 (0) , F

q/N
A (0) ∼ O(1) , F

s/N
1,2 (0) , F

s/N
A (0) ∼ O(0− 0.05) , (2.12)

F
q/N
S (0) ∼ O(0.03)mN , F

s/N
S (0) ∼ O(0.05)mN , (2.13)

FNG (0) ∼ O(0.1)mN , (2.14)

F
q/N
T,0;T,1;T,2(0) ∼ O(1)mq, F

s/N
T,0;T,1;T,2(0) . O(0.001− 0.2)ms . (2.15)

(only here and in the remainder of the subsection we use the abbreviation q = u, d).

The s-quark form factors are much smaller, with the exception of the scalar form factor.

2We assume that the NLO terms involving chiral logarithms of the form (m2
π − q2) log(m2

π − q2) were

also expanded in q2. This may give an effective expansion parameter q2/(ΛEFT)2 with ΛEFT between mπ

and 4πf ; however, numerically it is found to be closer to the latter, see appendix A.
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Their derivatives at zero recoil, which enter the NLO expressions, have a typical size

F ′i (0)/Fi(0) ∼ O(1/m2
N ), so that the corresponding corrections are expected at the level

of several percent.

The coefficients of the terms in the form factors that contain the pion and eta poles,

eqs. (2.9), (2.10), are approximately of the size

a
q/N
P ′,π , a

q/N
P ′,η ∼ O(1) , a

s/N
P ′,π = 0 , a

s/N
P ′,η ∼ O(1) , (2.16)

a
q/N
P,π , a

q/N
P,η ∼ O(1)mq , a

s/N
P,π = 0 , a

s/N
P,η ∼ O(1)ms , (2.17)

aN
G̃,π

, aN
G̃,η

, bN
G̃
∼ O(1)mN . (2.18)

2.1 Leading-order expressions

We first give the expressions for the nonrelativistic EFT Lagrangian (1.10) at LO in chiral

counting. In this case we only need the values of aπi , aηi , b
N
G̃

, and Fi(0). In addition to

taking the hadronic matrix elements of the quark and gluon currents we also take the

nonrelativistic limit of both the DM currents and the nucleon currents. The expressions

for this last step are collected in appendix B. The chirally leading hadronization of the

dimension-five operators is thus given by

Q(5)
1 → − α

2π
FN1

(
1

mχ
ON1 − 4

mN

~q 2
ON5
)
− 2α

π

µN
mN

(
ON4 −

m2
N

~q 2
ON6
)

+O(q2) , (2.19)

Q(5)
2 → 2α

π

mN

~q 2
FN1 ON11 +O(q2) , (2.20)

with FN1 (0) = δpN the nucleon charge, and µN the nucleon magnetic moment (see also

appendix A.1). The dimension-six operators hadronize as

Q(6)
1,q → F

q/N
1 ON1 +O(q2) , (2.21)

Q(6)
2,q → 2F

q/N
1 ON8 + 2

(
F
q/N
1 + F

q/N
2

)
ON9 +O(q2) , (2.22)

Q(6)
3,q → − 2F

q/N
A

(
ON7 −

mN

mχ
ON9
)

+O(q2) , (2.23)

Q(6)
4,q → − 4F

q/N
A ON4 + F

q/N
P ′ ON6 +O(q2) , (2.24)

while the hadronization of the gluonic dimension-seven operators is given by

Q(7)
1 → FNG ON1 +O(q2) , (2.25)

Q(7)
2 → − mN

mχ
FNG ON11 +O(q3) , (2.26)

Q(7)
3 → FN

G̃
ON10 +O(q3) , (2.27)

Q(7)
4 → mN

mχ
FN
G̃
ON6 +O(q4) . (2.28)

– 7 –
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The hadronization of the dimension-seven operators with quark scalar currents results in

Q(7)
5,q → F

q/N
S ON1 +O(q) , (2.29)

Q(7)
6,q → − mN

mχ
F
q/N
S ON11 +O(q2) , (2.30)

Q(7)
7,q → F

q/N
P ON10 +O(q3) , (2.31)

Q(7)
8,q →

mN

mχ
F
q/N
P ON6 +O(q4) , (2.32)

and for the tensor operators

Q(7)
9,q → 8F

q/N
T,0 ON4 +O(q2) , (2.33)

Q(7)
10,q → − 2

mN

mχ
F
q/N
T,0 ON10 + 2

(
F
q/N
T,0 − F

q/N
T,1

)
ON11 − 8F

q/N
T,0 ON12 +O(q3) . (2.34)

The nonrelativistic operators have been defined in (1.11)–(1.17). In the above expressions

all the form factors F
q/N
i are evaluated at q2 = 0, apart from F

q/N
P,P ′ and FN

G̃
, where one

needs to keep the two meson-pole terms in (2.9) and the first three terms in (2.10). The

corresponding values of coefficients cNi in the nonrelativistic Larangian, eq. (1.10), are given

in appendix E.

Several comments are in order. First of all, in several cases a single operator describing

the DM interactions with quarks and gluons matches onto more than one nonrelativistic

operator in eqs. (1.11)–(1.19) already at leading chiral order. This occurs for

Q(5)
1 =

e

8π2
(χ̄σµνχ)Fµν ∼ Qp1χ1N/mχ +Qp~Sχ · (~v⊥ × i~q)1N/~q 2

+ µN ~Sχ · ~SN/mN + µN (~Sχ · ~q)(~SN ·~q)/(mN~q
2) , (2.35)

Q(6)
2,q = (χ̄γµγ5χ)(q̄γµq) ∼

(
~Sχ · ~v⊥

)
1N + F

q/N
1,2 (0)~Sχ ·

(
i~q × ~SN

)
/mN , (2.36)

Q(6)
3,q = (χ̄γµχ)(q̄γµγ5q) ∼ ∆qN

[
1χ
(
~SN · ~v⊥

)
− ~Sχ ·

(
i~q × ~SN

)
/mχ

]
, (2.37)

Q(6)
4,q = (χ̄γµγ5χ)(q̄γµγ5q) ∼ ∆qN ~Sχ · ~SN +

∆qN
m2
π + ~q 2

(
~Sχ · ~q

) (
~SN · ~q

)
, (2.38)

Q(7)
10,q = mq(χ̄iσ

µνγ5χ)(q̄σµνq) ∼
mq

mχ
gqT1χ

(
~SN · i~q

)
+
mq

mN
{gqT , F

q/N
T,1

}(
~Sχ · i~q

)
1N

+mqg
q
T
~Sχ ·

(
~SN × ~v⊥

)
, (2.39)

where we only show the approximate dependence on the nonperturbative coefficients (here

Qp = 1 is the proton charge, while the values of the axial charge ∆qN , the form factors

F
q/N
1,2 (0) and the tensor charges, gqT , F

q/N
T,1 (0)) are given in appendix A.

The above results mean that it is not consistent within EFT to perform the direct detec-

tion analysis in the nonrelativistic basis and only turn on one of the operators ON7 ,ON8 ,ON9
or ON12, as they always come accompanied with other nonrelativistic operators, regardless

of the UV operator that couples DM to quarks and gluons. On the other hand, the
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spin-independent operator ON1 as well as the spin-dependent operator ON4 can arise by

themselves from Q(6)
1,q ,Q

(7)
1 ,Qq/N5,q and from Q(7)

9,q , respectively. Similarly, ON6 , ON10, and ON11

arise as the only leading operators in the nonrelativistic reduction of Q(7)
8,q , Q

(7)
3 or Q(7)

7,q ,

and Q(7)
2 or Q(7)

6,q , respectively.

While it is true that the spin-dependent operator ON4 can arise from the tensor-tensor

operator Q(7)
9,q , this contribution would be of two-loop order in a perturbative UV theory

of DM. The axial-axial operator Q
(6)
4,q , on the other hand, also leads to spin-dependent

scattering and will arise at tree level. Therefore it will, if generated, typically dominate

over Q(7)
9,q . The induced spin-dependent scattering arises from both the ON4 = ~Sχ · ~SN and

ON6 =
(
~Sχ ·~q

) (
~SN ·~q

)
operators. While the latter is O(q2) suppressed, it is simultaneously

enhanced by 1/(m2
π + ~q 2) so that in general the two contributions are of similar size (for

scattering on heavy nuclei). In this case, again, one cannot perform the direct detection

analysis with just ON4 or just ON6 . The same is true for the operators Q(6)
2,q , Q

(6)
3,q , and Q(7)

10,q

that each match at leading order in chiral counting to at least two nonrelativistic operators.

Therefore, a correct LO description of the DM scattering rate cannot be achieved by using

only one nonrelativistic operator at a time. We explore this quantitatively in section 4,

also distinguishing the cases of light and heavy nuclei.

2.2 Subleading corrections

We discuss next the NLO corrections to the nonrelativistic reduction of the opera-

tors (1.3)–(1.9). The explicit expressions are given in appendix C. For each of the operators

we stop at the order at which one expects the contributions from the two-nucleon currents.

For most of the operators, this is O(qνLO+3); the exceptions are the operators O(6)
2,q , O

(7)
5,q ,

O(7)
6,q , for which the two-nucleon corrections arise at O(qνLO+1), and the operator O(6)

1,q , for

which the corrections are of O(qνLO+2). Note that for O(7)
5,q , O

(7)
6,q , and O(6)

1,q the two-nucleon

currents enter at the same order as the subleading corrections. Partial results for the

NLO nonrelativistic reduction were derived in ref. [18], where in addition the two-nucleon

corrections were considered.

Starting at subleading order there are terms that break Galilean invariance. This is

a consequence of the fact that the underlying theory is Lorentz and not Galilean invari-

ant [33]. These corrections involve the average velocity of the nucleon before and after the

scattering event, ~va = (~k1 +~k2)/(2mN ), and lead to ten new nonrelativistic operators listed

in eqs. (C.2)–(C.7).

The operators that appear at subleading order in the nonrelativistic reduction can

have a qualitatively different structure from the ones that arise at LO. For instance, the

vector-vector current operator Q(6)
1,q = (χ̄γµχ)(q̄γµq) reduces at NLO to

Q(6)
1,q → F

q/N
1 ON1

(
1 + · · ·

)
−
{(
F
q/N
1 + F

q/N
2

) ~q 2

mχmN
ON4 −

(
F
q/N
1 + F

q/N
2

)
ON3

− mN

2mχ
F
q/N
1 ON5 −

mN

mχ

(
F
q/N
1 + F

q/N
2

)
ON6 + · · ·

}
.

(2.40)
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At LO one thus has the number operator ON1 = 1χ1N and no spin dependence, while the

expansion to the subleading order gives in addition velocity-suppressed couplings to spin

through the operators ON4 = ~Sχ · ~SN , ON3,5 ∼ ~SN,χ · (~v⊥×~q), and ON6 ∼ (~q·~SN )(~q·~Sχ). Such

corrections could have potentially important implications, if the LO expression leads to

incoherent, i.e., spin-dependent scattering, while at NLO there is a contribution from the

number operator ON1 . The latter leads to an A2-enhanced coherent scattering rate, where

A is the mass number of the nucleus. For scattering on heavy nuclei with A ∼ O(100) the

chirally subleading term can potentially be the dominant contribution on nuclear scales.

There is only one operator, where this occurs, though. The tensor-tensor operator,

Q(7)
9,q = mq(χ̄σ

µνχ)(q̄σµνq), leads at LO in the chiral expansion to the spin-spin interaction,

ON4 = ~Sχ · ~SN . At NLO, on the other hand, one also obtains a contribution of the form

∼ ~q 21χ1N ,

Q(7)
9,q → 8F

q/N
T,0 ON4 −

{
~q 2

2mNmχ

(
F
q/N
T,0 − F

q/N
T,1

)
ON1 + · · ·

}
, (2.41)

where we do not display the other q2-suppressed terms. For heavy nuclei the coherently

enhanced contribution from ON1 scales as A~q 2/(mNmχ) ∼ O(1) and thus the formally

subleading contribution could, in principle, become important in nuclear scattering. In-

spection of this particular case, however, shows that there is a relative numerical factor

of 16 enhancing the leading contribution. Furthermore the coherent O(q2) term is sup-

pressed by 1/mNmχ and not simply by 1/m2
N , further reducing its importance for heavy

DM masses. As a result the O(q2) terms are numerically unimportant also for the tensor-

tensor operator. In contrast, such coherent scattering is important in µ → e conversion,

where the mχ supression gets replaced by mµ [34].

A potential concern is that something similar, but with a less favorable result for the

numerical factors, could happen for some other operator due to the uncalculated contri-

butions from the nonrelativistic expansion to even higher orders. However, one can easily

convince oneself that this is not the case by using the parity properties of quark and DM

bilinears. All the relativistic operators in eq. (1.1) that are composed from parity-odd bi-

linears necessarily involve the parity-odd spin operators for single-nucleon currents at each

order in the chiral expansion, because one cannot form a parity-odd quantity from just two

momenta — the incoming and the outgoing momentum (cf. (B.12)–(B.17)). Such opera-

tors thus never lead to coherent scattering (the argument above may need to be revisited

for two-nucleon currents). This leaves us with the operators composed from parity-even

bilinears only. Scalar-scalar operators and vector-vector operators lead to coherent scat-

tering already at LO, giving tensor-tensor operator as the only left over possibility. The

reduction of the tensor bilinear, eq. (B.16), gives at LO ∼ εµναβvαSβ , while at NLO one

also gets, among others, the combination v[µqν]. The latter does not involve spin and leads

to coherent scattering. However, due to numerical prefactors, the latter contribution is still

subleading, as was shown above.
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3 Scalar dark matter

The above results are easily extended to the case of scalar DM.3 For relativistic scalar DM,

denoted by ϕ, the effective interactions with the SM start at dimension six,

Lϕ = Ĉ(6)
a Q(6)

a + · · · , where Ĉ(6)
a =

C(6)
a

Λ2
, (3.1)

where ellipses denote higher dimension operators. The dimension-six operators that couple

DM to quarks and gluons are

Q(6)
1,q =

(
ϕ∗i

↔
∂µϕ

)
(q̄γµq) , Q(6)

2,q =
(
ϕ∗i

↔
∂µϕ

)
(q̄γµγ5q) , (3.2)

Q(6)
3,q = mq(ϕ

∗ϕ)(q̄q) , Q(6)
4,q = mq(ϕ

∗ϕ)(q̄iγ5q) , (3.3)

Q(6)
5 =

αs
12π

(ϕ∗ϕ)GaµνGaµν , Q(6)
6 =

αs
8π

(ϕ∗ϕ)GaµνG̃aµν . (3.4)

while the coupling to photons are

Q(6)
8 =

α

12π
(ϕ∗ϕ)FµνFµν , Q(6)

9 =
α

8π
(ϕ∗ϕ)FµνF̃µν . (3.5)

Here
↔
∂µ is defined through φ1

↔
∂µφ2 = φ1∂µφ2 − (∂µφ1)φ2, and q = u, d, s again denote the

light quarks. The strong coupling constant αs is taken at µ ∼ 1 GeV, and α = e2/4π the

electromagnetic fine structure constant. The operators Q(6)
6 and Q(6)

9 are CP-odd, while all

the other operators are CP-even. There are also the leptonic equivalents of the operators

Q(6)
1,q , . . . ,Q

(6)
4,q , with q → `.

At LO in chiral counting the operators coupling DM to quark and gluon currents

hadronize as

Q(6)
1q → 2F

q/N
1 mϕON1 +O(q2) , (3.6)

Q(6)
2q →− 4F

q/N
A mϕON7 +O(q3) , (3.7)

Q(6)
3q → F

q/N
S ON1 +O(q2) , (3.8)

Q(6)
4q → F

q/N
P ON10 +O(q3) , (3.9)

Q(6)
5 → FGON1 +O(q2) , (3.10)

Q(6)
6 → FG̃ON10 +O(q3) . (3.11)

The expressions valid to NLO in chiral counting are given in appendix D.

There are a number of qualitative differences between the cases of fermionic and scalar

DM. For instance, since scalar DM does not carry a spin there is a much smaller set of

operators that are generated in the nonrelativistic limit. This greatly simplifies the analysis.

Furthermore, as opposed to the case of fermionic DM, there are no cases where at LO in

chiral counting one would obtain incoherent scattering on nuclear spin, while at NLO in

chiral counting one would have coherent scattering.

3For operators and Wilson coefficients we adopt the same notation for scalar DM as for fermionic DM.

No confusion should arise as this abuse of notation is restricted to this section and appendix D.

– 11 –



J
H
E
P
1
1
(
2
0
1
7
)
0
5
9

4 Examples

In this section we discuss several numerical examples of DM direct detection scattering.

Most of the examples are for LO matching from the EFT describing DM interacting with

quarks and gluons onto a theory that describes DM interacting with neutrons and protons

in. At the end of this section, we will also comment on the NLO corrections. The rate R,

i.e., the expected number of events per detector mass per unit of time, is given by

dR
dER

=
ρχ

mAmχ

∫

vmin

dσ

dER
vf⊕(~v)d3~v , (4.1)

where ER is the recoil energy of the nucleus, mA is the mass of the nucleus, and ρχ is the

local DM density. The integral is over the DM velocity v in the Earth’s frame with a lower

bound given by vmin =
√
mAER/2/µχA, where µχA = mAmχ/(mA + mχ) is the reduced

mass of DM-nucleus system. For the DM velocity distribution in the Earth’s frame, f⊕(~v),

we use the standard halo model, i.e., a distribution that in the galactic frame takes the

form of an isotropic Maxwell-Boltzmann distribution with v0 = 254 km/s (where v0/
√

2 is

the width of the Gaussian), truncated at the escape velocity vesc = 550 km/s [35].

The DM-nucleus scattering cross section dσ/dER in eq. (4.1) is given by

dσ

dER
=

mA

2πv2

1

(2Jχ + 1)

1

(2JA + 1)

∑

spins

|M|2NR . (4.2)

The nonrelativistic matrix element squared is [5]

1

2Jχ + 1

1

2JA + 1

∑

spins

|M|2NR =
4π

2JA + 1

∑

τ=0,1

∑

τ ′=0,1

{
Rττ

′
M W ττ ′

M (q) +Rττ
′

Σ′′W
ττ ′
Σ′′ (q) (4.3)

+Rττ
′

Σ′ W
ττ ′
Σ′ (q) +

~q 2

m2
N

[
Rττ

′
∆ W ττ ′

∆ (q) +Rττ
′

∆Σ′W
ττ ′
∆Σ′(q)

]}
,

where Jχ = 1/2 is the spin of DM in our examples and JA is the spin of the target nucleus.

The nuclear response function Wi depend on momentum exchange, q ≡ |~q |. The spin-

independent scattering is encoded in the response function WM which, for instance, arises

from the matrix element squared of the nuclear vector current. In the long-wavelength

limit, q → 0, WM (0) simply counts the number of nucleons in the nucleus giving coher-

ently enhanced scattering, WM (0) ∝ A2. The response functions WΣ′′ and WΣ′ have the

same long-wavelength limit and measure the nucleon spin content of the nucleus. W∆ mea-

sures the nucleon angular momentum content of the nucleus, while W∆Σ′ is the interference

term. These functions roughly scale as WM ∼ O(A2), and WΣ′ ,WΣ′′ ,W∆,W∆Σ′ ∼ O(1),

where the actual size depends on the particular nucleus and can differ significantly from

one nucleus to another. The prefactors Ri encode the dependence on the cNi (q2) coeffi-

cients, eq. (1.10), and on kinematical factors. For instance, the coefficient of the coherently

enhanced term is

Rττ
′

M = cτ1c
τ ′
1 +

1

4

[
~q 2

m2
N

cτ11c
τ ′
11 + ~v⊥2

T

(
cτ8c

τ ′
8 +

~q 2

m2
N

cτ5c
τ ′
5

)]
, (4.4)
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4
+
O

6
)

Xenon; C(6)
4,u = 1

Figure 4. Left panel : an illustration of Xe target bounds on the Wilson coefficients C(6)4,u = −C(6)4,d

for the interaction operator (χ̄γµγ5χ)(q̄γµγ5q) assuming opposite couplings to the u and d quarks.

The correct, chirally leading, treatment of the induced spin-dependent scattering with both ON4 =
~Sχ · ~SN and ON6 ∝ (~Sχ ·~q)(~SN ·~q) operators (black solid line) is compared to that of ON4 only (blue

dashed line). The ratio of the two is shown in the bottom plot. Right panel : the ratio of the O4

contribution to the rate over the total rate as a function of the Wilson coefficient C(6)4,d for a fixed

value of C(6)4,u = 1, taking mχ = 100 GeV.

where ~v⊥T = ~v−~q/(2µχA) ∼ 10−3. The sum in eq. (4.3) is over isospin values τ = 0, 1 which

are related to the proton and neutron coefficients by c0
i =

(
cpi + cni

)
/2, c1

i =
(
cpi − cni

)
/2.

The remaining Rττ
′

i can be found in [5]. Using these expressions for Rττ
′

M together with our

expressions for the hadronization of the EFT operators, eqs. (2.19)–(2.34), which give the

coefficients cτi (see appendix E), we are now in a position to obtain the rates in a DM direct

detection experiment assuming a particular interaction of DM with the visible sector.

In the following, when we calculate the scattering rate and plot the bound on the

squared UV Wilson coefficients, we restrict the integral over the recoil energy. To approx-

imate the LUX sensitivity region we integrate over ER ∈ [3, 50] keV for Xenon [29]. To

approximate PICO’s [28] sensitivity we integrated over ER > 3.3 keV for Fluorine — see

figures 1 and 5. To obtain total rates for scattering on Xenon, we assume an exposure of

5000 kg·yr which is representative of the next generation two-phase liquid Xenon detectors.

Since Xenon has eight naturally occurring stable isotopes, we sum over them weighted by

their natural abundances.

The first few examples, shown in figures 4, 5, and 6, illustrate that one cannot always

take the long wavelength limit, q → 0, in the calculation of DM scattering rates when

matching from Lχ to LNR. This problem is well known for the description of DM scat-
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C(6)
4,u = −C(6)

4,d = 1
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No q2 dep. in poles

C(7)
4 = 1
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ER [KeV]

0

1

2

3

4

d
R
/
d
E
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[1
/G
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]

×10−55

131Xe

19F

LUX
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mχ = 200 GeV

Full q2 dep.

No q2 dep. in poles

Figure 5. The differential event rate, dR/dER, as a function of the recoil energy, ER, for scattering

on Xenon (blue) and Fluorine (red) for Q(6)
4,q and Q(7)

4 in the left and right panels respectively. In

both panels, the solid curves include the full q2 dependence in the form factor FG̃(q2) while the

dashed lines include only the zero recoil limit, FG̃(0). The shaded regions depict the approximate

ranges of experimental sensitivity for the LUX (blue) and PICO (red) experiments.

tering on whole nuclei, the effect described by the momentum dependence of the nuclear

response functions. For instance, a momentum exchange of q = 100 MeV already leads to

decoherence and thereby reduces the spin-independent nuclear form factor WM by ∼ 20%

(∼ 60%) for scattering on Fluorine (Xenon). Our examples show a different effect, namely

that sometimes the momentum dependence cannot be neglected even when considering the

scattering on a single neutron and/or proton. This effect is described by the momentum

dependence of the coefficients cττ
′

i . Since nucleons have smaller spatial dimensions than nu-

clei, the effects of the momentum dependence of cττ
′

i are expected to be smaller than those

of the momentum dependence of W ττ ′
i . However, because the pseudoscalar hadronic cur-

rents contain pion poles, the corrections due to non-zero momentum in the corresponding

cττ
′

i are of O(~q 2/m2
π) and can be large.

The effect of such contributions for scattering on Xenon is shown in figure 4. The

chirally leading hadronization of the axial-axial operator (χ̄γµγ5χ)(q̄γµγ5q) contains two

nonrelativistic operators, ON4 = ~Sχ·~SN and ON6 ∝ (~Sχ·~q )(~SN ·~q ). The latter is momentum

suppressed but comes with a pion-pole enhanced coefficient, see eq. (2.38), and thus gives

an O(1) contribution to the scattering rate through interference with ON4 . The left panel in

figure 4 shows a bound (solid black line) on the relativistic Wilson coefficient C(6)
4,q assuming

equal and opposite couplings to the u and d quarks, and a vanishing coupling to s quarks.4

This is compared with the extraction of the bound on C(6)
4,q where the contribution of ON6

is neglected (dashed blue line). The two bounds coincide for small mχ since in that case

the exchanged momenta are small which parametrically suppresses the ON6 contribution.

The relative difference then grows with mχ up to mχ ∼ mA (see lower plot in figure 4

left), and is typically of O(20% − 50%), figure 4 (right), confirming the expectation from

4In fact, we show a bound on
∣∣C(6)4,q

∣∣2 since this is directly proportional to the scattering rate.
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Figure 6. Comparison between the bounds on the squared Wilson coefficients of the UV operators

Q(7)
3 (left panel) and Q(7)

4 (right panel) for scattering on a Xenon target. The dashed and solid

curves correspond to the bound with and without meson exchanges respectively. The lower plots

show the ratio of the bounds without and with the inclusion of meson exchange.

chiral counting that the correction is O(1) unless there are cancellations in one of the two

contributions. For instance, the ON4 contribution is suppressed for C(6)
4,d ' C

(6)
4,u/2 and a DM

mass mχ = 100 GeV. Independent of the DM mass, however, the pion pole is completely

absent for C(6)
4,d = C(6)

4,u, and the ON6 contribution to the scattering rate becomes negligible.

Furthermore, the contribution from ON6 is expected to be negligible for scattering on

light nuclei since the exchanged momenta are small, see figure 1. We have explicitly checked

this for scattering on Fluorine, with the corresponding effect on dR/dER shown in figure 5

(left) for mχ = 200 GeV. For scattering on 19F the predictions with (solid red line) and

without ON6 (dashed red line) essentially coincide while for scattering on Xenon there is a

large distortion of the spectrum in the signal region for LUX.

The effect of pion exchange is even more pronounced if DM couples to the visible

sector through parity-odd gluonic operators, i.e., if the operators in eq. (1.6) dominate. In

figure 6, we show the bounds on the Wilson coefficients of the Q(7)
3 ∝ χ̄χGG̃ operator (left

panel), and of the operator Q(7)
4 ∝ χ̄iγ5χGG̃ (right panel). The corresponding nucleon

form factor has a schematic form

FG̃(q) ∼
∑

i

∆qi
mqi

+ δm
q2

m2
π,η − q2

, (4.5)

where ∆qi is the axial charge of quark qi and the δm coefficient is the size of isospin

breaking for pion exchange and the SU(3)-flavor breaking for eta meson exchange, see

eq. (A.42). Note that isospin breaking is O(1) for the matrix element of the QCD anomaly

term αs/(8π)GG̃ while it is of O(10%) for all other matrix elements [36]. The importance
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Figure 7. The bounds on the squared Wilson coefficient of the Q(6)
3,q = (χ̄γµχ)(q̄γµγ5q) operator

from scattering on Xenon (left) and Fluorine (right), taking into account only ON7 (dashed blue

line), only ON9 operator (dot-dashed green line), and both (solid black). The coupling to all three

light quarks are set equal to each other.

of isospin-breaking but pion-pole enhanced contributions is reflected in the DM scattering

rates. The bounds on the Wilson coefficients C(7)
3,4 in figure 6, obtained with the correct full

form factor dependence, are depicted with solid black lines. For weak-scale DM masses they

can be even up to an order of magnitude stronger than the bounds obtained by only using

the zero recoil form factor, FG̃(0) (dashed blue lines). Ignoring the leading q2-dependence

in FG̃ also leads to a large distortion of the shape in dR/dER as shown in figure 5 (right)

for the Q(7)
4 operator and mχ = 200 GeV. In this case, there is a visible change in the shape

of the differential rate even for scattering on Fluorine, despite small momenta exchanges.

The effect is striking for the scattering on Xenon where momenta exchanges are typically

larger. For the Q(7)
3 operator, the distortion is slightly smaller, but otherwise comparable

to the one shown.

For the Q(6)
4,q and Q(7)

4 operators discussed above and shown for scattering on Xenon in

figures 4 and 6 respectively, the ~q 2 dependence in the meson poles is negligible for scattering

on Fluorine. To understand this it is useful to consider the differential scattering rate as

a function of the recoil energy. This is shown in figure 5 for a fixed DM mass of 200 GeV.

For both interactions, the ER spectra for Fluorine do not differ significantly when the ~q 2

dependence in the meson poles is neglected since a given value of ER results in a momentum

transfer ~q 2/mA that is smaller by an order of magnitude in Fluorine than in Xenon.

A qualitatively different example is given in figure 7 which shows the bounds on the

Wilson coefficient C(6)
3,q as function of mχ for scattering on Xenon and Fluorine. The vector-
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Figure 8. The bound on the squared Wilson coefficient of the magnetic dipole operator Q(5)
1 .

The left (right) panel shows the scattering on Xenon (Fluorine). The EFT scale was fixed to 10

and 20 TeV for scattering on Xenon and Fluorine respectively. For both targets, the solid curve

corresponds to the total rate while the dashed, dotted, dash-dotted and dash-double-dotted curves

correspond to turning one non-relativistic operator at a time.

axial operator, Q(6)
3,q = (χ̄γµχ)(q̄γµγ5q), eq. (1.4), matches onto two non-relativistic opera-

tors, ON7 ∝ ~SN · ~v⊥ and ON9 ∝ ~Sχ · (~q × ~SN ). At leading order in chiral power counting,

the hadronization of the axial quark-current in Q(6)
3,q is described by one form factor at zero

recoil, F
q/N
A (0), see eq. (2.23). This form factor is therefore a common coefficient in the

matching onto both ON7 and ON9 . Nevertheless, the contribution due to ON9 is suppressed

by an additional power of the DM mass (i.e, two powers in the rate) and thus becomes

subleading for larger DM masses. Since the contributions are correlated yet scale differ-

ently with mχ, it is crucial to consider both non-relativistic operators when setting bounds

from direct detection experiments (see, e.g., [37]).

The non-trivial interplay between different non-relativistic operators can also be seen

in the case of dipole interaction, Q(5)
1 , shown in figure 8. This operator matches onto four

NR operators ON1 ,ON4 ,ON5 ,ON6 , see eq. (2.19). Out of these, two are coherently enhanced,

ON1 = 1χ1N and ON5 ∝ ~Sχ · (~v⊥ × ~q)1N . One expects these two to dominate for heavier

nuclei, as shown explicitly for Xenon in figure 8 (left). The ON5 operator is enhanced by an

explicit photon pole prefactor, 1/~q 2, which overcomes the velocity suppression and leads

to its dominance over all other contributions. The contribution from the ON1 operator, on

the other hand, is local and is suppressed for heavy DM by a 1/mχ factor. Its contribution

is, therefore, relevant only for light DM.

For DM scattering on lighter nuclei, the situation is more involved. The coherent

enhancement is not as large and does not overcome the velocity suppression in ON5 even
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though it is accompanied by the 1/~q 2 enhancement. For ON1 , the factor of 1/mχ still

suppresses its contribution, particularly for mχ & O(10) GeV. For Fluorine the leading

contributions thus come from incoherent scattering due to the spin-dependent ON4 and ON6
operators. Parametrically, they scale in the same way (the ~q 2 factor in ON6 is cancelled

by the 1/~q 2 in its Wilson coefficient). Numerically, however, the contribution from ON4 is

about three times larger. Furthermore, the contributions have opposite signs and interfere

destructively as can be seen in the right panel of figure 8, with ON4 giving a stronger bound

than the sum of all operators.

Finally, we turn our attention to the NLO corrections. The chiral counting of the

expansion in powers of q2 is well motivated but does not capture all effects. For instance,

the NLO corrections in chiral counting can become important if coherently enhanced op-

erators appear at NLO when there were none at LO. This is indeed the case for the tensor

operator Q(7)
9,q where two coherently enhanced operators, ON1 and ON5 , appear at NLO in

the expansion, while at LO no coherently enhanced operators are present. However, even

for Xenon, the coherent enhancement is not enough to compensate for the ~q 2/mNmχ sup-

pression accompanied by a relative factor of 1/16, and thus the resulting correction is of

O(5%). A similar coherently enhanced contribution appears for Q(7)
10,q operator at O(q4)

and is thus completely negligible.

5 Conclusions

In this article we derived the expressions for the matching of an EFT for DM interact-

ing with quarks and gluons, described by the effective Lagrangian Lχ in eq. (1.1), to an

EFT described by the Lagrangian LNR for nonrelativistic DM interacting with nonrela-

tivistic nucleons, eq. (1.10). The latter is then used as an input to the description of DM

interactions with nuclei, described in terms of nuclear response functions. The rationale

underlying our work is the organization of different contributions according to chiral power

counting, i.e., in terms of an expansion in ~q 2/Λ2
ChEFT and counting q ∼ mπ. Within this

framework one can make the following observations: (i) for LO expressions one needs non-

relativistic operators with up to two derivatives, since they can be enhanced by pion poles

giving a contribution of the order of ~q 2/(m2
π+~q 2) ∼ O(1); (ii) not all of the nonrelativistic

operators ONi with two derivatives are generated when starting from an EFT for DM inter-

acting with quarks and gluons; (iii) a single relativistic operator Q(d)
i can generate several

nonrelativistic operators ONi with momentum-dependent coefficients already at LO; (iv)

interactions of DM with two-nucleon currents are chirally suppressed (barring cancellations

of LO terms), justifying our treatment of DM interacting with only single-nucleon currents.

We worked to next-to-leading order in the chiral expansion, but also discussed sep-

arately the expressions for the leading-order matching. At LO the scattering of DM on

nucleons only depends on the DM spin ~Sχ, the nucleon spin ~SN , the momentum exchange

~q, and the averaged relative velocity between DM and nucleon before and after scattering,

~v⊥. All these quantities are Galilean invariant. At NLO in chiral counting the expres-

sions depend in addition on the averaged velocity of nucleon before and after scattering,

~va. This dependence on Galilean non-invariant quantities such as ~va is expected, since the
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underlying theory is Lorentz and not Galilean invariant. Because of the dependence on

~va the NLO expressions require an expanded nonrelativistic operator basis, with the new

operators listed in appendix C.

Numerically the NLO corrections are always small, at the level of O(~q 2/m2
N ) or a few

percent, unless one fine tunes the cancellation of LO expressions. This result is nontrivial

for the partonic tensor-tensor operator Q
(7)
9,q = mq(χ̄σ

µνχ)(q̄σµνq), since in that case the LO

term is spin-dependent, while the NLO corrections contain a spin-independent contribution

that is coherently enhanced. In principle this could compete with the LO term. However,

due to fortuitous numerical factors, it remains subleading.

While our results were obtained by assuming that the mediators between the DM and

the visible sector are heavy, with masses above several hundred MeV, the formalism can

be easily changed to accommodate lighter mediators. In this case the mediators cannot

be integrated out, but lead to an additional momentum dependence of the coefficients

in the nonrelativistic Lagrangian LNR, eq. (1.10), and potentially to a modified counting

of chirally leading and subleading terms. The details of the latter would depend on the

specifics of the underlying DM theory.

As a side-result, our expressions show that from the particle physics point of view

it is more natural to interpret the results of direct detection experiments in terms of an

EFT where DM interacts with quarks and gluons, eq. (1.1). The reason is that several of

the partonic operators in Lχ match to more than one nonrelativistic operator already at

leading order in chiral counting. In such cases it is then hard to justify singling out just

one nonrelativistic operator in the analysis of direct detection experimental results.

The situation becomes even more complicated if the partonic operator matches onto

several nuclear operators with different momentum dependence, since in the experiments

one integrates over a range of momenta. A cautionary example of wider phenomenological

interest is the case of the axial-axial partonic operator, Q
(6)
4,q = (χ̄γµγ5χ)(q̄γµγ5q), which

induces spin-dependent scattering. At leading chiral order this is described by a combi-

nation of the ON4 = ~Sχ · ~SN and ON6 ∼
(
~Sχ ·~q

)(
~SN ·~q

)
nonrelativistic operators. Naively

the latter is momentum suppressed. We find that this is true for DM scattering on light

nuclei, such as Fluorine, where the contribution from ON6 is in fact unimportant, since the

momenta exchanges are in this case small, q � mπ. However, for DM scattering on heavy

nuclei, such as Xenon, the ON6 operator does give an O(1) correction due to its enhance-

ment by a pion pole, in line with the expectations from chiral counting. Thus, in general

both contributions from ON4 and ON6 need to be kept.

The flip side of the above discussion is the question: are there models of DM where

only ON4 or only ON6 operator is generated? For these two operators the answer is yes. At

leading chiral order the partonic operator Q(7)
9,q = mq(χ̄σ

µνχ)(q̄σµνq) only generates ON4 ,

while the partonic operators Q(7)
4 ∼ (χ̄iγ5χ)GG̃, Q(7)

8,q = mq(χ̄iγ5χ)(q̄iγ5q) only induce the

operator ON6 . But the same is not true in general. For a number of other nonrelativistic

operators — ON7 ,ON8 ,ON9 and ON12 — there is no partonic level operator that would induce

just one of these. All of them are always accompanied by other nonrelativistic operators

when matching from Lχ to LNR. For these nonrelativistic operators switching on just one
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operator at the time when analysing direct detection data thus does not make much sense

from the microscopic point of view. Furthermore, the nonrelativistic operators ON2 , ON3 ,

ON13, ON14, ON15, ON2b are never generated as leading operators when starting from a UV

theory of DM. They enter only as subleading corrections in the scattering rates, and can

always be neglected (as can the other nine nonrelativistic operators listed in appendix C

that have already never been considered).

In conclusion, we advocate the use of partonic level EFT basis eqs. (1.2)–(1.9) as a

phenomenologically consistent way of interpreting direct detection data. Including all the

variations due to quark flavor assignments there are 34 operators in total, which is not

much more than the 28 nonrelativistic operators used at present. Moreover, using the

partonic level EFT also has the added benefit of providing a simple connection with the

use of EFT in collider searches for dark matter, via straight-forward renormalization-group

evolution.
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A Values of the nucleon form factors

Below we give the values for the form factors F
p/q
i for proton external states, while the

corresponding values for neutrons are obtained through exchange of p→ n, u↔ d.

A.1 Vector current

The general matrix element of the vector current (2.2) is parameterized by two sets of form

factors F
q/N
1 (q2) and F

q/N
2 (q2). For the LO expressions we only need their values evaluated

at q2 = 0, while for the subleading expression (C.9) we also need F
′ q/N
1 (0).

At zero momentum exchange the vector currents count the number of valence quarks

in the nucleon. Hence, the normalization of the Dirac form factors for the proton is

F
u/p
1 (0) = 2, F

d/p
1 (0) = 1, F

s/p
1 (0) = 0. (A.1)

The Pauli form factors F
q/N
2 (0) describe the contributions of quarks to the anomalous

magnetic moments of the nucleons,

ap =
2

3
F
u/p
2 (0)− 1

3
F
d/p
2 (0)− 1

3
F
s/p
2 (0) ≈ 1.793 ,

an =
2

3
F
u/n
2 (0)− 1

3
F
d/n
2 (0)− 1

3
F
s/n
2 (0) ≈ −1.913 .

(A.2)
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Using the strange magnetic moment [38] (see also [39])

F
s/p
2 (0) = −0.064(17) , (A.3)

one gets, using isospin symmetry,

F
u/p
2 (0) = 2ap + an + F

s/p
2 (0) = 1.609(17) , (A.4)

F
d/p
2 (0) = 2an + ap + F

s/p
2 (0) = −2.097(17) . (A.5)

For the slope of F
q/N
1 (q2) at q2 = 0 one obtains [8]

F
′u/p
1 (0) =

1

6

(
2
[
rpE
]2

+
[
rnE
]2

+ r2
s

)
− 1

4m2
N

(
2ap + an) = 5.57(9) GeV−2 , (A.6)

F
′ d/p
1 (0) =

1

6

([
rpE
]2

+ 2
[
rnE
]2

+ r2
s

)
− 1

4m2
N

(
ap + 2an) = 2.84(5) GeV−2 , (A.7)

F
′ s/p
1 (0) =

1

6
r2
s = −0.018(9) GeV−2 , (A.8)

using the values
[
rpE
]2

= 0.7658(107) fm2 [35, 40],
[
rnE
]2

= −0.1161(22) fm2 [35], and

r2
s = −0.0043(21) fm2 [38].

Above we used the definitions for the proton and neutron matrix elements of the

electromagnetic current,

〈N ′|Jµem|N〉 = ū′N

[
FN1 (q2)γµ +

i

2mN
FN2 (q2)σµνqν

]
uN , N = p, n , (A.9)

where Jµem =
(
2ūγµu− d̄γµd− s̄γµs)/3. The Sachs electric and magnetic form factors are

related to the Dirac and Pauli form factors, FN1 and FN2 , through [41] (see also, e.g., [42])

GNE (q2) = FN1 (q2) +
q2

4m2
N

FN2 (q2) , and GNM (q2) = FN1 (q2) + FN2 (q2) . (A.10)

At zero recoil one has for the electric form factor, GpE(0) = 1, GnE(0) = 0, while the magnetic

form factor at zero recoil gives [35],

GpM (0) = µp ' 2.793, GnM (0) = µn ' −1.913, (A.11)

i.e., the proton and neutron magnetic moments in units of nuclear magnetons µ̂N =

e/(2mN ). The anomalous magnetic moments are F p2 (0) = ap, F
n
2 (0) = an. The charge

radii of the proton and neutron are defined through

GNE (q2) = GNE (0) +
1

6

[
rNE ]2q2 + · · · . (A.12)

A.2 Axial vector current

The matrix element of the axial-vector current (2.3) is parametrized by two sets of form

factors, F
q/N
A (q2) and F

q/N
P ′ (q2). For the LO expressions we only need F

q/N
A (0) and the

light meson pole parts of F
q/N
P ′ (q2),

F
q/N
P ′ (q2) =

m2
N

m2
π − q2

a
q/N
P ′,π +

m2
N

m2
η − q2

a
q/N
P ′,η + · · · . (A.13)
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The axial vector form factors F
q/N
A at zero momentum transfer are obtained from the

matrix elements 2mps
µ∆qp = 〈p|q̄γµγ5q|p〉Q, where |p〉 and 〈p| denote proton states at

rest. Moreover, sµ is the proton’s polarization vector such that s2 = −1, s · kp = 0, where

kµp = mp(1, 0, 0, 0) is the proton four-momentum, and the matrix element is evaluated at

scale Q. Consequently we find

F
q/p
A (0) = ∆qp, (A.14)

while for the residua of the pion- and eta-pole contributions to F
q/N
P ′ we have

a
u/p
P ′,π = −ad/pP ′,π = 2gA , a

s/p
P ′,π = 0 , (A.15)

a
u/p
P ′,η = a

d/p
P ′,η = −1

2
a
s/p
P ′,η =

2

3

(
∆up + ∆dp − 2∆sp

)
. (A.16)

As always, the coefficients for the neutrons are obtained through a replacement p→ n, u↔
d (no change is implied for gA). We work in the isospin limit, so that

∆u ≡ ∆up = ∆dn, ∆d ≡ ∆dp = ∆un, ∆s ≡ ∆sp = ∆sn. (A.17)

The isovector combination is determined precisely from nuclear β decay [35],

∆u−∆d = gA = 1.2723(23). (A.18)

In the MS scheme at Q = 2 GeV the averages of lattice QCD results give ∆u + ∆d =

0.521(53) [43], ∆s = −0.031(5) (averaging over [44–47] and inflating the errors in [46] by a

factor of 2 because no continuum extrapolation was performed). Combining with eq. (A.18)

this gives [43]

∆u = 0.897(27), ∆d = −0.376(27), ∆s = −0.031(5), (A.19)

all at the scale Q = 2 GeV. The experiments give ∆u = 0.843(12), ∆d = −0.427(12) [47],

in good agreement with the lattice QCD, and a somewhat larger value for the s-quark,

∆s = −0.084 ± 0.017, averaging over HERMES [48] and COMPASS [49] results (see also

axion review in [35]). Note that, while the matrix elements ∆q are scale dependent, the

non-isosinglet combinations ∆u−∆d and ∆u+∆d−2∆s are scale independent, since they

are protected by non-anomalous Ward identities.

The derivative of the axial form factor at zero recoil is well known for the u − d

current. Using the dipole ansatz [50] gives F ′A(0)/FA(0) = 2/m2
A, with mA the appropriate

dipole mass. A global average over experimental [51, 52] and lattice [47, 53] gives for the

u−d current dipole mass mu−d
A = 1.064(29)GeV, rescaling the combined error following the

PDG prescription (the z-expansion analysis leads to larger error estimates, corresponding to

mu−d
A = 1.01(24)GeV [50]), while for the u+d current one has mu+d

A = 1.64(14)GeV [47, 54]

and for the strange-quark current, ms
A = 0.82(21) GeV [47]. This gives

F
u/p
A
′(0) = 1.32(7) GeV−2 , F

d/p
A
′(0) = −0.93(7) GeV−2 , (A.20)

or in terms of normalized derivatives

F
u/p
A
′(0)

F
u/p
A (0)

= 1.47(8) GeV−2 ,
F
d/p
A
′(0)

F
d/p
A (0)

= 2.47(22) GeV−2 , (A.21)
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while for the strange quark

F
s/p
A
′(0)

F
s/p
A (0)

=
(
3.0± 1.5

)
GeV−2 . (A.22)

At NLO F
q/N
P ′ (q2) needs to be expanded to

F
q/N
P ′ (q2) =

m2
N

m2
π − q2

a
q/N
P ′,π +

m2
N

m2
η − q2

a
q/N
P ′,η + b

q/N
P ′ + · · · . (A.23)

At NLO the residua of the poles change by corrections of O
(
m2
π,η/(4πf

2
π)2
)
≈ 0.01− 0.05.

For instance, for the u− d current one has at NLO in HBChPT [55],

F
(u−d)/p
P ′ =

4m2
N

m2
π − q2

[
gA −

2m2
πB̃2

(4πfπ)2

]
− 2

3
gAm

2
Nr

2
A , (A.24)

where B̃2 ≈ −1.0± 0.5 is the HBChPT low energy constant, while r2
A = 6F ′A(0)/FA. The

constant term bP ′ is, therefore, for the u− d current given by

b
(u−d)/p
P ′ = −4gAm

2
N

F
(u−d)/p
A

′(0)

F
(u−d)/p
A (0)

. (A.25)

Assuming that the relation (A.25) is valid for each quark flavor separately, i.e., neglecting

the anomaly contribution to b
q/p
P ′ , gives

b
u/p
P ′ ≈ −4.65(25) , b

d/p
P ′ ≈ 3.28(25) , b

s/p
P ′ ≈ (−11± 6)∆s . (A.26)

as well as b
s/p
P ′ ≈ 0.32(18). In our numerical analysis we estimated the importance of NLO

corrections by keeping a
q/N
P ′,π, a

q/N
P ′,η at their LO values, while setting b

q/N
P ′ to the values

in (A.26). Note that these are a small correction to the LO expression when the pion pole

is present, but can be important when this is not the case.

A.3 Scalar current

The scalar form factors F
q/N
S , eq. (2.4), evaluated at q2 = 0 are conventionally referred to

as nuclear sigma terms,

F
q/N
S (0) = σNq , (A.27)

where σNq ūNuN = 〈N |mq q̄q|N〉, |N〉 and 〈N | represent the nucleon states at rest. Another

common notation is σNq = mNf
N
Tq. Taking the naive average of the most recent lattice

QCD determinations [56–58], we find

σps = σns = (41.3± 7.7) MeV . (A.28)

The matrix elements of the u and d quarks are related to the pion-nucleon sigma term,

defined as σπN = 〈N |m̄(ūu + d̄d)|N〉, where m̄ = (mu + md)/2. A Heavy Baryon Chiral

Perturbation Theory analysis of the πN scattering data gives σπN = 59(7) MeV [59],

and a fit of πN scattering data to a representation based on Roy-Steiner equations gives
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σπN = 58(5) MeV [60]. A more precise determination is obtained from pionic atoms,

σπN = (59.1 ± 3.5) MeV [61]. These are in agreement with σπN = 52(3)(8) MeV obtained

from a fit to world lattice Nf = 2 + 1 QCD data at the time [62]. Including, however,

both ∆(1232) and finite spacing in the fit shifted the central value to σπN = 44 MeV. More

recent lattice QCD determinations prefer an even slightly lower value, σπN = 38(2) MeV

(the average of results in [57, 58, 63], see also remarks in [64]). We thus use a rather

conservative estimate σπN = (50± 15) MeV. Using the expressions in [65] this gives

σpu = (17± 5) MeV , σpd = (32± 10) MeV ,

σnu = (15± 5) MeV , σnd = (36± 10) MeV .
(A.29)

For corrections of higher order in chiral counting one would also need F
′ q/N
S (0). These

are of the same order, O(q), as the two-nucleon contributions which are not captured in

our expressions.

A.4 Pseudoscalar current

In the LO expressions we only need the light meson pole parts of the pseudoscalar form

factor, eq. (2.5),

F
q/N
P (q2) =

m2
N

m2
π − q2

a
q/N
P,π +

m2
N

m2
η − q2

a
q/N
P,η + · · · , (A.30)

The residua of the poles are given by

a
u/p
P,π

mu
= −

a
d/p
P,π

md
=

B0

mN
gA ,

a
s/p
P,π

ms
= 0 , (A.31)

a
u/p
P,η

mu
=
a
d/p
P,η

md
= −1

2

a
s/p
P,η

ms
=

B0

3mN

(
∆up + ∆dp − 2∆sp

)
, (A.32)

where the values of the axial-vector elements, ∆q, are given in (A.18) and (A.19). Moreover,

B0 is a ChPT constant related to the quark condensate given, up to corrections of O(mq),

by 〈q̄q〉 ' −f2B0. Using quark condensate from [66] and the LO relation f = fπ, with fπ
the pion decay constant, one has B0 = 2.666(57) GeV, evaluated at the scale µ = 2 GeV.

In practice, B0 never appears by itself, but rather as the product B0mq which can be

expressed in terms of the pion mass and quark mass ratios,

B0mu =
m2
π

1 +md/mu
= (6.1± 0.5)× 10−3 GeV2 ,

B0md =
m2
π

1 +mu/md
= (13.3± 0.5)× 10−3 GeV2 ,

B0ms =
m2
π

2

ms

m̄
= (268± 3)× 10−3 GeV2 .

(A.33)

The numerical values are obtained using the ratios of quark masses, mu/md = 0.46± 0.05,

ms/m̄ = 27.5± 0.3 (see the quark mass review in [35]), and the charged-pion mass mπ.
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At NLO in the chiral expansion, the above expressions for a
q/p
P,π and a

q/p
P,η get corrections

of O(m2
π,η/(4πfπ)2). In addition one needs to keep the constant term in the q2 expansion

of the form factor

F
q/N
P (q2) =

m2
N

m2
π − q2

a
q/N
P,π +

m2
N

m2
η − q2

a
q/N
P,η + b

q/N
P + · · · . (A.34)

In our numerical analysis we estimate the size of these higher-order corrections by using

the NDA size for

b
q/N
P ≈ 1 , where q = u, d, s , (A.35)

while keeping a
q/p
P,π, a

q/p
P,η at their LO values. This treatment of NLO corrections is only

approximate, but suffices for the present precision. Furthermore, it can be improved in

the future.

A.5 CP-even gluonic current

The matrix element of the CP-even gluonic current (2.6) is parametrized by a single form

factor FNG (q2). The LO expressions in chiral counting require only its value at zero mo-

mentum transfer,

FNG (0) = −2mG

27
. (A.36)

The nonperturbative coefficient mG is the gluonic contribution to the nucleon mass in the

isospin limit,

mGūNuN = −9αs
8π
〈N |GµνGµν |N〉 . (A.37)

The trace of the stress-energy tensor, θµµ = −9αs/(8π)GµνG
µν +

∑
u,d,smq q̄q, yields the

relation

mG = mN −
∑

q

σNq = (848± 14) MeV , (A.38)

where in the last equality we used the values for σq in (A.28) and (A.29). While the isospin

violation in the σNq values is of O(10%), this translates to a very small isospin violation in

mG, of less than 1 MeV. The value of mG in (A.38) thus applies to both N = p and N = n.

For the derivative of FG at zero recoil we use the naive dimensional analysis estimate

F ′G(0)

FG(0)
≈ 1/m2

N ≈ 1 GeV−2 . (A.39)

A.6 CP-odd gluonic current

The matrix element of the CP-odd gluonic current (2.7) is related to the matrix elements

of the axial and pseudoscalar currents through the QCD chiral anomaly. Namely, a chiral

rotation of the quark fields, q → exp(iβγ5)q, shifts the QCD theta spurion by θ → θ−2 Trβ,

along with corresponding changes in the pseudoscalar and axial-vector spurions (see ref. [1]).

This implies a relation,

1

m̃
〈N ′|αs

8π
GaµνG̃

aµν |N〉 =
∑

q

(
〈N ′|q̄iγ5q|N〉 −

1

2mq
∂µ〈N ′|q̄γµγ5q|N〉

)
, (A.40)
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valid at leading order in the chiral expansion. To shorten the notation we defined 1/m̃ =

(1/mu + 1/md + 1/ms). In terms of form factors this gives

1

m̃
FN
G̃

=
∑

q

(
1

mq
F
q/N
P − mN

mq
F
q/N
A − q2

4mNmq
F
q/N
P ′

)
. (A.41)

The leading order contributions from F
q/N
P cancel in the sum, giving

FN
G̃

(q2) =− m̃mN

[
∆u

mu
+

∆d

md
+

∆s

ms
+
gA
2

(
1

mu
− 1

md

)
q2

m2
π − q2

+
1

6

(
∆u+ ∆d− 2∆s)

(
1

mu
+

1

md
− 2

ms

)
q2

m2
η − q2

]
.

(A.42)

The pion pole contribution would vanish in the exact isospin limit. However, the isospin

breaking effects in the matrix element of G̃G operator are not small [36]. This is unlike

most of the other observables, where isospin breaking is suppressed by the chiral scale,

∝ (mu−md)/(4πfπ). Here, the isospin breaking is proportional to (mu−md)/(mu+md) ∼
O(1) and is thus large. Similarly, the η pole contribution would vanish in the limit of exact

SU(3), but is in fact an O(1) correction.

The LO expression for FN
G̃

, eq. (A.42), contains both the constant term as well as poles

of the form ∼ q2/(m2
π − q2). At NLO in chiral counting one also has in addition the O(q2)

contribution,

FN
G̃

(q2) =
q2

m2
π − q2

aN
G̃,π

+
q2

m2
η − q2

aN
G̃,η

+ bN
G̃

+ cN
G̃
q2 + · · · . (A.43)

At NLO the aN
G̃,π

, aN
G̃,η
, bN
G̃

coefficients differ from their LO values in (A.42) by relative

correction of the size O
(
m2
π,η/(4πfπ)2

)
, while the NDA estimate for the NLO coefficient is

cN
G̃
≈ 1.

A.7 Tensor current

The matrix element of the tensor current (2.8) is described by three form factors, F
q/N
T,0 (q2),

F
q/N
T,1 (q2), F

q/N
T,2 (q2). These are related to the generalized tensor form factors through (see,

e.g., [67, 68])

F
q/N
T,0 (q2) = mqA

q/N
T,10(q2) , (A.44)

F
q/N
T,1 (q2) = −mqB

q/N
T,10(q2) , (A.45)

F
q/N
T,2 (q2) =

mq

2
Ã
q/N
T,10(q2) . (A.46)

In the LO expressions for DM scattering only F
q/N
T,0 (0) and F

q/N
T,1 (0) appear. The

value of F
q/N
T,0 (0) is quite well determined. A common notation is A

q/p
T,10(0) = gqT (with

A
u(d)/p
T,10 = A

d(u)/n
T,10 and A

s/p
T,10 = A

s/n
T,10 in the isospin limit), so that

F
q/p
T,0 (0) = mqg

q
T . (A.47)
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The tensor charges are related to the transversity structure functions δqN (x, µ) by gqT (µ) =∫ 1
−1 dxδqN (x, µ). These structure functions can, in principle, be measured in deep in-

elastic scattering, but this determination is not very precise. Recent lattice calculations

include both connected and disconnected contributions and give, in the MS scheme at

µ = 2 GeV [69, 70],

guT = 0.794± 0.015 , gdT = −0.204± 0.008 , gsT = (3.2± 8.6) · 10−4 . (A.48)

This agrees well with previous, less precise, determinations [67, 71–77]. It is interesting

to compare (A.48) with the results from the constituent quark model [78], guT = 0.97,

gdT = −0.24, as we will have to use this model below. In the nonrelativistic quark model,

on the other hand, using just SU(6) spin-flavor symmetry, one gets guT = 4/3, gdT = −1/3,

see, e.g., [79].

The zero recoil values of the other two form factors, F
q/N
T,1 (0) and F

q/N
T,2 (0), are less well

determined. The constituent quark model of [78] gives

B
u/p
T,10(0) ≈ 3.0 , Ã

u/p
T,10 ≈ −0.50 , (A.49)

B
d/p
T,10(0) ≈ 0.24 , Ã

d/p
T,10 ≈ 0.46 . (A.50)

The form factors for the neutron are obtained through the replacements u↔ d, p→ n. We

assign a 50% error to the above estimates, taking as a guide twice the difference between

the determination of gqT in this model and in lattice QCD (A.48). For the s quark we use

the very rough estimates

− 0.2 . B
s/p
T,10(0) , Ã

s/p
T,10(0) . 0.2 . (A.51)

The linear combination

κqT = 2Ã
q/p
T,10(0) +B

q/p
T,10(0) (A.52)

is in fact much better known than ÃT,10(0) and BT,10(0) separately. The tensor magnetic

moments, κqT , for the u and d quarks were determined using lattice QCD to be, at µ =

2 GeV [80],

κuT ≈ 3.0 , κdT ≈ 1.9 (A.53)

(no uncertainty is given in this reference). In the constituent quark model of [78] one

gets κuT ≈ 2.0, κdT ≈ 1.2, which agrees with (A.53) within the assigned 50% uncertainty

(larger values κuT = 3.60, κdT = 2.36 are obtained with a simple harmonic oscillator wave

function [78, 81]). For the strange quark one obtains from the SU(3) chiral quark-soliton

model [82]

− 0.2 . κsT . 0.2, (A.54)

motivating the ranges in (A.51) (in [83] a much smaller value κsT ≈ 0.01 was found.

In refs. [67, 76, 84], lattice QCD results for the q2 dependence of F
q/N
T,0 for u and d

quarks were presented. Averaging over them gives

F
u/p
T,0
′(0)

F
u/p
T,0 (0)

≈ (0.8± 0.3) GeV−2 ,
F
d/p
T,0
′(0)

F
d/p
T,0 (0)

≈ (0.7± 0.2) GeV−2 , (A.55)
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where the errors reflect the differences between the three determinations. For the s-quark

form factor one can use the NDA estimate, F
s/p
T,0
′(0)/F

s/p
T,0 (0) ≈ 1 GeV−2, consistent with

the above.

For the other two form factors an estimate of the derivative at zero recoil can be made

using the results from the constituent quark model of [78], giving

F
u/p
T,1
′(0)

F
u/p
T,1 (0)

≈ 1.0 GeV−2 ,
F
d/p
T,1
′(0)

F
d/p
T,1 (0)

≈ −0.1 GeV−2 , (A.56)

F
u/p
T,2
′(0)

F
u/p
T,2 (0)

≈ 1.2 GeV−2 ,
F
d/p
T,2
′(0)

F
d/p
T,2 (0)

≈ 1.0 GeV−2 . (A.57)

These estimates most probably have large errors, since within this model one gets

F
u/p
T,0
′(0)/F

u/p
T,0 (0) ≈ 0.22 GeV−2, F

d/p
T,0
′(0)/F

d/p
T,0 (0) ≈ 0.24 GeV−2, about a factor of three

smaller than lattice QCD determination in (A.55). For the strange quark form factor we

vary the derivative at zero recoil in the range

− 2 GeV−2 . F
s/p
T,1
′(0) , F

s/p
T,2
′(0) . 2 GeV−2 , (A.58)

motivated by the slope dκsT /dq
2 ≈ −2.2 GeV−2 that one can deduce from the results in [83].

B Nonrelativistic expansion of currents for fermions

In this appendix we give the nonrelativistic expansion of the DM and nucleon currents.

We first focus on fermionic DM and then translate the results to nonrelativistic nucleons.

In order to get rid of the time derivative, v ·∂, in the higher-order terms in the Heavy Dark

Matter Effective Theory (HDMET) Lagrangian, the tree level relation

χ = e−imχv·x
(

1 +
i/∂⊥

iv · ∂ + 2mχ − iε

)
χv , (B.1)

is supplemented with a field redefinition5 [86]

χv →
(

1− ∂2
⊥

8m2
χ

+
∂2
⊥(iv · ∂)

16m3
χ

+ · · ·
)
χv , (B.2)

where ∂µ⊥ = ∂µ− v · ∂ vµ. In this way one obtains the conventional “NRQED” Lagrangian,

LNRQED = χ†v

(
iv · ∂ +

(i∂⊥)2

2mχ
+

(i∂⊥)4

8m3
χ

+ · · ·
)
χv, (B.3)

also beyond O(p2) order.

5In order for the scattering rates to be independent of this arbitrary field redefinition, contributions

to the scattering amplitude from the time-ordered product of the Lagrangians (1.10) and (B.3) have to

be included [85]. An explicit calculation shows that, with our choice (B.2), these additional contributions

vanish to O(p2).
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Using (B.1) together with (B.2) and applying the equation of motion derived from

eq. (B.3) we obtain for the DM currents

χ̄χ→ χ̄vχv +
i

2m2
χ

εαβµνv
α
(
χ̄vS

β
χ

←
∂
µ
⊥
→
∂
ν
⊥χv

)
− 1

8m2
χ

χ̄v
↔
∂

2
⊥χv +O(p3) , (B.4)

χ̄iγ5χ→
1

mχ
∂µ
(
χ̄vS

µ
χχv

)

− 1

4m3
χ

∂µ⊥χ̄vSχ,µ
(←
∂

2
⊥+
→
∂

2
⊥
)
χv +

1

8m3
χ

χvSχ·
↔
∂⊥
(←
∂

2
⊥−
→
∂

2
⊥
)
χv +O(p4) ,

(B.5)

χ̄γµχ→ vµχ̄vχv +
1

2mχ
χ̄vi
↔
∂
µ
⊥χv +

1

2mχ
∂ν
(
χ̄vσ

µν
⊥ χv

)

+
i

4m2
χ

vµχ̄v
←
∂ ρσ

ρν
⊥
→
∂ νχv −

vµ

8m2
χ

∂2
⊥χ̄vχv

+
1

16m3
χ

(
i∂µ
(
χ̄v
(←
∂

2
⊥−
→
∂

2
⊥
)
χv
)
− 2χ̄v

(←
∂

2
⊥+
→
∂

2
⊥
)
i
↔
∂
µχv

− χ̄v
(→
∂

2
⊥−
←
∂

2
⊥
)
σµν⊥

↔
∂
ν
⊥χv − 2∂ν

(
χ̄v
(→
∂

2
⊥+
←
∂

2
⊥
)
σµν⊥ χv

))
+O(p4) ,

(B.6)

χ̄γµγ5χ→ 2χ̄vS
µ
χχv −

i

mχ
vµχ̄vSχ·

↔
∂χv

− 1

4m2
χ

χ̄v
↔
∂

2
⊥S

µ
χχv −

1

2m2
χ

χ̄v
(←
∂
µ
⊥S ·∂⊥+

←
∂⊥ ·S∂µ⊥

)
χv

+
i

4m2
χ

εµναβvνχ̄v
←
∂⊥α∂⊥βχv −

i

8m3
χ

vµ∂νχ̄v
(←
∂

2
⊥−
→
∂

2
⊥
)
Sνχχv

+
i

4m3
χ

vµχ̄v
(←
∂

2
⊥+
→
∂

2
⊥
)↔
∂ ·Sχχv +O(p4) ,

(B.7)

χ̄σµνχ→ χ̄vσ
µν
⊥ χv +

1

2mχ

(
χ̄viv

[µ
σ
ν]ρ
⊥
↔
∂ ρχv − v[µ∂ν]χ̄vχv

)

+
1

4m2
χ

χ̄v
←
/∂⊥σ

µν
⊥

→
/∂⊥χv −

1

8m2
χ

χ̄v(
←
∂

2
⊥+
→
∂

2
⊥)σµν⊥ χv +O(p3) ,

(B.8)

χ̄σµνiγ5χ→ 2χ̄vS
[µ
χ v

ν]χv +
i

mχ
χ̄vS

[µ
↔
∂
ν]
⊥χv +

1

2mχ
εµναβvα∂⊥βχ̄vχv

+
1

4m2
χ

∂2
⊥χ̄vv

[µSν]
χ χv +

1

2m2
χ

χ̄v
←
∂

[µ
⊥v

ν]Sχ·
→
∂⊥χv +

1

2m2
χ

χ̄v
←
∂⊥ ·Sχ

→
∂

[µ
⊥v

ν]χv

+
i

4m2
χ

v[µεν]αβγχ̄v
←
∂⊥α

→
∂⊥βvγχv +O(p3) , (B.9)

where σµν⊥ = i[γµ⊥, γ
ν
⊥]/2, χ̄v

↔
∂ µχv = χ̄v(∂

µχv) − (∂µχ̄v)χv, and Sµ = γµ⊥γ5/2 is the spin

operator. The square brackets in the last line denote antisymmetrization in the enclosed

indices, while the ellipses denote higher orders in 1/mχ. We also used the relation

χ̄vσ
µν
⊥ χv = −2εµναβvα

(
χ̄vSχ,βχv

)
, (B.10)

where εµναβ is the totally antisymmetric Levi-Civita tensor, with ε0123 = 1, and

χ̄vS
µ ·Sνχv = − i

2
εµναβχ̄vvαSβχv −

1

4
χ̄vg

µν
⊥ χv . (B.11)
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The same expressions apply also for nucleon currents, with the obvious replacement χ→ N .

In terms of the momenta instead of derivatives the expansions are

χ̄χ→ χ̄vχv

(
1 +

p2
12

8m2
χ

)
+

i

2m2
χ

εαµνβv
αpµ2p

ν
1

(
χ̄vS

β
χχv

)
+O(p3) , (B.12)

χ̄iγ5χ→
−i
mχ

(
χ̄vq ·Sχχv

)(
1 +

p2
1 + p2

2

4m2
χ

)

+
i

8m3
χ

(
p2

2 − p2
1

)
χ̄v
(
Sχ ·p12

)
χv +O(p4) ,

(B.13)

χ̄γµχ→ χ̄vχv

(
vµ +

pµ12,⊥
2mχ

+ vµ
q2
⊥

8m2
χ

)
+

i

mχ
εαµνβvαqν

(
χ̄vSχ,βχv

)

− i

2m2
χ

vµεαρνβvαp2ρp1ν

(
χ̄vSχ,βχv

)

+
1

16m3
χ

[
qµ
(
p2

1⊥ − p2
2⊥
)

+ 2pµ12

(
p2

1⊥ + p2
2⊥
)]
χ̄vχv (B.14)

+
i

8m3
χ

[
p12,ν

(
p2

1⊥ − p2
2⊥
)

+ 2qν
(
p2

1⊥ + p2
2⊥
)]
εµναβvαχ̄vSχ,βχv +O(p4) ,

χ̄γµγ5χ→ 2χ̄vS
µ
χχv

(
1 +

p2
12⊥

8m2
χ

)
− 1

mχ
vµχ̄vSχ ·p12χv

− 1

4m2
χ

χ̄v
(
pµ12⊥Sχ ·p12 − qµ⊥Sχ ·q

)
χv −

i

4m2
χ

ενµαβvνp2αp1βχ̄vχv

− vµ

8m3
χ

χ̄v

[(
p2

1⊥ − p2
2⊥
)
q ·Sχ + 2

(
p2

1⊥ + p2
2⊥
)
p12 ·Sχ

]
χv +O(p4) ,

(B.15)

χ̄σµνχ→ −2εµναβvα
(
χ̄vSχ,βχv

)(
1 +

p2
12

8m2
χ

)
+

1

mχ
v[µεν]δαβvδp12,αχ̄vSχ,βχv

+
i

2mχ
v[µqν]χ̄vχv +

i

4m2
χ

p
[µ
1 p

ν]
2 χ̄vχv

+
1

2m2
χ

εµναβvαχ̄v
(
p1βSχ ·p2 + p2βSχ ·p1

)
χv +O(p3) ,

(B.16)

χ̄σµνiγ5χ→ 2χ̄vS
[µ
χ v

ν]χv

(
1 +

q2
⊥

8m2
χ

)
+

1

mχ
χ̄vS

[µ
χ p

ν]
12,⊥χv −

i

2mχ
εµναβvαqβχ̄vχv

+
1

2m2
χ

χ̄v
(
p

[µ
1 v

ν]Sχ ·p2 + p
[µ
2 v

ν]Sχ ·p1

)
χv

− i

4m2
χ

v[µεν]δαβvδp1αp2βχ̄vχv +O(p3) ,

(B.17)

where we used the shorthand notation pµ12 = pµ1 + pµ2 . The corresponding expansion of the

nucleon currents is obtained through the replacements χ→ N , pµ1,2 → kµ1,2, qµ → −qµ.
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C NLO expressions for fermionic DM

At NLO in the chiral expansion for the hadronization of the relativistic operators,

eqs. (1.3)–(1.9), one encounters terms that are not Galilean invariant, since they depend

on the average nucleon velocity,

~va =
1

2mN

(
~k1 + ~k2

)
. (C.1)

These terms signal that the underlying theory is, in fact, Lorentz rather than Galilean

invariant.

In addition to the nonrelativistic operators (1.11)–(1.19) there are three new operators

of O(q),

ON(1)
1a = 1χ

(
~va · ~SN

)
, ON(1)

2a =
(
~va · ~Sχ

)
1N , (C.2)

ON(1)
3a = ~va ·

(
~Sχ × ~SN

)
, (C.3)

four new operators of O(q2),

ON(2)
1a =

(
i~q

mN
·~Sχ
)(

~va · ~SN
)
, ON(2)

2a =
(
~va · ~Sχ

)( i~q

mN
·~SN

)
, (C.4)

ON(2)
3a =

(
~va · ~Sχ

) (
~va · ~SN

)
, ON(2)

4a =

(
i~q

mN
·~Sχ
)(

i~q

mN
·~SN

)
, (C.5)

and three of O(q3),

ON(3)
1a =

(
~va ·~Sχ

)
~va ·

(
~v⊥ × ~SN

)
, ON(3)

2a = ~va ·
(
~v⊥ × ~Sχ

) (
~va ·~SN

)
, (C.6)

ON(3)
3a =

(
i~q

mN
·~SN

)(
i~q

mN
·
(
~va × ~Sχ

))
. (C.7)

Next we give the expressions for the nonrelativistic reduction of the opera-

tors (1.3)–(1.9) to subleading order in q2. For each of the operators we stop at the order at

which one expects the contributions from the two-nucleon currents. We explicitly include

a factor
√
Ep1Ep2Ek1Ek2

m2
χm

2
N

= 1 +
~q 2

8

(
1

m2
χ

+
1

m2
N

)
+

1

2
~v 2
⊥ + ~v 2

a +O(~q 4), (C.8)

in order to convert from the usual relativistic normalization of states, 〈χ(p′)|χ(p)〉 =

2E~p(2π)3δ3(~p′−~p), where E~p =
√
~p2 +m2

χ, to the normalization used in [5]. The hadroniza-

tion of the dimension-six interaction operators, including the subleading orders for single-
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nucleon currents, are then given by,

Q(6)
1,q →F

q/N
1 ON1 +

{
F
q/N
1

~v 2
⊥
2
ON1 − F q/N2

~q 2

4m2
N

ON1 −
(
F
q/N
1 + F

q/N
2

) ~q 2

mχmN
ON4 (C.9)

+
(
F
q/N
1 + F

q/N
2

)
ON3 +

mN

2mχ
F
q/N
1 ON5 +

mN

mχ

(
F
q/N
1 + F

q/N
2

)
ON6 +O(q2)

}
,

Q(6)
2,q →2F

q/N
1 ON8 + 2

(
F
q/N
1 + F

q/N
2

)
ON9 +O(q2) , (C.10)

Q(6)
3,q →− 2F

q/N
A

(
ON7 −

mN

mχ
ON9
)
−
{
F
q/N
A

(
ON7 −

mN

mχ
ON9
)

~q 2

4m2
N

(C.11)

− F q/NA

((
~va ·~v⊥

)
ON(1)

1a +
i~q ·~va
mχ
ON(1)

3a

)
+

1

2
FP ′

i~q ·~va
mN

(
~va ·~v⊥

)
ON10 +O(q4)

}
,

Q(6)
4,q →− 4F

q/N
A ON4 + F

q/N
P ′ ON6 −

{
~q 2

2
F
q/N
A ON4

(
1

m2
χ

+
1

m2
N

)

− 1

2
F
q/N
A

(
1 +

m2
N

m2
χ

)
ON6 −

mN

2mχ
F
q/N
A ON3 + 2F

q/N
A ON2b

− 1

2
FP ′

i~q ·~va
mN

(
ON(2)

1a +ON(2)
2a

)
+O(q3)

}
.

(C.12)

The terms in the curly brackets arise for the first time at subleading order, i.e., at

O(qνLO+2). The form factors in these expressions are evaluated at q2 = 0, i.e., Fi → Fi(0).

In the LO terms, on the other hand, one should expand the form factors to O(q2), i.e., in

the expressions outside curly brackets, Fi → Fi(0) + F ′i (0)q2.

Note that the hadronization of Q(6)
1,q is expected to receive contributions from two-

nucleon currents at O(q2), i.e., at the same order as the displayed corrections from the

single-nucleon current. In the hadronization of Q(6)
2,q we do not show the subleading cor-

rections from expanding the single-nucleon currents. In this case the two-nucleon currents

enter at O(q2), while the higher-order corrections from single-nucleon currents start only

at O(q3). Note also that, at O(p4), the hadronization of Q(6)
4,q receives a contribution that

is coherently enhanced, but suppressed by a numerical factor ∼ 1/(16mNmχ).

The hadronizations of the dimension-seven operators are given by

Q(7)
1 →FNG ON1 +

{
FNG

~q 2

8

(
1

m2
χ

+
1

m2
N

)
ON1 −

mN

2mχ
FNG ON5 +O(q3)

}
, (C.13)

Q(7)
2 →− mN

mχ
FNG ON11 −

{
~q 2

8mNmχ
FNG ON11 +

i~q ·~va
mχ

FNG ON(1)
2a +O(q4)

}
, (C.14)

Q(7)
3 →FN

G̃
ON10 +

{
~q 2

8m2
χ

FN
G̃
ON10 +

mN

2mχ
FN
G̃

(
ON15 +

~q 2

m2
N

ON12

)

+
i~q ·~va
2mN

FN
G̃
ON(1)

1a +O(q4)

}
,

(C.15)

Q(7)
4 →mN

mχ
FN
G̃
ON6 +

{
i~q ·~va
2mχ

FN
G̃

(
ON(2)

1a +ON(2)
2a

)
+O(q5)

}
, (C.16)
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Q(7)
5,q →F

q/N
S ON1 +O(q) , (C.17)

Q(7)
6,q →−

mN

mχ
F
q/N
S ON11 +O(q2) , (C.18)

Q(7)
7,q →F

q/N
P ON10 +

{
~q 2

8m2
χ

F
q/N
P ON10 +

mN

2mχ
F
q/N
P

(
ON15 +

~q 2

m2
N

ON12

)

+
i~q ·~va
2mN

FNP ON(1)
1a +O(q4)

}
,

(C.19)

Q(7)
8,q →

mN

mχ
F
q/N
P ON6 +

{
i~q ·~va
2mχ

FNP

(
ON(2)

1a +ON(2)
2a

)
+O(q5)

}
, (C.20)

Q(7)
9,q →8F

q/N
T,0 ON4 +

{[
2F

q/N
T,1

~q 2

m2
N

+ F
q/N
T,0

(
~q 2

m2
χ

+
~q 2

m2
N

− 8~v 2
a

)]
ON4 + 4F

q/N
T,0 ON2b

− ~q 2

2mNmχ

(
F
q/N
T,0 − F

q/N
T,1

)
ON1 −

[(
1 +

m2
N

m2
χ

)
F
q/N
T,0 + 2F

q/N
T,1

]
ON6

− mN

mχ
F
q/N
T,0 ON3 + 2

(
F
q/N
T,0 − F

q/N
T,1

)
ON5 + 16F

q/N
T,0 O

N(2)
3a +O(q3)

}
,

(C.21)

Q(7)
10,q →− 2

mN

mχ
F
q/N
T,0 ON10 + 2

(
F
q/N
T,0 − F

q/N
T,1

)
ON11 − 8F

q/N
T,0 ON12

−
{
mN

mχ
F
q/N
T,0 ON10

(
~q 2

4m2
χ

+ ~v 2
⊥

)
+ 8F

q/N
T,0 ON12

(
1

2
~v 2
a +

1

2
~v 2
⊥ +

~q 2

8m2
χ

)

+ON11

[(
~q 2

4m2
χ

+ ~v 2
⊥

)
F
q/N
T,1 − F

q/N
T,0

(
3~v 2
a + ~v 2

⊥ +
~q 2

4m2
χ

+
~q 2

4m2
N

)

+ F
q/N
T,2

(
4~v 2
a −

~q 2

m2
N

)]
−
(
F
q/N
T,0 + 2F

q/N
T,1

)
ON15 − 2

i~q ·~va
mχ

F
q/N
T,0 O

N(1)
1a

− i~q ·~va
mN

(
2F

q/N
T,0 − F

q/N
T,1

)
ON(1)

2a + 4F
q/N
T,0

(
ON(3)

1a +ON(3)
2a

)
+O(q4)

}
.

(C.22)

The expressions that appear for the first time at O(qνLO+2) are collected inside the curly

brackets. In these the form factors are to be expanded to LO in chiral counting, as denoted

in eqs. (2.9)–(2.11). In particular, the form factors without light meson poles are evaluated

at q2 = 0, i.e., for these Fi → Fi(0) inside curly brackets. In the terms outside curly

brackets, however, the form factors should be expanded to NLO, cf. eqs. (2.9)–(2.11). The

operators Q(7)
5,q and Q(7)

6,q receive contributions at O(qνLO+1) from two-body currents, so we

do not display the corrections from expanding the single-nucleon currents which, in this

case, start at O(qνLO+2).

D Nonrelativistic expansion for scalar DM

To derive the HDMET for scalar DM, we factor out6 the large momenta,

ϕ(x) = e−imϕv·xϕv , (D.1)

6Note that we dropped a global rescaling factor (2mϕ)−1/2 on the right side of eq. (D.1).
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followed by a field redefinition

ϕv →
(

1− i v ·∂
4mϕ

+
(i∂⊥)2

8m2
ϕ

+
3

32

(iv ·∂)2

m2
ϕ

− 3

32

(iv ·∂)(i∂⊥)2

m3
ϕ

− 5

128

(iv ·∂)3

m3
ϕ

+ · · ·
)
ϕv . (D.2)

This gives the usual HDMET for scalar DM

LHDMET = ϕ∗viv ·∂ϕv +
1

2mϕ
ϕ∗v(i∂⊥)2ϕv +

1

8m3
ϕ

ϕ∗v(i∂⊥)4ϕv + · · ·+ Lϕv . (D.3)

The first term is the LO HDMET for scalar fields. The 1/mϕ term is fixed by reparametriza-

tion invariance [87], while the ellipses denote the higher-order terms.

The DM bilinears have the following nonrelativistic expansion,

ϕ∗ϕ→ ϕ∗vϕv −
1

4m2
ϕ

ϕ∗v
(←
∂

2+
→
∂

2)ϕv +O(q3) , (D.4)

i
(
ϕ∗
↔
∂µϕ

)
→ 2mϕvµ

(
ϕ∗vϕv

)
+ i
(
ϕ∗v
↔
∂⊥,µϕv

)
+O(q3) , (D.5)

(
∂[µϕ∗∂ν]ϕ

)
→ imϕv

[µ∂
ν]
⊥
(
ϕ∗vϕv

)
+ ∂

[µ
⊥ϕ
∗
v∂

ν]
⊥ϕv +

i

4mϕ
ϕ∗vv

[µ
↔
∂
ν]
⊥
(←
∂

2−
→
∂

2)ϕv +O(q4) .

(D.6)

In terms of the momenta these are

ϕ∗ϕ→ ϕ∗vϕv

(
1 +

p2
1 + p2

2

4m2
ϕ

)
+ · · · , (D.7)

i
(
ϕ∗
↔
∂µϕ

)
→ ϕ∗vϕv

(
2mϕvµ + p12⊥,µ

)
+ · · · , (D.8)

(
∂[µϕ∗∂ν]ϕ

)
→ mϕ

(
v[µqν] + v[µp

ν]
12

p2
1 − p2

2

4m2
ϕ

)
ϕ∗vϕv + p

[µ
2 p

ν]
1 ϕ
∗
vϕv + · · · . (D.9)

The nonrelativistic reductions of the operators describing interactions with scalar DM are

thus (again explicitly including a normalization factor similar to (C.8))

Q(6)
1q →2mϕF

q/N
1 ON1

(
1 +

~v 2
⊥
2

+
~q 2

8m2
ϕ

)
− ~q 2

2m2
N

mϕF
q/N
2 ON1

+ 2mϕ

(
F
q/N
1 + F

q/N
2

)
ON3 +O(q3) ,

(D.10)

Q(6)
2q →− 4F

q/N
A mϕON7

[
1 +

~v 2
a

2
+
~v 2
⊥
2

+
~q 2

8

(
1

m2
N

+
1

m2
ϕ

)]

− 2F
q/N
A mϕ(~va ·~v⊥)ON(1)

1a +O(q4) ,

(D.11)

Q(6)
3q →F

q/N
S ON1

(
1 +

~q 2

8m2
N

)
+O(q4) , (D.12)

Q(6)
4q →F

q/N
P ON10 +

1

2
F
q/N
P

(i~q ·~va)
mN

ON(1)
1a +O(q4) , (D.13)

Q(6)
5 →FGON1

(
1 +

~q 2

8m2
N

)
+O(q4) , (D.14)

Q(6)
6 →FG̃ON10 +

1

2
FG̃

(i~q ·~va)
mN

ON(1)
1a +O(q4) , (D.15)

where the non-relativistic operators are defined in eqs. (1.11)–(1.19) and eqs. (C.2)–(C.7).
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E The expressions for the non-relativistic coefficients

Here we collect the expressions for the coefficients of the non-relativistic operators,

eqs. (1.11)–(1.19), in terms of the UV Wilson coefficients, eq. (1.1), and the single-nucleon

form factors. We find

cp1 = − α

2πmχ
QpĈ(5)

1 +
∑

q

(
F
q/p
1 Ĉ(6)

1,q + F
q/p
S Ĉ(7)

5,q

)
+ F pG Ĉ

(7)
1 (E.1)

− ~q 2

2mχmN

∑

q

(
F
q/p
T,0 − F

q/p
T,1

)
Ĉ(7)

9,q , (E.2)

cp4 = −2α

π

µp
mN
Ĉ(5)

1 +
∑

q

(
8F

q/p
T,0 Ĉ

(7)
9,q − 4F

q/p
A Ĉ(6)

4,q

)
, (E.3)

cp5 =
2αQpmN

π~q 2
Ĉ(5)

1 , (E.4)

cp6 =
2α

π~q 2
µpmN Ĉ(5)

1 +
∑

q

(
F
q/p
P ′ Ĉ

(6)
4,q +

mN

mχ
F
q/p
P Ĉ(7)

8,q

)
+
mN

mχ
F p
G̃
Ĉ(7)

4 , (E.5)

cp7 = −2
∑

q

F
q/p
A Ĉ(6)

3,q , (E.6)

cp8 = 2
∑

q

F
q/p
1 Ĉ(6)

2,q , (E.7)

cp9 = 2
∑

q

[(
F
q/p
1 + F

q/p
2

)
Ĉ(6)

2,q +
mN

mχ
F
q/p
A Ĉ(7)

3,q

]
, (E.8)

cp10 = F p
G̃
Ĉ(7)

3 +
∑

q

(
F
q/p
P Ĉ(7)

7,q − 2
mN

mχ
F
q/p
T,0 Ĉ

(7)
10,q

)
, (E.9)

cp11 =
2α

π
Qp

mN

~q 2
Ĉ(5)

2 +
∑

q

[
2
(
F
q/p
T,0 − F

q/p
T,1

)
Ĉ(7)

10,q −
mN

mχ
F
q/p
S Ĉ(7)

6,q

]
− mN

mχ
F pG Ĉ

(7)
2 , (E.10)

cp12 = −8
∑

q

F
q/p
T,0 Ĉ

(7)
10,q . (E.11)

The coefficients for neutrons are obtained by replacing p→ n, u↔ d. Above we kept only

the chirally leading contributions and listed the results only for the non-vanishing cNNR,i

(i.e., one has cNNR,2 = cNNR,3 = 0). For the coefficient cNNR,1, we also kept the q2-suppressed

contribution from Ĉ9,q,
(7) that is, however, coherently enhanced. The contributions due to

the magnetic and electric dipole operators, eqs. (1.2), are given in appendix A of [1].

In the LO expressions most of the form factors are evaluated at q2 = 0, with the numer-

ical values for F
q/N
1 given in eq. (A.1); for F

q/N
2 in eqs. (A.3)–(A.5); for F

q/N
A in eq. (A.14)

together with eqs. (A.17), (A.19); for F
q/N
S in eq. (A.27) together with eqs. (A.28), (A.29);

for F
q/N
G in eq. (A.36) together with (A.38); for F

q/N
T,0 in eq. (A.47) together with (A.48);

and for F
q/N
T,1 in eq. (A.45) together with (A.49)–(A.51). The form factors F

q/N
P , F

q/N
P ′ ,

F
q/N

G̃
contain pion and eta poles. The numerical values for F

q/N
P ′ are given in eq. (A.13)

together with eqs. (A.15), (A.16), (A.18), (A.19); for F
q/N
P in eq. (A.30)–(A.33) together

with eqs. (A.18), (A.19); for F
q/N

G̃
in eq. (A.42) together with (A.18), (A.19).
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