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Abstract

Mathematical models of motility are often based on random-walk descriptions of discrete individ-

uals that can move according to certain rules. It is usually the case that large masses concentrated

in small regions of space have a great impact on the collective movement of the group. For this

reason, many models in mathematical biology have incorporated crowding effects and managed to

understand their implications. Here, we build on a previously developed framework for random

walks on networks to show that in the continuum limit, the underlying stochastic process can be

identified with a diffusion partial differential equation. The diffusion coefficient of the emerging

equation is in general density-dependent, and can be directly related to the transition probabilities

of the random walk. Moreover, the relaxation time of the stochastic process is directly linked to

the diffusion coefficient and also to the network structure, as it usually happens in the case of linear

diffusion. As a specific example, we study the equivalent of a porous-medium type equation on net-

works, which shows similar properties to its continuum equivalent. For this equation, self-similar

solutions on a lattice and on homogeneous trees can be found, showing finite speed of propagation

in contrast to commonly used linear diffusion equations. These findings also provide insights into

reaction-diffusion systems with general diffusion operators, which have appeared recently in some

applications.
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I. INTRODUCTION

Interactions between individuals are fundamental in order to decipher collective motility

rules. This process is relevant in many fields, from the movement of cells during development

and tumour formation [1], to the spreading of diseases or opinions [2, 3]. One of the simplest

forms of interaction takes place when individuals compete for available space, which is

usually referred to as volume exclusion. Such a basic mechanism can have drastic changes

in model dynamics and usually comes in the form of localized repulsive forces between

individuals that are close to each other [4–6]. Crowding effects play an important role

in biology across different scales [7–10] but also make sense in other contexts, where the

behaviour of single individuals is highly influenced by large masses. Recent models on

networks have focused on incorporating this volume-filling mechanism [11–13], but there

is also a vast literature coming from the field of mathematical biology that at its core, is

motivated by the same basic ideas – to name a few [14–20].

Many of these models, however, focus on continuum descriptions of the system of interest,

which are based on some kind of diffusion partial differential equation (PDE). While the

case of linear diffusion has probably been the most popular choice, this is not suitable when

there is volume exclusion because it represents purely random motion. Probably, one of the

first alternatives used to model biological populations [21] was the so-called porous-medium

equation (PME), introduced in this context in [22]. The PME is a nonlinear diffusion

equation (see [23] for an exhaustive and detailed analysis), where the diffusion coefficient

increases as a power-law function of the density so that

∂ρ

∂t
= ∆ρm = m∇ ·

(
ρm−1∇ρ

)
. (1)

Note that m = 1 corresponds to the usual linear diffusion. The cases m > 1, m < 1 are

usually called slow diffusion and fast diffusion because of how quickly their solutions decay

in time compared to the reference case given by linear diffusion.

Different arguments can be found in the literature to derive the PME. The case of expo-

nent two is particularly interesting as it can be identified with particle-based models [14, 24],

and also with on-lattice models where agents have different aspect ratios [25]. In fact the

exponent of the PME has been related to the size of the agents [26]. Moreover, the m = 2

case is also closely related to statistical mechanics, as it emerges as the thermodynamic limit

of a system of interacting agents [6, 27, 28]. The PME with m = 3 has also appeared in
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applications, and has been suggested as the simplest model to relate the dispersal velocity

to both the density and its gradient [29].

Understanding the interplay between diffusion and crowding effects on networks is also

relevant, as many processes are more suitably described by spatially discrete models. This

raises the question of whether one can translate some of the mentioned PDEs to the graphs

setting [30–32]. Moreover, continuum models are usually not only limited to diffusion but

include other type of mechanisms or reactions, and these have also appeared in the discrete

case [33, 34].

Here, we build on a graph random-walk framework to show that on regular lattices,

one can identify a continuous limit for the underlying stochastic process. The emerging

macroscopic PDE has the form of a general diffusion equation, with a density-dependent

diffusion coefficient which is directly related to the transition probabilities of the random

walk. This discrete-to-continuum approach provides a direct link between models at different

scales and gives new insights on the process at the microscopic level. In particular, we

show that for porous-medium type equations one also observes mass propagation with finite

speed on networks, in contrast with the commonly used linear diffusion equation. The

propagation speed can be found analytically for simple graphs. On finite networks, we also

fully characterize the stationary distribution of the stochastic process and the relaxation

time needed to reach this state, which depends on the network structure and on the diffusion

coefficient. These analytical results can also be applied to reaction-diffusion systems, which

we briefly discuss and compare to the recent findings of [34].

II. PRELIMINARIES

We build on [12, 13] and consider N agents moving on a network with M nodes – for

simplicity we consider unweighted undirected graphs. A novel feature of these works is that

each node has a finite carrying capacity K which sets an upper limit for the number of

agents that can be at the same node. Here we assume that all nodes have the same carrying

capacity, but in principle it could also be node-dependent – see [12]. We denote by Aij and

ki the elements of the adjacency matrix and the degree of each node, respectively. We also

represent the state of the process via a vector n = (n1, . . . , nM), where 0 ≤ ni ≤ K is the

number of agents at node i. In [12, 13] the agents perform a node-centric random walk only
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allowing for transitions to neighbouring nodes, for whichAij = 1. Considering such a process,

where the hopping rate is independent of the node degree, usually gives place to a diffusion

operator involving the random-walk normalized Laplacian matrix, L′, and to stationary

states which depend on the degree of each node, ki [35]. However, more recently it has

been argued that the edge-centric choice, where the hopping rate is also proportional to the

node degree, is more suitable for applications where one would expect uniform distributions

in the infinite-time limit [34]. In this work, and following this discussion, we focus on the

edge-centric case, although the node-centric case is studied for a specific model in Appendix

B.

We further assume that the transition probabilities of the random walk are modulated

according to the local density of agents. More specifically, if there is an agent in node i, we

assume that the willingness to leave such node is given by a function f , which depends on

the local density, ni/K; and the attractiveness of a neighbouring node j is given by another

function g which depends on the density at this node, nj/K. These functions then measure

the influence of crowding on motility [36]. Note that this framework is different from other

biased random-walks on networks where the bias depends on the network topology rather

than on how crowded a particular node is [37–40].

In particular, the stochastic process is given by the transition probabilites T (n′|n) from

state n to state n′, and the master equation for the evolution of the probability of state n

at time t
d

dt
P (n, t) =

∑
n′

[T (n|n′)P (n′, t)− T (n′|n)P (n, t)] . (2)

Since exchanges of particles only happen between pairs of nodes (i, j) for which Aij = 1,

and only increments and decrements of one unity per unit time in the number of particles

are allowed, the transition probabilities T (ni − 1, nj + 1|ni, nj) are sufficient to characterize

the process. According to our previous considerations these read

T (ni − 1, nj + 1|ni, nj) = λAijf
(ni
K

)
g
(nj
K

)
. (3)

Here λ is just a hopping rate giving the timescale of the process. Usually, one thinks of f

and g as non-decreasing and non-increasing functions, respectively, as hops from low density

regions to crowded nodes are less likely to occur.

In the limit of large K and for small densities, we can expect the transition probabilities

(3) to be small and consequently, P (n, t) will be peaked around the macroscopic mean. In

4



this situation, correlations can be neglected – see [41, Chapter X] – and it makes sense

to consider the mean-field approximation 〈f(·)〉 = f (〈·〉) and similarly for g. Under this

approximation, 1/K corrections vanish, and one can explicitly write an evolution equation

for the mean-field node density ρi(t) = limK→∞〈ni〉/K – see [12, 13] for more details –

dρi
dt

= −λ
∑
j

Lij (f(ρj)g(ρi)− f(ρi)g(ρj)) , (4)

where here Lij = δijki − Aij is the usual graph Laplacian [35]. The approximation is exact

when K →∞ [42, 43].

Previous studies also support the validity of the mean-field approximation for finiteK [44–

46]. In general, one can expect the approximation to work in the absence of proliferation, and

for small movement bias. Note here that jumps from a given node are biased if the densities

of the neighbouring nodes are different and g is not constant. Whenever the transition

probabilities are dominated by f instead of g, movement bias should be small.

One important property that follows from (4) is the conservation of mass which will be

used later to characterize the stationary distribution. We can then define the average density

as ρ̄ = M−1
∑M

i=1 ρi, which we can calculate from the initial condition and does not depend

on time.

Observe that in the case f(x) = x and g(x) = 1, the linear diffusion equation is recov-

ered. In this work we consider general forms of f and g, but for some applications we look

at the case given by a specific choice of these functions representing only local repulsive

interactions. In particular we will study the case f(x) = xm and g(x) = 1, meaning that the

attractiveness of any node is independent of its density, and that the willingness to leave

a node is modulated by the exponent m ≥ 0. As we will discuss in the next sections this

choice of transition probabilities is closely related to the macroscopic PME.

Note too that a simplified version of the Kuramoto model on networks [47] is recovered

for f(x) = sinx and g(x) = cosx. In this case, Eq. (3) should be reinterpreted as ρi is no

longer a density but a phase which could be negative.

Several other choices of f and g have been studied before. This framework was initially

derived in [12], in the node-centric setting, with f(x) = x, g(x) = 1− x to solve the inverse

problem of finding the connectivity distribution of a network. Note however that this choice

in the edge-centric setting case (4), results in linear diffusion. Later, it was extended to

allow for nonlinearities of the type f(x) = x, g(x) = (1− x)σ in [13]. Thus, we remark that
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the choice f(x) = xm is novel and has not been studied before – except for its stationary

distribution in the node-centric setting, in [13].

III. MACROSCOPIC LIMITS

Before moving to study the properties of Eq. (4) we analyze it in the case of regular

lattices, where the distance between nodes is given by a. In fact, the approach taken here is

similar to the coarse-graining method used to link continuous-time discrete-space equations

with macroscopic models [48]. We imagine that the process takes place on a square grid

graph, where the degree k only depends on the dimension of the grid. We assume for

simplicity that the grid is one-dimensional and thus k = 2 and Aij = δi,i+1 + δi,i−1. Note

however, that the following results generalize easily for any higher-dimensional square grid.

Then Eq. (4) simplifies to

dρi
dt

= λ
[
g(ρi) (f(ρi+1) + f(ρi−1))− f(ρi) (g(ρi+1) + g(ρi−1))

]
. (5)

We take a continuous approximation of the one-dimensional lattice in the limit where the

number of nodes M tends to infinity, and the distance between two consecutive nodes, a,

tends to zero. We identify ρ(x, t) = ρi(t) (also dρi/dt = ∂tρ) and ρ(x ± a, t) = ρi±1(t). By

expanding ρi±1 as a Taylor series for small values of the distance between nodes a, we obtain

ρi±1 = ρ± a∂xρ+
a2

2
∂xxρ+ o(a2), (6)

and again for f(ρi±1) (and similarly for g(ρi±1)),

f(ρi±1) = f(ρ)± af ′(ρ)∂xρ+
a2

2
f ′(ρ)∂xxρ+

a2

2
(∂xρ)2f ′′(ρ) + o(a2). (7)

Note that this last expansion is in fact exact whenever f and g are polynomials in ρ. By

using this, and writing

h = f ′g − fg′, (8)

Eq. (5) reduces to

∂tρ = λa2
[
h(ρ)∂xxρ+ (∂xρ)2h′(ρ)

]
+ o(a2). (9)

Taking now the macroscopic limit a→ 0 alongside the scaling λ = O(a−2) we obtain

∂tρ = h(ρ)∂xxρ+ (∂xρ)2h′(ρ) = ∂x (h(ρ)∂xρ) = ∂xxH(ρ). (10)
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where H ′ = h. Note that without loss of generality we assumed here that λa2 → 1 as a→ 0.

As mentioned before, this same argument holds in square grid graphs of higher dimensions

and gives rise to the nonlinear diffusion equation

∂tρ = ∆H(ρ) = ∇ · (h(ρ)∇ρ) , (11)

with a density-dependent diffusion coefficient h(ρ). Note that for well-posedeness of the

equation one needs h ≥ 0, which is always the case given that f is non-decreasing and g

is non-increasing. In the case where these assumptions fail – e.g. g is non-monotonic due

to the possible presence of an aggreggation mechanism [49] – the macroscopic PDE could

be ill-posed. However, in such case, it still makes sense to analyze (4), which is a discrete

model – a similar phenomenon is studied in [50].

In the particular case where H(ρ) = ρm we obtain the PME (1). This can be achieved

for example when the transition probabilities only depend on local densities f(x) = xm and

g(x) = 1, which represents a process with very localized repulsive interactions (but there

are other possibilities). In this case the diffusion coefficient is

h(ρ) = mρm−1. (12)

Moreover, Eq. (4) can be written in such a way that reminds one of the macroscopic PME

dρ

dt
= −λLρm. (13)

We note here that different choices of f and g can yield macroscopic equations which are

well-known PDEs. For example, it is instructive to analyze the case studied in [13] f(x) = x

and g(x) = (1− x)σ, with σ ≥ 0. This yields the degenerate diffusion coefficient

h(ρ) = (1− ρ)σ−1 [1 + (σ − 1)ρ] . (14)

Similar mobility coefficients in PDEs have appeared in mathematical biology to prevent

overcrowding [48, 51, 52] but also in mathematical physics to describe fermionic systems

where particles obey the exclusion principle [53, 54] – these usually correspond to the case

σ = 2. Under the substitution (1 − ρ)σ−1 7→ (1 + ρ)σ−1 we obtain instead an equation

describing a system of bosons under relaxation [55]. Moreover, such equations can also be

derived from microscopic rules following a probabilistic argument – see [56] and also [57] for

a case with two species. Here, h(ρ) has completely different behaviours in the cases σ = 1
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, when this reduces to linear diffusion; σ > 1, when h(ρ) < 1 and is a decreasing function;

and σ < 1, which makes h(ρ) > 1 increasing and unbounded. This could be directly related

to previous works studying the exploration efficiency of different random-walk models on

networks [13, 37]. In fact, and as we will see, the diffusion coefficient is not only related to

the macroscopic PDE but also determines the timescale of the process on finite graphs.

IV. SELF-SIMILAR SOLUTIONS ON INFINITE GRAPHS

Many PDEs of the form of (11) present well-known solutions in the case of infinite

domains. Of particular interest is the case of the PME, with h(ρ) = mρm−1, which solutions

in the real line tend to the so-called Barenblatt profiles [58]. In one spatial dimension, these

can be found by looking for self-similar solutions of the form ρ(x, t) = t−βF (xt−β) and give

place to

β =
1

m+ 1
, F (y) = (C − κy2)

1/(m−1)
+ , (15)

where (y)+ = max(y, 0), and C and κ are constants related to the exponent m and the total

mass [23]. Note that according to this relation, mass is propagated following the relation

x ∼ tβ. In the limit m→ 1 we obtain the heat kernel solution for the linear diffusion PDE.

Here we analyze, following a self-similarity argument, a porous-medium type equation (13)

on two infinite graphs, namely a regular lattice and a q-homogeneous tree. We find that in

contrast with the case of linear diffusion, mass propagation occurs at a finite speed. These

calculations give also insights into nonlinear diffusion on more general graphs, where the

observed solutions resemble those of the macroscopic PME.

A. Regular lattice

In the case of an infinite regular lattice we show that solutions of Eq. (13) agree with

those of the macroscopic PME and in the long-time limit tend to the Barenblatt profile (15).

On this domain, Eq. (13) simply reads

dρi
dt

= ρmi−1 + ρmi+1 − 2ρmi . (16)

We assume that initially, all the mass is placed at i = 0 and we allow for integer values of

i. Now assume the self-similar ansatz ρi = t−βF (y) with y = it−β, and substitute into the
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above expression to find

− βt−β−1 [F (y) + yF ′(y)] = t−mβ
[
F (y − t−β)m + F (y + t−β)m + F (y)m

]
, (17)

where the prime denotes differentiation with respect to y. By expanding the right-hand

side for large t, and eliminating the time dependence, we find β = 1/(m + 1), and also the

differential equation for F

(m+ 1) (F (y)m)
′′

+ yF ′(y) + F (y) = 0. (18)

This equation is usually called the profile equation [23] and can be integrated to obtain the

Barenblatt profile (15).

Thus we have proved that on a lattice, (1) behaves as its continuum limit, the PME.

B. Homogeneous trees

We now move to the case of infinite q-homogeneous trees, where each node has degree

q + 1. We assume q > 1 since q = 1 corresponds to the case of the lattice studied in the

previous section. Now, the long-time behaviour is more complex, but it can be understood

by looking at the continuum limit again. Eq. (13) reads now

dρi
dt

= qρmi−1 + ρmi+1 − (q + 1)ρmi , (19)

where ρi is representative of the set of nodes in the ith generation of the tree. Here we

assume that initially, all the mass is located at nodes with i = 0, and that the tree extends

for negative and positive values of i.

Following the approach in the previous section, one can now take the continuum limit of

Eq. (19). By doing so, we obtain the nonlinear diffusion PDE with convection

∂tρ = a2(q + 1)∂xxρ
m − a(q − 1)∂xρ

m, (20)

where a stands for the distance between nodes. Note that the equation can be explicitly

solved for the m = 1 case to obtain a travelling gaussian with speed ∼ (q − 1). In fact, it

is easy to see via a self-similar argument as in the previous section that this is also true for

the discrete case (19). We focus on the case m > 1.

These type of equations with nonlinear diffusion as well as convection, have been widely

studied and depending on whether diffusion or convection dominates, we may find different
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long-time behaviours. When both diffusion and convection have the same exponent m > 1,

the dominant term is the convective one, and in the long-time limit, the diffusive part can be

neglected [59]. Asymptotic solutions then can be obtained from the equation ∂tρ+∂xρ
m = 0

and follow ρ(x, t) ∼ t−γG(z) with z = xt−γ and

γ =
1

m
, G(z) =

z
1/(m−1), for 0 < z < Cm,

0 otherwise,
(21)

where the constant Cm is determined by normalization.

Following these ideas we may now assume the self-similar ansatz ρi = t−γG(z) with

z = it−γ for Eq. (19). By substituting into (19), expanding again for large t, and eliminating

time-dependence, we find γ = 1/m and the differential equation for G

m(q − 1) (G(z)m)′ + zG(z) +G(z) = 0. (22)

By looking for solutions G(z) ∼ zδ we obtain δ = 1/(m−1) as expected from the continuum

limit solution (21).

Observe that in the discrete case we have obtained solutions that agree with the corre-

sponding continuum limits, showing propagation speeds which heavily depend on the expo-

nent m. It would also be interesting to study these equations with an added reaction term,

as in the linear diffusion case these can show different behaviour with respect to the contin-

uum PDE [60]. We have also shown that the propagation speed of solutions depends on the

network structure, and while it may be possible to extend these results to similar graphs,

the case of general complex networks seems challenging. However, for finite and connected

graphs the situation is simpler as after some time all nodes present non-zero densities. We

will see in the next sections that this allows us to characterize the timescale of the process.

V. STATIONARY DISTRIBUTION AND RELAXATION TIME

From now on and unless stated otherwise, we assume that we work with finite and con-

nected networks. As expected for an edge-centric random walk, the stationary distribution

of Eq. (4) for any choice of f and g is a uniform distribution, as long as f is non-decreasing

and g is non-increasing. To see this note that a stationary state ρ∗ of (4) satisfies∑
j

Lij
(
f(ρ∗j)g(ρ∗i )− f(ρ∗i )g(ρ∗j)

)
= 0, (23)
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for all i = 1, . . . ,M . In particular this means that v(i) defined by vj(i) = f(ρ∗j)g(ρ∗i ) −
f(ρ∗i )g(ρ∗j) is an eigenvector of L with zero eigenvalue, for i = 1, . . . ,M . On a connected

graph, vj(i) is a constant independent of j [61], and setting i = j we see that vj(i) = 0.

Note that here, we assumed that f(ρ∗i ), g(ρ∗i ) 6= 0, which is always true given that f and

g are nonzero for positive density values. In cases where this assumption fails, steady states

in general could depend on initial conditions and on the precise form of these functions. This

is also the case in general when f and g fail to be monotonic, a situation that has appeared

before in different settings [49, 62, 63].

Reordering the terms gives f(ρ∗i )/g(ρ∗i ) = f(ρ∗j)/g(ρ∗j), which is met for any i and j only

if both sides are equal to a constant, c. Hence the stationary distribution must satisfy the

relation
f(ρ∗i )

g(ρ∗i )
=
f(ρ∗j)

g(ρ∗j)
= c. (24)

This equation always has a unique solution given that f is non-decreasing and g is non-

increasing, and from it, we deduce that ρ∗ is uniform as it cannot depend on i. Using the

mass conservation property we finally obtain ρ∗i = ρ̄ for every node, with ρ̄ = M−1
∑M

i=1 ρi

being the average density that we can calculate from the initial condition and does not

depend on time.

The main challenge when we look for the relaxation time of Eq. (4) lies in the non-

linearities f and g. However, in the edge-centric case, this can be done for general forms

of these two functions. We seek for solutions of the form ρi = ρ̄ + εηi for ε � 1. Since

ρ̄M =
∑

i ρi =
∑

i ρ
∗
i , we require the perturbation η to have zero total mass. Bringing

together the O(ε) terms we obtain

dηi
dt

= −λh(ρ̄)
∑
j

Lij (ηj − ηi) , (25)

or more compactly dη/dt = −λh(ρ̄)Lη. Note that this is the usual linear diffusion equation

with a rescaled time. We know then from [35] that the relaxation time to the stationary

state is simply

τ−1
1 = h(ρ̄)λµ1, (26)

with µ1 being the smallest nonzero eigenvalue of L. This expression relates the relaxation

time of the random-walk with the diffusion coefficient appearing in the continuum limit, and

thus provides a direct link between the microscopic nature of the process and the macroscopic
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dynamics. It also shows the same scaling as in the PDE (11) up to a constant, which is

given by the network structure.

This derivation could lead us to think that the nonlinear process is somehow equivalent

to its linearised version (25) up to a constant given by the diffusion coefficient. However, and

as we will see in the next section, this is not the case, and the timescale of the process does

not fully determine its dynamics, which in general depend on the nonlinearities f and g.

The linear approximation is only valid once the mass has propagated to all nodes, similarly

to what happens in the continuum case on finite domains and under no-flux boundary

conditions. This also becomes evident when one thinks of the simplified Kuramoto model,

which is recovered for f(x) = sin x, g(x) = cos x. In this case, we obtain h = 1, although its

dynamics are different from the linear diffusion case, which also has h = 1.

The derived relaxation time, should be understood then in the sense of the asymptotic

decay of the solutions in finite graphs. In other words, it provides an estimate of how ρ

tends to ρ∗. By projecting η into a basis of eigenvectors of L, it is easy to see that in the

long-time limit, η ∼ e−t/τu1, where u1 is the eigenvector of L associated with µ1 [35]. A

direct measure of the convergence to the stationary solution is then given by the 2-norm of

ρ− ρ∗, which in the long-time limit follows ‖ρ− ρ∗‖2 ∼ e−t/τ1 . Note however that we do not

have this estimate on infinite graphs. In that case, finding the timescales of the process as

in [64] seems challenging due to the nonlinearities in our equation.

VI. SLOW AND FAST DIFFUSION

We continue the discussion on the previous section with special emphasis on the case

given by Eq. (13), which corresponds to the choice h(ρ) = mρm−1. As mentioned earlier,

the regimes m < 1, m = 1, m > 1 are usually referred to as fast diffusion, linear diffusion,

and slow diffusion in the context of the PME (1). Given these known differences between

the linear diffusion PDE and the PME with exponent m 6= 1, one could then wonder how

solutions of Eq. (13) depend on m for general graphs.

In fact, the situation on networks is similar to the case of the PDE (1) under no-flux

boundary conditions – as shown in Fig. 1a. In the PDE setting, for early times, one would

expect the density to approach the solution in the whole space, but as soon as the density

reaches the boundary, nonlinear and linear diffusion tend to the uniform steady state in a
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FIG. 1: Nonlinear diffusion yields mass propagation at a finite speed, in contrast with linear

diffusion. (a) PME in a box of length two with no-flux boundary conditions and for exponents

m = 1, 2, 3 – m = 1 corresponds to the linear diffusion equation. Solutions at three different time

points starting from a compactly supported initial condition. Note the slower decay of the PME

for exponents m = 2, 3. (b)-(e) Numerical solutions of Eq. (13) with λ = 1, for an Erdos-Renyi

network with M = 50 and a probability of drawing any possible edge p = 0.1. The four numerical

simulations start from the same initial conditions and take place on the same network. At t = 0,

10 randomly selected nodes start with ρi = 0.1, so ρ̄ = 1/M . Dashed lines correspond to the

relaxation time given by Eq. (26).

similar way.

As mentioned in previous sections, in the whole space – where there are no boundary

effects – and in the m > 1 case, solutions to the PME (1) with an initial point source are of

the form of the so-called Barenblatt profiles [23]. These differ from the Gaussian solution to

the linear diffusion equation as they are compactly supported, and have a power-law decay

in time t−β with an exponent decreasing with m. This means that the speed of propagation

is finite in contrast with the case of linear diffusion. In fact, the larger the exponent m,

the slower the solution decays. This is depicted in Fig. 1a, where we compare the PME

solutions with different exponents to the Gaussian solutions of the linear diffusion equation.

We now study numerically Eq. (13) on randomly generated connected networks (Fig.

1b-d). We start by placing a determined density on random nodes and we observe how

13



this density spreads across the network. Interestingly the pattern that appears resembles

that shown in Fig 1a, as already happened for infinite graphs. While in the linear diffusion

case (Fig. 1b) all nodes have non-zero densities after arbitrarily small times, for the cases

m = 2, 3 (Fig. 1c-d) some nodes seem to have zero density after positive times, thus showing

a finite propagation speed. This is a major difference with respect to commonly used linear

diffusion operators in network science.

This behaviour is easily understood when one looks at the relaxation time (26). In the

porous-medium case, the diffusion coefficient at the stationary distribution is given by Eq.

(12) and hence, the relaxation time is minimum for m∗ = −1/ log ρ̄. In the figure we show

values of the exponent satisfying m > m∗ ≈ 0.22, where h(ρ̄) is a decreasing function of m,

thus explaining why larger values of the exponent yield slower diffusion.

A. Comparing linear and nonlinear dynamics

The differences between the linear and nonlinear cases can be further analyzed via a time

rescaling of Eq. (13). If we rescale this equation by the relaxation time given by Eq. (26)

dρi
dt

= −λh(ρ̄)−1
∑
j

Lij (f(ρj)g(ρi)− f(ρi)g(ρj)) , (27)

then for any choice of f and g we will have τ−1
1 = λµ1. Now that the timescale of the

process is decoupled from the chosen nonlinearities, one can easily compare several models.

We focus again on the porous-medium case.

In order to evaluate the differences induced by different exponents m, we measure the

Shannon entropy of ρ as a function of time H(ρ) = −∑i ρi log ρi (Figure 2a). Note that

the entropy is maximum when ρ is a uniform distribution and then this can be understood

as a measure of the diversity of ρ. Other possible metrics, like the diversity index [65], or

different measures of variance on graphs [66], give qualitatively similar results. In the figure,

we observe how varying m does indeed give place to different behaviours, with a higher level

of uniformity obtained for larger values of the exponent.

These results are easily understood when one takes into account the speed of propaga-

tion of the process which, in the PDE setting, is infinite for the linear case and finite and

decreasing with m for m > 1. On graphs, the situation is similar, and one obtains a faster

decay of solutions for the linear case (and m < 1). When compared with the nonlinear cases
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FIG. 2: Comparing linear and nonlinear dynamics in the porous-medium case. The general model

Eq. (4) is rescaled by h(ρ̄)−1 in order to study the differences due solely to nonlinear effects. (a)

Shannon entropy of ρ given by Eq. (27) for different values of the exponent m. (b) Particular

solutions for the linear case in gray (m = 1) and nonlinear case in red (m = 3). (c) Density

difference for different exponents and the linear case given by ρ`. Nonlinear diffusion shows very

different dynamics from the linear case. All numerical simulations were performed in Erdos-Renyi

networks with M = 100, p = 0.1 and using λ = ρ̄ = 0.01. At time t = 0, we place a positive

density at 10 randomly chosen nodes. All simulations share the same initial condition.

with slower diffusion, fixing the timescale means that a higher level of uniformity needs to be

reached earlier in time – Figure 2b. This is accentuated the slower the diffusion mechanism

or equivalently, the larger the exponent m – see the differences between the nonlinear cases

and the linear case that we denote by ρ` in Figure 2c.
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B. Timescale separation in modular networks

From Eq. (26) we see that our previous arguments can actually be generalised to give the

next slowest relaxation time of the process, τ2. Now τ−1
2 = h(ρ̄)λµ2 is given by the second

smallest non-zero eigenvalue of the graph Laplacian µ2. This means that for times t � τ2,

the network density is described by a linear combination of u1e
−t/τ1 , which is the leading

term in the long-time limit, and also u2e
−t/τ2 , where u2 is the eigenvalue of L associated

with µ2.

In the case of graphs with a strong modular structure, the difference between µ1 and

µ2 can be very large, thus giving place to two separated timescales, τ1 and τ2. During the

first stages of the process, diffusion brings nodes in the same community to a state of local

consensus, where they have similar densities, and after this first timescale, the different

communities diffuse towards the global stationary state – see Figure 3. These considerations

can be helpful in some applications because they allow for simplified representations of the

network [67].

However, note that in general, the timescale separation depends also on the diffusion

coefficient. As ∆τ = τ1 − τ2 ∼ h(ρ̄)−1, this means that ∆τ could either be increased or

decreased according to the nonlinearity. In particular, for the porous-medium case and

small average density ρ̄, we obtain that ∆τ increases with m – see Figure 3.

Although these considerations hold even cases where the difference between µ1 and µ2

is small and hence no timescale separation is observed, one must be cautious when using

random-walk dynamics to infer network modularity. In particular, for fast-diffusion equa-

tions – for which h(ρ) is large for small densities – noisy measurements coupled with fast

global dynamics might result in community identifiability issues [68].

VII. INSIGHTS INTO REACTION-DIFFUSION SYSTEMS

As an application of the above ideas we briefly study reaction-diffusion equations of the

type
dρi
dt

= (Lρ)i + αρi(1− ρi), (28)

where L is a diffusion operator, and the second term represents logistic growth with rate α.

We now consider a network where ρi(0) = 0 for i 6= s. At t = 0 we place a positive density
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FIG. 3: Nonlinear diffusion on modular networks. Here we use a network with two large components

with M = 15 nodes each, and an edge that serves as a link. For every numerical simulation ρ̄ = 0.05,

λ = 1. Dashed lines represent the times τ1 and τ2.

ρs(0) on a random node s, and study how the system evolves.

For general reaction-diffusion systems, the operator L could take many forms [64, 69, 70],

but here we focus on the nonlinear operator given by Eq. (4). The resulting equation has

recently been studied in the context of neurodegenerative diseases in [34, 71] in the case

where L represents linear diffusion – f(x) = x, g(x) = 1. For extensions to two species with

the same operator see for example [33, 72].

Before moving further, we remark that Eq. (28) constitutes a Fisher-KPP equation on
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networks. Probably the most interesting feature about this equation in the continuum setting

is the formation of invasion fronts which propagate with a constant speed, and, studying the

shape of the front as well as the speed of invasion, is of particular interest in mathematical

biology. One could ask then if similar behaviour can be observed on networks and whether

one can characterize these fronts.

This problem has been studied in simpler settings and only for linear diffusion, for example

in the case of a lattice [73, 74] as well as for homogeneous trees [60, 75]. In the lattice case,

one always observes front propagation with a wave speed which depends on the scales of

proliferation and diffusion. In the limit of large diffusion, one can derive that the speed

tends to that of the linear diffusion Fisher-KPP PDE. On the other hand, in the case

of homogeneous trees, this behaviour changes, and the speed of the front satisfies a non-

monotonic relationship with the diffusion coefficient. In fact, above certain values of the

diffusion coefficient, spreading might not occur and the solution converges to zero. In the

limit of vanishing diffusion, the wave speed is decoupled from the diffusion coefficient, which

predicts a constant speed value for more general networks.

Extending these results to the nonlinear diffusion setting seems challenging but it is

certainly an interesting problem to explore. Here however, we focus on a qualitative study of

Eq. (28), and explore how considering nonlinear diffusion might influence mass propagation

on random networks.

As already noted in [34], Eq. (28) has two associated timescales τ1 and α−1, given by

diffusion and growth, respectively. Depending on the relative strength of the two mech-

anisms, we can distinguish two regimes: a diffusion-dominated regime, in which diffusion

operates at much shorter timescales and thus τ1 � α−1; and a growth-dominated regime

where τ1 � α−1. Note however that the mean-field approximation used to derive Eq. (4)

might be worse in this last regime where proliferation dominates.

For linear diffusion, these two regimes are easily characterized, as diffusion is density-

independent, and depends directly on the quotient λµ1/α. The two regimes can be seen

in Figure 4 in gray lines. In the growth-dominated regime, proliferation occurs at a much

larger rate than diffusion, causing nodes closer to the initial seed to reach higher densities

faster. However, the densities at nodes that are further from the initial seed, are close to

zero for times smaller than λµ1 � α. On the other hand, in the diffusion-dominated case

where λµ1/α � 1, all nodes rapidly reach the consensus state via diffusion, and then grow
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FIG. 4: A Fisher-KPP type equation in the growth-dominated regime (left, λ = 0.05, α = 10)

and the diffusion-dominated regime (right, λ = 1, α = .3): comparing linear (top) with nonlinear

diffusion with exponent m = 3 (bottom). Simulations take place on Erdos-Renyi networks with a

number of nodes M = 50 and a probability of drawing any possible edge p = 0.1. Black dashed

lines correspond to the asymptotic solutions derived in Appendix C. Gray dashed line is given by

(29).

together following logistic growth.

This behaviour is somewhat different in the nonlinear case, as the timescale of diffusion is

density-dependent τ1 ∼ h(ρ̄)−1, with ρ̄ varying in time due to the presence of proliferation.

Note now, that the two regimes are given instead by the quotient h(ρ̄)λµ1/α, and hence it

is possible to move from one regime to the other one in time, depending on the evolution of

the average density ρ̄. For the porous-medium equation, we see that diffusion is always weak

at low densities, where ρ̄ is small. In the case of a large proliferation rate, the timescale

separation between nodes becomes clearer, and nodes with the same step distance to the

initial seed tend to cluster and grow together to the steady state. In the opposite case,

however, diffusion can still be weaker for early times even with a small proliferation rate. As

proliferation occurs, diffusion becomes more and more important until it overcomes growth.
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This is shown in Figure 4 for m = 3. The critical density ρ̄c at which this regime transition

happens can be found, and satisfies h(ρ̄c)λµ1 = α. In the porous-medium case

ρ̄c =

(
α

mλµ1

)1/(m−1)

. (29)

For some applications, including the study of neurodegenerative diseases [34], it is in-

structive to analyze the time needed to reach certain densities at every node. For that

purpose, one can construct asymptotic solutions in each one of the discussed regimes which

approximate very well the evolution of the density at each node – see black dashed lines in

Figure 4. Although inspired by [34], we explain in Appendix C the details of how to find

these approximations.

VIII. CONCLUSIONS AND OUTLOOK

To summarize, here we have provided a new link between diffusion PDEs and random-

walk models on networks. This gives a new interpretation for previous works developed at

the scale of individual agents [12, 13]. Moreover being able to build the connection with

the macroscopic PME and similar equations helps to understand why nonlinear diffusion

on networks yields mass propagation at a finite speed, in contrast with the commonly used

linear diffusion operator. Generalisations of this work could include accounting for differ-

ent interacting species [76] or for further interaction terms in the form of an external or

interaction potential [31, 77].

Some of the examples considered here also provide with a useful framework for applica-

tions. For instance, and as suggested before [13], fast diffusion can be thought as an efficient

way of network exploration, and on the other hand, slow diffusion may emerge in applica-

tions where individuals motility is reduced due to crowding effects. In other contexts, it

would also be interesting to explore the validity of ignoring crowding effects and describing

movement as simple linear diffusion.
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Appendix A: Mean-field limit from system-size expansion

Here we derive the mean-field equation Eq. (4) from the master equation Eq (2), using a

system-size expansion. The size of the system in our case, is given by the carrying capacity

K, and thus, K →∞ corresponds to the thermodynamic limit. We follow [41, Chapter X]

closely.

The basic idea behind the method is to take advantage of the structure of the transition

probabilities (3) in order to find an expansion of the master equation in terms of powers of

K. Note that when K is large, the transition probabilities (3) are small, and we can expect

P (ni, t) to be peaked around the macroscopic mean ni ∼ Kρi, with a width of order K1/2.

Under this setting, ni follows

ni = Kρi +K1/2ξi, (A1)

with ξi giving the fluctuations in the number of particles at node i. Now the transition

probabilities may be written for large K as

T (ni − 1, nj + 1|ni, nj) = λAijf

(
Kρi +K1/2ξi

K

)
g

(
Kρj +K1/2ξj

K

)
= λAijf(ρi)g(ρj) +O(K−1/2). (A2)

We are interested in studying ρi = 〈ni〉/K for large K, where 〈ni〉 =
∑

n niP (n, t). By

taking the time derivative of 〈ni〉 and using the differential equation for the master equation

(2), we obtain – see also [13] –

d

dt
〈ni〉 = −

∑
j

[〈T (ni − 1, nj + 1|ni, nj)〉 − 〈T (ni + 1, nj − 1|ni, nj)〉] . (A3)

Now rescale time so that t 7→ t/K and use Eq. (A2) in the above expression to find, to

leading order in K, the mean-field equation

dρi
dt

= −λ
∑
j

[Aijf(ρi)g(ρj)− Ajif(ρj)g(ρi)] , (A4)

which might be rearranged into Eq. (4) by using Aij = Aji.

21



Appendix B: A porous-medium type equation in the node-centric setting

Here we study Eq. (4) in the node-centric setting, as it was initially derived in [13]. In

this case the transition probabilities read

T (ni − 1, nj + 1|ni, nj) =
λAij
ki

f
(ni
K

)
g
(nj
K

)
. (B1)

These give place, via a mean-field approximation, to a similar equation for the evolution of

the node density ρi = limK→∞〈ni〉/K

dρi
dt

= −λ
∑
j

L′ij

(
ki
kj
f(ρj)g(ρi)− f(ρi)g(ρj)

)
, (B2)

where now instead we have the random-walk normalized Laplacian defined by L′ij = δij −
Aij/ki. Note that in the case of regular networks where ki = k, the above expression and

Eq. (4) are essentially the same equation, up to a constant given by the network degree.

This means that Eq. (B2) is also valid for deriving the same macroscopic limits that we

discussed in Section III.

It was already proven in [13] that the stationary distribution of (4) satisfies the relation

f(ρ∗i )

kig(ρ∗i )
=

f(ρ∗j)

kjg(ρ∗j)
= c, (B3)

for a given constant c that can be found using conservation of mass. In the local repulsion

model – i.e. f(x) = xm and g(x) = 1 – the stationary distribution reads

ρ∗i = ck
1/m
i , (B4)

where c =
∑

i ρi/
∑

i k
1/m
i = ρ̄/〈k1/m〉. It is informative to study how the stationary distri-

bution depends on m. In the limit of large exponents m, k
1/m
i → 1 and thus the dependence

on the node degree is erased. In this case we can approximate

ρ∗i ≈ ρ̄, as m→∞, (B5)

obtaining that in the stationary state, all nodes have the same density of walkers. Note that

in this limit, we obtain the same stationary distribution as in the edge-centric case. As we

will see, the relaxation time also tends to the one obtained in the main text.

On the other hand, a completely different phenomenon occurs in the limit where m tends

to zero. In this case, walkers tend to accumulate in nodes with higher connectivity, and in
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the limit m → 0, only nodes with maximum degree have non-zero densities. To see that,

take a particular node i. If ki < kmax, where kmax is the maximum degree in the network,

then k
1/m
i /

∑
i k

1/m
i → 0. However, if ki = kmax, we have k

1/m
i /

∑
i k

1/m
i → 1. Then we have

found

lim
m→0+

ρ∗i =

 ρ̄M
#kmax

for ki = kmax,

0 for ki 6= kmax,
(B6)

where #kmax is the number of nodes with maximum degree. We see then that the spread of

the stationary distribution goes from ρ̄M/#kmax in the m→ 0 limit, to zero when m→∞.

Obtaining a closed-form expression for the relaxation time of Eq. (B2) seems more

challenging than in the edge-centric case and maybe not very illuminating. However, progress

can be made in the porous-medium case again. Again, we perturb around the steady state

and linearize the resulting equation.

We thus seek for solutions of the form ρi = ρ∗i + εηik
1/m
i for ε � 1. The scaling in the

perturbation is only chosen in order to facilitate the notation in the following arguments.

Bringing together the O(1) terms gives the stationary solution. Up to order O(ε) we have

dη

dt
= −mcm−1DmLη := −mcm−1Lmη, (B7)

where Dm = diag
(
k
−1/m
1 , . . . , k

−1/m
N

)
and Lm is defined by the rightmost identity. Note that

in the linear diffusion case (m = 1) Dm = D−1 and L1 = L′ is the random-walk normalized

Laplacian.

In order to find the relaxation time we follow a standard procedure [35], and project

η onto a basis of eigenvectors of Lm. In the long-time limit, the solution can be written

approximately in terms of the eigenvector with the smallest non-zero eigenvalue, µ̃1. Thus

we find that

τ−1
1 = mcm−1µ̃1. (B8)

Note here that µ̃1 also depends on m. Again, the relaxation time seems to be linked to the

diffusion coefficient of the PME Eq. (12) as we can write τ−1
1 ∼ h(c). This is the same

scaling that we found in the edge-centric case with the substitution ρ̄ 7→ ρ̄/〈k1/m〉 in Eq.

(26).

Again, we explore how this relaxation time is related to the edge-centric case, given by

(26). First of all, note that using a very naive mean-field approximation which accounts for
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neglecting network structure k 7→ 〈k〉, would give a relaxation time equivalent to the one

found in the main text

τ−1
MF =

mρ̄m−1µ1

〈k〉 . (B9)

This expression is in fact exact for regular networks.

In the slow diffusion limit, one can find a very similar relationship suggesting again the

scaling τ−1
1 ∼ h(ρ̄). In the large m limit, note that the matrix Dm tends to an identity

matrix. In fact, one may write for every entry k
1/m
i = 1 + log ki

m
+O(m−2), and thus

Lm = DmL = L− 1

m
D̃L+O(m−2), (B10)

with D̃ = diag (log k1, . . . , log kM). Now we can use a standard perturbation theory argument

and expand µ̃1 = µ1 +O(m−1). The first order correction can actually be found in terms of

the above expansion, but the leading order is sufficient for our purposes.

In the large m limit, cm−1 can be expanded similarly

cm−1 = ρ̄m−1e−〈log k〉 (1 +O(m−1)
)
. (B11)

Then, together with Eq. (B8), we have obtained

τ−1
1 =

mρ̄m−1µ1

(k1 . . . kM)1/M

(
1 +O(m−1)

)
, (B12)

which is essentially the same equation as (B9), substituting the mean degree 〈k〉 by its

geometric mean.

Although obtained through different approximations, Eq. (B12) and Eq. (B9) show the

same dependence of τ1 with respect to the exponent m. This suggests that τ1 also follows

the scaling derived in the main text for the edge-centric and macroscopic cases: τ−1
1 ∼ h(ρ̄).

Appendix C: Asymptotic solutions for Fisher-KPP type equations

We discuss here how to obtain approximations for the solutions of Eq. (28), in the case

given by the PME f(x) = xm, g(x) = 1. We distinguish between the two mentioned regimes.

The diffusion-dominated regime is easier, since it can be described by the solution of the

usual logistic equation. In such case, the densities at each node grow simultaneously after

some time tc determined by the condition 〈ρ〉 = ρ̄c. For t > tc thus, all nodes have similar
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densities and we can ignore diffusion and write

dρi
dt

= αρi(1− ρi), ρi(tc) = ρ̄c, (C1)

with solution

ρi(t) =
ρ̄ce

α(t−tc)

1 + ρ̄c (eα(t−tc) − 1)
. (C2)

This curves are plotted in Figure 4 in black dashed lines for the diffusion-dominated case.

Note that for linear diffusion we can approximate tc ≈ 0.

In the growth-dominated case one can expect λ to be small in comparision with α, and

then it makes sense to consider an asymptotic solution in terms of powers of λ. Here we

follow an asymptotic method developed in [34, 78] – see the latter for other possibilities.

Whenever λ = 0, the solution takes essentially, the same form as in Eq. (C2). Without

imposing initial conditions we have

ρi(t) =
Kie

αt

1 +Ki (eαt − 1)
. (C3)

Now, motivated by the numerical simulations shown in Figure 4, we consider the ansatz:

Ki = K
(0)
i + λγiK̃i, where γi is the distance between node i and the initial seed. We can

now solve iteratively for different orders in λ. The solution up to order λ0, is K
(0)
s = ρs(0)

and K
(0)
i = 0 for i 6= s.

Looking at the O(λ) terms, we obtain the solution for nodes that are at distance γi = 1

from the initial seed. This yields the differential equation for K̃i

dK̃i

dt
= −Lise−αtρs(t)m, K̃i(0) = 0; (C4)

which can be integrated to give

K̃i(t) = − Lisρs(0)m

α(m− 1)(1− ρs(0))

[
1−

(
ρs(t)

ρs(0)

)m (
ρs(0) + (1− ρs(0)) e−αt

)]
. (C5)

In the linear diffusion case (m = 1), we have instead

K̃i(t) = − Lisρs(0)

α(1− ρs(0))

[
αt− log

(
ρs(0)(eαt − 1) + 1

)]
. (C6)

These asymptotic solutions are represented in Figure 4. Note that there is a very good

agreement between the numerical solution and the derived approximations. When densities

are close to 1, these might fail in the nonlinear case due to the increase of the diffusion

coefficient with the density.
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The solutions at distance γi > 1 from s can be found iteratively in terms of these solutions.

For more details, we refer the reader to [34].
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