
From Requirements to Code with the PASSI Methodology 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Chapter IV

From Requirements to

Code with the

PASSI Methodology

Massimo Cossentino

ICAR-CNR, Italy

Abstract

A Process for Agent Societies Specification and Implementation (PASSI) is

a step-by-step requirement-to-code methodology for designing and

developing multi-agent societies, integrating design models and concepts

from both object-oriented (OO) software engineering and artificial

intelligence approaches using the UML notation. The models and phases of

PASSI encompass representation of system requirements, social viewpoint,

solution architecture, code production and reuse, and deployment

configuration supporting mobility of agents. The methodology is illustrated

by the well-known Bookstore case study.

Introduction

At present, several methods and representations for agent-based systems have

been proposed (Aridor & Lange, 1998; Bernon, Camps, Gleizes, & Picard, 2004;

80 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004; DeLoach & Wood,

2001; Jennings, 2000; Kendall, Krishna, Pathak, & Suresh, 1998; Zambonelli,

Jennings, & Wooldridge, 2001, 2003). In order to explore them, we shall consider

a relevant aspect in modelling software, that is, fidelity. Robbins, Medvidovic,

Redmiles, and Rosenblum (1998) have defined fidelity as the distance between

a model and its implementation. This means that low fidelity models are problem-

oriented, while high fidelity models are more solution-oriented.

Since agents are still a forefront issue, some researchers have proposed methods

involving abstractions of social phenomena and knowledge (Bernon et al., 2004;

Bresciani et al., 2004; Jennings, 2000; Zambonelli, Jennings, & Wooldridge,

2001, 2003) (low-fidelity models); others have proposed representations involv-

ing implementation matters (Aridor & Lange, 1998; DeLoach & Wood, &

Sparkman, 2001; Kendall et al., 1998) (higher fidelity models).

There exists one response to these proposals, which is to treat agent-based

systems the same as non-agent based ones. However, we reject this idea

because we think it is more natural to describe agents using a psychological and

social language. Therefore, we believe that there is a need for specific methods

or representations tailored for agent-based software. This belief originates from

the related literature. To give an example, Yu and Liu (2000) say that “an agent

is an actor with concrete, physical manifestations, such as a human individual.

An agent has dependencies that apply regardless of what role he/she/it happens

to be playing.” On the other hand, Jennings (2000) defines an agent as “an

encapsulated computer system that is situated in some environment and that is

capable of flexible, autonomous action in that environment in order to meet its

design objectives.” Also, Wooldridge and Ciancarini (2001) see the agent as a

system that enjoys autonomy, reactivity, pro-activeness, and social ability.

Therefore, multi-agent systems (MAS) differ from non-agent based ones

because agents are meant to be autonomous elements of intelligent functionality.

Consequently, this requires that agent-based software engineering methods

encompass standard design activities and representations as well as models of

the agent society.

Two more responses exist. They both argue that agents differ from other

software but disagree about the differences. The first, proposed by supporters

of low-fidelity representations, is that agents are distinguished by their social and

epistemological properties, only these need different abstractions. The second,

proposed by supporters of high-fidelity representations, is that the difference is

in the deployment and interaction mechanisms. With regard to the agent notion,

DeLoach, Wood, and Sparkman (2001) argue that “an agent class is a template

for a type of agent in the system and is analogous to an object class in object-

orientation. An agent is an actual instance of an agent class,” and “… agent

classes are defined in terms of the roles they will play and the conversations in

From Requirements to Code with the PASSI Methodology 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

which they must participate.” This definition in some way conjugates the social-

(conversational) and deployment- (implementation) oriented theories and posi-

tions DeLoach, Wood, and Sparkman in the middle.

We also reject these two views in their extreme forms. A designer may want to

work at different levels of detail when modeling a system. This requires

appropriate representations at all levels of detail or fidelity and, crucially,

systematic mappings between them. Because such issues are, at present, not

addressed by any of the existing MAS analysis and design methodologies, we

have decided to create a brand new one.

The methodology we are going to illustrate is named a Process for Agent

Societies Specification and Implementation (PASSI) or “steps” in the Italian

language. It is our attempt at solving the scientific problem arising from the above

considerations. In fact, it is a step-by-step requirement-to-code methodology for

designing and developing multi-agent societies integrating design models and

concepts from both object-oriented (OO) software engineering and MAS, using

the Unified Modeling Language (UML) notation. It is closer to the argument

made above for high-fidelity representations, but addresses the systematic

mapping between levels of detail and fidelity. The target environment we have

chosen is the standard, widely implemented Foundation for Intelligent Physical

Agents (FIPA) architecture (O’Brien & Nicol, 1998; Poslad, Buckle, &

Hadingham, 2000). PASSI is the result of a long period of theoretical studies and

experiments in the development of embedded robotics applications (Chella,

Cossentino, & LoFaso, 2000; Cossentino, Sabatucci, & Chella, 2003).

Figure 1. The models and phases of the PASSI methodology

82 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The remainder of this chapter is structured as follows. The next section gives a

quick presentation of the methodology’s models and provides a justification for

PASSI. The third section presents the application of PASSI to the “Juul Møller

Bokhandel A/S” case study (Andersen, 1997), giving a detailed description of the

steps and the use of UML notations within each of them. A comparison of PASSI

with the Gaia (Zambonelli, Jennings, & Wooldridge, 2003) and MaSE (DeLoach,

Wood, & Sparkman, 2001) is then given, and some conclusions are presented in

the final section.

A Quick Overview of the

PASSI Methodology

In conceiving this design methodology, we followed one specific guideline: the

use of standards whenever possible. This justifies the use of UML as modeling

language, the use of the FIPA architecture for the implementation of our agents,

and the use of XML in order to represent the knowledge exchanged by the agents

in their messages.

PASSI (Process for Agent Societies Specification and Implementation) is a

step-by-step requirement-to-code methodology for developing multi-agent soft-

ware that integrates design models and philosophies from both object-oriented

software engineering and MAS using (more properly extending) the UML

notation (OMG, 2003b). Because of the specific needs of agent design, the UML

semantics and notation will be used as reference points, but they will be extended,

and UML diagrams will be often used to represent concepts that are not

considered in UML and/or the notation will be modified to better represent what

should be modeled in the specific artifact. The PASSI process is composed of

five process components: System Requirements, Agent Society, Agent Imple-

mentation, Code, and Deployment, and several distinct work definitions within

each of them (Figure 1). Code production is strongly supported by the automatic

generation of a large amount of code thanks to the PASSI ToolKit (PTK) used

to design the system and a library of reusable patterns of code and pieces of

design managed by the AgentFactory application.

In what follows, the five process components will be referred to as models and

the work definitions as phases; in order to clarify the meaning of these terms, we

will provide a parallelism with the Software Process Engineering Metamodel

(SPEM) concepts (SPEM, 2002). Referring to SPEM, we could say that a

process is composed of process components; each process component could be

made by phases (a kind of work definition) that are in turn decomposable into

activities and steps (both activities and steps are again work definitions). In the

From Requirements to Code with the PASSI Methodology 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

PASSI process, the element that corresponds to the SPEM process component

is called model, and it is composed of phases (for instance, in Figure 1, we can

see that the System Requirements model is composed of the Domain Require-

ments Description, Agents Identification, … phases). The “models” and “phases”

of PASSI are:

1. System Requirements Model: a model of the system requirements in

terms of agency and purpose. It is composed of four phases:

(a) Domain Requirements Description (D.R.D.): a functional description

of the system using conventional use case diagrams;

(b) Agent Identification (A.Id.): the phase of attribution of responsibili-

ties to agents, represented as stereotyped UML packages;

(c) Role Identification (R.Id.): a series of sequence diagrams exploring

the responsibilities of each agent through role-specific scenarios; and

(d) Task Specification (T.Sp.): specification of the capabilities of each

agent with activity diagrams.

2. Agent Society Model: a model of the social interactions and dependen-

cies among the agents involved in the solution. Developing this model

involves three steps:

(a) Ontology Description (O.D.): use of class diagrams and OCL con-

straints to describe the knowledge ascribed to individual agents and

their communications;

(b) Role Description (R.D.): class diagrams are used to show the roles

played by agents, the tasks involved, communication capabilities, and

inter-agent dependencies; and

(c) Protocol Description (P.D.): use of sequence diagrams to specify the

grammar of each pragmatic communication protocol in terms of

speech-act performatives.

3. Agent Implementation Model: a classical model of the solution architec-

ture in terms of classes and methods; the most important difference with the

common object-oriented approach is that we have two different levels of

abstraction, the social (multi-agent) level and the single-agent level. This

model is composed of the following steps:

(a) Agent Structure Definition (A.S.D.): conventional class diagrams

describe the structure of solution agent classes; and

(b) Agent Behavior Description (A.B.D.): activity diagrams or state-

charts describe the behavior of individual agents.

4. Code Model: a model of the solution at the code level requiring the

following steps to produce it:

84 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

(a) generation of code from the model using one of the functionalities of

the PASSI add-in. It is possible to generate not only the skeletons but

also largely reusable parts of the method’s implementation based on

a library of reused patterns and associated design descriptions; and

(b) manual completion of the source code.

5. Deployment Model: a model of the distribution of the parts of the system

across hardware processing units and their migration between processing

units. It involves one step: Deployment Configuration (D.C.): deployment

diagrams describe the allocation of agents to the available processing units

and any constraints on migration and mobility.

Testing: the testing activity has been divided into two different steps: the

single-agent test is devoted to verifying the behavior of each agent

regarding the original requirements for the system solved by the specific

agent (Caire, Cossentino, Negri, Poggi, & Turci, 2004). During the Society

Test, integration verification is carried out together with the validation of

the overall results of this iteration. The Agent Test is performed on the

single agent before the deployment phase, while the society test is carried

out on the complete system after its deployment.

In the following, each of the above cited models will be discussed in details in a

specific subsection.

The Agent in PASSI

The concept of agent will be central to our discussion and therefore a definition

of what we mean by an agent will be helpful before proceedings.

In PASSI, we consider two different aspects of the agent: during the initial steps

of the design, it is seen as an autonomous entity capable of pursuing an objective

through its autonomous decisions, actions, and social relationships. This helps in

preparing a solution that is later implemented, referring to the agent as a

significant software unit. An agent may undertake several functional roles during

interactions with other agents to achieve its goals. A role is a collection of tasks

performed by the agent in pursuing a sub-goal or offering some service to the

other members of the society. A task, in turn, is defined as a purposeful unit of

individual or interactive behavior. Each agent has a representation of the world

in terms of an ontology that is also referred to in all the messages that the agents

exchange.

From Requirements to Code with the PASSI Methodology 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Iterations

PASSI is iterative, as are most widely accepted object-oriented methods. There

occur two types of iterations in it. The first one is led by new requirements and

involves all the PASSI models.

The second iteration occurs, involving only modifications to the Agent Implemen-

tation Model. It is characterized by a double level of iteration (see Figure 2). We

need to look at this model as characterized by two views: the multi-agent and

single-agent views. The outer level of iteration (dashed arrows) concerns the

dependencies between multi-agent and single-agent views. The first (multi-

agent) view relates to the agents’ structure (in terms of cooperation and tasks

involved) and behaviors (flows of events depicting cooperation). The second one

instead relates to the single-agent structure (attributes, methods, inner classes)

and behavior (specified in an appropriate way). The inner level of iteration

(Agent Structure Definition – Agent Behavior Description) takes place in both

the multi-agent and single-agent views and concerns the dependencies between

structural and behavioral matters.

As a consequence of this double level of iteration, the Agent Implementation

Model is composed of two steps (A.S.D. and A.B.D.) but yields four kinds of

diagrams, taking into account the multi- and the single-agent views.

A More Detailed Description of PASSI

Throughout the following subsections, we refer to the “Juul Møller Bokhandel A/

S” Case Study (Andersen, 1997) that describes the problems of a small

bookstore coping with rapidly expanding Internet-based book retailers. The

bookstore has a strong business relationship with the Norwegian School of

Figure 2. The agents’ implementation iterations

86 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Management. Nevertheless, there are communication gaps between them. As

a consequence, the bookseller is in trouble, for example, when pricing the books

(due to a lack of information about the number of attendees of some courses) or

when the School changes the required literature. In addition, there are problems

with the distribution chain. This requires a strong knowledge of distributors’ and

publishers’ processes and practices.

Domain Requirements Description Phase

Although many authors make use of goals in requirements engineering (Antón

& Potts, 1998, Potts, 1999), we prefer the approach coming from Jacobson,

Christerson, Jonsson, and Overgaard (1992), and we describe requirements in

terms of use case diagrams. The Domain Requirements Description Phase, as

a result, is a functional description of the system composed of a hierarchical

series of use case diagrams. Scenarios of the detailed use case diagrams are then

explained using sequence diagrams. Figure 3 shows part of the Domain

Requirements Description diagram depicting our analysis for the bookstore case

study. Stereotypes used here come from the UML standard.

Throughout this chapter, we will only examine one scenario—the one that takes

place every time that the bookstore needs to purchase some books (Provide

Books use case in Figure 3). This may happen, for example, before the beginning

of every semester, so as to provide the store with the requested books and

therefore anticipate the students’ needs; or when some faculty has changed the

required literature or switched a book from “recommended” to “required.” The

scenario begins with the prediction of the students’ needs in order to establish

whether there is a sufficient number of copies of that book in the store or not.

If not, and if the book is needed, a new purchase must be made; this in turn

includes (see Figure 3):

• Definition of the desired quotation (Define Purchase-Money use case) by

the use of an expert system that holds the history of previous purchases,

especially with regard to courses, teachers, number of attendees, books

purchased and books sold, suppliers, time elapsed for negotiation and

delivery, and so forth.

• Negotiation of the price (Negotiate Purchase-Money use case).

• Execution of the order (Carry Out Order).

• Updating of the purchase history archive (Update Purchase History) in

order to increase the knowledge of the purchase expert system.

• Receiving delivery information about the purchase (Receive Delivery) in

order to close the case related to it.

From Requirements to Code with the PASSI Methodology 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Agent Identification Phase

If we look at a MAS as a heterogeneous society of intended and existent agents

that in Jackson’s terminology can be “bidden” or influenced but not determinis-

tically controlled (Jackson, 2001), it is more reasonable to locate required

behaviors into units of responsibility from the start. That is why we have put this

phase in the System Requirements Model.

Agents’ identification starts from the use case diagrams of the previous step.

Using our definition of agent, it is possible to see identification as a use case or

a package of use cases in the functional decomposition of the previous phase.

Starting from a sufficiently detailed diagram of the system functionalities (Figure

3), we group one or more use cases into stereotyped packages so as to form a

new diagram (Figure 4). In so doing, each package defines the functionalities of

a specific agent.

Relationships between use cases of the same agent follow the usual UML syntax

and stereotypes (see the “include” relationships in the Purchase Monitor and

Purchase Advisor agents in Figure 4), while relationships between use cases of

different agents are stereotyped as “communicate.”

The convention adopted for this diagram is to direct communication relationships

between agents from the initiator towards the participant.

Figure 3. A portion of domain requirements description diagram

88 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Note, for example, how the “include” relationship between the use cases

Provide Books and Receive Delivery (Figure 3) turned from “include” into

“communication” and also changed the navigability direction. This reflects the

fact that in an autonomous organization of agents in a distributed system, we can

organize things in a departmental manner, so as to have a StoreKeeper actor that

records any stock’s delivery that occurs. The StoreUI agent may then notify the

Purchase Manager agent of that delivery. In so doing, the Purchase Manager

does not need to keep bothering about the delivery of a stock, but rather it

continues to work while another agent is taking care of this task.

The selection of the use cases that will be part of each agent should be done

pursuing the criteria of functionality coherence and cohesion. These are impor-

tant attributes of the design, and if the adopted agent identification does not

produce a satisfactory result from this point of view, a change in it is strongly

advised. In a limited number of cases (for instance when relevant limits in

communication bandwidth are predictable, as occurs for agents deployed in small

Figure 4. The agents identification diagram obtained from the requirements

described in the previous phase

From Requirements to Code with the PASSI Methodology 89

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

and mobile devices), agents should be composed also considering how big are the

information banks they exchange, although this cannot be evaluated at this stage.

The iterative and incremental nature of PASSI provides great help in solving this

problem; an initial hypothesis for agent identification is done and, if problems

occur, it can be changed in successive iterations.

Roles Identification Phase

This phase occurs early in the requirements analysis since we now deal more

with an agent’s externally visible behavior than its structure – only approximate

at this step.

Roles identification (R. Id.) is based on exploring all the possible paths of the

Agents Identification diagram involving inter-agent communication. A path

describes a scenario of interacting agents working to achieve a required behavior

of the system. It is composed of several communication paths. A communication

path is simply a “communicate” relationship between two agents in the above

diagram. Each of them may belong to several scenarios, which are drawn by

means of sequence diagrams in which objects are used to symbolize roles.

Figure 5 shows the already presented scenario, arising when a new purchase is

required from the role Informer of the PurchaseMonitor agent to the role

BooksProvider of the Purchase Manager agent. Although the diagram

resembles an UML sequence diagram, the syntax is a bit different. Each object

in the diagram represents an agent’s role, and we name it with the following

syntax:

<role_name> : <agent_name>

An agent may participate in different scenarios playing distinct roles in each. It

may also play distinct roles in the same scenario (as happens to the Purchaser

and the Purchase Advisor agents in Figure 5). Usually, UML sequence

diagrams begin because of some actor’s action; in PASSI, being agents

autonomous and active, they can trigger a new scenario and actors can appear

later (or not). For this reason, the PurchaseMonitor agent (while playing its

Informer role) can be the first element of this diagram and can fire it.

The messages in the sequence diagram may either signify events generated by

the external environment or communication between the roles of one or more

agents. A message specifies what the role is to do and possibly the data to be

provided or received.

90 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

We can describe the scenario as follows:

• The Informer informs the BooksProvider that the bookstore needs to

purchase a specified stock of books.

• Given a list of suppliers for the needed books, the BooksProvider requests

that the Consultant suggest purchase conditions (number of stocks,

purchase money, etc.) on the basis of past business.

• Whether the Consultant has returned any advice or not, the BooksProvider

gives the Negotiator the data about the supplier with which to negotiate and

the conditions to be negotiated; at the same time, it requests the negotiation

to be started. The BooksProvider is then ready to take care of other

requests that may come from the cooperating agents’ roles.

Figure 5. The roles identification diagram for the scenario in which the

Purchase Monitor agent announces the need for a book purchase

From Requirements to Code with the PASSI Methodology 91

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• The Negotiator negotiates via fax or e-mail (this is the case of the present

scenario) and gets the best offer. It then returns it to the BooksProvider.

• The BooksProvider establishes whether the offer is good enough or not,

according to its budget and considerations such as the pricing of the book

and the number of students that would then buy it. In this scenario, we

assume that the offer is good enough and so the BooksProvider proposes

that the OrderPlacer buys the books. Therefore, the BooksProvider is

then ready to take care of other requests.

• When the books are delivered, a notification is then forwarded from the

DeliveryNotifier to the BooksProvider.

The rest of the scenario is straightforward. Data contained in the messages of

the above sequence diagram are specified more in details later in the Ontology

Description phase.

Task Specification Phase

At this step, we focus on each agent’s behavior in order to conceive of a plan

that could fulfil the agent’s requirements by delegating its functionalities to a set

of tasks. Tasks generally encapsulate some functionality that forms a logical unit

of work. For every agent in the model, we draw an activity diagram that is made

up of two swimlanes. The one from the right-hand side contains a collection of

activities symbolizing the agent’s tasks, whereas the one from the left-hand side

contains some activities representing the other interacting agents.

A Task Specification diagram (T.Sp.) (see Figure 6) summarizes what the agent

is capable of doing, ignoring information about roles that an agent plays when

carrying out particular tasks. Relationships between activities signify either

messages between tasks and other interacting agents or communication be-

tween tasks of the same agent. The latter are not speech acts, but rather signals

addressing the necessity of beginning an elaboration, that is, triggering a task

execution or delegating another task to do something. In order to yield an agent’s

T.Sp. diagram, we need to look at all of the agent’s R.Id. diagrams (i.e., all of

the scenarios in which it participates). We then explore all of the interactions and

internal actions that the agent performs to accomplish a scenario’s purpose.

From each R.Id. diagram, we obtain a collection of related tasks. Grouping them

all together appropriately then results in the T.Sp. diagram.

Because drawing a Task Specification diagram for each agent would require too

much space in this chapter, we proceed from now on by focusing on a single

agent: the Purchase Manager. In Figure 6, we can see its T.Sp. diagram. In this

92 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

example, we suppose that a Listener task is needed in order to forward incoming

communication to the proper task; this is common in many MAS platforms (for

example, in FIPA-OS [Poslad, Buckle, & Hadingham, 2000]), while this is not

necessary in some others. We decided to present this situation because all the

others can be reduced to this one. Further tasks are needed to handle all the

incoming messages of the R.Id. scenario (see ReceivePurchaseRequest and

ReceiveDeliveryNotification tasks in Figure 6 that correspond to the R.Id.

messages coming from the Purchase Monitor and StoreUI agents, respec-

tively, in Figure 5). Likewise, a task is introduced for each outgoing message (or

series of messages that could be unified in one communication) of the R.Id.

scenario (see AskForAdvice , AskNegotiation , AskOrdering ,

UpdatePurchaseHistory, and NotifyEndOfPurchase in Figure 6). In this way,

we dedicate one task to deal with each communication and, if necessary, with

minor other duties (for example, simple elaboration of received data). If a

relevant activity follows/prepares the incoming/outgoing communication, extra

tasks may be introduced to face a better decomposition of the agent (see

StartPurchase task in Figure 6).

Figure 6. The tasks of the purchase manager agent

From Requirements to Code with the PASSI Methodology 93

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Ontology Description Phase

In the PASSI methodology, the design of ontology is performed in the Domain

Ontology Description (D.O.D.) Phase and a class diagram is used. Several

works can be found in the literature about the use of UML for modeling ontology

(Bergenti & Poggi, 2000, Cranefield & Purvis, 1999). Figure 7 reports an

example of a PASSI D.O.D. diagram; it describes the ontology in terms of

concepts (categories, entities of the domain), predicates (assertions on proper-

ties of concepts), actions (performed in the domain), and their relationships. This

diagram represents an XML schema that is useful to obtain a Resource

Description Framework (RDF) encoding of the ontological structure. We have

adopted RDF to represent our ontologies, since it is part of both the W3C (1999)

and FIPA (2001) specifications.

Elements of the ontology are related using three UML standard relationships:

• Generalization, which permits the “generalize” relation between two

entities, which is one of the essential operators for constructing an ontology;

• Association, which models the existence of some kind of logical relation-

ship between two entities and allows the specification of the role of the

involved entities in order to clarify the structure; and

• Aggregation, which can be used to construct sets where value restrictions

can be explicitly specified; this originates from the W3C RDF specification

where three types of container objects are enumerated, namely the bag (an

unordered list of resources), the sequence (an ordered list of resources),

and the alternative (a list of alternative values of a property), and is

therefore not UML-compliant.

The example in Figure 7 shows that each Purchase is related to a

SuccessfulNegotiation, a predicate that reports if an order has been issued

(attribute orderIssued is true in this case) as a consequence of a negotiation. It

includes a request from the library (ourRequest) for a specific Stock and an

offer from the supplier (theirBestOffer) for that Stock. Delivery is an example

of action—it describes the activity done by the Supplier of delivering to the

Storekeeper some books listed in an ordered stock.

The Communication Ontology Description (C.O.D.) diagram (Figure 8) is a

representation of the agents’ (social) interactions; this is a class diagram that

shows all agents and all their interactions (lines connecting agents). In designing

this diagram, we start from the results of the A.Id. (Agent Identification) phase.

A class is introduced for each identified agent, and an association is then

94 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

introduced for each communication between two agents (ignoring, for the

moment, distinctions about agents’ roles). Clearly, it is also important to

introduce the proper data structure (selected from elements of the Domain

Ontology Description) in each agent in order to store the exchanged data. The

association line that represents each communication is drawn from the initiator

of the conversation to the other agent (participant) as can be deduced from the

description of their interaction performed in the Role Identification (R.Id.)

phase. According to FIPA standards, communications consist of speech acts

(Searle, 1969) and are grouped by FIPA in several interaction protocols that

define the sequence of expected messages. As a consequence, each communi-

cation is characterized by three attributes, which we group into an association

class. This is the characterization of the communication itself (a communication

Figure 7. The domain ontology diagram

From Requirements to Code with the PASSI Methodology 95

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

with different ontology, language, or protocol is certainly different from this one)

and its knowledge is used to uniquely refer this communication (which can have,

obviously, several instances at runtime, since it may arise more than once). Roles

played by agents in the interaction (as derived from the R.Id. diagrams) are

reported at the beginning and the end of the association line.

In Figure 8, the PurchaseManager agent starts a conversation (see

QueryForAdvice association class) with the PurchaseAdvisor agent. The

conversation contains the Course ontology, the Query protocol, and the RDF

language. This means that the PurchaseManager wants to perform a speech

act based on the FIPA’s query protocol in order to ask the PurchaseAdvisor for

advice on how to purchase (supplier, number of stocks, number of items per each,

purchase-money) provided the Course information.

Roles Description Phase

This phase models the lifecycle of an agent taking into account its roles, the

collaborations it needs, and the conversations in which it is involved. In this phase,

we can also introduce the social rules of the society of agents (organizational

rules) (Zambonelli, Jennings, & Wooldridge, 2001) and the behavioral laws as

Figure 8. The communication ontology diagram

96 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

considered by Newell (1982) in his “social level.” These laws may be expressed

in OCL or other formal or semi-formal manner depending on our needs.

The Roles Description (R.D.) phase yields a class diagram in which classes are

used to represent roles (the UML syntax and notation is here modified slightly

in order to represent agents’ related concepts). Each agent is symbolized by a

package containing its roles’ classes (see Figure 9). Each role is obtained by

composing several tasks in a resulting behavior. In order to show which tasks are

necessary to compose the desired behavior, in this diagram, we put tasks in the

operation compartment of the related role’s class. Each task is related to an

action or a set of actions, and therefore the list of tasks describes what a role is

able to do; it can also be helpful in the identification of reusable patterns. An R.D.

diagram can also show connections between roles of the same agent, represent-

ing changes of role (dashed line with the name [ROLE CHANGE]). This

connection is depicted as a dependency relationship because we want to signify

the dependency of the second role on the first. Sometimes the trigger condition

is not explicitly generated by the first role, but its precedent appearance in the

scenario justifies the consideration that it is necessary to prepare the situation

that allows the second role to start. Conversations between roles are indicated

by solid lines, as we did in the Communication Ontology Diagram, using exactly

the same relationships names; this consistency, like other quality aspects of

Figure 9. The roles description diagram for our scenario

From Requirements to Code with the PASSI Methodology 97

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

design, is ensured by the use of PTK (PASSI ToolKit, an open source add-in for

Rational RoseTM) that automatically builds portions of several diagrams and

performs several checks on the inputs provided by the designer to verify their

correctness with regards to the other parts of the design.

We have also considered dependencies between agents (Yu & Liu, 2000).

Agents are autonomous, so they could refuse to provide a service or a resource.

For this reason, the design needs a schema that expresses such matters so as to

explore alternative ways to achieve the goals. In order to realize such a schema,

we have introduced in the Roles Description diagram some additional relation-

ships that express the following kinds of dependency:

• Service dependency: a role depends on another to bring about a goal

(indicated by a dashed line with the service name).

• Resource dependency: a role depends on another for the availability of an

entity (indicated by a dashed line with the resource name).

Protocols Description Phase

As we have seen in the Ontology Description phase and as specified by the FIPA

architecture, an Agent Interaction Protocol has been used for each communica-

tion. In our example, all of them are FIPA standard protocols (FIPA, 2000).

Usually the related documentation is given in the form of AUML sequence

diagrams (Odell, Van Dyke Parunak, & Bauer, 2001). Hence, the designer does

not need to specify protocols on his own. In some cases, however, existing

protocols are not adequate and, subsequently, some dedicated ones need to be

properly designed; this can be done using the AUML diagrams.

Agents Structure Definition Phase

As argued in subsection “Iterations,” this phase influences and is influenced by

the Agent Behavior Description phase as a double level of iteration occurs

between them. The Agent Structure Definition phase produces several class

diagrams logically subdivided into two views: the multi-agent and the single-

agent views. In the former, we call attention to the general architecture of the

system and so we can find agents and their tasks. In the latter, we focus on each

agent’s internal structure, revealing all the attributes and methods of the agent

class together with its inner tasks’ classes (the FIPA-platform classes that will

be coded).

98 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Multi-Agent Structure Definition (MASD)

At this stage, one diagram represents the MAS as a whole (Figure 10). The

diagram shows classes, each symbolizing one of the agents identified in the A.Id.

phase. Actors are reported in order to represent significant agents’ interactions

with the environment (for instance through sensing devices or actuators).

Attributes compartments can be used to represent the knowledge of the agent

as already discussed in the Communication Ontology diagram, whereas opera-

tions compartments are used to signify the agent’s tasks.

Single-Agent Structure Definition (SASD)

Here one class diagram (Figure 11) is used for each agent to illustrate the agent’s

internal structure through all of the classes making up the agent, which are the

Figure 10. The multi-agent structure definition diagram for the bookstore

case study

From Requirements to Code with the PASSI Methodology 99

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

agent’s main class together with the inner classes identifying its tasks. At this

point, we set up attributes and methods of both the agent class (e.g., the

constructor and the shutdown method when required by the implementation

platform) and the tasks’ classes. The result of this stage is to obtain a detailed

structure of the software, ready to be implemented almost automatically.

Agents Behavior Description Phase

As was seen in the previous phase, this phase influences and is influenced by the

Agent Structure Definition phase in a double level of iterations. The Agent

Behavior Description phase produces several diagrams that are subdivided into

the multi-agent and the single-agent views. In the former, we draw the flow of

events (internal to agents) and communications (among agents) by representing

method invocations and the message exchanges. In the latter, we detail the above

methods.

Multi-Agent Behaviour Description (MABD)

At this stage, one or more activity diagrams are drawn to show the flow of events

between and within both the main agent classes and their inner classes

(representing their tasks). We depict one swimlane for each agent and for each

task. The activities inside the swimlanes indicate the methods of the related

class. Unlike DeLoach, Wood, and Sparkman (2001), we need not introduce a

specific diagram for concurrency and synchronization since UML activity

diagrams’ syntax already supports it.

Figure 11. The single-agent structure definition diagram for the

purchasemanager agent.

100 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The usual transitions of the UML standard are depicted here as signifying either

events (e.g., an incoming message or a task conclusion) or invocation of

methods. A transition is drawn for each message recognized in the preceding

phases (e.g., from the R.Id. diagram). In this kind of transition, we indicate the

message’s performative as it is specified in the Communication Ontology

Description diagram and the message’s content as described in the Domain

Ontology Description diagram. This results in having a comprehensive descrip-

tion of the communication including the exact methods involved.

Figure 12 shows an example of a multi-agent behavior description. The

StartPurchase task of the PurchaseManager agent instantiates the

StartNegotiation task by invoking the newTask super-class method. This has

to be done in order to ask the Purchaser agent to perform a negotiation with a

supplier. The invocation of the StartNegotiation task implies its startTask

method to be invoked (according to the FIPA-OS implementation platform we

have used). What the startTask method does is send a message to the

Purchaser agent. This contains the Request performative (as required by the

FIPA Request protocol) and the content OurRequest (coming from the D.O.D.

diagram, Figure 7). The handleRequest method of the Purchaser’s IdleTask

task receives the incoming communication and sends it to the

ReceiveNegotiationRequest task after this one has been instantiated as above.

When a task completes its job, the done method is invoked.

This kind of diagram often becomes very huge and difficult to draw/read. In

order to deal with this problem, an extended version of it has been presented in

Caire et al. (2004) where the revised syntax supports different levels of detail.

Figure 12. An example of multi-agent behaviour description diagram

From Requirements to Code with the PASSI Methodology 101

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Single-Agent Behaviour Description (SABD)

This phase is quite a common one as it involves implementation of methods,

exactly the ones introduced in the SASD diagrams. Designers are free to

describe them in the most appropriate way (for example, using flow charts, state

diagrams, or semi-formal text descriptions).

Code Reuse Phase

In this phase, we try to reuse predefined patterns of agents and tasks. With the

term pattern, we do not only mean code but also design diagrams. As a matter

of fact, the reuse process typically takes place in some CASE tool environment,

where the designer looks more at diagrams detailing a pattern’s libraries than

rough code. So we prefer to look at patterns as pieces of design and code to be

reused in the process of implementing new systems.

We have extended the Rational Rose UML CASE tool by developing an add-in

supporting PASSI (PTK) and a specific pattern reuse application (AgentFactory).

PTK and AgentFactory are complementary and responsible for two different

stages of the design-implementation activities: initially, PTK helps in compiling

the PASSI diagrams, then AgentFactory is used to generate the agents’ code

when patterns have been used in the design. PTK initial releases were able to

generate agents’ code, but this duty has been, more recently, assigned to the

AgentFactory application. It works in this way: the PTK (PASSI ToolKit) add-

in can export the multi-agent system model to AgentFactory or generate the code

for just the skeletons of the designed agents, behaviors, and other classes

included in the project. AgentFactory code generation capabilities (Cossentino,

Sabatucci, Sorace, & Chella, 2003) are much more advanced than similar

functions of PTK; AgentFactory can, very quickly, create complex multi-agent

systems by using patterns from a large repository and can also provide the design

documentation of the composed agents. The tool can work online as a Web-

based application, but can also be used as a stand-alone application. This

approach has proven quite flexible (Cossentino, Sabatucci, & Chella, 2003) in

reusing patterns, thanks to its binding of design elements to code.

Due to the most common FIPA-compliant implementation platforms that del-

egate a specific task for each specific communication, it has turned out that in

our applications, which are mainly JADE or FIPA-OS based, some of the most

useful patterns are the ones that could be categorized as interaction patterns.

Our patterns (whose discussion is out of the scope of this chapter) result from

the composition of three different aspects of a multi-agent system:

102 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

1. the static structure of one or more agent(s) or parts of them (i.e. behaviors);

2. the description of the dynamic behavior expressed by the previously cited

elements; and

3. the program code that realizes both the static structure (skeletons) and the

dynamic behavior (inner parts of methods) in a specific agent platform

context (for example JADE).

In reusing patterns from our repository, the designer can select the generic

agent pattern (that has the capability of registering itself to the basic platform

services), and he/she can introduce it in the actual project. In this way, with a few

mouse clicks, he/she created a totally new agent, the design diagram has been

updated (although with some limitations due to the actual level of integration

between Rational Rose and AgentFactory), and the agent’s code is properly

functional.

The repository also includes a list of behaviors that can be applied to existing

agents. For example, we have behaviors dedicated to deal with the initiator/

participant roles in the most common communications. When a pattern is

introduced in the design, not only are some diagrams (like the structural and

behavioral one of the implementation level) updated. but the resulting code also

contains large portions of inner parts of methods; the result is a highly affordable

and quick development production process.

Code Completion Phase

This phase is the classical work of the programmer, who just needs to complete

the body of the methods yielded to this point, by taking into account the design

diagrams.

Deployment Configuration Phase

The Deployment Configuration (D.C.) phase has been thought to comply with

the requirements of detailing the agents’ positions in distributed systems or more

generally in mobile-agents’ contexts.

The Deployment Configuration diagram is a UML deployment diagram and

illustrates the location of the agents (the implementation platforms and process-

ing units where they live), their movements, and their communication support.

The standard UML notation is useful for representing processing units (by

boxes), agents (by components), and the like. What is not supported by UML is

the representation of the agent’s mobility, which we have done by means of a

From Requirements to Code with the PASSI Methodology 103

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

syntax extension consisting of a dashed line with a move_to stereotype connect-

ing an agent reported in both its initial and final positions.

Discussion

Methodologies differ in commitments about the target agent architecture.

PASSI is a requirement-to-code analysis and design methodology characterized

by an iterative step-by-step refinement of the system, producing at its final stage

a concrete design and implementation based on the FIPA architecture. Gaia, by

contrast, regards the output of the analysis and design process as an abstract

specification that necessitates being further developed by extra lower-level

design methodologies. So does MaSE, but, on the other hand, it goes further in

the design process if compared with Gaia. Now, one might think that a general

approach such as Gaia is more advantageous, given the present proliferation of

agent technologies. However, PASSI does not lead to a narrow scope concrete

technology but rather actually yields executable code for a concrete and

increasingly utilized standard architecture such as FIPA.

A key issue in modeling multi-agent system is the conversation among agents.

In order to obtain a proper model of conversation, it would be desirable to have

an ontology description of the system. Excluding PASSI, none of the other

methodologies compared throughout this book specifically addresses such a

matter (to be more precise, Dileo, Jacobs, and DeLoach [2002] have recently

proposed a method to introduce ontology in MaSE). The PASSI Ontology

Description phase describes the society of agents taking into account its

ontological point of view. As counterpart, in MaSE, there is a detailed description

of conversations by means of complementary state automata (couples of

Communication Class Diagram) representing agents’ state involved in commu-

nication. Together, the complementary sides of conversation make up a protocol

definition. As for Gaia, a definition of protocols is provided in the Interaction

Model.

Conclusion and Further Work

The methodology proposed here has proved successful with multi-agent and

distributed systems, both in robotics and information systems. It has been used

in several research projects and in the Software Engineering course at the

University of Palermo for final assignments. Students and researchers appreci-

104 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

ated the step-by-step guidance provided by the methodology and have found it

rather easy to learn and to use. Among the most appreciated features, we can

list: (1) the ease of transition for designers coming from the object-oriented

world, since the initial parts of PASSI adopt concepts of requirements analysis

that are very common in that context; (2) the multiple views that permit an easy

analysis of complex systems from many different aspects; (3) the support of a

specific design tool (PTK, an add-in for Rational Rose), and (4) the patterns

reuse that allows a rapid development of MASs. The implementation environ-

ments that we have used were based on the FIPA architecture in accordance

with the aim of adopting standards whenever possible. We are now working on

the enhancement of the CASE tool supporting PASSI and on the enlargement of

the pattern repository in order to further increase the productivity of the PASSI

developer.

References

Andersen, E. (1997). Juul Møller Bokhandel A/S. Norwegian School of

Management. Retrieved from: http://www.espen.com/papers/jme.pdf.

Antón, A.I. & Potts, C. (1998). The use of goals to surface requirements for

evolving systems. In Proceedings of International Conference on

Software Engineering (ICSE ’98). pp.157-166.

Aridor, Y. & Lange, D.B. (1998). Agent design patterns: Elements of agent

application design. In Proceedings of the Second International Confer-

ence on Autonomous Agents. pp.108-115.

Bergenti, F. & Poggi A. (2000). Exploiting UML in the design of multi-agent

systems. In Proceedings of First International Workshop Engineering

Societies in the Agents World.

Bernon, C., Camps, V., Gleizes, M-P., & Picard, G. (2004). Tools for self-

organizing applications engineering. In Proceedings of the First Interna-

tional Workshop on Engineering Self-Organising Applications (ESOA).

Springer-Verlag.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004).

TROPOS: An agent-oriented software development methodology. Jour-

nal of Autonomous Agents and Multi-Agent Systems, 8(3), 203-236.

Caire, G., Cossentino, M., Negri, A., Poggi, A., & Turci, P. (2004). Multi-agent

systems implementation and testing. In Proceedings of the Agent Tech-

nology to Agent Implementation Symposium (AT2AI-04).

From Requirements to Code with the PASSI Methodology 105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Chella, A., Cossentino, M., & Lo Faso, U. (2000). Designing agent-based

systems with UML. In Proceedings of International Symposium on

Robotics and Automation ISRA’2000.

Cossentino, M., Sabatucci, L., & Chella, A. (2003). A possible approach to the

development of robotic multiagent systems. In Proceedings of IEEE/WIC

IAT’03 Conference.

Cossentino, M., Sabatucci, L., Sorace, S., & Chella, A. (2003). Patterns reuse

in the PASSI methodology. Fourth International Workshop Engineer-

ing Societies in the Agents World.

Cranefield, S. & Purvis, M. (1999). UML as an ontology modelling language. In

Proceedings of the Workshop on Intelligent Information Integration at

16th International Joint Conference on Artificial Intelligence (IJCAI-

99).

DeLoach, S. A., & Wood, M. (2001). Developing multi-agent systems with

agentTool. Intelligent Agents VII - Proceedings of the 7th International

Workshop on Agent Theories, Architectures, and Languages

(ATAL’2000). Springer Lecture Notes in AI. Berlin: Springer Verlag.

DeLoach, S.A., Wood, M.F., & Sparkman, C.H. (2001). Multi-agent systems

engineering. International Journal on Software Engineering and Knowl-

edge Engineering, 11(3), 231-258.

DiLeo, J., Jacobs, T. & DeLoach, S. (2002). Integrating ontologies into multi-

agent systems engineering. In Proceedings of the Fourth International

Conference on Agent-Oriented Information Systems (AIOS-2002).

FIPA. (2000). Communicative Act Library Specification. FIPA Document

#FIPA00037. Retrieved from: http://www.fipa.org/specs/fipa00037/

FIPA. (2001). FIPA RDF Content Language Specification. FIPA Document

FIPA XC00011B. Retrieved from: http://www.fipa.org/specs/ fipa00011/

XC00011B.html

Jackson, M. (2001). Problem frames: Analyzing and structuring software

development problems. Reading, MA: Addison Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-

oriented software engineering: A use case driven approach. Reading,

MA: Addison-Wesley.

Jennings, N.R. (2000). On agent-based software engineering. Artificial Intel-

ligence, 117, 277-296.

Kendall, E. A., Krishna, P. V. M., Pathak, C. V., & Suresh, C. B. (1998).

Patterns of intelligent and mobile agents. In Proceedings of the Second

International Conference on Autonomous Agents. pp. 92-99.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

106 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

O’Brien, P. & Nicol, R. (1998). FIPA - Towards a standard for software agents.

BT Technology Journal, 16(3), 51-59.

Odell, J., Van Dyke Parunak, H., & Bauer, B. (2001). Representing agent

interaction protocols in UML. In Agent-Oriented Software Engineering,

pp. 121-140. Berlin: Springer-Verlag.

OMG. (2003a). Software Process Engineering Metamodel Specification. Ver-

sion 1.0.

OMG. (2003b). Unified Modeling Language Specification. Version 1.5.

Poslad S., Buckle, P., & Hadingham, R. (2000). The FIPA-OS agent platform:

Open source for open standards. In Proceedings of the 5th International

Conference and Exhibition on the Practical Application of Intelligent

Agents and Multi-Agents. pp.355-368.

Potts, C. (1999). ScenIC: A strategy for inquiry-driven requirements determina-

tion. In Proceedings of IEEE Fourth International Symposium on

Requirements Engineering (RE’99). pp.58-65.

Robbins, J., Medvidovic, N., Redmiles, D., & Rosenblum, D. (1998). Integrating

architecture description languages with a standard design method. In

Proceedings of the Twentieth International Conference on Software

Engineering (ICSE ’98). pp.209-218.

Searle, J.R. (1969). Speech acts. Cambridge, UK: Cambridge University Press.

SPEM (2002) — MISSING HERE

W3C. (1999). Resource Description Framework. (RDF), Model and Syntax

Specification. W3C Recommendation 22-02-1999. Retrieved from: http:/

/www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

Wooldridge, M. & Ciancarini, P. (2001). Agent-oriented software engineering:

The state of the art. In P. Ciancarini & M. Wooldridge (Eds.), Agent-

Oriented Software Engineering, No.1957 in LNCS, pp.1-28. Berlin:

Springer-Verlag.

Yu, E. & Liu, L. (2000). Modelling trust in the i* strategic actors framework. In

Proceedings of the 3rd Workshop on Deception, Fraud and Trust in

Agent Societies at Agents 2000.

Zambonelli, F., Jennings, N., & Wooldridge, M. (2001). Organizational rules as

an abstraction for the analysis and design of multi-agent systems. Journal

of Knowledge and Software Engineering, 11(3), 303-328.

Zambonelli, F., Jennings, N., & Wooldridge, M. (2003). Developing multiagent

systems: The Gaia methodology. ACM Transactions on Software Engi-

neering and Methodology, 12(3), 417-470.

