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From Regional to Global Brain: A Novel

Hierarchical Spatial-Temporal Neural Network

Model for EEG Emotion Recognition
Yang Li, Student Member, IEEE, Wenming Zheng∗, Senior Member, IEEE, Lei Wang, Senior Member, IEEE,

Yuan Zong, Student Member, IEEE, and Zhen Cui, Member, IEEE

Abstract—In this paper, we propose a novel Electroencephalo-
graph (EEG) emotion recognition method inspired by neuro-
science with respect to the brain response to different emotions.
The proposed method, denoted by R2G-STNN, consists of spatial
and temporal neural network models with regional to global
hierarchical feature learning process to learn discriminative
spatial-temporal EEG features. To learn the spatial features,
a bidirectional long short term memory (BiLSTM) network is
adopted to capture the intrinsic spatial relationships of EEG
electrodes within brain region and between brain regions, respec-
tively. Considering that different brain regions play different roles
in the EEG emotion recognition, a region-attention layer into the
R2G-STNN model is also introduced to learn a set of weights
to strengthen or weaken the contributions of brain regions.
Based on the spatial feature sequences, BiLSTM is adopted to
learn both regional and global spatial-temporal features and the
features are fitted into a classifier layer for learning emotion-
discriminative features, in which a domain discriminator working
corporately with the classifier is used to decrease the domain
shift between training and testing data. Finally, to evaluate
the proposed method, we conduct both subject-dependent and
subject-independent EEG emotion recognition experiments on
SEED database, and the experimental results show that the
proposed method achieves state-of-the-art performance.

Index Terms—EEG emotion recognition, regional to global,
spatial-temporal network

I. INTRODUCTION

Emotion plays an essential role in human life [1]. Pos-

itive emotions could be helpful to improve the efficiency

of our daily work, while negative emotions may influence

our decision-making, attention, or even health [2]. Although

it is easier for us to identify the other people’s emotion

from their facial expressions or speeches, it is still difficult

for machine to do such work. Nevertheless, the study of

emotion recognition using computer had attracted more and

more researchers during the past several years, and emotion

recognition had become a hot research topic in the research
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community of affective computing and pattern recognition [3].

Basically, emotion recognition methods could be categorized

into the verbal behavior based methods (e.g., emotion recog-

nition based on speech signals) and the nonverbal behavior

based methods (e.g., emotion recognition based on facial

expression images or physiological signals [4]). As a typical

physiological signal, Electroencephalograph (EEG) had been

widely applied to dealing with emotion recognition in recent

years.

In dealing with EEG based emotion recognition problem,

we usually encounter two major technical challenges. One

is how to extract discriminative emotional feature from EEG

signals, and the other one is how to develop more effective

computational model for emotion recognition. Typically, EEG

features can be extracted from time domain, frequency do-

main, and time-frequency domain [5]. For example, Lin et

al. [6] investigated the relationships between emotional states

and brain activities, and extracted power spectrum density,

differential asymmetry power, and rational asymmetry power

as the features of EEG signals. For the computational model

problem, researchers have proposed many methods and models

to recognize emotions through EEG signals [7][8][9][10][11].

Garca-Martnez et al. [12] summarized the most recent works

that have applied nonlinear methods in EEG signal analysis

to emotion recognition. Among the various EEG emotion

recognition methods, it is notable that the recent development

of deep learning based methods are becoming dominant for

improving the performance of EEG emotion recognition. For

example, Zheng et al. [7] introduced deep belief networks

(DBNs) to construct EEG-based emotion recognition models.

Pallavi Pandey et al. [13] proposed a multilayer perceptron

neural network for subject-independent emotion recognition.

Song et al. [14] constructed a graph relation based on multi-

channel EEG data and then performed graph convolution on it

to extract feature for classification. Li et al. [15] considered the

domain shift for EEG data, and utilized the difference between

two brain hemispheres to decrease this shift and achieved the

state-of-the-art performance.

Although various EEG emotion recognition methods had

been proposed in the past several years, there are still some

major issues that should be well investigated in order to

further improve the EEG emotion recognition performance.

The first one is to extract robust high-level semantic features

from the EEG signal. The current EEG recognition methods

usually employ some handcraft features, such as statistic
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features in time domain, band power in frequency domain,

and discrete wavelet transform in time-frequency domain [5].

It is desired to investigate more powerful discriminative deep

features with both spatial and temporal information of EEG

signals [16]. The second issue is about what brain regions

are more contributive to the emotion recognition and how

to make use of these topographical information of these

brain regions to improve the EEG emotion recognition. The

recent neuroscience researches showed that human’s emotion

is closely related to a variety of brain cortex regions [17], such

as the orbital frontal cortex, ventral medial prefrontal cortex,

amygdala [18][19][20]. Consequently, the EEG signals associ-

ated with different brain regions would contribute differently

to emotion recognition [21][22][23][24] and hence making use

of the spatial information of EEG signals would be helpful

for emotion recognition and could provide a physiological

explanation to understand human emotion. The third issue

is how to utilize the temporal information of EEG signals

across different brain regions to improve emotion recognition.

This is because EEG signals are dynamical time series and

the temporal information usually carries important emotion

messages that are very helpful to identify different emotions.

Inspired by the neuroscience finding that the brain response

to different emotions would be varied in different brain

regions. In this paper we propose a novel neural network

model, denoted by R2G-STNN, to address the aforementioned

three major issues in EEG emotion recognition. The basic

idea is to integrate the EEG spatial-temporal information of

both local and global brain regions into the EEG features

to boost the emotion recognition performance. Specifically,

R2G-STNN consists of both spatial and temporal neural

network layers with regional to global (R2G) hierarchies of

feature learning process to capture the emotional responses

and structural relation of different brain regions for learning

the discriminative spatial-temporal EEG features. The R2G-

STNN framework includes the following two major modules:

(1) Feature extractor. The feature extractor module aims to

learn discriminative spatial and temporal EEG features

using bidirectional long short term memory (BiLSTM)

network within each brain region and between the differ-

ent brain regions, respectively. Considering that different

brain regions play different roles in the EEG emotion

recognition, a region-attention layer is also introduced to

learn a set of weights indicating the contributions of brain

regions.

(2) Classifier and discriminator. This module aims to pre-

dict the emotion class information based on the spatial-

temporal features obtained from the feature extractor

module. It can also guide the overall neural network

learning towards generating more discriminative EEG

features for emotion classification. Moreover, we also

introduce a discriminator to alleviate the domain shift

between source and target domain data, which will enable

the hierarchical feature leaning process to generate emo-

tion discriminative but domain adaptive EEG features.

By combining the aforementioned three modules together,

we can learn more discriminative and domain-robust EEG

features for improving emotion recognition performance. In

summary, the major contributions of this paper include the

following two major parts:

• Propose a novel neuroscience inspired hierarchical

spatial-temporal EEG feature learning model, which is

able to capture both spatial and temporal emotion infor-

mation from EEG signals within each brain region and

across different brain regions;

• Propose a weighting method to evaluate the different

contributions of the brain regions to the EEG emotion

recognition, which would be advantageous to further

improve the EEG emotion recognition by enhancing the

influence of the most contributive brain regions while

alleviating the influence of the less contributive regions

through the region weights.

The remainder of this paper is organized as follows: In

section II, we overview the preliminary work of bidirectional

long short term memory network. In section III, we specify

the method of R2G-STNN as well as its application to EEG

emotion recognition. In section IV, we conduct extensive

experiments to evaluate the proposed method for EEG emotion

recognition. Finally, in sections V, we discuss and conclude

the paper.

II. PRELIMINARY

In this section, we will briefly overview the preliminary

work of bidirectional long short term memory (BiLSTM)

network [25] and then address how we can apply it to the

EEG feature extraction task.

The conventional single directional long short term memory

(LSTM) network [26] is a special type of recurrent neural

network (RNN) [27], which usually consists of three gates

and a cell state for dealing with the long-term dependence of

data sample sequence. These gates allow LSTM to keep the

important data information and forget unnecessary informa-

tion of the data samples [28]. However, one shortcoming of

conventional LSTM is that it only make use of the previous

context. The BiLSTM module is able to process data using two

directions with separate hidden layers, respectively [25]. As a

result, compared with the traditional LSTM model, BiLSTM

can access the long-range context in both input directions, and

hence it could be better used to model time sequences.

When dealing with the EEG data processing problem, it

is interesting to see that the EEG signals associated with

the electrodes of each brain region can be treated as virtual

sequence since the dimensions of all the electrodes are same.

For this reason, the EEG data can be fed into BiLSTM module

to extract high-level deep features, which will contain the

spatial relation information. Moreover, benefiting from the less

probable disturbance of electrode arrangement in the input

sequence, we use BiLSTM rather than conventional single

directional LSTM to model the electrodes’ data in each brain

region, then forward construct their spatial relations.

III. R2G-STNN FOR EEG-BASED EMOTION RECOGNITION

In this section, we will specify the R2G-STNN model as

well as the method of applying this model to dealing with
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Fig. 1: The framework of R2G-STNN. The region to global (R2G) process includes two directions, i.e., spatial and temporal

streams. The spatial stream constructs the relation in and among all the brain regions hierarchically, while the temporal stream

captures the EEG signal’s dynamic information as well as learning from the brain regions’ time sequences.

EEG emotion recognition. Fig. 1 illustrates the framework

of the R2G-STNN method, from which we can see that the

R2G-STNN method consists of three major parts, i.e., feature

extractor part, the classifier part, and the discriminator part. In

what follows, we will address these parts in details.

A. Spatial feature learning

Suppose that we are given a trial of raw EEG signals S.

Then, we divide S into several segments. For each segment of

EEG signals, we extract a set of handcraft features (e.g., the

differential entropy (DE) features [7] on five EEG frequency

bands, i.e., δ band (1-3Hz), θ band (4-7Hz), α band (8-

13Hz), β band (14-30Hz), γ band (31-50Hz)) from each

EEG electrode. Moreover, to explore the dynamic temporal

information of EEG signals, every T = 9 neighboring EEG

segments are chosen to constitute an EEG sample. In this case,

each EEG sample will correspond to a handcraft feature tensor.

Let X = [x1,x2, · · · ,xT ] ∈ R
d×n×T denote an EEG

sample, where xi denotes a handcraft feature matrix extracted

from the i-th segment of EEG signals (denoted by blue dashed

rectangle box shown at the bottom of Fig. 1), d, n and

T denote the number of features associated with each EEG

electrode, the number of electrodes, and the number of EEG

segments in one EEG sample, respectively. Then, from Fig. 1

we can see that, for each xi (i ∈ {1, 2, · · · , T}), the spatial

feature learning for xi consists of two feature extracting layers,

which achieves a progressive feature learning from regional

brain to global brain.

Fig. 2 illustrates the detailed learning procedure for the input

handcraft feature matrix xi. Firstly, we group the columns

of xi into several clusters, where each cluster corresponds to

a brain region determined by the spatial locations of EEG

electrodes, resulting in a set of regional handcraft feature

vectors in each brain region. Then, the regional handcraft

feature vectors of each brain region are fed into the same

amount of BiLSTM networks to learn regional deep features.

After extracting the regional spatial feature, a region-attention

layer is used to learn a set of weights indicating the importance

of the divided regions and the weights are used to penalize the

regional deep features. Finally, at the top of the spatial feature
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Fig. 2: The regional to global spatial feature learning process,

which consists of three layers, i.e., regional feature learning

layer, dynamic weight layer, and global feature learning layer.

learning layer, the weighted regional feature vectors are further

fed into BiLSTM to learn global deep features. These detailed

operations of spatial feature learning are described as follows:

1) Regional feature learning: Let vij denote the handcraft

feature vector associated with the j-th EEG electrode. Let

xi = [vi1,vi2, · · · ,vin] ∈ R
d×n. Now we group the n

columns of xi into several clusters according to the associated

electrodes, where each cluster corresponds to a brain region,

e.g.,

brain region 1: R1

i = [v1

i1,v
1

i2, · · · ,v
1

in1
],

· · ·

brain region N: RN
i = [vN

i1 ,v
N
i2 , · · · ,v

N
inN

],

where N is the number of brain regions, nj denotes the num-

ber of electrodes in the j-th brain region, n1 + · · ·+nN = n.

In this case, we change the order of the columns of xi and

express it as a block matrix denoted by

x̂i = [R1

i , · · · ,R
N
i ],

which is called the regional handcraft feature matrix. For

each block matrix R
j
i (j = 1, · · · , N ), it is notable that

each column corresponds to an EEG electrode. Consequently,

we can model the spatial relationships of the electrodes by

applying BiLSTM to the columns of each block matrix to

obtain high-level deep features, which can be formulated as

L(R1

i ) = [h1

i1,h
1

i2, · · · ,h
1

in1
] ∈ R

2dr×n1 , (1)

· · ·

L(RN
i ) = [hN

i1,h
N
i2, · · · ,h

N
inN

] ∈ R
2dr×nN , (2)

where L(·) denotes the BiLSTM operation, h
j
ik ∈ R

2dr

denotes the k-th forward and backward hidden units of BiL-

STM, dr is the hidden units dimension of regional spatial

BiLSTM. After the above regional feature learning process,

we concatenate the last hidden units of BiLSTM as the feature

representation. In this case, the local features of all the regions

can be expressed as

Hr
i = [h1

in1
, · · · ,hN

inN
] ∈ R

2dr×N . (3)

2) Attention-based brain region weights learning: The re-

search of neuroscience indicated that different emotions are

closely related to different brain regions such as orbital frontal

cortex or ventral medial prefrontal cortex. Hence, the EEG

signals associated with different brain regions would con-

tribute differently to emotion recognition. For this reason, we

introduce a weighting layer to emphasize the contributions of

the electrodes of the brain regions in EEG emotion recognition.

Specifically, for each brain region, we introduce a dynamic

weight, denoted by matrix W = {wij}, to weight electrodes

of each brain region, i.e.,

Ĥr
i = Hr

i W, (4)

W = (Q tanh(PHr
i + breT ))T, (5)

wij =
exp(wij)

∑N

k=1
exp(wkj)

, (6)

where P and Q are learnable transformation matrices, br is

the bias, and e denotes an N -dimensional vector with all

elements 1, i.e., e = [1, 1, · · · , 1]T . The columns of W are

normalized and the elements are restricted to be nonnegative

using Eq. (6). In this case, we obtain that the larger wij is,

the more important i-th region is.

3) Global feature learning: This layer is used to capture the

potential structural information based on the above obtained

weighted regional spatial features Ĥr
i . Here, we employ an-

other BiLSTM network to capture the global structure of all

EEG brain regions, which can be formulated as

L(Ĥr
i ) = [hg

i1,h
g
i2, · · · ,h

g
iN ] ∈ R

dg×N , (7)

where h
g
ik denote the k-th hidden unit of BiLSTM, dg is

dimension of global spatial BiLSTM.

For the feature vector sequence h
g
i1, · · · ,h

g
iN , we use them

as input data and learn another feature vector sequence ac-

cording to the following rule:

ĥ
g
ik = σ(

N
∑

i=1

G
g
jkh

g
ij + bg), k = 1, 2, · · · ,K, (8)

Ĥ
g
i = [ĥg

i1, ĥ
g
i2, · · · , ĥ

g
iK ], (9)

where Gg = [Gg
jk]N×K is a project matrix, bg is a bias and

K is the length of the compressed sequence, σ(·) denotes a

nonlinear mapping function. In this case, we finally get the

global-level features associated with the i-th EEG segmenta-

tion handcraft feature matrix xi.

B. Temporal feature learning

Let h
j
i (j = 1, · · · , N ) denote the last hidden unit of the j-

th brain region associated with the i-th EEG handcraft feature

matrix xi. Let

Hr1 , [h1

1
,h1

2
, · · · ,h1

T ], (10)

· · ·

HrN , [hN
1
,hN

2
, · · · ,hN

T ]. (11)
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Then, the columns of the feature matrix Hrj (j = 1, · · · , N )

constitute a feature vector sequence associated with the j-th

brain region. Hence, we can apply BiLSTM to learning tem-

poral information among the feature vector sequence, which

results in the following regional temporal feature vectors:

Yrt = [L(Hr1), · · · ,L(HrN )]

= [(yrt
11
, · · · ,yrt

1T ), · · · , (y
rt
N1

, · · · ,yrt
NT )]

= [Yrt
1
, · · · ,Yrt

N ], (12)

where Yrt
j = [yrt

j1, · · · ,y
rt
jT ] ∈ R

drt×T denotes the regional

temporal feature matrix associated with the j-th brain region,

drt is the hidden units dimension of regional temporal BiL-

STM.

On the other hand, to learn the temporal information based

on the global feature matrices Ĥ
g
i , we concatenate the columns

of Ĥ
g
i into a longer feature vector, denoted by ĥ

g
i , i.e.,

ĥ
g
i = [(ĥg

i1)
T, · · · , (ĥg

iK)T]T. (13)

Let Yg = [ĥg
1
, · · · , ĥg

T ]. Then, the global temporal feature

Ygt can be computed as

Ygt = L(Yg) = [ygt
1
, · · · ,ygt

T ] ∈ R
dgt×T , (14)

where dgt is the hidden units dimension of global temporal

BiLSTM.

The final feature vector, denoted by yrg , of the EEG sample

X (consisting of T segments) containing both regional and

global information is expressed as

yrg = [(yrt
1T )

T, (yrt
2T )

T, · · · , (yrt
NT )

T, (ygt
T )T]T. (15)

C. Classifier and discriminator

Based on the final feature vector yrg , we can predict the

class label of the input EEG sample X by using the simple

linear transform approach, which can be formulated as

O = Gyrg + bc = [o1, o2, · · · , oC ], (16)

where G and bc are respectively the transform matrix and bias,

C is the number of class. The elements of the output O are

then fed into a softmax function for emotion class prediction,

i.e.,

P (c|X) = max

{

exp(ok)
∑C

i=1
exp(oi)

|k = 1, · · · , C

}

, (17)

where P (c|X) denotes the probability for the input X being

predicted as the c-th class.

Now suppose that we have M data samples from source do-

main, which are expressed as M matrices XS
i (i = 1, · · · ,M ).

Then, the loss function of the classifier can be formulated as

Lc(X
S
1
, · · · ,XS

M ; θf , θc) =

M
∑

i=1

C
∑

c=1

−τ(li, c)× logP (c|XS
i ),

(18)

where li denotes the ground-truth label of XS
i , θf and θc

denote the parameters of feature extractor and classifier, and

τ(li, c) is expressed as

τ(li, c) =

{

1, if li = c,

0, otherwise.
(19)

Consequently, from (18) and (19), by minimizing the loss

function Lc(X
S
1
· · · ,XS

M ; θf , θc), we would be able to

achieve the maximal probability of correctly predicting the

emotion class of each training sample.

Let Xtest be a test sample. Then, we use the following

formula to determine the emotion class label of Xtest:

ltest = argmax
c
{P (c|Xtest)|c = 1, · · · , C} , (20)

where ltest is the predicted label of the testing sample Xtest.

In dealing with EEG emotion recognition, it is notable

that the training and testing EEG data samples may come

from different domains, e.g., the training and testing data

samples come from different subjects. In this case, the emotion

recognition model trained based on the training data may not

be well suitable for the testing data. To solve this problem,

we introduce a discriminator that works corporately with

the classifier to produce emotion-discriminative and domain-

invariable features.

Specifically, suppose that we are given two data sets XS =
{XS

1
, · · · ,XS

M1
} and XT = {XT

1
, · · · ,XT

M2
} from source

domain and target domain, respectively, where M1 and M2

denote the number of source data set and target data set,

respectively. To alleviate the domain difference, we introduce

the following loss function

Ld(X
S
i ,X

T
j ; θf , θd) = −

M1
∑

i=1

logP (0|XS
i )−

M2
∑

j=1

logP (1|XT
j ),

(21)

where P (0|XS
i ) denotes the probability that XS

i belongs to

source domain while P (1|XT
i ) denotes the probability that

XT
i belongs to target domain, respectively, θd denotes the

parameter of discriminator. By maximizing the above loss

function of discriminator, the feature extracting process would

results in domain-invariable features to alleviate the domain

difference in emotion recognition.

D. The optimization of R2G-STNN

In the aforementioned section, we pointed out that by

minimizing the loss function of (18) we would achieve the

better emotion class prediction for the training data samples,

while by maximizing the loss function of (21) we would

be able to achieve the domain-invariable features to alleviate

the domain difference in emotion recognition. Consequently,

by simultaneously minimizing the loss function of (18) and

maximizing the loss function of (21), we would be able to

achieve better emotion classification. For this reason, we define

the overall loss function of R2G-STNN as

L(XS ,XT |θf , θc, θd) = Lc(X
S ; θf , θc)

− Ld(X
S ,XT ; θf , θd), (22)

and our target is to find the optimal parameters to minimize

the loss function L(XS ,XT |θf , θc, θd).
The optimal parameters of L(XS ,XT |θf , θc, θd) can be

solved by iteratively minimizing Lc(X
S ; θf , θc) and maxi-

mizing Ld(X
S ,XT ; θf , θd). Specifically, we adopt stochastic
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gradient descent (SGD) algorithm [29] to find the optimal

model parameters, i.e.,

(θ̂f , θ̂c) = arg min
θf ,θc

Lc(X
S , (θf , θc), θ̂d), (23)

θ̂d = argmax
θd

Ld(X
S ,XT , (θ̂f , θ̂c), θd). (24)

Through minimizing the loss function Lc, the feature ex-

tractor will able to learn the emotion discriminative fea-

tures. On the other hand, by maximizing the loss function

Ld, it can extract domain-invariant features. Consequently,

by simultaneously minimizing Lc while maximizing Ld, we

can finally obtain the emotion-discriminative while domain-

invariant features for emotion recognition.

Additionally, in solving the optimal parameters of R2G-

STNN, we also introduce a gradient reverse layer (GRL) for

the discriminator to change the maximizing problem into a

minimizing problem, such that the parameters can be opti-

mized by using SGD approach, where GRL acts as an identity

transform in the forward-propagation but reverses the gradient

sign while performing the back-propagation operation. In this

case, the update of the parameters can be formulated as

θd ← θd − α
∂Ld

∂θd
, θf ← θf + α

∂Ld

∂θf
, (25)

where α is the learning rate.

IV. EXPERIMENTS

In this section, we will conduct extensive experiments on

SEED database [7] to evaluate the proposed R2G-STNN

method. The SEED database was built by using 62-channels’

ESI NeuroScan system to record EEG signals, in which the of

electrodes are located according to the 10-20 system [21]. We

group the 62 electrodes into 16 clusters, i.e., the cluster number

N = 16, based on the spatial locations of the electrodes.

Fig. 3 shows the divisions of the 62 electrodes into 16 clusters

whereas Table I summarizes the EEG electrodes in each cluster

(brain region) as well as the handcraft EEG feature set size in

each brain region. In the SEED database, there are 15 subjects

and each subject contains the EEG data recorded from three

sessions. For each subject, every session contains 15 trials

of EEG samples and each trial contains 185-238 samples

covering three emotion classes, i.e., positive, negative and

neutral emotions. As a result, there are totally 3200 samples

in every session, in which each emotion contains about 1060

samples. Additionally, for each sample, the number of EEG

segments T is fixed at T = 9 such that each EEG sample

corresponds to a 5×62×9 handcraft feature tensor. In addition,

the parameters of dr, dg , drt, and dgt are respectively fixed

at 100, 150, 200, and 250 throughout the experiments.

A. Subject-dependent EEG Emotion Recognition Experiment

In this experiment, we adopt the similar subject-dependent

EEG emotion recognition protocol used in [7] and [15] to

evaluate the proposed method, where both training and testing

data come from the same subject but different EEG trials.

Specifically, we choose 9 trials of EEG signals in every session

to serve as training data set and use the other 6 trials from

Fig. 3: An illustration of the divisions of the 62 electrodes into

16 clusters, where the same color denotes the electrodes are

grouped into the same brain region.

TABLE I: The EEG electrodes associated with each brain

region and the data size in each brain region in the experiment.

Brain region Electrode name
EEG data size

(d× nj)

Pre-Frontal
AF3, FP1

FPZ, FP2, AF4
5× 5

Frontal
F3, F1

FZ, F2, F4
5× 5

Left Frontal F7, F5 5× 2

Right Frontal F8, F6 5× 2

Left Temporal
FT7, FC5, T7

C5, TP7, CP5
5× 6

Right Temporal
FT8, FC6, T8

C6, TP8, CP6
5× 6

Frontal Central
FC3, FC1

FCZ, FC2, FC4
5× 5

Central C3, C1, CZ, C2, C4 5× 5

Central Parietal
CP3, CP1

CPZ, CP2, CP4
5× 5

Left Parietal P7, P5 5× 2

Right Parietal P8, P6 5× 2

Parietal P3, P1, PZ, P2, P4 5× 5

Left Parietal Occipital PO7, PO5, CB1 5× 3

Right Parietal Occipital PO8, PO6, CB2 5× 3

Parietal Occipital PO3, POZ, PO4 5× 3

Occipital O1, OZ, O2 5× 3

the same session as testing data. Then, we use the proposed

R2G-STNN method to conduct the EEG emotion recognition

experiments and calculate the average recognition accuracy

and standard deviation of all the 15 subjects as the final

recognition result. For comparison purpose, we also conduct

the same experiments using several commonly used methods,

which are listed as follows:

• Three baseline methods: Support Vector Machine

(SVM) [30], Random Forest (RF) [31], and Canonical

Correlation Analysis (CCA) [32];
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TABLE II: The mean accuracies (ACC) and standard deviations (STD) of the various EEG emotion recognition methods in

the subject-dependent experiment.

Method SVM [30] RF [31] CCA [32] GSCCA [4] DBN [7] GRSLR [9]

ACC/STD (%) 83.99/9.72 78.46/11.77 77.63/13.21 82.96/9.95 86.08/8.34 87.39/8.64

Method GCNN [33] DGCNN [14] DANN [34] BiDANN [15] R2G-STNN

ACC/STD (%) 87.40/9.20 90.40/8.49 91.36/8.30 92.38/7.04 93.38/5.96

• Two subspace learning methods: Group Sparse Canonical

Correlation Analysis (GSCCA) [8] and Graph Regular-

ized Sparse Linear Regression (GRSLR) [9];

• Five deep learning methods: Deep Belief Networks

(DBN) [7], Graph Convolutional Neural Networks

(GCNN) [33], Dynamical Graph Convolutional Neural

Networks (DGCNN) [14], Domain Adversarial Neural

Network (DANN) [34], and Bi-hemisphere Domain Ad-

versarial Neural Network (BiDANN) [15].

Table II shows the experimental results of the various

methods, from which we can see that the proposed R2G-

STNN method achieves the recognition accuracy as high as

93.38%, which is the best recognition result among the various

recognition methods. The better recognition results of R2G-

STNN may largely attribute to the fact that R2G-STNN not

only utilizes the temporal information of the EEG signal but

also the spatial information of the brain regions, which would

be in favor of the learning of more discriminative features re-

lated to emotion. Moreover, to visualize the confusion among

the three emotions, we also depict the confusion matrix of the

emotion recognition results in Fig. 4, from which we observe

that both positive and neutral emotions are less confused than

the negative emotion.

Fig. 4: The EEG emotion recognition confusion matrix of the

R2G-STNN method in the subject-dependent experiment.

In addition, to investigate the impacts of different frequency

bands of EEG signals on the emotion recognition, we also con-

duct additional experiments by adopting the similar approach

used in [8]. Specifically, we firstly extract DE features from the

raw EEG signals with respect to five different frequency bands,

i.e., δ, θ, α, β and γ frequency bands. Then, we conduct EEG

emotion recognition experiments based on the DE features

extracted from the five frequency bands, respectively. The EEG

emotion recognition results are shown in Table III, from which

we can observe that the higher frequency bands such as β and

γ frequency bands, achieve better performance than the lower

ones such as δ, θ and α frequency bands. This observation

coincides with the neurophysiology research findings about

emotion [35].

TABLE III: The mean accuracies (ACC) and standard devia-

tions (STD) of the various EEG emotion recognition methods

with respect to five frequency bands in the subject-dependent

experiment.

Methods
The results (%) of ACC/STD

δ θ α β γ

SVM [30]
60.50

(14.14)

60.95

(10.20)

66.64

(14.41)

80.76

(11.56)

79.56

(11.38)

RF [31]
64.56

(8.32)

65.27

(11.64)

65.67

(13.94)

73.35

(14.35)

74.48

(12.80)

CCA [32]
55.30

(12.02)

55.75

(10.99)

64.96

(12.05)

69.16

(11.45)

70.67

(14.06)

GSCCA [4]
63.92

(11.16)

64.64

(10.33)

70.10

(14.76)

76.93

(11.00)

77.98

(10.72)

DBN [7]
64.32

(12.45)

60.77

(10.42)

64.01

(15.97)

78.92

(12.48)

79.19

(14.58)

GRSLR [9]
63.90

(11.83)

62.61

(10.73)

71.11

(9.04)

81.18

(10.74)

81.91

(10.36)

GCNN [33]
72.75

(10.85)

74.40

(8.23)

73.46

(12.17)

83.24

(9.93)

83.36

(9.43)

DGCNN [14]
74.25

(11.42)

71.52

(5.99)

74.43

(12.16)

83.65

(10.17)

85.73

(10.64)

DANN [34]
72.13

(11.22)

68.75

(7.40)

70.27

(10.84)

83.35

(11.46)

87.89

(11.35)

BiDANN [15]
76.97

(10.95)

75.56

(7.88)

81.03

(11.74)

89.65

(9.59)

88.64

(9.46)

R2G-STNN
77.76

(9.92)

76.17

(7.43)

82.30

(10.21)

88.35

(10.52)

88.90

(9.97)

B. Subject-independent EEG Emotion Recognition Experi-

ment

In this experiment, we will investigate the subject-

independent EEG emotion recognition problem, in which

the training EEG data samples and the testing ones come

from different subjects [15][46]. To this end, we adopt leave-

one-subject-out (LOSO) cross validation strategy to conduct

the experiment, in which we circularly take one subject’s

EEG signals as testing data and the EEG signals of all the

other subjects as training data. The average result of all the

recognition accuracies is then calculated after each subject

has been used once as testing data. For comparison purpose,

we also conduct the same experiment using several methods,

which are listed as follows:

• Two baseline methods: SVM [30] and kernel principal

component analysis (KPCA) [39];

• Nine transfer subspace learning methods: Kullback-

Leibler importance estimation procedure (KLIEP) [36],

unconstrained least-squares importance fitting (UL-

SIF) [37], selective transfer machine (STM) [38], transfer

component analysis (TCA) [40], transfer kernel learning
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TABLE IV: The mean accuracies (ACC) and standard deviations (STD) of the various EEG emotion recognition methods in

the subject-independent experiment.

Method KLIEP [36] ULSIF [37] STM [38] SVM [30] KPCA [39]

ACC/STD (%) 45.71/17.76 51.18/13.57 51.23/14.82 56.73/16.29 61.28/14.62

Method TCA [40] TKL [41] SA [42] GFK [43] T-SVM [44]

ACC/STD(%) 63.64/14.88 63.54/15.47 69.00/10.89 71.31/14.09 72.53/14.00

Method TPT [45] DGCNN [14] DANN [34] BiDANN [15] R2G-STNN

ACC/STD (%) 76.31/15.89 79.95/9.02 75.08/11.18 83.28/9.60 84.16/7.63

(TKL) [41], subspace alignment (SA) [42], geodesic flow

kernel (GFK) [43], transductive SVM (T-SVM) [44], and

transductive parameter transfer (TPT) [45];

• Three recent deep learning methods: DGCNN [14],

DANN [34] and BiDANN [15].

The experimental results of the various methods are shown

in Table IV, from which we can again see that R2G-STNN

achieves the state-of-the-art performance among the various

methods. To visualize the confusion among the three emotions

recognized by R2G-STNN, we depict the confusion matrix

according to the recognition results. Fig. 5 shows the results

of the confusion matrix, from which we can observe that

the positive emotion is less confused than both negative and

neutral emotions.

Fig. 5: The EEG emotion recognition confusion matrix of the

R2G-STNN method in the subject-independent experiment.

Similar to the subject-dependent experiment, in this experi-

ment we also conduct additional experiments to investigate the

impacts of different frequency bands of EEG signals on the

emotion recognition. Table V shows the experimental results,

from which we can also observe that the higher frequency

bands achieve better recognition results than the lower ones.

Moreover, from Table V we can see that R2G-STNN achieves

the best recognition results for all the five frequency bands

among the various methods.

To visualize the impact of the different brain regions on

emotion recognition, we also depict the weight distribution

over brain regions based on the weighted matrix W defined

in (5), in which the sum of each row of W is used to

demonstrate the contribution of the corresponding brain region

to the emotion recognition. Fig. 6 shows the topographical map

of the sum of each row of W, in which the areas with deeper

red color mean significant contributions of the corresponding

brain regions. From Fig. 6, we can see that the frontal brain

regions are important in EEG emotion recognition experiment,

which coincides with the cognition observations of biological

psychology [47].

TABLE V: The mean accuracies (ACC) and standard devia-

tions (STD) of the various EEG emotion recognition methods

with respect to five frequency bands in the subject-independent

experiment.

Methods
The results (%) of ACC (STD)

δ θ α β γ

KLIEP [36]
39.22

(11.31)

35.98

(7.50)

33.31

(6.60)

44.47

(12.89)

42.05

(12.65)

ULSIF [37]
41.32

(11.30)

36.27

(6.84)

38.94

(8.30)

41.87

(13.64)

41.02

(11.65)

STM [38]
44.16

(9.60)

40.89

(8.22)

40.37

(9.82)

42.09

(13.34)

47.97

(12.43)

SVM [30]
43.06

(8.27)

40.07

(6.50)

43.97

(10.89)

48.63

(10.29)

51.59

(11.83)

TCA [40]
44.10

(8.22)

41.26

(9.21)

42.93

(14.33)

43.93

(10.06)

48.43

(9.73)

TKL [41]
48.36

(10.31)

52.60

(11.84)

52.89

(11.07)

55.47

(9.80)

59.81

(12.41)

SA [42]
53.23

(7.47)

50.60

(8.31)

55.06

(10.60)

56.72

(10.78)

64.47

(14.96)

GFK [43]
52.73

(11.90)

54.07

(06.78)

54.98

(11.49)

59.29

(10.75)

66.92

(10.97)

DGCNN [14]
49.79

(10.94)

46.36

(12.06)

48.29

(12.28)

56.15

(14.01)

54.87

(17.53)

DANN [34]
56.66

(6.48)

54.95

(10.45)

59.37

(10.57)

67.14

(7.10)

71.30

(10.84)

BiDANN[15]
62.04

(6.64)

62.13

(7.37)

63.31

(11.46)

73.55

(8.83)

73.25

(9.21)

R2G-STNN
63.34

(5.31)

63.78

(7.53)

64.27

(10.88)

74.85

(8.02)

74.54

(8.41)

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we proposed a novel R2G-STNN method

inspired by the neuroscience findings that the human brain

regions have different responses to emotion and applied it

to EEG emotion recognition, in which a hierarchical feature

learning procedure from regional brain to global brain is pro-

posed to extract the spatial-temporal EEG features. Extensive

experiments on SEED EEG emotional database demonstrated

that the proposed R2G-STNN method achieves the state-of-

the-art performance in both subject-dependent and subject-

independent EEG emotion recognition. The better recognition

performance of R2G-STNN may largely attribute to the fact

the R2G-STNN makes use of weighting layer and both re-

gional and global temporal layers. To verify these points, we

also conduct additional experiments by removing some of the

layers, which include the following three reduced models:

(1) R2G-STNN-R1, which removes both dynamic weighting
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Fig. 6: The topographical map of the sum of each row of W,

where deeper red color denotes more significant contribution

of the corresponding brain region.

layer and regional temporal feature;

(2) R2G-STNN-R2, which neglects the regional temporal

feature and only uses the global temporal feature as the

final vector for classification;

(3) R2G-STNN-R3, which treats all the brain regions equally,

but has the same spatial-temporal structure with R2G-

STNN.

Fig. 7: The comparison of EEG emotion recognition results

among four methods: (1) R2G-STNN-R1; (2) R2G-STNN-R2;

(3) R2G-STNN-R3; (4) R2G-STNN.

The experimental results are shown in Fig. 7, from which

we can see that, for both subject-dependent and subject-

independent experiments, the recognition accuracies of R2G-

STNN-R1, R2G-STNN-R2, R2G-STNN-R3, and R2G-STNN

have the following relationship:

R2G-STNN-R1 < R2G-STNN-R2

< R2G-STNN-R3 < R2G-STNN. (26)

The relationship demonstrated in (26) the importance of the

dynamic weighting layer and regional temporal feature learn-

ing layer, each of which can improve the classification per-

formance in both subject-dependent and subject-independent

EEG emotion recognition experiments.
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