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Abstract

It is well-known that real-world systems, modeled as complex networks, are mostly robust against random failures

but susceptible to targeted attacks. In this study, we propose a novel perspective to solve the network dismantling

problem. Instead of designing an effective attack from scratch, we show how knowledge extracted from random

failures in the network leads to extremely effective attacks. This observed connection between random failures and

targeted attacks is striking on its own. Experiments on a wide range of networks show the efficacy of our novel method

for network dismantling, providing an excellent trade-off between attack quality and scalability. We believe that

our contribution also stimulates research in related domains, including social network influence analysis, spreading

dynamics in networks, and efficiency considerations.
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1. Introduction

Real-world systems are often represented as complex networks, for instance, energy systems (Albert et al. 2004),

communication systems (Albert and Barabási 2002), transportation systems (Zanin and Lillo 2013), economic sys-

tems (Boss et al. 2004), or social systems (Duijn et al. 2014). Based on such complex network representations,

network science-based analysis often reveals hidden patterns underlying the complex connection. Robustness is a

particularly interesting property of a system, measuring its ability to withstand random failures and targeted attacks.

Recent events of power outages (Ash and Newth 2007), large-scale transportation disruptions (Brooker 2010), and

supply-chain failures (Kim et al. 2015) highlight the importance of better understanding critical systems enabling our

modern society.

The underlying, critical step of quantifying the robustness of a network against targeted attacks is to design the

most harmful attack, leading to a quick breakdown of the network into small components. For many real-world
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networks, researchers have reported a rather high robustness against random failures, but significant vulnerability

towards intentional attacks, targeting important nodes preferably (Albert et al. 2000). Given the wide range of ap-

plication domains, several studies have been performed in the area of network robustness, including the proposal of

various node attacking strategies. Essentially, the goal of these techniques is to derive a node sequence which max-

imizes the damage on the network’s connectivity, usually measured by the size of the largest connected component

throughout an attack. Existing research has shown that the exact solution to this problem is computationally hard,

even for medium-sized networks; see (Wandelt et al. 2018, Sun et al. 2017) for extensive comparative evaluations

of these techniques. Early research on networks dismantling was mainly based on node centralities (Freeman 1977,

Geisberger et al. 2008), which assign a numerical indicator to each node, reflecting the importance of that node with

respect to a local or global topological measure. A network attack is constructed by ranking the nodes according to

their importance in decreasing order. Such a construction is very natural, as an attack to a network is expected to add

important nodes first. In addition to the exploitation of generic node centralities, researchers have designed methods

specifically tuned towards the problem of dismantling a network (Braunstein et al. 2016, Tian et al. 2017, Ren et al.

2018, Fan et al. 2020b, Wandelt et al. 2020), which often aim to exploit the overall structure of the network to build

attacks. Figure 1 provides an overview on the existing methods for generating node attacks to complex networks.

The classification induces four quadrants described as follows. The first quadrant covers local node centralities which

often can be computed in linear time regarding the size of the network, e.g., including the node degree. These methods

are scalable, but often lead to rather ineffective attacks; unless being applied to networks with very special structures,

which rarely exist in the real world. The second quadrant covers the area of rather uninformed methods, which are

slow and do not lead to effective attacks. The third quadrant covers methods which are able to compute high-quality

attacks, but do not scale up well when being applied to medium-sized or large networks. The fourth quadrant rep-

resents the desired area of any dismantling algorithm: Combining the generation of highly effective attacks with the

property of being scalable to very large networks. Given the NP-hardness of the underlying node ordering problem,

reaching this quadrant is extremely difficult.

In this study, we propose a conceptually novel method for the generation of targeted attacks to complex networks.

In a nutshell, we describe an efficient transformation process that is able to convert a collection of random failure

traces generated by purely random node sequences into highly effective attacks. Our method is inspired by recent

works on the node explosive percolation (Qin et al. 2019), which was used to improve attacks obtained from belief

propagation in complex networks. (Fan et al. 2020a) showed that node explosive percolation works on a wider

range of inputs and recommended to use interactive degree together with node explosive percolation as a trade-off

between effectiveness and efficiency. On top of these observations, we design and implement an iterative robustness
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highly approximative techniques

Fast, low quality

II. Uninformed methods

Slow, low quality

III. Global node centralities and 

other more accurate methods

Slow, high quality

IV. Desired

Fast, high quality

Figure 1: Classification of methods for network dismantling based on two dimensions: Scalability and effectiveness.

analysis framework, as shown in Figure 2. While in existing literature, the node explosive percolation is applied once,

we show that repetitive application can significantly improve the quality while incurring low additional computation

costs. Our method is evaluated against a wide range of state-of-the-art techniques in network dismantling, showing the

outstanding efficiency of our method in all cases. Our work does not only lead to an excellent trade-off between attack

quality and runtime, but also provides a novel view of the problem at hand: It is the first study to use zero-knowledge

in order to generate attacks that sometimes even outperform the best baseline set by interactive betweenness-based

attack generation; (Fan et al. 2020a) showed earlier that a single application of node explosive percolation to a random

attack can outperform vanilla MinSum (Braunstein et al. 2016). We believe that this study has a wider impact beyond

just proposing yet another network attacking procedure. An analysis of network based on repetitive node explosive

percolation could yield important insights in various domains.
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Figure 2: Overview on the transformation from random failures to targeted attacks.

The remainder of this study is organized as follows. Section 2 provides a literature review on studies related to

network dismantling. Section 3 introduces the preliminaries and methodology of this study. Section 4 evaluates the

efficiency and effectiveness of our novel dismantling method on a wide range of real-world networks and randomly

generated networks. Section 5 concludes this study and provides a set of suggestions for future research.
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Method Time complexity Remarks
D O(N) The degree of a node is a constant-time lookup for array-based adjacency lists
DI O(N²) After each node removal, D is computed on the remaining GCC
B O(N*E)
BI O(N²E) After each node removal, B is computed on the remaining GCC
PR O(k*E) Variable k is the number of iterations
PRI O(N*k*E) Variable k is the number of iterations
CI2 O(NlogN) With ball size k=2
APTA O(E) Time for determining the articulation points
CHD O(N*E) After each node removal, the 2-core of the GCC is computed
COM O(E)
Our method O(E*k) Variable k is the number of iterations

Table 1: Time complexity of competing methods in this study.

2. Literature Review

Throughout recent decades, researchers have spent enormous efforts to estimate the robustness of a given complex

network; see (Wandelt et al. 2018) for a recent survey and comparison of these techniques. These methods have

inherent computational properties. In Table 1, we provide an overview on the time complexity of each method

discussed in this study. It can be seen that some methods incur high computational costs, which prevents them to

be applied to larger networks. For instance, a time complexity of O(N2) means that the number of computation steps

is quadrupled once the size of the network is increased by a factor of two. Below, we describe the techniques from

Table 1 in greater detail.

Many application studies have used node centralities to estimate the robustness of a network. It is beyond the

scope of this study to review all centralities; the reader is referred to (Wandelt et al. 2018, Sun et al. 2017). The

simplest metric is the degree (D), which counts the number of neighbors for node importance estimation. The degree

is often used for two reasons. First, it is easy and efficient to compute, given that it can be read off directly from the

graph representation as an adjacency list. Second, the degree of a node is highly related with a node’s function as a

hub in the network; which makes it potentially critical for the robustness of the whole network. It should be noted

that node centralities can be computed in a dynamic way, where the centrality is recomputed after greedily removing

the highest-ranked node. Such dynamic recomputations are often referred to as interactive attacks, in contrast to static

attacks. An interactive version of degree (DI) iteratively attacks the node with the highest degree in the network and

then recomputes the degree. Another frequently-used centrality metric is betweenness (Freeman 1977, Brandes 2008),

which measures the frequency of a node appearing on all pairs shortest paths in the network. The exact calculation of

betweenness centrality comes at a high computational cost, O(NE) using Brandes’ algorithm (Brandes 2001), where

N is the number of nodes and E is the number of edges in network. Betweenness can be implemented as a static

method (B) and as an interactive version (BI). A wide range of other centralities have been used, including closeness
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centrality, PageRank (PR), and eigenvector centrality. It has been shown in the literature that interactive betweenness

is the best-suited node centrality for computing highly-destructive attacks to a network (Wandelt et al. 2018).

In recent years, several studies proposed methods specifically-tuned towards network dismantling. These tech-

niques were often designed with scalability in mind and make trade-offs regarding the quality. In addition, these

techniques are usually inspired by the idea to exploit specific topological properties, e.g., cycles or articulation points.

Collective influence (CI) (Morone and Makse 2015), originally designed for identifying influential spreaders in a net-

work, is the first method that was explicitly designed towards identifying the critical nodes in a network under limited

computational resources. It is known that the concepts of influence and robustness are closely related, i.e., a node that

is important for spreading is usually also critical for keeping the network connected. The collective influence of a

node is computed by defining a neighborhood (usually called ball) around a node and sum up the degree of nodes on

the frontier of the neighborhood. In hierarchical networks, the CI value can be easily computed in O(N ∗ logN) time,

which means that the method can be efficiently computed for large networks; under exploitation of a max heap data

structure (Morone et al. 2016).

Another technique, Min-Sum, assumes that for a large class of random graphs, the problem of network dismantling

is connected to the decycling problem, which addressed the removal of vertices until a graph becomes acyclic (Braun-

stein et al. 2016). The authors propose a three-stage Min-Sum algorithm for efficiently dismantling networks, which

are summarized as follows. Firstly, at the core of the algorithm is a variant of Min-Sum message passing for decy-

cling, developed in (Altarelli et al. 2013a,b). The second step has the goal of tree breaking. After all cycles are broken,

some of the tree components may still be larger than the desired threshold. These components are further broken into

smaller components, removing a fraction of nodes that vanishes in the large size limit. Finally, cycles are closed

greedily, in order to improve the efficiency of the algorithm with many short cycles. Belief propagation (Mugisha

and Zhou 2016) is based on the Feedback Vertex Set (FVS) (Zhou 2013), which aims at selecting the set of nodes

efficiently breaking the network into pieces. A variant of information spreading (Zhou 2013) is applied to FVS, in

order to describe nodes’ importance and to keep this information updated in each iteration of the method. Finally,

nodes are ranked according to the resulting numerical value. Node Explosive Percolation (NEP) (Qin et al. 2019) aims

to significantly improve existing attacks obtained by belief propagation; addressing the lack of order when removing

nodes.

Articulation Point Targeted Attacks (APTA) (Tian et al. 2017) exploits the existence of so-called articulation points

in a network. Such articulation points - upon removal - disconnect a network. All articulation points in a network

can be computed in linear time of the number of edges, based on a variant of depth-first search. Conceptually,

articulation points are highly critical for the connectedness of a network; accordingly, an efficient method based
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on such articulation points has very high potential for dismantling. In real-world networks, which often contain

cycles, an attack needs to target redundant nodes, in order to effectively break the network into smaller components.

Accordingly, the major limitation of APTA is observed once there are no (critical) articulation points left in a network.

In this case, the attack is usually completed by falling back to a standard network metric, such as degree. APTA is a

greedy method, in that it always selects the most-destructive articulation point in each iteration. FINDER (Fan et al.

2020b) proposes to use deep reinforcement learning to identifying key players in a network. The key idea is to learn

node importance based on a set of training networks, e.g., obtained over a collection of Barabasi-Albert networks with

different generating parameters, and then apply the learned model to previously-unseen networks for identifying the

critical nodes. By using an adaptive sampling over the learned model for extracting key nodes, the prediction phase

can be significantly accelerated, while obtaining a dynamic dismantling strategy.

Community-based network attacks (COM) (Wandelt et al. 2021) exploits the presence of communities in a net-

work. Intuitively, by attacking the inter-community node/links in a network, it is ensured that the network is being

dismantled quickly; see also (Requião da Cunha et al. 2015, Wandelt et al. 2020). By neglecting intra-community

nodes, the time efficiency of community-based methods is often high, especially if clear community structures exist

in the network. There are several design choices, including community detection methods and parameter thresholds.

Approximately linear-time algorithms are chosen, such as the widely-used Louvain method (Blondel et al. 2008),

which can scale up to networks with millions of nodes. A related method is based on spectrality (Zahedi and Khansari

2015) and uses Fiedler vectors (Newman 2013) together with a likelihood measure to break a network into two dis-

tinct partitions. Similarly, generalized network dismantling (Ren et al. 2018) disintegrates networks while taking into

account node-specific costs, using spectral cuts with an efficient spectral approximation by a Power Laplacian oper-

ator. Moreover, the K-shell iteration factor (Wang et al. 2016) measures the coreness (Kitsak et al. 2010) of a node,

combining shell decomposition and iterative node removal. Core High-Degree (CoreHD) (Zdeborová et al. 2016)

combines interactive degree and k-core (Kitsak et al. 2010) to achieve a decycling of networks.

Several studies in the literature build customized models and analysis techniques for domain-specific problems.

For instance, (Wu et al. 2021) designed an evolutionary algorithm for analyzing node importance in cyber-physical

power systems, Chaoqi et al. (2021) use a game-model for describing the interactions between attacker and defender

on critical infrastructure networks, and several other studies built upon various Bayesian approaches (Eldosouky

et al. 2021, Dehghani et al. 2021). Another important recent development is the study of inter-connected or multi-

modal networks (Liu et al. 2021, Munikoti et al. 2021, He et al. 2021). While our study, instead focuses on single-

layer networks, the former studies include another level of complexity by allowing interactions between multiple

layers. Several studies in the recent literature consider the flow on top of networks, for instance, in transportation
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systems (Zhang et al. 2021, Almotahari and Yazici 2021). Such studies are targeted for specific instances and can

often lead to more detailed insights, compared to the purely structural or topological analysis.

3. Methodology

In this section, we propose our novel technique for transforming random failure traces into targeted attacks.

The method is significantly faster than the state-of-the-art, while reaching attack quality on par with the best node

centrality-based attacking strategy: interactive betweenness (BI).

3.1. (Un)informed network dismantling

When analyzing the robustness of a network, one can take several perspectives (Cohen et al. 2000, Newman 2010,

Cohen and Havlin 2010, Callaway et al. 2000). First, statistical physicians are mostly interested in the phase transi-

tions which lead to a sudden disintegration of the network. Second, operators are interested in identifying key nodes,

for instance in critical infrastructure networks, that need to be protected better, in order to ensure a safe and robust

operation of the system. Third, when conducting a cross-comparison of two or more network’s robustness, there is

a need to compare the overall performance of networks under disruption scenarios. While these perspectives have

inherent peculiarities, they all share the goal of identifying critical nodes’ order as an underlying operation on the

network. The quality of the node order can be obtained by consideration of changes to the giant component during

the evolution of an attack. Here, the intuition is that a smaller remaining giant component indicates a network that is

considered to have been disintegrated (Newman 2003). Accordingly, this study refers to the commonly-used robust-

ness measure R (Schneider et al. 2011). Given a network composed of N nodes, R is defined as R = 1
N
∑N

Q=1 s(Q),

where s(Q) represents the fraction of nodes in the giant component once the first Q nodes have been removed. Given

that R allows for a comparison of two distinct attacks, one is usually interested in the attack with the minimum R

value, concluding that this attack causes the maximum damage to the network. Note that the computation of this

optimal attack (node order) is a NP-hard problem; and, accordingly, difficult to be solved towards optimality even for

medium-sized networks. Therefore, many heuristics for finding good attacks have been proposed in the literature, see

Section 2.

In order to better illustrate the problems that arise from using existing heuristics for attack generation, we show the

results obtained for a special network: the so-called grid network. In this network, all nodes are layout out in a grid

structure and neighbor nodes are connected by a link. This network is interesting for our purpose, since local node

centralities are not able to distinguish nodes well; and standard dismantling techniques have significant problems

when attacking such a network. Figure 3 illustrates a 30x30 nodes instance of a grid network and highlights the
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Figure 3: Node importance in a 30x30 grid network with state-of-the-art methods.

attack order for ten selected techniques in the literature: The node transition color indicates the position of a node

in an attack, from black (attacked early) to white (attacked late). Degree (D) and collective influence (CI; with ball

size 2) can only distinguish three and four types of nodes respectively, considering their local view on the network.

Interactive degree (DI) and APTA can identify the inner parts of the network, but are unable to derive an effective

attacking strategy; notably, APTA performs similar to degree, given the absence of articulation points in the network.

PageRank (PR) identifies the transition between core and periphery as important nodes. Betweeness (B) is able to

identify the important nodes from a static perspective, leading to the insight that inner nodes are most critical. Finally,

Interactive Betweenness (BI), Interactive PageRank (PRI), and CoreHD (CHD) identify interesting attacks that split

the network into smaller components, given their interactive design. Finally, Community-based attacking (COM)
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Figure 4: Comparison of robustness curves for a 30x30 grid network. Note that the curves for B, CI2, D, and APTA are hardly distinguishable,
given that they have insignificant differences of the R values.
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identifies horizontal and vertical cuts through the network, despite the existence of true communities in the grid

network.

Figure 4 reports the robustness curves, obtained R values, and required runtime for all ten methods. It can be seen

that these methods induce a wide range of different robustness traces and R values accordingly. The minimum R value

is obtained by using BI. This is consistent with the results in the literature which showed that BI is the best attacking

method. COM achieves competitive performance, but its R value is 0.101, compared to 0.071. The remaining methods

yield significantly worse R values; some of the methods which cannot distinguish a sufficient number of node types

yield essentially useless attacks, leading to maximum R values of 0.5. Another import insight from this grid network

example is that the methods which yield better R values usually incur the longest runtime. For instance, BI already

requires more than one minute of computation for this small network consisting of 900 nodes only. COM seems like

a good trade-off, but as we will show in later experiments, COM does not scale up well for specific larger networks

either. These results highlight the importance of understanding the classification of methods into fast, low-quality and

slow, high-quality, as suggested in Figure 1 in the Introduction.

3.2. From random failures to targeted attacks

In the following, we describe the transformation of random failure traces to more effective targeted attacks. In

general, it is known that random failures are less effective to dismantle real-world networks, compared to targeted

attacks; this insight is not surprising, given the informed decision making in targeted attack generation (Zanin et al.

2018). In Figure 5, we visualize this effect on the 30x30 grid network. The figure is generated by evaluating 100,000

randomly-generated attacks on the network. The median R value is approximately 0.34; with few attacks reaching

R values smaller than 0.3 and larger than 0.38, respectively. In order to compare the effectiveness range of random

failures to those of targeted attacks, the R values for selected targeted attacks are shown as vertical lines.

Figure 5: Effectiveness of random attacks to the 30x30 grid network, as indicated by the relative frequency distribution over all R values for 100,000
randomly-generated attacks.
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The transformation process is inspired by recent work on explosive node percolation. In a first step, we compute

a score for each node as induced by the reversely-constructed node neighborhood, as shown in Algorithm 1. The

algorithm computes the score for node u based on the currently rebuilt network G and the corresponding disjoint-set

data structure based on the UnionFind algorithm. UnionFind as an algorithm which is based on a disjoint-set data

structure that keeps track of items forming an equivalence relation under updates. The name UnionFind comes from

its two efficient core operations over items: Union (merging the equivalent sets of two items) and Find (identifying

the equivalent set of an item). BuiltNeighbor(u) represents the currently neighborhood of u.

In the next step, the scores obtained by Algorithm 1 are used to convert one random attack into a targeted attack.

The overall process is described in Algorithm 2. The random attack R is traversed from the end to the front; adding

nodes back to the (dismantled) network, gradually building up the reversed attack L. This process is repeated as

long as all largest sets in UF are of size at most one. Afterwards, the random attack is processed in batches of

length S , appending the top-ranked S nodes to L, while maintaining the UnionFind-based data structure updated, i.e.,

merging the components correspondingly to edge additions. Finally, the list L is reversed and the targeted attack A is

obtained. The batch size has an important impact here: It nicely controls the accuracy of this algorithm and allows

to explore interesting trade-offs between quality and required computational resources, when transforming a single

random failure trace into a targeted attack. Figure 6 visualizes the process of computing the scores iteratively.

In Figure 7, the results of the transformation is shown. Given the 30x30 grid network, a random attack is generated,

whose R value is 0.3201; considerable worse than many targeted attack strategies (which reach R values of 0.071).

After applying the transformation described in Algorithm 2, the attack’s quality has improved significantly with a R

value of 0.1248, now outperforming PRI, CHD, and DI. This is a reduction by a factor of approx. 66%. The inset of

the upper right of Figure 7 reveals that while the random attack is essentially causing to the site-percolation to the grid,

the transformed attack is cutting the grid into three components. Although this attack is not optimal on a grid network,

this improvement is remarkable, given that the input of the transformation process was a purely random attack.

Algorithm 1 Function for node scores

Input: Graph G, Node u, UnionFind UF
Output: Score of the node n

1: S ← {}
2: for v ∈ G.BuiltNeighbor(u) do
3: S .add(UF.FindS et(v))
4: end for
5: S core← S um o f UF.S izeO f S et(s) ∀s ∈ S
6: S core← S core ∗ S .size()
7: return Score

10



Algorithm 2 Node explosive percolation for random attacks

Input: Graph G, Random attack R, ReInsertStep st
Output: Attack A

1: L← [ ]
2: UF ← UnionFind(G)
3: while UF.LargestS etS ize == 1 do
4: u = popFromBack(R)
5: UF.Union(u,G.BuiltNeighbor(u))
6: L.append(u)
7: end while
8: while len(R) > 0 do
9: S cores← {node : NEP(G, u,UF)} ∀u ∈ R

10: R← sort R by increasing order o f S core
11: Batch← R[0 : min(size(R), st)]
12: L+ = Batch
13: for node ∈ Batch do
14: UF.Union(node,G.BuiltNeighbor(node))
15: end for
16: R = R[min(size(R), st) :]
17: end while
18: A← reversed(L)
19: return A

3.3. Framework for attack space exploration

This subsection presents the overall iterative framework for attack generation, based on the transformation step

in the previous subsection. The transformation step has two degrees of freedom. First, it comes with a parameter

describing the reinsertion step; a measure which can be used for balancing effectiveness and quality. Intuitively, the

larger the reinsertion step is chosen, the faster the transformation can be computed. The attack quality, however,

is likely to reduce with larger reinsertion batches. Accordingly, controlling this parameter is particularly important

from a scalability point of view. Second, given the non-deterministic characteristic of the input (as random failure

traces), a question arises: How many times does one need to iterate the attack generation algorithm, in order to obtain

a strong attack to the network? In other words, when can we stop sampling, in expectation of future insignificant

improvements? These two parameters, reinsertion step and termination condition need to be carefully chosen; the

details are discussed below.

Algorithm 3 describes the individual steps in detail. The algorithm makes use of two termination criteria: T1 and

T2. The parameter T1 is used to control the maximum number of non-improvement iterations. The input variable T2

controls the number of consecutive samplings with the same reinsertion step length. Variable L collects the existing

random attacks throughout one iteration; after one round of sampling, the reinsertion step st is halved and the process

repeated, until the termination criterion T1 is satisfied.
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Figure 6: Example for the computation of scores and ranking. L is the list of attacked nodes. During the construction of L, i.e., following subfigures
from (a) to (l), nodes are appended to the front of L. Four node colors are used for indicating node status: red (currently added node), blue (inactive
components), green / purple (individual components being connected by adding the red node. If the added node does not connect at least two
individual components, then all nodes in the component are colored green).

Figure 7: Visualization for the effect of transforming a random attack (left) to a targeted attack (right). The solid black line represents the evolution
of the giant component. The inset in the upper right visualizes attacked nodes until the size of the giant component is less than 50%. Blue lines in
both plots correspond to state-of-the-art methods for targeted attacks (see Figure 4 for reference).
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Algorithm 3 Main algorithm

Input: Graph G, termination criteria T1,T2
Output: Attack Abest

1: st ← |G|
10

2: Abest ← random attack for G
3: nonimprov← 0
4: while nonimprov < T1 do
5: L← [ ]
6: for i ∈ {1, ...,T2} do
7: Arand ← random attack for G
8: Let A be the result of Algorithm 2 applied on Arand

9: L.append(A)
10: end for
11: A← best attack in L
12: if A is more effective than Abest then
13: Abest = A
14: else
15: nonimprov = nonimprov + 1
16: end if
17: st ← st

2
18: end while
19: return Abest

4. Experimental evaluation

This section reports the results of experiments for evaluating the efficiency and effectiveness of our proposed

method. Section 4.1 describes the experimental setup, including the method selection and the evaluated networks.

Section 4.2 performs a sensitivity analysis on the termination criteria, setting the baseline for additional experiments.

Section 4.3 reports the results of an extensive comparison of state-of-the-art methods on real-world networks.

4.1. Experimental setup

In this section, we compare our novel methods against seven selected methods from the literature. These methods

are listed as follows, together with the rationale for choosing them. We have included degree (D) and interactive

degree (DI), given their prevalent usage in studies on network robustness; overall, the degree is probably one of the

most-frequently used network metrics to assess the local importance of nodes in the network. Similarly, we have

included betweenness (B) and interactive betweenness (BI), given their role for identifying the criticality of nodes

based on global network properties. Notably, BI can be considered the reference baseline in terms of attack quality.

We include experiments on collective influence (CI2), given its wide usage in many different network science domains.

Moreover, we report results on articulation point targeted attacks (APTA), which has been shown in the literature to

outperform Min-Sum; and also include community-based attacks (COM), which have been shown recently to be the

best trade-off between attack quality and runtime on medium-sized networks. The experiments are executed on a
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broad range of network types; see Table 2 and Table 3 for an overview on the random and real-world networks in this

study, respectively. The random networks and toy networks have been created with the generators available in the

Python package networkx. The name of the network corresponds to the chosen parameters, e.g., for BA networks the

name 120,3 indicates that the network was generated with 120 nodes and the number of links to attach for each node

was set to three. The two tables report common network properties, as well as the best-known R values from state-of-

the-art methods, in order to assess the overall robustness of these networks. Since our method is non-deterministic by

design, we report the median time and R values over five experiments.

The real-world networks in this study have been regularly used for complex network robustness evaluation in

related work; they come from a wide range of domains and cover networks from very fragile to rather robust. We

briefly describe their domain of interest below; see Table 3 for complex network properties:

1. Network dolphins represents the Doubtful Sound community of bottlenose dolphins. The connectivity of indi-

viduals in the network follows a scale-free power-law distribution.

2. Network polbooks consists of books related to US politics.

3. Network adjnoun has anti-community structure, i.e., inter-community edges are denser than the intra-community

edges

Table 2: Overview on random and toy networks in this study.

Network type Name |N| |L| Density Cluster. Coeff. |Bridges| |APs| Best R value

BA preferential attachment 30,1 30 29 0.06667 0.000000 29 13 0.10667
BA preferential attachment 70,2 70 136 0.05631 0.132228 0 0 0.15837
BA preferential attachment 120,3 120 351 0.04916 0.123559 0 0 0.20326
BA preferential attachment 200,1 200 199 0.01000 0.000000 199 67 0.01865
BA preferential attachment 250,2 250 496 0.01594 0.063795 0 0 0.10690
BA preferential attachment 300,3 300 891 0.01987 0.086945 1 1 0.16103

Erdős-Rényi 30,0.15 30 72 0.16552 0.187063 1 1 0.30556
Erdős-Rényi 30,0.25 30 106 0.24368 0.272513 0 0 0.38333
Erdős-Rényi 80,0.15 80 462 0.14620 0.135194 0 0 0.41484
Erdős-Rényi 80,0.25 80 778 0.24620 0.252669 0 0 0.45609
Erdős-Rényi 200,0.05 200 985 0.04950 0.043690 0 0 0.37047
Erdős-Rényi 200,0.1 200 1886 0.09477 0.093220 0 0 0.44785
Grid-shaped 10x10 100 180 0.03636 0.000000 0 0 0.17140
Grid-shaped 20x20 400 760 0.00952 0.000000 0 0 0.10064
Grid-shaped 30x30 900 1740 0.00430 0.000000 0 0 0.07113
Tree-shaped 2,127 127 126 0.01575 0.000000 126 63 0.03863
Tree-shaped 4,341 341 340 0.00587 0.000000 340 85 0.01370
Tree-shaped 3,364 364 363 0.00549 0.000000 363 121 0.01513

Watts–Strogatz small-world 30,4 30 60 0.13793 0.468889 0 0 0.24556
Watts–Strogatz small-world 70,4 70 140 0.05797 0.419524 0 0 0.14408
Watts–Strogatz small-world 120,4 120 240 0.03361 0.416944 0 0 0.12722
Watts–Strogatz small-world 200,5 200 400 0.02010 0.455333 0 0 0.08008
Watts–Strogatz small-world 250,5 250 500 0.01606 0.432667 0 0 0.09650
Watts–Strogatz small-world 300,5 300 600 0.01338 0.438889 0 0 0.07896
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Table 3: Overview on real-world networks in this study.

Network type Name |N| |L| Density Cluster. Coeff. |Bridges| |APs| Best R value

Small dolphins 62 159 0.08408 0.258958 9 7 0.17742
Small polbooks 105 441 0.08077 0.487527 0 0 0.18776
Small adjnoun 112 425 0.06837 0.172840 10 9 0.23143
Small Moscow subway 178 211 0.01339 0.060861 96 96 0.05511
Small celegans 297 2148 0.04887 0.292363 15 3 0.21048
Small usair 332 2126 0.03869 0.625217 56 27 0.07674
Small polblogs 1222 16714 0.02240 0.320255 139 89 0.15767
Small Helsinki bus 2010 2555 0.00127 0.096635 321 314 0.01725
Large ca-HepPh 11204 117619 0.00187 0.621582 1178 1122 0.12155
Large Reuters911 13308 148035 0.00167 0.368648 668 557 0.11164
Large p2p-Gnutella25 22663 54693 0.00021 0.005314 9310 4273 0.11030
Large cond-mat-2005 36458 171736 0.00026 0.656585 2865 3049 0.10889
Large rec-amazon 91813 125704 0.00003 0.268215 41833 39958 0.00276
Large road-luxembourg-osm 114599 119666 0.00002 0.000606 23076 22426 0.00120

4. Network Moscow subway represents the subway system of Moscow, Russia.

5. Network celegans corresponds to the metabolic network of C. elegans

6. Network usair represents the United States airport network.

7. Network polblogs represents the United States political blogosphere network; each node represents a blog and

each edge represents a hyperlink between two blogs.

8. Network Helsinki bus represents the bus transportation system of Helsinki, Finland.

9. Network ca-HepPh covers scientific collaborations between authors and papers submitted to High Energy

Physics - Phenomenology category at arxiv.org in the period from January 1993 to April 2003.

10. Network Reuters911 is based on all stories released during 66 consecutive days by the news agency Reuters

concerning the September 11 attack on the US.

11. Network p2p-Gnutella25 is a snapshot of the Gnutella peer-to-peer file sharing network from August 2002, with

nodes being hosts and links representing connections between hosts.

12. Network cond-mat-2005 represents a collaboration network based on preprints in condensed matter archive

arxiv.org.

13. Network rec-amazon represents the relationships between customers and items at amazon.com

14. Network road-luxemburg-osm represents the road network of Luxemburg based on data from Openstreetmap.

4.2. Sensitivity Analysis

In a first set of experiments, we perform parameter tuning on the proposed framework. The two parameters to be

explored are a) the number of non-improvement iterations during reinsertion step reduction (T1) and b) the number of

random attack generations (T2). The purpose of the sensitivity analysis is to identify combinations of both parameters
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Figure 8: Sensitivity analysis regarding T1 and T2 with respect to quality on random and toy networks.

that lead to an interesting trade-off between attack quality and runtime efficiency. Intuitively speaking, the increment

of both parameters individually is expected to increase the runtime linearly; the non-determinism of T1 makes accurate

predictions for the actual runtime infeasible. We compare instances of our method with T1 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and T2 ∈ 1, 2, 4, 8, 16, 32, 64 against the baseline attack obtained by interactive betweenness (BI). Notably, BI is

known as the best attacking method in the literature, regarding the obtained attack quality (Wandelt et al. 2018). In

Figure 8 we report the results of these experiments regarding the absolute difference between obtained R values from

our method and those obtained by BI. Cells highlighted in blue color indicate results better than BI and cells marked

in red color indicate results worse than BI. Only for very small values of T1 and T2, our method is outperformed by

BI. The reason is that too small values of the parameters lead to early terminations, and, accordingly, to an insufficient

exploration of the attack space. With T1 > 3 and T2 > 3, our method consistently outperforms BI, by R differences of

0.02 and more. This result is remarkable; especially, since it holds across these various types of networks, which come

with rather different topologies. In addition, it should be noted that those cells highlighted in white color still represent

instances of our algorithm which perform on par with BI; which is striking, given the simplicity and randomness-based

structure of our method.

Figure 9 reports the runtime differences between selected parameter combinations and BI. A large impact of the

parameter choice on the runtime can be observed; the maximum runtime being two orders of magnitude longer than

the ones with shorter runtime. The variants with T1 ∈ {1, 4} and T4 ∈ {1, 4} reveal runtimes of less than a second for
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Figure 9: Sensitivity analysis regarding T1 and T2 with respect to runtime on random networks.

these networks with up to 1000 nodes; being more than two orders of magnitude faster than BI on the largest network.

Accordingly, combining the insights from Figure 8 and Figure 9, we recommend to use T1 ∈ {4} and T2 ∈ {4}, i.e.,

four iterations for non-improvement and four iterations for random exploration, as an interesting sweet spot regarding

quality and computation time. In the remainder of this section, we use this combination for our experiments.

4.3. Comparison on real-world networks

In the next set of experiments, we compare our method against a set of state-of-the art method on real-world

networks. We have split these experiments into two parts: smaller and larger networks. The rationale is that for small

networks more methods can be compared, particularly, we include interactive betweenness as a baseline reference.

Figure 10 reports the results of experiments on small real-world networks. It can be seen that the two top-ranked

methods according to the quality are BI and and our method in all eight cases, often with minor mutual differences

between R values for their attacks. COM and APTA often obtain good results as well; but their performance is

significantly worse than BI and our method, depending on the network type. Another interesting observation can be

made regarding the runtime: While BI is competitive for execution on smaller networks, its computation complexity

increased significantly with the number of nodes and links in the network. For instance, BI needs 20 minutes to

compute the results for network polblogs, while the results of our method can be obtained in eight seconds. The

other methods can be computed in the same amount of time or less; particularly D and CI2 stand out regarding the

required time, but also lead to rather bad attacks. Overall, we conclude our method indeed addresses an interesting and

important sweet spot between attack quality and computational resources. In addition, with choosing less-conservative

parameters for T1 and T2, the attack efficacy can be improved further, outperforming BI, at the cost of longer runtime.

For the next experiments, we investigate the performance on larger real-world networks. Accordingly, we need

to discard methods which do not scale up to network scales with hundreds of thousands of nodes. This includes

betweenness-based methods. The time complexity of BI is at least cubic in the number of nodes. Accordingly, once
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Figure 10: Experimental results on small to medium-sized real-world networks.

the number of nodes is increased by a factor of two, the runtime of BI is expected to be at least eight times higher.

The networks in this subsection have up to 105 nodes and more, which leads to a lower bound of 1015 atomic steps

(where each atomic step takes constant time). The results of our experiments on larger real-world networks are shown

in Figure 11. For three out of six networks, our method finds the best attack (ca-HepPh, Reuters911, and cond-mat-

2005). In the remaining three cases, the attacks by COM (2x) and APTA (1x) are slightly better than those obtained

by our method. The runtime in these cases, however, is 1-2 orders of magnitude faster, highlighting the scalability

of our method to very large networks. For instance, for the network road-luxemburg-osm, which contains more than

100,000 nodes, our method requires about two minutes to compute its strong attack, while APTA requires 1.5 hours

and COM almost four hours. Finally, it should be noted that the performance of APTA and COM is largely network

dependent; e.g., COM performs worst among all methods on the network Reuters911 and the gap between APTA and
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Figure 11: Experimental results on large real-world networks.

our method is significant for ca-HepPh. Accordingly, the generality of the random-attack based framework should be

recognized based on these results.

5. Conclusions

The pursue of an optimal attack on complex networks has a long history in graph theory and network science. The

plethora of methods proposed by researchers has significantly improved our understanding of network robustness over

time, and the contribution of steps like decycling, tree-breaking, articulation points, bridges, and communities. This

study contributes to the literature by showing how random attacks can be turned into highly effective targeted attacks

by a transformation process, based on explosive node percolation. An iterative framework is proposed for the scalable

computation of network attacks, which gradually performs more detailed attack revisions until a set of termination

criteria is satisfied. Our experimental results on random networks and several real-world networks of different sizes

highlight the efficiency and efficacy of our method compared to the state-of-the-art. Particularly, our method is the
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only one that consistently works on all network types, independent of the topology. For smaller networks, it is shown

that interactive betweenness centrality can be outperformed. Our method is significantly faster for large networks than

the state-of-the-art, while not losing too much attack quality.

The structure of a network is a significant factor for deciding the robustness towards a targeted attack. For instance,

if a network has few articulation points, then APTA is significantly less effective. CI, on the other hand, presumably

works best in hierarchical networks and in networks with a short diameter (such that the central nodes can be distin-

guished as being central with a small ball size k). COM relies on the presence of communities in the network. Our

novel method does not have such strong dependencies on the network structure: We begin network dismantling with

a random attack. This initial attack – by definition - is not subject to any initial heuristic; the initial sequence does not

rely on other local/global properties of the network. This iterative characteristic is the key novel scientific message

of our study: While a single iteration based on one random attack might be still far away from being competitive,

after a few iterations this deterioration disappears. This perspective is new in the literature; existing work builds itera-

tive/adaptive attacks on the node level, i.e., remove nodes and then recompute a measure on the remaining network for

a partial attack. Our iterative computation takes place on an attack level, where a given attack is gradually improved

over time.

Our study opens up several avenues for future research. First of all, given the novel perspective on network disman-

tling, exploiting randomness in the input, hopefully inspires researchers to design other powerful non-deterministic

methods for network dismantling. Specifically to our framework, future studies could consider the design of different

termination criteria and investigate more informed methods to randomize the node explosive percolation process.
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Christian M Schneider, André A Moreira, José S Andrade, Shlomo Havlin, and Hans J Herrmann. Mitigation of malicious attacks

on networks. Proceedings of the National Academy of Sciences, 108(10):3838–3841, 2011.

Xiaoqian Sun, Volker Gollnick, and Sebastian Wandelt. Robustness analysis metrics for world-

wide airport network: A comprehensive study. Chinese Journal of Aeronautics, 30(2):

500–512, 2017. ISSN 1000-9361. doi: https://doi.org/10.1016/j.cja.2017.01.010. URL

https://www.sciencedirect.com/science/article/pii/S1000936117300390.

Liang Tian, Amir Bashan, Da-Ning Shi, and Yang-Yu Liu. Articulation points in complex networks. Nature communications, 8:

14223, 2017.

Sebastian Wandelt, Xiaoqian Sun, Daozhong Feng, Massimiliano Zanin, and Shlomo Havlin. A comparative analysis of approaches

to network-dismantling. Scientific reports, 8(1):1–15, 2018.

Sebastian Wandelt, Xing Shi, Xiaoqian Sun, and Massimiliano Zanin. Community detection boosts network dismantling on real-

world networks. IEEE Access, PP:1–1, 06 2020. doi: 10.1109/ACCESS.2020.3002807.

Sebastian Wandelt, Xing Shi, and Xiaoqian Sun. Estimation and improvement of transportation net-

23



work robustness by exploiting communities. Reliability Engineering & System Safety, 206:

107307, 2021. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.2020.107307. URL

https://www.sciencedirect.com/science/article/pii/S0951832020308036.

Zhixiao Wang, Ya Zhao, Jingke Xi, and Changjiang Du. Fast ranking influential nodes in complex networks using a k-shell

iteration factor. Physica A: Statistical Mechanics and its Applications, 461:171 – 181, 2016. ISSN 0378-4371. doi:

dx.doi.org/10.1016/j.physa.2016.05.048.

Gongyu Wu, Meiyan Li, and Zhaojun Steven Li. A gene importance based evolutionary algorithm (giea)

for identifying critical nodes in cyber–physical power systems. Reliability Engineering & System

Safety, 214:107760, 2021. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.2021.107760. URL

https://www.sciencedirect.com/science/article/pii/S0951832021002891.

Ramin Zahedi and Mohammad Khansari. A new immunization algorithm based on spectral properties for complex networks.

Journal of Statistical Mechanics Theory and Experiment, October 2015. doi: 10.1109/IKT.2015.7288754.

Massimiliano Zanin and Fabrizio Lillo. Modelling the air transport with complex networks: A short review. The European Physical

Journal Special Topics, 215(1):5–21, 2013.

Massimiliano Zanin, Xiaoqian Sun, and Sebastian Wandelt. Studying the topology of transportation systems through complex

networks: Handle with care. Journal of Advanced Transportation, 2018:1–17, 08 2018. doi: 10.1155/2018/3156137.
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