Arijit Chakrabarty

Joint work with Rajat S. Hazra and Deepayan Sarkar

July 1, 2014

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

The problem

- (X_{i,j} : i, j ∈ Z) is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, l \in \mathbb{Z}$,

$$(X_{i+k,j+l}:i,j\in\mathbb{Z})\stackrel{d}{=}(X_{i,j}:i,j\in\mathbb{Z}).$$

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

The problem

- (X_{i,j} : i, j ∈ Z) is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, l \in \mathbb{Z}$,

$$(X_{i+k,j+l}:i,j\in\mathbb{Z})\stackrel{d}{=}(X_{i,j}:i,j\in\mathbb{Z}).$$

• For $N \ge 1$, define a $N \times N$ matrix

$$W_N(i,j) := X_{i,j} + X_{j,i}, \ 1 \leq i,j \leq N$$
.

Denote

$$\mu_{\mathsf{N}} := \mathrm{ESD}(W_{\mathsf{N}}/\sqrt{\mathsf{N}}).$$

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

The problem

- (X_{i,j} : i, j ∈ Z) is a stationary, mean zero, variance one Gaussian process.
- Stationarity means that for $k, l \in \mathbb{Z}$,

$$(X_{i+k,j+l}:i,j\in\mathbb{Z})\stackrel{d}{=}(X_{i,j}:i,j\in\mathbb{Z}).$$

• For $N \ge 1$, define a $N \times N$ matrix

$$W_N(i,j) := X_{i,j} + X_{j,i}, \ 1 \leq i,j \leq N$$
.

Denote

$$\mu_{N} := \mathrm{ESD}(W_{N}/\sqrt{N}).$$

• **Goal:** To study the limit of μ_N as $N \to \infty$.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Define

$$R(u,v) := \mathrm{E}\left(X_{0,0}X_{u,v}\right), \ u,v \in \mathbb{Z}.$$

► Herglotz theorem: There exists a finite measure ν on (−π, π]² satisfying

$$R(u,v) = \int_{(-\pi,\pi]^2} e^{\iota(ux+vy)} \nu(dx,dy), \ u,v \in \mathbb{Z}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Define

$$R(u,v) := \mathrm{E}\left(X_{0,0}X_{u,v}\right), \ u,v \in \mathbb{Z}.$$

► Herglotz theorem: There exists a finite measure ν on (-π, π]² satisfying

$$R(u,v) = \int_{(-\pi,\pi]^2} e^{\iota(ux+vy)} \nu(dx,dy), \ u,v \in \mathbb{Z}.$$

• Call ν the "spectral measure".

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

ngredients of proof

Assumption

Write

$$\nu = \nu_{\rm ac} + \nu_{\rm cs} + \nu_{\rm d} \,,$$

where

- ν_{ac} is absolutely continuous,
- ν_{cs} is continuous and singular,
- ν_d is discrete.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assumption

Write

$$\nu = \nu_{\rm ac} + \nu_{\rm cs} + \nu_{\rm d} \,,$$

where

- ν_{ac} is absolutely continuous,
- ν_{cs} is continuous and singular,
- ν_d is discrete.
- Assumption: $\nu_{cs} \equiv 0$.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Assumption

Write

$$\nu = \nu_{\rm ac} + \nu_{\rm cs} + \nu_{\rm d} \,,$$

where

- ν_{ac} is absolutely continuous,
- ν_{cs} is continuous and singular,
- ν_d is discrete.
- Assumption: $\nu_{cs} \equiv 0$.
- Let

$$u_{ac}(dx, dy) = f(x, y) dx dy \text{ on } (-\pi, \pi]^2.$$

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Results

Theorem

There exists a deterministic probability measure μ_f , determined solely by the spectral density f, such that

$$\mu_N \to \mu_f$$
,

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

weakly in probability as $N \to \infty$.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

ngredients of proof

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

Theorem

The second moment of the probability measure μ_f is given by

$$\int_{\mathbb{R}} x^2 \mu_f(dx) = 2 \int_{[-\pi,\pi]^2} f(x,y) dx dy.$$

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

Theorem If

ess inf f > 0,

then μ_f is absolutely continuous.

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

Theorem

1. For $m \ge 2$, the (2m)-th moment of μ_f is finite if $||f||_m < \infty$. 2. If $||f||_{\infty} < \infty$, then μ_f is compactly supported.

Stieltje's transform

Definition Stieltje's transform of μ_f :

$$\mathcal{G}(z) := \int_{\mathbb{R}} rac{1}{z-x} \mu_f(dx), z \in \mathbb{C} \setminus \mathbb{R}$$
.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

くりょう 小田 マイビット 山下 ふんく

Stieltje's transform

Definition Stieltje's transform of μ_f :

$$\mathcal{G}(z) := \int_{\mathbb{R}} rac{1}{z-x} \mu_f(dx), z \in \mathbb{C} \setminus \mathbb{R}$$
.

Theorem

Assume that $\|f\|_{\infty} < \infty$. Then,

$$\mathcal{G}(z) = \left[\int_{-\pi}^{\pi} \mathcal{H}(z,x) dx\right], \ z \in \mathbb{C}\,,$$

where $\mathcal{H}(z, x)$ is the solution of the functional equation

$$z\mathcal{H}(z,x)=1+\mathcal{H}(z,x)\int_{-\pi}^{\pi}\mathcal{H}(z,y)f(x,y)dy,\,z\in\mathbb{C}ackslash\mathbb{R},|x|<\pi$$

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

ngredients of proof

Theorem

If there exists a function r from $[-\pi,\pi]$ to $[0,\infty)$ such that

$$\frac{1}{2}\left[f(x,y)+f(y,x)\right]=r(x)r(y) \text{ for almost all } x,y\in\left[-\pi,\pi\right],$$

then

$$\mu_f = \eta_r \boxtimes WSL(1),$$

where η_r denotes the law of $2^{3/2}\pi r(U)$, U is an Uniform $(-\pi,\pi)$ random variable, and " \boxtimes " denotes the free multiplicative convolution.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{2c}

Effect of ν_{d}

Examples

Ingredients of proof

Theorem

Assume that $(G_n : n \in \mathbb{Z})$ is a one-dimensional stationary Gaussian process with zero mean and positive variance, and whose spectral measure is absolutely continuous. Let $((G_{in} : n \in \mathbb{Z}) : i \in \mathbb{Z})$ be a family of i.i.d. copies of $(G_n : n \in \mathbb{Z})$. Define

$$X_{j,k}:=G_{j-k,k}, j,k\in\mathbb{Z}.$$

Then, $(X_{j,k} : j, k \in \mathbb{Z})$ is a stationary Gaussian process, and

 $\mu_f = WSL(2Var(G_0)).$

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Effect of the discrete component

A symmetric matrix A is to be thought of as a Hermitian operator A of finite rank acting on the first N coordinates of l².

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Effect of the discrete component

- A symmetric matrix A is to be thought of as a Hermitian operator A of finite rank acting on the first N coordinates of l².
- If λ₁ ≤ ... ≤ λ_N are the eigenvalues of A counted with multiplicity, then the spectrum of Ā is {0, λ₁,...,λ_N}, where 0 has infinite multiplicity.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Eigen measure

Eigen measure of *A*:

$$\operatorname{EM}(A) := \infty \delta_0 + \sum_{j=1}^N \delta_{\lambda_j}.$$

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

くちゃく 御をえばをえばす ふしゃ

Eigen measure

Eigen measure of *A*:

$$\operatorname{EM}(A) := \infty \delta_0 + \sum_{j=1}^N \delta_{\lambda_j}.$$

The measure EM(A) is to be viewed as an element of the set P of point measures ξ of the form

$$\xi := \infty \delta_0 + \sum_{j=1}^{\infty} \delta_{\theta_j} \,,$$

where $(\theta_j : j \ge 1)$ is some sequence of real numbers.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

$$\mathcal{C}_{m{p}}:=\left\{\mu\in\mathcal{P}:\int_{\mathbb{R}}|x|^{m{p}}\mu(dx)<\infty
ight\},\ m{p}\in\left[1,\infty
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

$$\mathcal{C}_{p} := \left\{ \mu \in \mathcal{P} : \int_{\mathbb{R}} |x|^{p} \mu(dx) < \infty \right\}, \ p \in [1,\infty).$$

For p ≥ 1 and ξ ∈ C_p, there exist unique real numbers α₁(ξ) ≥ α₂(ξ) ≥ ... ≥ 0 ≥ ... α₋₂(ξ) ≥ α₋₁(ξ),

such that

$$\xi = \infty \delta_0 + \sum_{j \neq 0} \delta_{\alpha_j(\xi)} \,.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

ngredients of proof

$$\mathcal{C}_{p} := \left\{ \mu \in \mathcal{P} : \int_{\mathbb{R}} |x|^{p} \mu(dx) < \infty \right\}, \ p \in [1,\infty).$$

For p ≥ 1 and ξ ∈ C_p, there exist unique real numbers α₁(ξ) ≥ α₂(ξ) ≥ ... ≥ 0 ≥ ... α₋₂(ξ) ≥ α₋₁(ξ),

such that

$$\xi = \infty \delta_0 + \sum_{j \neq 0} \delta_{\alpha_j(\xi)} \,.$$

$$d_p(\xi_1,\xi_2) := \left[\sum_{j \neq 0} |lpha_j(\xi_1) - lpha_j(\xi_2)|^p
ight]^{1/p}, \, \xi_1,\xi_2 \in \mathcal{C}_p \,.$$

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

ngredients of proof

Results

Theorem

There exists a random point measure ξ which is almost surely in C_2 such that

$$d_4(\operatorname{EM}(W_N/N),\xi) \xrightarrow{P} 0$$

as $N \to \infty$. Furthermore, the distribution of ξ is determined by ν_d .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

ngredients of proof

Results

Theorem

There exists a random point measure ξ which is almost surely in C_2 such that

$$d_4(\operatorname{EM}(W_N/N),\xi) \stackrel{P}{\longrightarrow} 0,$$

as $N \to \infty$. Furthermore, the distribution of ξ is determined by ν_d .

Remark

If $f \equiv 0$, then d_4 can be improved to d_2 .

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

ngredients of proof

Arijit Chakrabarty

The problem

Results Effect of ν_{ac} Effect of ν_d

Examples

Ingredients of proof

Free probability

Theorem If $\nu_d((-\pi,\pi]^2) > 0$, then the random variable

 $\int_{\mathbb{D}} x^2 \xi(dx)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is positive almost surely, and non-degenerate.

1.The component ν_{ac} The component ν_d determines the limiting ESDdetermines the limiting EM

<ロト <四ト <注入 <注下 <注下 <

1.	The component ν_{ac}	The component $ u_d$
	determines the limiting ESD	determines the limiting EM
	μ_{f} , of W_{N}/\sqrt{N} .	ξ , of W_N/N .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1.	The component $ u_{ac}$ determines the limiting ESD μ_f , of W_N/\sqrt{N} .	The component $ u_d$ determines the limiting EM ξ , of W_N/N .
2.	The measure μ_f is deterministic.	The measure ξ is random.

1.	The component $ u_{ac}$ determines the limiting ESD μ_f , of W_N/\sqrt{N} .	The component $ u_d$ determines the limiting EM ξ , of W_N/N .
2.	The measure μ_f is deterministic.	The measure ξ is random.

Definition

A mean zero stationary Gaussian process with positive variance indexed by \mathbb{Z}^2 is **short range dependent** if the corresponding spectral measure is absolutely continuous, and the same is **long range dependent** if the spectral measure is discrete, that is, supported on a countable set.

- (G_n : n ∈ ℤ): a zero mean stationary Gaussian process with spectral density |x|^{-1/2},
- ((G_{in} : n ∈ ℤ) : i ∈ ℤ): a family of i.i.d. copies of (G_n : n ∈ ℤ),

$$X_{j,k} := G_{j-k,k}, j, k \in \mathbb{Z}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

- (G_n : n ∈ ℤ): a zero mean stationary Gaussian process with spectral density |x|^{-1/2},
- ((G_{in} : n ∈ ℤ) : i ∈ ℤ): a family of i.i.d. copies of (G_n : n ∈ ℤ),

$$X_{j,k} := G_{j-k,k}, j, k \in \mathbb{Z}$$

 $\mu_f = WSL(2Var(G_0)).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

$f(x,y) := \mathbf{1}(-\pi/2 \le x, y \le \pi/2), \ -\pi \le x, y \le \pi$.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$f(x,y) := \mathbf{1}(-\pi/2 \le x, y \le \pi/2), \ -\pi \le x, y \le \pi.$$

$$\mu_f = \eta_r \boxtimes WSL(1),$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ヨ → のへぐ

where

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

$$f(x,y) := \mathbf{1}(-\pi/2 \le x, y \le \pi/2), \ -\pi \le x, y \le \pi.$$

$$\mu_f = \eta_r \boxtimes WSL(1),$$

where

- η_r is the law of $2^{3/2}\pi \mathbf{1}(|U| \le \pi/2)$,
- $U \sim (-\pi, \pi)$.
- μ_f is the law of $2\pi BW$ where
 - ► *B* ~Bernoulli (1/2),
 - $W \sim WSL(1)$,
 - ► *B*, *W* are **classically** independent.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

$$egin{aligned} f(x,y) &:= |xy|^{-1/2}, \, -\pi \leq x,y \leq \pi \, . \ &\mu_f &= \eta_r oxtimes WSL(1) \, . \ &\int_{\mathbb{R}} x^4 \mu_f(dx) = \infty \, . \end{aligned}$$

The main ingredient

Fact

Let $(X_{j,k} : j, k \in \mathbb{Z})$ be a stationary mean zero Gaussian process. Then, there exist $c_{j,k} \in \mathbb{R}$ satisfying

$$\sum_{j,k}c_{j,k}^2<\infty\,,$$

and

$$(X_{j,k}:j,k\in\mathbb{Z})\stackrel{d}{=}\left(\sum_{l,m}c_{l,m}G_{j-l,k-m}:j,k\in\mathbb{Z}\right)\,,$$

if and only if, the spectral measure of $(X_{j,k})$ is absolutely continuous.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Proof of the main result

Theorem

There exists a deterministic probability measure μ_f , determined solely by the spectral density f, such that

 $\mu_N \to \mu_f$,

weakly in probability as $N \to \infty$, where

$$\mu_N := \mathrm{ESD}(W_N/\sqrt{N}).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

• Assume that $\nu \equiv \nu_{ac}$.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

・ロ・・四・・ヨ・・ヨ・ うへぐ

• Assume that $\nu \equiv \nu_{ac}$.

$$(X_{j,k}:j,k\in\mathbb{Z})\stackrel{d}{=}\left(\sum_{l,m}c_{l,m}G_{j-l,k-m}:j,k\in\mathbb{Z}
ight)\,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

• Assume that $\nu \equiv \nu_{ac}$.

$$(X_{j,k}:j,k\in\mathbb{Z})\stackrel{d}{=}\left(\sum_{l,m}c_{l,m}G_{j-l,k-m}:j,k\in\mathbb{Z}
ight),$$

Usual moments method works for

$$\sum_{l,m=-n}^{n} c_{l,m} G_{j-l,k-m}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for fixed *n*.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

• Assume that $\nu \equiv \nu_{ac}$.

$$(X_{j,k}:j,k\in\mathbb{Z})\stackrel{d}{=}\left(\sum_{l,m}c_{l,m}G_{j-l,k-m}:j,k\in\mathbb{Z}
ight),$$

Usual moments method works for

$$\sum_{l,m=-n}^{n} c_{l,m} G_{j-l,k-m}$$

for fixed *n*.

Hoffman-Wielandt inequality completes the proof.

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

Theorem

Let μ be a probability measure on $\mathbb R$ such that

$$\mathsf{Support}(\mu) \subset [\delta,\infty) ext{ for some } \delta > 0\,,$$

and

$$\int_0^\infty x\mu(dx)<\infty\,.$$

Then, there exists a probability measure ν on $\mathbb R$ and $\varepsilon>0$ such that

$$WSL(1) \boxtimes \mu = WSL(\varepsilon) \boxplus \nu$$
.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

Corollary

If μ is as in the previous result, then WSL $\boxtimes \mu$ is absolutely continuous.

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 りゅつ

Future work

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

• The ν_{cs} component.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ●のへで

Future work

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

- ▶ The *v*_{cs} component.
- Growth rate of the largest eigenvalue, especially when the LSD has unbounded support.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Future work

From random matrices to long range dependence

Arijit Chakrabarty

The problem

Results

Examples

Ingredients of proof

Free probability

- ▶ The *v*_{cs} component.
- Growth rate of the largest eigenvalue, especially when the LSD has unbounded support.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The asymmetric case.