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a topological property that ensures that when it is used within a general motion planning scheme, it yields

a complete collision-free path planner. The coupling of CC Steer with a general planning scheme yields

a path planner that computes collision-free paths verifying the properties mentioned above. Accordingly,

a car-like vehicle can follow such paths without ever having to stop in order to reorient its front wheels.

Besides, such paths can be followed with a nominal speed which is proportional to the curvature derivative

limit. The path computed by CC Steer are made up of line segments, circular arcs and clothoid arcs.

They are not optimal in length. However, it is shown that they converge toward the optimal ‘Reeds and
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From Reeds and Shepp’s to

Continuous-Curvature Paths
Thierry Fraichard and Alexis Scheuer

Abstract— This paper presents CC Steer, a steering method
for car-like vehicles, ie an algorithm planning paths in the
absence of obstacles. CC Steer is the first to compute paths
with (a) continuous curvature, (b) upper-bounded curvature, and
(c) upper-bounded curvature derivative. CC Steer also verifies a
topological property that ensures that when it is used within a
general motion planning scheme, it yields a complete collision-
free path planner. The coupling of CC Steer with a general
planning scheme yields a path planner that computes collision-
free paths verifying the properties mentioned above. Accordingly,
a car-like vehicle can follow such paths without ever having to
stop in order to reorient its front wheels. Besides, such paths can
be followed with a nominal speed which is proportional to the
curvature derivative limit. The path computed by CC Steer are
made up of line segments, circular arcs and clothoid arcs. They
are not optimal in length. However, it is shown that they converge
toward the optimal ‘Reeds and Shepp’ paths when the curvature
derivative upper-bound tends to infinity. The capabilities of
CC Steer to serve as an efficient steering method within two
general planning schemes are also demonstrated.

Index Terms— Nonholonomic vehicles, path planning, continu-
ous-curvature paths.

I. INTRODUCTION

Ever since Laumond’s pioneering paper in 1986 [1], a lot

of research works have addressed collision-free path planning

for nonholonomic systems in general and car-like vehicles

in particular. Nonholonomic systems are subject to kinematic

constraints that restrict their admissible directions of motion.

Nonholonomy makes path planning more difficult since the

paths planned must take into account the constraints imposed

both by the obstacles and the nonholonomic constraints (the

reader is referred to [2] for a recent and extensive review

on this topic). Car-like vehicles are archetypal nonholonomic

systems: they can only move forward or backward in a

direction perpendicular to the orientation of their rear wheels

axle; besides their turning radius is lower bounded because of

the mechanical limits on the steering angle.

The review of the research works that plan collision-free

paths for car-like vehicles shows that most of them use a

“simplified” model for the car-like vehicle (one with only three

configuration parameters in which the control is the angular

velocity), and compute planar paths made up of line segments

connected with tangential circular arcs of minimum radius,

eg [3], [4], [5], [6], etc. The reason for this must be that the

shortest path between two configurations for the simplified car

Thierry Fraichard is a Research Associate at the National Institute for
Research in Computer Science and Control (Inria), Rhône-Alpes Research
Centre, Grenoble (FR). E-mail: thierry.fraichard@inria.fr.

Alexis Scheuer is an Associate Professor at the University Henry Poincaré.
Nancy (FR). E-mail: alexis.scheuer@loria.fr

is such a path (result established first by Dubins [7] for the

car moving forward only, and later by Reeds and Shepp [8]

for the car moving both forward and backward).

However, the curvature of this type of path is discontinuous:

discontinuities occur at the transitions between segments and

arcs and between arcs with opposite direction of rotation.

The curvature being related to the front wheels’ orientation,

if a real car were to track precisely such a type of path,

it would have to stop at each curvature discontinuity so as

to reorient its front wheels. Curvature continuity is therefore

a desirable property. Besides, since the derivative of the

curvature is related to the steering velocity of the car, it is

also desirable that the derivative of the curvature be upper-

bounded so as to ensure that such paths can be followed with

a given speed (proportional to the curvature derivative limit).

Ref. [9] was the first to recognise this issue and to address

the problem of computing continuous-curvature paths with

upper-bounded curvature derivative; it introduced a model for

the car-like vehicle moving forward only with curvature as

an extra configuration parameter in which the control is the

angular acceleration rather than the angular velocity. The work

presented herein follows in [9]’s footsteps: it also addresses the

problem of planning paths with (a) continuous-curvature and

(b) upper-bounded curvature derivative for car-like vehicles.

In addition to that however, it considers (c) upper-bounded

curvature, (d) forward and backward motions, and (e) collision

avoidance.

The approach we have chosen to solve the problem at

hand relies upon the design of a steering method, ie an

algorithm that computes a path between two configurations in

the absence of obstacles. Given such a steering method, it is

possible to use it within a general motion planning scheme

such as the Probabilistic Path Planner [10], the Ariadne’s

Clew Algorithm [11] or the Holonomic Path Approximation

Algorithm [12], in order to deal with the obstacles and solve

the full problem (in these schemes, the steering method is used

along with a collision checker to connect pairs of selected

configurations).

The steering method is a key component in these planning

schemes and the main contribution of this paper is the first

steering method that computes paths with (a) continuous-

curvature, (b) upper-bounded curvature and (c) upper-

bounded curvature derivative for car-like vehicles. Our steer-

ing method is topologically admissible, ie it verifies a topolog-

ical property [13] that ensures that the coupling with one of the

aforementioned planning scheme yields a complete (or prob-

abilistically complete) collision-free path planner. Unlike [9]

or [14], the focus of our work is not on optimal path planning
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and our steering method does not compute minimal length

paths. However, it computes paths whose length is close to

the length of the optimal paths for the simplified car (as a

matter of fact, when the curvature derivative limit tends to

infinity, the paths computed become Reeds and Shepp paths).

There is a number of research works that are relevant to the

design of a steering method such as ours; they are reviewed

in §II. Then the model of the car is detailed in §III while

the steering method proposed is described in §IV. Finally §V

presents experimental results for the steering method on its

own and embedded in two general planning schemes.

II. RELATED WORKS

A first class of works related to the problem of computing

continuous-curvature paths falls into the “path smoothing”

class: the focus is on turning a sequence of configurations

(or a nominal route such as a polygonal line) into a smooth

curve that is then passed to the control system of the ve-

hicle. The curves used fall into two categories: (1) curves

whose coordinates have a closed-form expression, eg B-

splines [15], quintic polynomials [16] or polar splines [17],

and (2) parametric curves whose curvature is a function of

their arc length, eg clothoids [18], cubic spirals [19], quintic

G2-splines [20], or intrinsic splines [21]. These approaches

are interesting. Unfortunately issues such as completeness or

topological admissibility are completely ignored. They usually

make simplifying assumptions (on the respective positions of

the configurations that are to be connected, on the type of path

generated, etc.) that render them unsuitable for our purpose.

More relevant to our problem are the works stemming from

the recent application of control theory tools and ideas to study

the controllability of nonholonomic systems in order to derive

novel steering methods.

First, optimal control theory could be used to solve the

problem at hand [22]. Indeed optimal length paths would

be the paths of choice for a steering method. Unfortunately,

optimal paths are extremely difficult to characterise in general.

This characterisation is available for the simplified car-like

system [8], but not for the system considered herein. Besides

there are indications that the optimal paths for the system

considered herein are in general irregular and cannot be used

in practice since they involve infinite chattering (cf §III-B).

Nevertheless, it would be possible, in theory, to compute

an approximation of the optimal paths using a numerical

optimisation method such as the one presented in [23]. In

practice however, such a method poses a number of problems

(cf the experimental results reported in [24]). Among them, the

fact that the convergence to the optimum is not guaranteed

meaning that the topological admissibility is not guaranteed

either.

Second, given that the car-like vehicle is similar (from a

control point of view) to the system made up of a differential

drive vehicle pulling one trailer, it could be possible to use one

of the steering methods that were proposed for such a system.

These steering methods exploit different properties of such a

system, namely nilpotence [25], chained form [26] and differ-

ential flatness [27]. We briefly review them now. The reader

is referred to [28] for underlying theoretical details (about

these properties in particular), and to [24] for an experimental

comparison between these steering methods when applied to

the case of a differential drive vehicle pulling several trailers.

a) Nilpotence: nilpotent systems were first studied

in [25]. For such systems, it is possible to compute piecewise

constant controls steering the system exactly to the goal. The

car-like vehicle is not nilpotent but it is possible to compute

a nilpotent approximation of such a system [29] and use it to

steer the vehicle. Unfortunately, the goal configuration would

never be reached exactly.

b) Chained form: as for systems that can be converted

into chained form [26], it is possible to steer them exactly

to the goal using either sinusoidal [26], polynomial [30] or

piecewise constant [31] controls. For these steering methods,

path planning takes place in a space defined by parameters

whose physical meaning is unclear. The relationship between

the shape of the path in the parameter space and the shape

of the corresponding path in the actual workspace is a very

complex one to the extent that it is extremely difficult to obtain

topological admissibility (cf [24]).

c) Differential flatness: it is a property enjoyed by cer-

tain mechanical systems which was first studied in [27]. In

this case too, path planning takes place in a space defined

by parameters different, in general, from the configuration

parameters. Exploiting this property, [32] designed an effi-

cient steering method for differential drive vehicles pulling

trailers, method that was later adapted to the case of a car-

like vehicle [33]. This steering method, developed in parallel

with the one presented in this paper, is very close to being

a good candidate to solve our problem: it is topologically

admissible and it computes continuous-curvature paths for car-

like vehicles. However, it does not take into account the upper-

bounded curvature derivative constraint nor the upper-bounded

curvature constraint (what it does is to compute a path first

and then check afterwards that the upper-bounded curvature

constraint is not violated).

III. STATEMENT OF THE PROBLEM

A. Model of the Car-Like Vehicle

x

y

R

φ
b

θ

1

κ

Fig. 1. The car-like vehicle A: R = (x, y) is the reference point and θ the
main orientation. φ is the steering angle and b the wheelbase.
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As mentioned earlier, in order to address the curvature

discontinuity problem, [9] introduced the following model for

a car-like vehicle A moving forward only (Fig. 1):








ẋ
ẏ

θ̇
κ̇









=









cos θ
sin θ
κ
0









v +









0
0
0
1









σ (1)

This model extends the well-known Dubins model [7] by

considering the car as a four-dimensional system with the

curvature κ as an extra configuration parameter (the three

other configuration parameters are (x, y) the coordinates of

the reference point R and θ the main orientation of A). This

system has two controls: (1) v, the driving velocity of the rear

wheels, and (2) σ, the angular acceleration which is related to

φ̇, the steering velocity of the front wheels. Let b denote the

wheelbase of A, the following relationships hold:

κ =
tan φ

b
, σ = κ̇ =

φ̇

b cos2 φ
(2)

The focus in [9] is on shortest path planning. A constant

unit driving velocity is assumed along with an upper-bound

on the angular acceleration (stemming from the fact that the

steering velocity of an actual car is limited), in other words:

v = 1 and |σ| ≤ σmax (3)

Under these assumptions, planning a trajectory between

two configurations is equivalent to computing a continuous-

curvature planar curve, with a bound on the curvature deriva-

tive, between two points in the plane with prescribed tangents

and curvatures.

This model bounds the angular acceleration σ rather than

the steering velocity φ̇ (although it is the steering velocity

of A which is physically limited). This choice is in fact

conservative, it ensures that the steering velocity limit is never

violated no matter what the value of φ is (indeed ∀φ : φ̇ ≤
φ̇/ cos2 φ).

For our purpose, we keep [9]’s model and the constant unit

driving velocity assumption. However, for further realism, we

enrich the model as follows. First, to allow backward motions,

v can now take two values: v = 1 (forward motion) and

v = −1 (backward motion). In other words, cusp points are

now allowed. At a cusp, A instantaneously changes its motion

direction, both its orientation and curvature remain continuous.

Second, given that κ is related to the steering angle φ and that

φ is mechanically limited, |φ| ≤ φmax, a bounded curvature

constraint is introduced:

|κ| ≤ κmax = tanφmax/b (4)

Accordingly, our final model for A is given by (1) with:

|κ| ≤ κmax, |v| = 1 and |σ| ≤ σmax (5)

Henceforth, the term CC Car (for continuous-curvature car)

is used to denote a vehicle with such a model. Planning

a trajectory for the CC Car between two configurations is

equivalent to computing a continuous-curvature planar curve

joining two points in the plane with prescribed tangents and

curvatures. Such a curve must verify the upper-bounds on its

curvature and curvature derivative.

By design, such a curve can be followed at unit speed by

A. To enable A to follow it with a different constant speed

vd, the curvature derivative limit should be set to σmaxvd
−1.

B. Properties of the CC Car

Following the study of model (1) carried out by [9], [14]

and [34], the CC Car model (1)+(5) was studied by Scheuer

in [35] and [36]. It is established that the CC Car is small-

time controllable [35, Theorem 1]. The set of configurations

reachable from any configuration q before a time t contains a

neighbourhood of q for any t. The condition of existence of the

optimal, ie shortest, paths is also established: in the absence

of obstacles, if a path exists between two configurations then

an optimal path exists [35, Theorem 2].

The nature of the optimal paths is more difficult to establish.

However, [36] demonstrates that, for the CC Car moving

forward only (v = 1), the optimal paths are made up of:

(a) line segments, (b) circular arcs of radius κ−1
max, and

(c) clothoid arcs1 of sharpness ±σmax. It also demonstrates

that, whenever the shortest path includes a line segment (which

is the case as soon as the distance between the start and end

configurations is large enough), it involves infinite chattering:

in other words, it contains an infinite number of clothoid arcs

that accumulate towards the endpoints of the segment (these

results are the extension of similar results obtained in the case

of the model (1) by [9] and [14]).

Characterising the true nature of the optimal paths for

the CC Car is beyond the scope of this paper. Based on

the results mentioned above, it is conjectured that they will

(at least) be made up of line segments, circular arcs and

clothoid arcs, and that they will be irregular. This prevented

us from designing a steering method computing the optimal

path between two configurations. Instead, it prompted us to

settle for a steering method computing paths essentially made

up of locally optimal paths, ie line segments, circular arcs of

radius κ−1
max, and clothoid arcs of sharpness ±σmax.

IV. STEERING THE CC CAR

A. Principle

} }

Curvature

κmax

−κmax

Arc length

a

b

CC TurnCircular Arc

Fig. 2. Discontinuous curvature profile of a RS Path (left) vs piecewise
continuous curvature profile of a CC Path (right). The part from a to b is a
clothoid arc.

The steering method we have designed is called CC Steer. It

computes paths called CC Paths that are derived from “Reeds

and Shepp’s paths” (RS Paths) [8].

1A clothoid is a curve whose curvature varies linearly with its arc length:
κ(s) = αs + κ(0), α is the sharpness of the clothoid.
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The RS Path between two configurations is the shortest

path made up of line segments and circular arcs of minimum

radius κ−1
max. Its curvature profile looks like the one depicted

in Fig. 2. CC Paths are similar to RS Paths but, in order to

ensure curvature continuity, the circular arcs are replaced by

special transitions called CC Turns whose purpose is to change

the CC Car’s orientation. Their curvature varies continuously

and piecewise linearly from 0 up and then down back to 0.

They are made up of circular arcs of minimum radius κ−1
max

and clothoid arcs of sharpness |σ| ≤ σmax (Fig. 2).

CC Turns and line segments are combined in order to form

the CC Paths (cf §IV-B and §IV-C). However, the CC Paths

obtained by combining CC Turns and line segments only

cannot account for the small-time controllability of the CC car.

To avoid this problem, an extra type of CC Paths made up only

of line segments and clothoid arcs of sharpness |σ| ≤ σmax is

introduced (cf §IV-D).

B. CC Turns

1) General Case: In general, a CC Turn is made up of

three parts: (a) a clothoid arc of sharpness σ = ±σmax

whose curvature varies from 0 to ±κmax, (b) a circular arc of

radius ±κ−1
max, and (c) a clothoid arc of sharpness −σ whose

curvature varies from ±κmax to 0.

qs

qg

Ω

qi

qj

κ−1
max

C+

l (qs)

r

δ

µ

µ

−µ

δ − δmin

Fig. 3. CC Turns: general case.

What happens when the CC Car follows a CC Turn is

illustrated in Fig. 3. Let qs = (xs, ys, θs, 0) be the start

configuration. Without loss of generality, it is assumed that

qs = (0, 0, 0, 0) and that the CC Car moves forward while

turning to the left. First, it follows a clothoid arc of length

κmax/σmax and sharpness σmax until it reaches qi:

qi =















xi =
√

π/σmaxCf (
√

κmax
2/πσmax)

yi =
√

π/σmaxSf (
√

κmax
2/πσmax)

θi = κmax
2/2σmax

κi = κmax

(6)

with Cf and Sf , the Fresnel integrals. Then it follows a circu-

lar arc of radius κ−1
max until it reaches qj = (xj , yj , θj , κmax).

The centre of this circular arc, Ω, is located at distance κ−1
max

from qi in the direction normal to θi:

Ω =

{

xΩ = xi − κ−1
max sin θi

yΩ = yi + κ−1
max cos θi

(7)

Finally it follows a clothoid arc of sharpness −σmax until

it reaches the goal configuration qg = (xg, yg, θg, 0). Let δ =
(θg − θs) mod 2π denote the change of orientation between

qs and q. δ is the deflection of the CC Turn, it is used to

characterise CC Turns. The deflection of the CC Turn whose

circular arc has zero length is δmin = κmax
2σ−1

max.

It is the angular value of the circular arc of a CC Turn, ie

δ−δmin, that actually determines where the goal configuration

is: the locus of the goal configurations is a circle C+

l (qs),
henceforth called a CC Circle, whose centre is Ω and whose

radius r is:

r =
√

xΩ
2 + yΩ

2 (8)

In addition, the angle µ between the orientation of qg and the

tangent to C+

l (qs) at qg is constant; it is the opposite of the

angle between the orientation of qs and the tangent to C+

l (qs)
at qs:

µ = atan (xΩ/yΩ) (9)

qs

qg

qiqj

δ < δmin

µ

−µ

µ

δ = 0qg′

2r sinµ

Self-intersecting CC Turn

Fig. 4. CC Turns: “δ = 0” and “0 < δ < δmin” cases.

qs

qg

α

α

qi

bisector

s

κ

l
2

l

σ l
2

Fig. 5. Curvature profile and track of an elementary path of sharpness σ
and length l [37].
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2) CC Turns of Small and Large Deflections: with the

definition above, a CC Turn makes a loop and intersects itself

when the angle of its circular arc becomes too important

(Fig. 4). It can be shown that self-intersection happens for

deflections 0 < δ < δmin. In this case, we propose to use

instead a loopless and shorter path called an elementary path

and made up of: (a) a clothoid arc of sharpness σ ≤ σmax and

(b) a symmetric clothoid arc of sharpness −σ (Fig. 5). Such

a path is feasible and we have shown in [38] that there is a

unique σ ≤ σmax such that qg belongs to C+

l (qs):

σ =
π(cos(δ/2)Cf (

√

δ/π) + sin(δ/2)Sf (
√

δ/π))2

r2 sin2(δ/2 + µ)
(10)

As for the δ = 0 case, the CC Turn reduces to the line

segment of length 2r sinµ so as to ensure that the goal

configuration also belongs to C+

l (qs) (Fig. 4).

qs qg

qi

qj

C+

l (qs)

δ
µ

δ − δmin − 2π

Fig. 6. CC Turns: “δmin + π ≤ δ < 2π” case.

Finally, since the CC Car can make backward and forward

motions, it is possible to further refine CC Turns so as to

reduce their length. Once qi is reached, it is shorter for

CC Turns of large deflection to back up to qj instead of moving

forward (Fig. 6). Given that the angle of the circular arc of a

CC Turn of deflection δ is δ − δmin when the CC Car moves

forward from qi to qj , and δ − δmin − 2π when it moves

backward, the backward motion is shorter when δ ≥ δmin +π.

3) Properties of the CC Turns: In summary, a CC Turn

allows the CC Car to reach any goal configuration qg with a

null curvature which is located on the circle C+

l (qs) and such

that the angle between the orientation of qg and the tangent to

C+

l (qs) at qg is constant. It is the deflection associated with

qg that determines the nature of the CC Turn:

• δ = 0: the CC Turn is a line segment.

• 0 < δ < δmin: the CC Turn is made up of (a) a clothoid

arc of sharpness σ ≤ σmax and (b) a symmetric clothoid

arc of sharpness −σ.

• δmin ≤ δ < δmin + π: the CC Turn is made up of

(a) a clothoid arc of sharpness σmax whose curvature

varies from 0 to κmax, (b) a forward circular arc of radius

κ−1
max, and (c) a clothoid arc of sharpness −σmax whose

curvature varies from κmax to 0.

• δmin + π ≤ δ < 2π: the CC Turn is made up of (a) a

clothoid arc of sharpness σmax whose curvature varies

from 0 to κmax, (b) a backward circular arc of radius

κ−1
max, and (c) a clothoid arc of sharpness −σmax whose

curvature varies from κmax to 0.

qs
−µ

C+

l (qs)

C+
r (qs)

C−

l (qs)

C−

r (qs)

Ω

r

µ

−µ

µ

Fig. 7. The four CC Circles C+

l
(qs), C+

r (qs), C−
l

(qs) and C−r (qs)
attached to qs.

The above analysis was carried out for the case of the

CC Car moving forward while turning to the left. The case

where the CC Car is turning to the right is dealt with in the

same manner, it yields a symmetric CC Circle C+
r (qs) (Fig. 7).

Two similar CC Circles, C−

l (qs) and C−

r (qs), are obtained

when the CC Car moves backward (Fig. 7).

Length

δ
δmin δmin + π 2π0

l(0)

lmin

lmin + πκ−1
max

3κmaxσ
−1
max

Fig. 8. Arc length of a CC Turn (κmax = 1, σmax = 1) as a function of δ.

The arc length of a CC Turn depends upon its nature. Let

l(δ) denote the arc length of a CC Turn of deflection δ, it is

defined as follows (Fig. 8):

• δ = 0: the CC Turn is a line segment of length l(0) =
2r sinµ.

• 0 < δ < δmin: let σ be the sharpness characterising

the CC Turn in this case: l(δ) = 2
√

δσ−1. l(δ) increases

monotonously from 2r sinµ to lmin = 2κmaxσ
−1
max. lmin

is the arc length of the general CC Turn whose circular

arc has zero length.

• δmin ≤ δ < δmin + π: in this case, the arc length of

the CC Turn is lmin plus the arc length of its circular

arc: l(δ) = lmin +(δ− δmin)κ−1
max. l(δ) increases linearly

from lmin to lmin + πκ−1
max.
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• δmin + π ≤ δ < 2π: this is the same case as above:

l(δ) = lmin+(2π−δ+δmin)κ−1
max. l(δ) decreases linearly

from lmin + πκ−1
max to lmin + δminκ−1

max = 3κmaxσ
−1
max.

C. From CC Turns to CC Paths

qs

q1

q2
qg

qs

q1 q2

qg

Fig. 9. How RS Paths are computed: two circles of radius κ−1
max are attached

to the start and goal configurations qs and qg . Then a tangent intermediate

line segment (or circular arc of radius κ−1
max) q1q2 is used to connect two of

these circles.

CC Steer computes CC Paths by combining CC Turns and

line segments the same way circular arcs and line segments

are combined to form RS Paths (a basic illustration of how

RS Paths are computed is depicted in Fig. 9). Accordingly,

CC Steer has to analyse the tangency relationships that may

exist between the two sets of four CC Circles attached to the

start and goal configurations, and line segments or other simi-

lar CC Circles. However, due to the fact that the orientation of

the configurations located on the CC Circles make a constant

angle µ with the tangent to these circles, the tangency relation-

ships considered here (henceforth denoted by µ-tangency) is

slightly different from the classical one. Accordingly, before

detailing how CC Steer operates (§IV-C.3), we present the

particulars of the µ-tangency. Two cases are considered: µ-

tangency between line segments and CC Circles (§IV-C.1),

and µ-tangency between CC Circles (§IV-C.2).

1) Line Segments-CC Circles µ-Tangency: In Reeds and

Shepp’s case, two circles associated with two given configu-

rations can be connected by one of the tangent line segments

existing between them. In our case however, the µ-tangent line

segments are different: they must cross the CC Circles so as

to make an angle µ with the tangent at the intersection points.

As in the regular tangent case, µ-tangent line segments can

be internal (ie separating) or external depending on the type

of CC Circles that are to be connected. Fig. 10 illustrates how

µ-tangent line segments are obtained in two cases (the other

cases are symmetric and derived similarly):

• Connecting C+
r and C−

l : the µ-tangent line segment is

external and parallel to the line of centres Ω1Ω2 (Fig. 10

top). A straightforward geometric analysis shows that the

external µ-tangent line segment q1q2 exists iff:

l(Ω1Ω2) ≥ 2r sinµ (11)

and that its length is:

l(q1q2) = l(Ω1Ω2) − 2r sinµ (12)

Ω1 Ω2

C+
r C−

l

Ω1

Ω2

C+
r

C−

r

r
µ

q1 q2

q1

q2

r cos µ

r sinµ

qs

qs

qg

qg

Fig. 10. µ-tangent line segments between two CC Circles, external (top) and
internal (bottom).

• Connecting C+
r and C−

r : the µ-tangent line segment

is internal and crosses the line of centres Ω1Ω2 (Fig. 10

bottom). Once again, a straightforward geometric analysis

shows that the internal µ-tangent line segment exists iff:

l(Ω1Ω2) ≥ 2r (13)

and that its length is:

l(q1q2) =
√

l(Ω1Ω2)2 − 4r2 cos2 µ − 2r sinµ (14)

Ω1 Ω2

C1 C2

r

µ

q1

Ω1 Ω2

C1 C2

r

µ

q1

qs

qs

qg

qg

Fig. 11. µ-tangency between two CC Circles: no change of direction of
motion (top), change of direction of motion (bottom).

2) CC Circles µ-Tangency: In Reeds and Shepp’s case,

two circles associated with two given configurations can also

be connected by a circle tangent to both of them (Fig. 9

left). Similarly two CC Circles can be connected thanks

6



to a third CC Circle. In our case however, the tangency

relationship between two CC Circles is different from the

classical tangency relationship existing between two circles.

Two cases arise depending on whether there is a change of

direction of motion when passing from the first CC Circle to

the second one.

• No change of direction of motion: in this case, the µ-

tangency condition between two CC Circles C1 and C2

is the classical one. C1 and C2 are µ-tangent if they are

in the disposition depicted in the top part of Fig. 11. Let

q1 denote the configuration located at the contact point

between C1 and C2, and that makes an angle µ with

both C1 and C2. Then the path made up of the CC Turn

from qs to q1 and the CC Turn from q1 to qs is a valid

CC Path. q1 belongs to the line of centres Ω1Ω2 and it

exists iff:

l(Ω1Ω2) = 2r (15)

• Change of direction of motion: in this case, the µ-

tangency condition between two CC Circles C1 and C2

is different. C1 and C2 are µ-tangent if they are in the

disposition depicted in the bottom part of Fig. 11. Let q1

denote the configuration located at one of the intersection

points between C1 and C2, and that makes an angle

µ with both C1 and C2. Then the path made up of

the CC Turn from qs to q1 (moving forward), and the

CC Turn from q1 to qs (moving backward) is a valid

CC Path. In this case, q1 does not belong to the line of

centres Ω1Ω2 and it can be shown that it exists iff:

l(Ω1Ω2) = 2r cos µ (16)

3) Building CC Paths using CC Turns: there is an infinite

number of ways to connect two given configurations with

paths combining CC Turns and line segments. It is the same

for RS Paths but the key result established by Reeds and

Shepp [8] is that the shortest RS Paths belongs to a set of nine

families. The conjectured irregularity of the optimal paths for

the CC Car would rule out the determination of such families.

We settled for heuristically selected families instead. Our first

choice was to use the families determined by Reeds and Shepp

(we later experimented with an extended set of families but

obtained mixed results only [39]). These families are:

(i)(ii)(iii) CCC or C|CC or CC|C
(iv) CC|CC
(v) C|CC|C
(vi) C|CSC|C
(vii)(viii) C|CSC or CSC|C
(ix) CSC

(17)

where C (resp. S) denotes a CC Turn (resp. line segment), and

| a change of direction of motion (a cusp point). Note that, by

design, the CC Paths above can connect configurations with

null curvature only, ie for which the front wheels’ orientation

of the car is null (this restriction is addressed later in §V-

B). Given two configurations with null curvature, CC Steer

operates by computing the shortest CC Paths among the

families (17).

As far as computing the candidate CC Paths between two

given configurations is concerned, it should be noted first that

all the families (17) are made up of one or more part of type

CSC, CC or C|C, and that such parts are precisely the type

of paths that were built in the two previous sections while

studying the various µ-tangency properties (§IV-C.1 and §IV-

C.2) . It should be noted also that the condition of existence

and the characterisation of the CSC, CC and C|C paths stem

directly from these µ-tangency properties. Accordingly, the

condition of existence of a CC Path of any given type is readily

obtained by combining these conditions of existence. Once the

existence of a given type of CC Path is ascertained, it can be

computed and its arc length can be determined using (12), (14)

and the results established in §IV-B.3 on the arc length of a

CC Turn.

D. Small-Time Controllability Issues

1) Topological Admissibility: as mentioned in §I, the pur-

pose of our steering method CC Steer is to be used within

a general motion planning scheme such as the Probabilistic

Path Planner [10] or the Ariadne’s Clew Algorithm [11] or

the Holonomic Path Approximation Algorithm [12]. In order

to ensure that the coupling between the planning scheme and

the steering method yields a complete (or probabilistically

complete) collision-free path planner, the steering method

is required to account for the small-time controllability of

the system under consideration. In other words, it must be

topologically admissible, ie verify the following topological

property [13]:

∀ε > 0,∃η > 0,∀(q1, q2) ∈ C2,
q2 ∈ B(q1, η) =⇒ Steer (q1, q2) ⊂ B(q1, ε)

(18)

where B(q, ε) denotes the configuration space ball of size ε
centred around q, and Steer (q1, q2) denotes the path from

q1 to q2 computed by the steering method. In other words,

the steering method must be able to connect two η-neighbour

configurations with a path that remains in an ε-neighbourhood.

Because of the nature of the CC paths, CC Steer is not

topologically admissible. Indeed, no matter how close the start

and goal configurations are, the CC Path connecting them

includes at least one CC Turn (except if the start and goal

configurations are perfectly aligned), and since the length of

a CC Turn is lower bounded by 2r sinµ (cf IV-B.3), (18) is

violated. The approach we have chosen to make CC Steer

topologically admissible is to extend the set of families (17).

A new family of CC paths is introduced, henceforth called

topological paths. They are made up of line segments and

clothoid arcs, they do not include CC Turns and are designed

so as to verify (18).

2) Topological Paths: The topological path between two

configurations qs and qg is the concatenation of two parts:

1) A reorientation path between qs and an intermediate

configuration qj which has the same orientation as qg

and is located on the line passing through qg with a

direction perpendicular to the orientation of qg (Fig. 12).

2) A lateral path between qi and qg (Fig. 13).
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qs

qi qj

qg

Fig. 12. The reorientation path defined for qs and qg : it connects qs and
qj .

qj

qg

qk

ql

Fig. 13. The lateral path between qj and qg .

Reorientation and lateral paths are respectively described in

the next two sections whereas appendix C establishes that the

topological paths verify the topological property (18).

3) Reorientation Paths: The reorientation path defined for

two configurations qs and qg in the disposition depicted in

Fig. 12 has two parts:

• A backward turn starting from qs made up of two

symmetric clothoid arcs to an intermediate configuration

qi which has the same orientation as qg .

• A forward motion along a line segment until qj , the

configuration located on the line passing through qg with

a direction perpendicular to the orientation of qg , is

reached.

Appendix B details how reorientation paths are computed.

4) Lateral Paths: The lateral path between between qj and

qg has three parts (Fig. 13):

• A forward turn made up of two symmetric clothoid arcs

connecting qj and an intermediate configuration qk.

• A backward motion along a line segment to an interme-

diate configuration ql.

• A forward turn made up of two symmetric clothoid arcs

connecting ql to qg .

There is an infinite number of such paths between qj and qg .

Two extra constraints are introduced in order to reduce this

number to one. First, the lateral path should be symmetric

with respect to the midpoint of the line segment connecting

qj and qg . This constraint forces the line segment part of the

lateral path to pass through this midpoint. Second, the shortest

lateral path verifying the previous constraint is selected to be

the lateral path between qj and qg . Appendix A details how

lateral paths are computed.

E. CC Steer

In summary, given two configurations with null curvature,

CC Steer computes all the existing CC Paths of the different

families (17) plus the topological path connecting them. Then

CC Steer selects and returns the shortest candidate.

In order to be complete, CC Steer must be able to compute

a connecting path between any pair of arbitrary configurations

with null curvature. Given two such configurations, the ex-

istence of the CC Path of one of the different families (17)

connecting them depends on their disposition (cf §IV-C.3).

However, by construction, the topological path connecting

them always exists (cf appendices A and B). Accordingly,

CC Steer is complete; it can connect any given pair of

configurations with null curvature.

In general, the topological path between two configurations

is longer than the shortest CC Paths of the different fam-

ilies (17). However, when the start and goal configurations

converge towards one another, the topological path eventually

becomes the shortest one and it is selected by CC Steer.

CC Steer therefore accounts for the small-time controllability

of the CC Car and the coupling between CC Steer and one of

the aforementioned general planning scheme yields a complete

(or probabilistically complete) collision-free path planner.

F. CC paths and RS Paths

qs

Ω

qi

κ−1
max κ−1

max

C+

l (qs)

r

µ

Fig. 14. Convergence of C+

l
(qs) when σmax tends to infinity.

Looking back at Fig. 2, it can be noted that the curvature

profile of a CC Path would converge towards the curvature

profile of a RS Path should σmax tend to infinity. As a matter

of fact, according to Eqs. (6), (7), (8) and (9), it can be verified

that, when σmax tends to infinity:














qi = (0, 0, 0, κmax)
Ω = (κ−1

max sin θs, κ
−1
max cos θs)

r = κ−1
max

µ = 0

In other words, C+

l (qs) becomes a circle of radius κ−1
max

tangent to qs (Fig. 14). This circle is precisely one of the

circles that are used to compute RS Paths. Similar convergence

affects the other CC Circles C+
r (qs), C−

l (qs) and C−

r (qs). Ac-

cordingly, when σmax tend to infinity, the CC Paths obtained

converge towards the corresponding RS Paths.

V. EXPERIMENTAL RESULTS

A. CC paths vs RS Paths

Fig. 15 depicts examples of paths computed by CC Steer.

By design, the transition configurations between CC Turns

and line segments (marked as cross in Fig. 15) have a null
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Fig. 15. Examples of CC Paths: C|CC (left) and CSC (right).

curvature (the orientation of the front wheels of A is null).

A can therefore pass from one part of a CC Path to the next

without having to stop in order to reorient its front wheels

(this is also true for cusp points).

TABLE I

RS vs CC PATHS’ LENGTH (1000 PATHS).

min. average max. deviation

ratio 1.00253 1.1065 2.45586 0.172188

TABLE II

RS vs CC PATHS’ COMPUTATION TIME.

RS (1000 paths) CC (1000 paths) average ratio

3.466586 s. 4.483492 s. 1.33

CC Steer has been implemented along with a function

computing RS Paths. Comparisons were made regarding the

length of the paths and the time required for their computation.

The ratio of CC over RS Paths’ lengths were computed for

a thousand pairs of (start, goal) configurations. The results

obtained for |σmax| = 1 are summarised in Table I. In

most cases (82%), CC paths are only about 10% longer

than RS Paths. Similar experiments were carried out for the

computation time. The running time of CC Steer is of the same

order of magnitude (Table II).

B. Embedding CC Steer in General Planning Schemes

Fig. 16. Examples of collision-free paths (made up of CC Paths) for the
CC Car moving forward only [38].

To demonstrate the capabilities of CC Steer for collision-

free path planning, we embedded it into two general planning

schemes.

First, we used the Probabilistic Path Planner (PPP) [10] to

plan collision-free paths for the CC Car moving forward only.

In this case, the families of CC Paths considered by CC Steer

were restricted to paths without cusp points. Fig. 16 depicts

some results obtained for a polygonal environment [38].

Fig. 17. Collision-free path planning for the CC Car in a parallel parking-like
situation [39]

Fig. 18. Collision-free path planning for the CC Car in a parking lot [39]

Second, we used the Ariadne’s Clew Algorithm (ACA) [11]

to plan collision-free paths for the regular CC Car, ie with for-

ward and backward motions. Unlike PPP which is a roadmap-

based, ACA is a direct method; it develops a tree rooted at the

start configuration until the goal is reached. Fig. 17 depicts

the result obtained in a parallel parking-like situation (the

exploration tree is depicted on the left part of the figure).

Fig. 18 shows a path planning example in the Inria Rhône-

Alpes parking lot [39]. The exploration tree is displayed in

grey. Note that since CC Steer permits to place tree nodes

very far from each other, few tree nodes suffice to cover the

whole free space and the resulting path looks quite natural.

In all cases, the collision-free paths resulting from the

coupling of CC Steer with a general planning scheme are

concatenation of CC Paths. Because CC Paths are designed

to connect configurations with null curvature, the transition

configurations between two consecutive CC Paths must have

null curvature and so do the start and goal configurations.

The curvature profile of the overall resulting path is therefore
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continuous and a car-like vehicle can move from one CC path

to the next without ever having to stop in order to reorient its

front wheels (of course, it has to stop at cusp points in order

to change its motion direction).

In our opinion, the restriction on the curvature of the start

and goal configurations is not so important since an actual car-

like vehicle can always reorient its front wheels on the spot

(and such a ‘motion’ is collision-free). In other words, to solve

a path planning problem between two configurations with

non-null curvature, the corresponding path planning problem

between the same two configurations with null curvature

is solved using a general planning scheme coupled with

CC Steer. Then, the collision-free path obtained is completed

by two on-the-spot front wheels’ reorientations both at the

start and goal configurations.

VI. CONCLUSION

In this paper, we have presented CC Steer, the first steering

method for a car-like vehicle that computes paths with contin-

uous curvature, upper-bounded curvature and upper-bounded

curvature derivative. CC Steer computes paths made up of

line segments, circular arcs and clothoid arcs. It is designed

to connect configurations with null curvature, ie for which

the front wheels’ orientation of the car is null. CC Steer is

complete, ie it can connect any such pair of configurations,

and it verifies a topological property that ensures that the

coupling between CC Steer and a general planning scheme

yields a complete collision-free path planner. CC Steer does

not compute minimal length paths. However, we have shown

that it computes, in about the same time, paths whose length

is close to the length of the optimal paths for the ‘Reeds and

Shepp’ car (as a matter of fact, when the curvature derivative

limit tends to infinity, the paths computed by CC Steer tend

to the optimal Reeds and Shepp paths).

The coupling of CC Steer with a general motion planning

scheme yields a path planner that computes collision-free paths

with a continuous curvature profile. A car-like vehicle can

therefore follow such a path without ever having to stop in

order to reorient its front wheels. Besides, such paths can be

followed with a nominal speed which is proportional to the

curvature derivative limit. Given that paths with continuous

curvature, upper-bounded curvature and upper-bounded cur-

vature derivative can be tracked at high speed with a much

greater accuracy by real vehicles (cf the experimental results

obtained in [35]), the results reported herein fully demonstrate

the interest of CC Steer.

APPENDIX

A. Computing Lateral Paths

With reference to Fig. 13, let qj denote the configuration of

null orientation and let L denote the half-line of orientation

α anchored at qj (Fig. 19). Let qk(r) denote a configuration

of orientation 2α located on L at a given distance r. The

elementary path (cf IV-B.2) connecting qj and qk(r) exists and

does not violate the upper-bounded curvature constraint (4) iff

r is lower bounded (cf [36, Property 4] or [37, Theorem 1]):

r ≥ r1
min(α) = 2κ−1

max

√

2π|α|D(|α|) (19)

qj

qk(r)

α

α

2αd(α)

L

Λ

Fig. 19. Computing a lateral path (see Fig. 13).

where D is the real function defined over [0, π] as:

D(u) = cosu Cf

(

√

2u

π

)

+ sinu Sf

(

√

2u

π

)

with Cf and Sf the Fresnel integrals [40].

The elementary path Λ connecting qj and qk(r) is uniquely

defined. The sharpness of its clothoid arcs is [36, Property 4]

or [37, Eq. (3)]:

σ(α, r) = 4πsgn(α)
D(|α|)2

r2
(20)

and its length is:

l(α, r) = 2

√

2α

σ(α, r)
(21)

Now, the upper-bounded curvature derivative constraint (3)

yields an upper bound on the sharpness in (20): |σ(α, r)| ≤
σmax, which yields an additional lower bound on r:

r ≥ r2
min(α) = 2

√

πσ−1
maxD(|α|) (22)

Let us define the following function:

r(α) = max{r1
min(α), r2

min(α)} (23)

Given an orientation α, r(α) is the distance of the closest

configuration qk of orientation 2α located on L that can be

connected by an elementary path verifying both the upper-

bounded curvature constraint (4) and the upper-bounded cur-

vature derivative constraint (3).

The line of orientation 2α passing through qk intersects the

line perpendicular to qj at a point located at a distance d(α)
from qj :

d(α) =
r(α) sin(2α)

2 cos(α) cos(2α)
(24)

Now, to determine the lateral path between two configura-

tions qj and qg separated by a distance ε, it suffices to use

(24) in order to determine α such that d(α) = ε/2.

B. Computing Reorientation Paths

Let qg denote a goal configuration of null orientation and

let δθ denote the orientation gap between qg and the start

configuration qs. Let L denote the half-line of orientation

π + δθ/2 anchored at qs (Fig. 20). As per §A, a backward
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qs

qi

qj

qg

δθ/2

δθ/2

Λ

L

Fig. 20. Computing a reorientation path.

elementary path starting from qs can connect any configuration

of null orientation located on L at a distance greater than

r(δθ/2).
Let qi denote the configuration of null orientation located

on L at the minimum distance r(δθ/2). The elementary path

Λ connecting qs and qi is uniquely defined (cf §A), and so

is the configuration qj which is the intersection between the

line of null orientation passing through qi and the line passing

through qs with a direction perpendicular to the orientation of

qs. The reorientation path defined for qs and qg is therefore

completely determined.

C. Topological Admissibility of the Topological Paths

Leu us assume that qs and qg are separated by a distance η
(in both position and orientation).

Consider Fig 20, qi is located at a distance r(η/2) from qs

and the length of the elementary path connecting qs and qi

is l(η/2, r(η/2)). A straightforward geometric analysis shows

that the distance between qi and qj is |r(η/2) cos(η/2) − η|.
It can be concluded then that the reorientation path from qs

to qj is entirely contained in a ball centered at qs of radius:

rr = l(η/2, r(η/2)) + |r(η/2) cos(η/2) − η|

Consider now Figs 13 and 19, it can be shown that the

distance between qj and qg is |r(η/2) sin(η/2)− η|. Let α be

such that d(α) = |r(η/2) sin(η/2) − η|/2, then qk (resp. ql)

is located at a distance r(α) from qj (resp. qg). As for the

elementary paths from qj to qk, and ql to qg , their lengths is

l(α, r(α)). It can be concluded then that the lateral path from

qj to qg is entirely contained in a ball centered at qj of radius:

rl = |r(η/2) sin(η/2) − η| + l(α, r(α))

Accordingly, the topological path between qs and qg is

entirely contained in a ball centered at qs of radius:

rt = rr + rl

When qs converges towards qg , ie when η converges towards

0, the orientation α such that d(α) = |r(η/2) sin(η/2)− η|/2
also converges towards 0 (indeed, α = 0 is a straightforward

solution to d(α) = 0). Now, given that both:

lim
α→0+

r(α) = 0 and lim
α,r→0+

l(α, r) = 0,

we have rt that converges towards 0. Accordingly, thanks to

the topological paths, CC Steer can access a neighbourhood

of a configuration qs without escaping a ball centered at qs

(no matter how small the ball). It accounts for the small-time

controllability of A.
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