From random matrices to long range dependence

Arijit Chakrabarty

Joint work with Rajat S. Hazra and Deepayan Sarkar

$$
\text { July 1, } 2014
$$

The problem

- $\left(X_{i, j}: i, j \in \mathbb{Z}\right)$ is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, I \in \mathbb{Z}$,

$$
\left(X_{i+k, j+l}: i, j \in \mathbb{Z}\right) \stackrel{d}{=}\left(X_{i, j}: i, j \in \mathbb{Z}\right)
$$

From random matrices to long range dependence

Arijit Chakrabarty

The problem
Results
Examples
Ingredients of proof

The problem

- $\left(X_{i, j}: i, j \in \mathbb{Z}\right)$ is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, l \in \mathbb{Z}$,

$$
\left(X_{i+k, j+l}: i, j \in \mathbb{Z}\right) \stackrel{d}{=}\left(X_{i, j}: i, j \in \mathbb{Z}\right) .
$$

- For $N \geq 1$, define a $N \times N$ matrix

$$
W_{N}(i, j):=X_{i, j}+X_{j, i}, 1 \leq i, j \leq N
$$

- Denote

$$
\mu_{N}:=\operatorname{ESD}\left(W_{N} / \sqrt{N}\right)
$$

The problem

- $\left(X_{i, j}: i, j \in \mathbb{Z}\right)$ is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, l \in \mathbb{Z}$,

$$
\left(X_{i+k, j+l}: i, j \in \mathbb{Z}\right) \stackrel{d}{=}\left(X_{i, j}: i, j \in \mathbb{Z}\right) .
$$

- For $N \geq 1$, define a $N \times N$ matrix

$$
W_{N}(i, j):=X_{i, j}+X_{j, i}, 1 \leq i, j \leq N
$$

- Denote

$$
\mu_{N}:=\operatorname{ESD}\left(W_{N} / \sqrt{N}\right)
$$

- Goal: To study the limit of μ_{N} as $N \rightarrow \infty$.
- Define

$$
R(u, v):=\mathrm{E}\left(X_{0,0} X_{u, v}\right), u, v \in \mathbb{Z} .
$$

- Herglotz theorem: There exists a finite measure ν on $(-\pi, \pi]^{2}$ satisfying

$$
R(u, v)=\int_{(-\pi, \pi]^{2}} e^{\iota(u x+v y)} \nu(d x, d y), u, v \in \mathbb{Z}
$$

- Define

$$
R(u, v):=\mathrm{E}\left(X_{0,0} X_{u, v}\right), u, v \in \mathbb{Z} .
$$

- Herglotz theorem: There exists a finite measure ν on $(-\pi, \pi]^{2}$ satisfying

$$
R(u, v)=\int_{(-\pi, \pi]^{2}} e^{\iota(u x+v y)} \nu(d x, d y), u, v \in \mathbb{Z}
$$

- Call ν the "spectral measure".

Assumption

From random matrices to long range dependence

```
Arijit Chakrabarty
```

The problem

Results

Examples
ingredients of proof

- $\nu_{a c}$ is absolutely continuous,
- $\nu_{c s}$ is continuous and singular,
- ν_{d} is discrete.

Assumption

From random matrices to long range dependence

```
Arijit Chakrabarty
```

The problem

Results

Examples

- $\nu_{a c}$ is absolutely continuous,
- $\nu_{c s}$ is continuous and singular,
- ν_{d} is discrete.
- Assumption: $\nu_{c s} \equiv 0$.

Assumption

- Write

$$
\nu=\nu_{a c}+\nu_{c s}+\nu_{d}
$$

where

- $\nu_{a c}$ is absolutely continuous,
- $\nu_{c s}$ is continuous and singular,
- ν_{d} is discrete.
- Assumption: $\nu_{c s} \equiv 0$.
- Let

$$
\nu_{a c}(d x, d y)=f(x, y) d x d y \text { on }(-\pi, \pi]^{2} .
$$

Results

From random matrices to long range dependence

```
Arijit Chakrabarty
```

$$
\mu_{N} \rightarrow \mu_{f}
$$

weakly in probability as $N \rightarrow \infty$.

Theorem
The second moment of the probability measure μ_{f} is given by

$$
\int_{\mathbb{R}} x^{2} \mu_{f}(d x)=2 \int_{[-\pi, \pi]^{2}} f(x, y) d x d y .
$$

The problem

Effect of $\nu a c$

Effect of ν_{d}
Examples
ingredients of
proof

Theorem
If

$$
\text { ess } \inf f>0
$$

then μ_{f} is absolutely continuous.

Theorem

1. For $m \geq 2$, the $(2 m)$-th moment of μ_{f} is finite if $\|f\|_{m}<\infty$.

Effect of $\nu a c$

Effect of ν_{d}

Examples

Ingredients of proof

Free probability
2. If $\|f\|_{\infty}<\infty$, then μ_{f} is compactly supported.

Stieltje's transform

Definition

From random matrices to long range dependence

Arijit Chakrabarty

The problem
Results

Effect of $\nu_{a c}$

Effect of ν_{d}
Examples
Ingredients of proof

Stieltje's transform

Definition

Stieltje's transform of μ_{f} :

$$
\mathcal{G}(z):=\int_{\mathbb{R}} \frac{1}{z-x} \mu_{f}(d x), z \in \mathbb{C} \backslash \mathbb{R} .
$$

Effect of $\nu_{a c}$
Effect of ν_{d}

Theorem
Assume that $\|f\|_{\infty}<\infty$. Then,

$$
\mathcal{G}(z)=\left[\int_{-\pi}^{\pi} \mathcal{H}(z, x) d x\right], z \in \mathbb{C}
$$

where $\mathcal{H}(z, x)$ is the solution of the functional equation
$z \mathcal{H}(z, x)=1+\mathcal{H}(z, x) \int_{-\pi}^{\pi} \mathcal{H}(z, y) f(x, y) d y, z \in \mathbb{C} \backslash \mathbb{R},|x|<\pi$.

Theorem
If there exists a function r from $[-\pi, \pi]$ to $[0, \infty)$ such that
$\frac{1}{2}[f(x, y)+f(y, x)]=r(x) r(y)$ for almost all $x, y \in[-\pi, \pi]$,
Effect of $\nu_{a c}$
Effect of ν_{d}
Examples
then

$$
\mu_{f}=\eta_{r} \boxtimes W S L(1),
$$

where η_{r} denotes the law of $2^{3 / 2} \pi r(U), U$ is an Uniform $(-\pi, \pi)$ random variable, and " \boxtimes " denotes the free multiplicative convolution.

Theorem
Assume that $\left(G_{n}: n \in \mathbb{Z}\right)$ is a one-dimensional stationary Gaussian process with zero mean and positive variance, and whose spectral measure is absolutely continuous. Let $\left(\left(G_{i n}: n \in \mathbb{Z}\right): i \in \mathbb{Z}\right)$ be a family of i.i.d. copies of $\left(G_{n}: n \in \mathbb{Z}\right)$. Define

$$
X_{j, k}:=G_{j-k, k}, j, k \in \mathbb{Z}
$$

Then, $\left(X_{j, k}: j, k \in \mathbb{Z}\right)$ is a stationary Gaussian process, and

$$
\mu_{f}=W S L\left(2 \operatorname{Var}\left(G_{0}\right)\right)
$$

Effect of the discrete component

From random matrices to long range dependence

```
Arijit Chakrabarty
```

- A symmetric matrix A is to be thought of as a Hermitian operator \bar{A} of finite rank acting on the first N coordinates of l^{2}.

Effect of the discrete component

- A symmetric matrix A is to be thought of as a Hermitian operator \bar{A} of finite rank acting on the first N coordinates of I^{2}.
- If $\lambda_{1} \leq \ldots \leq \lambda_{N}$ are the eigenvalues of A counted with multiplicity, then the spectrum of \bar{A} is $\left\{0, \lambda_{1}, \ldots, \lambda_{N}\right\}$, where 0 has infinite multiplicity.

Eigen measure

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results
Effect of $\nu_{a c}$
Effect of ν_{d}
Examples
Ingredients of
proof
Free probability

Eigen measure

- Eigen measure of A :

$$
\operatorname{EM}(A):=\infty \delta_{0}+\sum_{j=1}^{N} \delta_{\lambda_{j}}
$$

- The measure $\operatorname{EM}(A)$ is to be viewed as an element of the set \mathcal{P} of point measures ξ of the form

$$
\xi:=\infty \delta_{0}+\sum_{j=1}^{\infty} \delta_{\theta_{j}}
$$

where $\left(\theta_{j}: j \geq 1\right)$ is some sequence of real numbers.

$$
\mathcal{C}_{p}:=\left\{\mu \in \mathcal{P}: \int_{\mathbb{R}}|x|^{p} \mu(d x)<\infty\right\}, p \in[1, \infty) .
$$

Arijit Chakrabarty

The problem
nesults
Effect of $\nu_{a c}$
Effect of ν_{d}
Examples
Ingredients of proof

Free probability

$$
\mathcal{C}_{p}:=\left\{\mu \in \mathcal{P}: \int_{\mathbb{R}}|x|^{p} \mu(d x)<\infty\right\}, p \in[1, \infty) .
$$

From random matrices to long range dependence

Arijit Chakrabarty The problem Desults
Effect of ν ac
Effect of ν_{d}

- For $p \geq 1$ and $\xi \in \mathcal{C}_{p}$, there exist unique real numbers

$$
\alpha_{1}(\xi) \geq \alpha_{2}(\xi) \geq \ldots \geq 0 \geq \ldots \alpha_{-2}(\xi) \geq \alpha_{-1}(\xi)
$$

such that

$$
\xi=\infty \delta_{0}+\sum_{j \neq 0} \delta_{\alpha_{j}(\xi)}
$$

$$
\mathcal{C}_{p}:=\left\{\mu \in \mathcal{P}: \int_{\mathbb{R}}|x|^{p} \mu(d x)<\infty\right\}, p \in[1, \infty) .
$$

- For $p \geq 1$ and $\xi \in \mathcal{C}_{p}$, there exist unique real numbers

$$
\alpha_{1}(\xi) \geq \alpha_{2}(\xi) \geq \ldots \geq 0 \geq \ldots \alpha_{-2}(\xi) \geq \alpha_{-1}(\xi)
$$

such that

$$
\xi=\infty \delta_{0}+\sum_{j \neq 0} \delta_{\alpha_{j}(\xi)}
$$

$$
d_{p}\left(\xi_{1}, \xi_{2}\right):=\left[\sum_{j \neq 0}\left|\alpha_{j}\left(\xi_{1}\right)-\alpha_{j}\left(\xi_{2}\right)\right|^{p}\right]^{1 / p}, \xi_{1}, \xi_{2} \in \mathcal{C}_{p}
$$

Results

From random matrices to long range dependence

```
Arijit Chakrabarty
```


The problem

Results

Effect of $\nu a c$
Effect of ν_{d}
as $N \rightarrow \infty$. Furthermore, the distribution of ξ is determined by ν_{d}.

Results

From random matrices to long range dependence

```
Arijit Chakrabarty
```

```
The problem
```


Effect of $\nu a c$

Effect of ν_{d}
as $N \rightarrow \infty$. Furthermore, the distribution of ξ is determined by ν_{d}.

Remark
If $f \equiv 0$, then d_{4} can be improved to d_{2}.

Theorem

The problem

nesults

Effect of $\nu_{a c}$
Effect of ν_{d}
If $\nu_{d}\left((-\pi, \pi]^{2}\right)>0$, then the random variable

$$
\int_{\mathbb{R}} x^{2} \xi(d x)
$$

is positive almost surely, and non-degenerate.

Long range dependence

1.	The component ν_{ac} determines the limiting ESD	The component ν_{d} determines the limiting EM

Long range dependence

1.	The component $\nu_{a c}$ determines the limiting ESD μ_{f}, of W_{N} / \sqrt{N}.	The component ν_{d} determines the limiting EM ξ, of W_{N} / N.

Long range dependence

1.	The component $\nu_{a c}$ determines the limiting ESD μ_{f}, of W_{N} / \sqrt{N}.	The component ν_{d} determines the limiting EM ξ, of W_{N} / N.
2.	The measure μ_{f} is deterministic.	The measure ξ is random.

Long range dependence

1.	The component $\nu_{a c}$ determines the limiting ESD μ_{f}, of W_{N} / \sqrt{N}.	The component ν_{d} determines the limiting EM ξ, of W_{N} / N.
2.	The measure μ_{f} is deterministic.	The measure ξ is random.

Definition
A mean zero stationary Gaussian process with positive variance indexed by \mathbb{Z}^{2} is short range dependent if the corresponding spectral measure is absolutely continuous, and the same is long range dependent if the spectral measure is discrete, that is, supported on a countable set.

Example 1

From random matrices to long range dependence

```
Arijit Chakrabarty
```


The problem

$$
x_{j, k}:=G_{j-k, k}, j, k \in \mathbb{Z} .
$$

Example 1

From random matrices to long range dependence

Arijit Chakrabarty

$$
x_{j, k}:=G_{j-k, k}, j, k \in \mathbb{Z} .
$$

$$
\mu_{f}=W S L\left(2 \operatorname{Var}\left(G_{0}\right)\right)
$$

Example 2

From random matrices to long range dependence

Arijit Chakrabarty

The problem

nesults
Examples
Ingredients of proof

Free probability

Example 2

From random matrices to long range dependence

```
Arijit Chakrabarty
```


The problem

nesults

Examples
Ingredients of proof

$$
\mu_{f}=\eta_{r} \boxtimes W S L(1),
$$

where

- η_{r} is the law of $2^{3 / 2} \pi \mathbf{1}(|U| \leq \pi / 2)$,
- $U \sim(-\pi, \pi)$.

Example 2

$$
f(x, y):=\mathbf{1}(-\pi / 2 \leq x, y \leq \pi / 2),-\pi \leq x, y \leq \pi .
$$

From random matrices to long range dependence

```
Arijit Chakrabarty
```

```
The problem
```

$$
\mu_{f}=\eta_{r} \boxtimes W S L(1),
$$

where

- η_{r} is the law of $2^{3 / 2} \pi \mathbf{1}(|U| \leq \pi / 2)$,
- $U \sim(-\pi, \pi)$.
- μ_{f} is the law of $2 \pi B W$ where
- $B \sim$ Bernoulli (1/2),
- $W \sim W S L(1)$,
- B, W are classically independent.

Example 3

From random matrices to long range dependence

Arijit Chakrabarty

The problem

nesults

Examples

$$
f(x, y):=|x y|-1 / 2,-\pi<x, y<\pi
$$

$$
\mu_{f}=\eta_{r} \boxtimes W S L(1) .
$$

$$
\int_{\mathbb{R}} x^{4} \mu_{f}(d x)=\infty .
$$

The main ingredient

Fact
Let $\left(X_{j, k}: j, k \in \mathbb{Z}\right)$ be a stationary mean zero Gaussian process. Then, there exist $c_{j, k} \in \mathbb{R}$ satisfying

$$
\sum_{j, k} c_{j, k}^{2}<\infty
$$

and

$$
\left(X_{j, k}: j, k \in \mathbb{Z}\right) \stackrel{d}{=}\left(\sum_{l, m} c_{l, m} G_{j-l, k-m}: j, k \in \mathbb{Z}\right)
$$

if and only if, the spectral measure of $\left(X_{j, k}\right)$ is absolutely continuous.

Proof of the main result

Theorem
There exists a deterministic probability measure μ_{f}, determined solely by the spectral density f, such that

$$
\mu_{N} \rightarrow \mu_{f},
$$

weakly in probability as $N \rightarrow \infty$, where

$$
\mu_{N}:=\operatorname{ESD}\left(W_{N} / \sqrt{N}\right)
$$

Proof

From random matrices to long range dependence

Arijit Chakrabarty

- Assume that $\nu \equiv \nu_{a c}$.

The problem

nesults
Examples
Ingredients of proof

Proof

From random matrices to long range dependence

```
Arijit Chakrabarty
```

- Assume that $\nu \equiv \nu_{a c}$.

$$
\left(X_{j, k}: j, k \in \mathbb{Z}\right) \stackrel{d}{=}\left(\sum_{l, m} c_{l, m} G_{j-l, k-m}: j, k \in \mathbb{Z}\right)
$$

Results

Examples
Ingredients of proof

Proof

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Examples
Ingredients of proof

- Usual moments method works for

$$
\sum_{I, m=-n}^{n} c_{l, m} G_{j-I, k-m}
$$

for fixed n.

Proof

- Assume that $\nu \equiv \nu_{a c}$.

$$
\left(X_{j, k}: j, k \in \mathbb{Z}\right) \stackrel{d}{=}\left(\sum_{I, m} c_{l, m} G_{j-l, k-m}: j, k \in \mathbb{Z}\right)
$$

- Usual moments method works for

$$
\sum_{I, m=-n}^{n} c_{l, m} G_{j-I, k-m}
$$

for fixed n.

- Hoffman-Wielandt inequality completes the proof.

Free probability

Theorem
Let μ be a probability measure on \mathbb{R} such that

$$
\text { Support }(\mu) \subset[\delta, \infty) \text { for some } \delta>0
$$

and

$$
\int_{0}^{\infty} x \mu(d x)<\infty
$$

Then, there exists a probability measure ν on \mathbb{R} and $\varepsilon>0$ such that

$$
W S L(1) \boxtimes \mu=W S L(\varepsilon) \boxplus \nu .
$$

Corollary
If μ is as in the previous result, then $W S L \boxtimes \mu$ is absolutely continuous.

The problem

nesults
Examples

ingredients of

proof
Free probability

Future work

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Resuits

Examples

ingredients of proof

Free probability

Future work

From random matrices to long range dependence

```
Arijit Chakrabarty
```


The problem

Resut's

Examples
ingredients of
proof
Free probability

- Growth rate of the largest eigenvalue, especially when the LSD has unbounded support.

Future work

From random

 matrices to long range dependenceArijit Chakrabarty

The problem

- Growth rate of the largest eigenvalue, especially when the LSD has unbounded support.
- The asymmetric case.

