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The problem

> (XiJ ti,j € Z) is a stationary, mean zero, variance one
Gaussian process.

» Stationarity means that for k,/ € 7Z,

.. d ..
(Xijkj1 1, J €Z)=(Xij:i,j€L).

» For N > 1, define a N x N matrix
Win(i,j) == Xij+ Xi, 1< i, j < N.

» Denote
py = ESD(Wy/VN).
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.. . . i Arijit Chakrabarty
> (XI,_[ N S Z) IS a statlonary, mean zero, variance one

Gaussian process.
» Stationarity means that for k,/ € 7Z,

The problem

.. d ..
(Xijkj1 1, J €Z)=(Xij:i,j€L).

» For N > 1, define a N x N matrix
Win(i,j) == Xij+ Xi, 1< i, j < N.
» Denote

py = ESD(Wy/VN).

» Goal: To study the limit of uy as N — oc.



> Define
R(u,v) :=E(Xo0Xuv), u,veZ.

» Herglotz theorem: There exists a finite measure v on
(—m, w]? satisfying

R(u,v) = / e W)y (dx, dy), u,v € Z.
(_7'(771—]2
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> Define
R(u,v) :=E(Xo0Xuv), u,veZ.

» Herglotz theorem: There exists a finite measure v on
(—m, 7]? satisfying

R(u,v) = / e W)y (dx, dy), u,v € Z.
(_7'(771—]2

» Call v the "spectral measure”.
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» Write
V= Vac+ Ves + Vg,

where
> U, is absolutely continuous,
> U is continuous and singular,
> vy is discrete.
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The problem

» Write
V =Va + Ve + Vg,
where

> U, is absolutely continuous,
> U is continuous and singular,
> vy is discrete.

» Assumption: v, = 0.



- From random
ASS um pthn matrices to long

range dependence

Arijit Chakrabarty

The problem
» Write
V =Va + Ve + Vg,
where

> U, is absolutely continuous,
> U is continuous and singular,
> vy is discrete.

» Assumption: v, = 0.
> Let

vac(dx, dy) = f(x,y)dx dy on (—m,x]*.



Results

Theorem
There exists a deterministic probability measure pr,
determined solely by the spectral density f, such that

UN —> [f

weakly in probability as N — oo.
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Theorem
The second moment of the probability measure pf is given by

/R X2 pf(dx) =2 / f(x,y)dxdy .

[—7T,7T]2



Theorem
If
essinff >0,

then ur is absolutely continuous.
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Theorem

1. For m > 2, the (2m)-th moment of yf is finite if
| fllm < oo.

2. If||f]loo < 00, then s is compactly supported.
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Stieltje’s transform of jif:

Effect of vac

G(z) = /R zix’uf(dx)’z € C\R. Effect of 1
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Stieltje’s transform of jif:

1 Effect of v5c
G(z) := / pr(dx),ze C\R.
R

zZ— X

Theorem
Assume that ||f||s < 0o. Then,

G(z) = [ H(z,x)dx} ,zeC,
where H(z, x) is the solution of the functional equation

zH(z,x) = 1+H(z, x) H(z,y)f(x,y)dy, z€ C\R, |x| < 7.

—T
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Theorem
If there exists a function r from [—m, 7| to [0, 00) such that

1
5 [f(x,y)+ f(y,x)] = r(x)r(y) for almost all x,y € [—m, 7],
then

pe = nr X WSL(1),

where 1, denotes the law of 23/?r(U), U is an Uniform
(—m, ) random variable, and “X" denotes the free
multiplicative convolution.
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Theorem
Assume that (G, : n € Z) is a one-dimensional stationary
Gaussian process with zero mean and positive variance, and Effect of vac

whose spectral measure is absolutely continuous. Let
((Gin:n€Z):i€Z) be a family of i.i.d. copies of
(G : n € Z). Define

Xik:=Gj_kk, J,kE€Z.

Then, (Xj« : j, k € Z) is a stationary Gaussian process, and

Hf = WSL(2VaI‘(Go)) .



Effect of the discrete component

> A symmetric matrix A is to be thought of as a
Hermitian operator A of finite rank acting on the first N
coordinates of /2.
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Effect of the discrete component

> A symmetric matrix A is to be thought of as a

Hermitian operator A of finite rank acting on the first N

coordinates of /2.

> If A\ < ... < Ay are the eigenvalues of A counted with
o ANT

multiplicity, then the spectrum of Alis {0, A1,
where 0 has infinite multiplicity.
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Eigen measure

» Eigen measure of A:

N
EM(A) = codo + » 4y, -
j=1
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» Eigen measure of A:

Effect of vy

N
EM(A) = codo + » 4y, -
j=1

» The measure EM(A) is to be viewed as an element of
the set P of point measures £ of the form

&= 0050+259j,

j=t

where (6; : j > 1) is some sequence of real numbers.



Cp:

,uEP:/|x]p,u(dx)<oo , pE[l,00).
R
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Cp = {ueP:/RMPu(dx)<oo},pe[1,oo).

» For p > 1 and £ € Cp, there exist unique real numbers

ar(§) Zz 2(§) ... 202 .. a(§) = aa(f),

such that

5 = OO(SO + Z 6O¢J(§) .
Jj#0
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Cp = {ueP:/RMPu(dx)<oo},pe[1,oo).

» For p > 1 and £ € Cp, there exist unique real numbers

a1(§) > a2(§) 2 ... 2 0= .. aa(f) = aa(f),

such that

5 = OO(SO + Z 6O¢J(§) .
J#0

do(61,62) == | D lej(&1) — aj(&)IP
Jj#0

1/p

751752 eC[:)‘
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Results

Theorem
There exists a random point measure & which is almost
surely in Cy such that

da (EM(Wn/N),€) 250,

as N — oo. Furthermore, the distribution of £ is determined
by Vq.
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Results

Theorem
There exists a random point measure & which is almost
surely in Cy such that

da (EM(Wn/N),€) 250,

as N — oo. Furthermore, the distribution of £ is determined
by Vq.

Remark
If f =0, then dy can be improved to d.
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Theorem
If vg((—m,7]?) > 0, then the random variable

| 2t

is positive almost surely, and non-degenerate.
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determines the limiting ESD determines the limiting EM

p, of Wy /V/N . &, of Wy/N .




Long range dependence

1. The component v, The component vy
determines the limiting ESD determines the limiting EM
p, of Wy /V/N . &, of Wy/N .

2. | The measure pf is deterministic. | The measure £ is random.




Long range dependence

1. The component v, The component vy
determines the limiting ESD determines the limiting EM
p, of Wy /V/N . &, of Wy/N .

2. | The measure pf is deterministic. | The measure £ is random.

Definition

A mean zero stationary Gaussian process with positive
variance indexed by 7 is short range dependent if the
corresponding spectral measure is absolutely continuous, and
the same is long range dependent if the spectral measure
is discrete, that is, supported on a countable set.
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» (Gp: n€Z): azero mean stationary Gaussian process o
. . xamples
with spectral density [x|~1/2,

» ((Gin:n€Z):ie€Z): afamily of i.i.d. copies of
(Gh:n€eZ),

Xk := Gj—kks Jo k € L.
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v

(Gn: n€Z): a zero mean stationary Gaussian process o
. . xamples
with spectral density [x|~1/2,

v

((Gin:n€Z):i€Z): afamily of i.i.d. copies of
(Gh:n€eZ),

)<j,/< = Gj—k,kv.jvk €L.

pur = WSL(2Var(Gy)) .
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f(X7y) = 1(77r/2§X7.y§7T/2)7 *WSXaYSﬂ' Examples

pe = nr X WSL(1),

where
> 7, is the law of 23/271(|U| < 7/2),
» U~ (—m, ).
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f(X7y) = 1(*7T/2§X7y§71'/2)7 *WSXaYSﬂ' Examples

pe = nr X WSL(1),

where
> 7, is the law of 23/271(|U| < 7/2),
» U~ (—m, ).
> ur is the law of 2rBW where
» B ~Bernoulli (1/2),
> W ~ WSL(1),
» B, W are classically independent.



Example 3

|71/2

f(X,y)::’Xy 7—7T§X7)/§7T'

e =n, X WSL(1).

/Rx“uf(dx) =00.
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Fact
Let (Xj« : j, k € Z) be a stationary mean zero Gaussian

process. Then, there exist ¢; x € R satisfying

2
D Gk <0,
sk

Ingredients of
proof

and
. d .
Xik Gk €Z)E D cmGoth-m i k€L |,
I,m

if and only if, the spectral measure of (X; ) is absolutely
continuous.



Proof of the main result

Theorem
There exists a deterministic probability measure pr,
determined solely by the spectral density f, such that

UN —> [f

weakly in probability as N — oo, where

pn = ESD(Wn/VN).
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Proof

> Assume that v = v,.

(O B = <=

Q>



Proof

» Assume that v = v,..

>

. d i
(Xjk:j, keZ)= ZCI,mijl,kfm kel

I,m
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» Assume that v = v,..

>

Ingredients of
proof

) d )
(Xjk:j,k€Z) = ZCI,mijl,kfm LkeZ],

I,m

» Usual moments method works for

n

E CmGj—1 k—m

I, m=—n

for fixed n.
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» Assume that v = v,..
>

d Ingredients of

(XJ'J( , k € Z) = Z Cl,mijl,kfm , kelZ] , proof
I,m
» Usual moments method works for
n
Z CmGj—1 k—m
I, m=—n
for fixed n.

» Hoffman-Wielandt inequality completes the proof.



Free probability

Theorem
Let i be a probability measure on R such that

Support(u) C [0, 00) for some § > 0,

and -
/ xp(dx) < oco.
0

Then, there exists a probability measure v on R and ¢ > 0
such that
WSL(1) X = WSL(e)Bv.
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Corollary

If v is as in the previous result,
continuous.
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then WSL |Z I iS abSO/ute/y Free probability



Futu re WOrk

» The v component.

<O (Fr (Er 4>

Q>



Future work

» The v.s component.

» Growth rate of the largest eigenvalue,
the LSD has unbounded support.
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Future work

» The v.s component.

» Growth rate of the largest eigenvalue,
the LSD has unbounded support.

» The asymmetric case.
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