
Open access to the Proceedings of the
12th USENIX Conference on File and Storage

Technologies (FAST ’14)
is sponsored by

This paper is included in the Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST ’14).

February 17–20, 2014 • Santa Clara, CA USA

ISBN 978-1-931971-08-9

From Research to Practice: Experiences
Engineering a Production Metadata Database

for a Scale Out File System
Charles Johnson, Kimberly Keeton, and Charles B. Morrey III, HP Labs;

Craig A. N. Soules, Natero; Alistair Veitch, Google; Stephen Bacon, Oskar Batuner,
Marcelo Condotta, Hamilton Coutinho, Patrick J. Doyle, Rafael Eichelberger, Hugo Kiehl,

Guilherme Magalhaes, James McEvoy, Padmanabhan Nagarajan, Patrick Osborne,
Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien Tandel, Lincoln Thomas,

and Sebastian Zangaro, HP Storage
https://www.usenix.org/conference/fast14/technical-sessions/presentation/johnson

USENIX Association 12th USENIX Conference on File and Storage Technologies 191

From research to practice: experiences engineering a production metadata
database for a scale out file system

Charles Johnson1, Kimberly Keeton1, Charles B. Morrey III1, Craig A. N. Soules2, Alistair
Veitch3, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton Coutinho, Patrick J.

Doyle, Rafael Eichelberger, Hugo Kiehl, Guilherme Magalhaes, James McEvoy, Padmanabhan
Nagarajan, Patrick Osborne, Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien

Tandel, Lincoln Thomas, and Sebastian Zangaro

HP Labs1 Natero2 Google3 HP Storage

Abstract

HP’s StoreAll with Express Query is a scalable commer-
cial file archiving product that offers sophisticated file
metadata management and search capabilities [3]. A new
REST API enables fast, efficient searching to find all files
that meet a given set of metadata criteria and the ability to
tag files with custom metadata fields. The product brings
together two significant systems: a scale out file system
and a metadata database based on LazyBase [10]. In de-
signing and building the combined product, we identified
several real-world issues in using a pipelined database
system in a distributed environment, and overcame sev-
eral interesting design challenges that were not contem-
plated by the original research prototype. This paper
highlights our experiences.

1 Introduction

Unstructured data, which accounts for more than 90% of
the information in the world today [11], creates a number
of challenges, including economically storing the data
(even as it ages), effectively protecting and managing
it, and extracting value from the stored data. To help
customers tame their information explosion, HP wanted
to provide an archival storage solution that would scale
to billions of files and objects and create structure for
unstructured data by allowing customers to exploit rich
metadata services.

To help with the problem of extracting value, the solution
would need to provide fast metadata search to support a
variety of usage scenarios. For example, system adminis-
trators need to quickly and efficiently find files that match
a given criteria to monitor storage operation (e.g., iden-
tify files created, modified, or deleted within a given time
frame) and enforce compliance (e.g., determine which
files are approaching retention expiration, or are on legal

hold). Users want to “tag” files with custom metadata
attributes and later search using those attributes. Such
metadata services would also benefit external applica-
tions like backup and enterprise content management, by
allowing them to avoid costly file system scans when de-
termining which files have changed and must be backed
up or indexed.

Ad hoc solutions in this space couple together an exter-
nal relational DBMS and a scale out file store. This ap-
proach is unable to support the necessary scaling and per-
formance requirements. Additionally, such solutions do
not provide integrated search capabilities across system
and custom metadata, and are likely to be expensive to
maintain. Instead, our goal was to embed the metadata
service within the file system to solve these challenges.

StoreAll with Express Query is a file archiving solution
that couples a scale-out file system with an embedded
database to accelerate metadata queries [3]. Initial re-
leases target archival workloads, where files must be kept
for an extended period of time, may be actively searched
and may subject to business or regulatory requirements.
In these systems, the number of files and aggregate data
size can be extremely large, due to the need to retain files
for many years.

This paper describes our experiences transforming a
research metadata database (LazyBase [10]) into a
production-quality metadata database, Express Query. In
our work, we discovered several issues prompted by the
scalable file archiving use case that we had not consid-
ered in the research prototype, and re-evaluated several
of our original design decisions.

We begin by providing background on LazyBase and the
scale out file system (§2). We highlight some of the chal-
lenges we encountered and overcame (§3), as well as the
new capabilities we added to improve usability and flex-
ibility (§4). Finally, we overview the related work (§5)
and summarize the lessons we learned (§6).

192 12th USENIX Conference on File and Storage Technologies USENIX Association

2 Background

This section provides an overview of the original Lazy-
Base [10] design and of the StoreAll file system architec-
ture.

2.1 LazyBase

Express Query is based on LazyBase, a distributed
database that provides scalable, high-throughput ingest
of updates, while allowing a per-query tradeoff between
latency and result freshness [10]. LazyBase provides this
tradeoff using an architecture designed around batching
and pipelining of updates. Read queries observe a stale,
but consistent, version of the data, which is sufficient for
many applications; more up-to-date results can be ob-
tained when needed by scanning updates still being pro-
cessed by later stages of the pipeline.

LazyBase provides a service model that decouples up-
date processing from read-only queries. Updates (e.g.,
adds, modifies, deletes) are observational, meaning that
data additions and modifications must provide new or
updated values, which will overwrite (or delete) exist-
ing data. Because data is batched, uploaded (potentially)
out-of-order and processed asynchronously, it may not
be possible to read the “current” value of a field to de-
termine the new/updated value; the most recent update
may not have been uploaded yet or may still be being
processed by the pipeline.

To improve database ingest performance, update clients
(also known as sources) batch updates together and up-
load them to LazyBase as a single self-consistent update
(SCU), which is the granularity of transactional (e.g.,
ACID) properties throughout the update pipeline. For
read-only queries, LazyBase provides snapshot isolation,
where all reads in a query will see a consistent snapshot
of the database, as of the time that the query started; in
practice, this is the last SCU that was applied at query
start time.

LazyBase tables contain an arbitrary number of named
and typed columns. Each table has a primary sort order
and one or more optional secondary sort orders (analo-
gous to materialized views), which contain a subset of
the columns and rows of the primary sort order. Each
sort order is a collection of fixed-size pages, called ex-
tents, which are stored in compressed form. Addition-
ally, each sort order has an extent index, which stores the
minimum and maximum value of the key in each extent
of the underlying sort order. Because extents are typi-
cally large (64KB), and the index only stores min and
max values, the index is small enough to fit into mem-

Figure 1: LazyBase prototype architecture [10].

ory, even if the table is very large. As a result, LazyBase
requires fewer disk I/Os to locate a data extent through
the extent index than would be required for a traditional
B-tree index. Primary and secondary sort orders, as well
as extent indexes, are stored as DataSeries files [9].

Figure 1 illustrates LazyBase’s update processing
pipeline. The ingest stage accepts client uploads and
makes them durable. The ID-remapping stage converts
SCUs from using their internal temporary IDs to using
global IDs common across the system. The sort stage
sorts each of the SCU’s tables for each of its sort or-
ders. The merge stage combines multiple SCUs into a
single sorted SCU. In addition to these stages, a coordi-
nator tracks and schedules work in the system, maintain-
ing availability and managing recovery.

2.2 StoreAll architecture

StoreAll’s shared nothing clustered file system is subdi-
vided into segments (volumes). Each segment contains a
portion of the inodes (directories and files) in the file sys-
tem. A segment is owned by one server, and the file sys-
tem supports failover to other servers if the owning server
fails. Each server handles reads and writes and manages
locking for inodes in the segments it owns. A server can
access an inode owned by another server in the cluster
via internal network handshaking. The system supports
NFS, CIFS, HTTP, FTP, and local file system access and
scales to more than 16 PB of data in a single name space.

As the file system is updated, the system records meta-
data state changes (e.g., file creations, deletions, reten-
tion operations) into a per-segment archive journal. This
journal is a transactionally reliable change log of file
system metadata updates that each server maintains for
the segments that it manages. Every few seconds the
archive journal writer (ajwriter) flushes the archive
journal files (ajfiles) for the segments owned by that

USENIX Association 12th USENIX Conference on File and Storage Technologies 193

server; for each segment, the ajwriter closes the ex-
isting ajfile and starts a new one. Once the ajfiles
are closed, they appear in the StoreAll namespace in a
hidden directory and an update notification is sent to the
subscribers of the ajwriter. This distributed publish/-
subscribe event-driven architecture scales out well be-
cause changes are recorded locally and immediately. It
avoids expensive file system scans for metadata changes
and provides a difficult-to-bypass auditing mechanism.

3 Lessons Learned

Incorporating LazyBase into the StoreAll product pushed
our initial LazyBase design in interesting new direc-
tions. In this section, we highlight several of the lessons
learned, including the demands of the file system use
case, the limits of our initial design, and how we ad-
dressed the challenges. We believe that these lessons and
our solutions generalize to using a system like LazyBase
in other distributed environments.

3.1 Transaction model complications

The combination of observational updates, out-of-order
events and asynchronous processing complicates the
transactional model. Here, we describe three aspects
of the problem and our solutions: out-of-order event
processing, expressing freshness, and enforcing data in-
tegrity.

3.1.1 Out-of-order event processing

Depending on the order in which batches are uploaded,
events may be processed by the database in a differ-
ent order than they were generated in the file system.
LazyBase’s pipeline has built-in support for processing
out-of-order updates. It uses both per-field and per-row
timestamps, and makes no assumptions about where the
timestamps come from, only that the timestamps gener-
ated for updates to a particular field must be totally or-
dered. When merging multiple versions of a given row,
LazyBase compares the timestamps of all versions of a
field and takes the newest.

In the research prototype for LazyBase, we used the
event timestamps in the input data as the field times-
tamps. We assumed that all updates for a given field
could be globally ordered based on their timestamps. In
the product, we had to cope with the fact that event times-
tamps associated with the same file system object could
be generated by different servers with skewed clocks.

The clock skew issue prompted changes in the way we
track event timestamps for StoreAll.

In StoreAll, servers that host client connections are
called entry servers (ESs). ESs initiate file system op-
erations on one or more file system objects on behalf of
their clients. However, durable modifications caused by
these operations are made only at the server that owns
the file system object; such servers are called destina-
tion servers (DSs). Any ES in the system can initiate
an operation that results in durable modifications to a
file system object. Operations that do not generate any
durable modifications (e.g., read and getattr) can be
supported via caching on the ES, without requiring com-
munication with the DS that owns the object. As in all
distributed systems, the clocks on the individual ES and
DS nodes will have skew.

Ultimately, we eliminated the clock skew issue by using
the DS timestamp for all events that make durable mod-
ifications to file system objects. We use the ES times-
tamp to support read auditing, with the proviso that these
timestamps are not comparable to those in non-audit ta-
bles and using the knowledge that audit events are never
updated after insertion.

3.1.2 Freshness

The LazyBase research prototype expressed freshness as
a single number. In contrast, in a distributed system such
as StoreAll, where multiple servers upload new data to
Express Query, freshness can’t be expressed as a single
number. As described in § 3.2, updates are batched in-
dependently for different segments, meaning that it is
not possible to provide a single point-in-time view of
the entire file system’s metadata. Instead, the freshness
provided by Express Query is a range, delimited by the
oldest and newest of the freshness levels from individ-
ual segments. Segment freshness levels are affected by
a number of issues, including events being cached be-
fore being flushed to an ajfile (as described in §2.2),
or a segment going offline for a time and only uploading
events once it comes back online.

To simplify the early Express Query design, we disabled
freshness queries. Even though database clients cannot
request a particular freshness, they still need to know
about the achieved freshness of their query results. For
example, a periodic backup application that queries for
recently updated files and wants to start its next backup
where the previous one left off needs to know the fresh-
ness for the previous query results to avoid missing mod-
ified files. To address this need, Express Query explic-
itly tracks each segment’s freshness, and query results
include the minimum (FreshnessComplete) and maxi-

194 12th USENIX Conference on File and Storage Technologies USENIX Association

mum (FreshnessPartial) freshness values across the seg-
ments. FreshnessComplete indicates the timestamp be-
fore which all events have been observed from all seg-
ments. FreshnessPartial indicates the timestamp for the
latest event processed for any segment. Thus, in the win-
dow between FreshnessComplete and FreshnessPartial,
query results include some, but not all, of the events gen-
erated in the file system. Database clients can use this
information to determine how to use the query results.

3.1.3 Enforcing data integrity

As described in § 2.1, the combination of observational
updates, out-of-order event arrival and asynchronous
processing means that LazyBase does not support read-
modify-write transactions. This property has interesting
implications for file system event processing. For exam-
ple, custom attributes for an old version of a file should
no longer be visible once the file has been deleted. How-
ever, since StoreAll users need to be able to add an ar-
bitrary number of custom attributes for a file, so we or-
ganized the schema to store custom attributes in a dif-
ferent table (with one row per attribute) from the rest of
the system attributes (with one row per file system ob-
ject). This meant that file deletions couldn’t automati-
cally delete custom attributes, because there was no way
to reliably read and delete the up-to-date set of custom
attributes when processing the deletion event.

Instead, we needed to explicitly enforce integrity con-
straints between the tables. Express Query tracks file
creation and deletion times, as well as timestamps for
custom metadata operations, and queries must include
timestamp comparison logic to check for attribute valid-
ity. A lazy cleaning pass periodically gets rid of custom
attributes for deleted files as well as file lifetime infor-
mation for files that were created or deleted sufficiently
long ago.

3.2 Batching

As Cipar et al. observed, the choice of batch size causes
a tradeoff between ingest throughput and latency [10].
Larger batches lead to greater pipeline processing effi-
ciency (and hence better throughput), but also increase
the delay before data can be queried – essentially, this de-
creases the freshness of the query results. We considered
increasing batch size by including updates from multiple
sources in the same batch, but quickly realized that this
complicates the transactional model: it is more difficult
for individual sources to abort, when the other sources in
the same batch want to commit. As a result, we elected
to create independent batches for different sources.

Express Query treats each file system segment as a
source. A user-space tool called the archive journal
scanner, or ajscanner, subscribes to the ajwriter

notifications (§2.2). For each ajfile, the ajscanner

parses the event data to create a batch of updates to
upload to Express Query. The ajscanner processes
ajfiles for each segment in order (determined using
the ajfiles’ mtimes), and uploads data from different
segments in parallel. From Express Query’s perspective,
each segment appears as a separate source, uploading a
stream of SCUs, one per ajfile. We use the fact that
ajfiles are created regularly every few seconds to strike
a balance between pipeline throughput and pipeline la-
tency (freshness).

3.3 Auto-increment IDs

The LazyBase research prototype supported the con-
cept of a 64-bit integer auto-increment ID column, also
known as a database surrogate key [7]. IDs can more
space-efficiently represent long values (e.g., file path-
names), by substituting the ID wherever the value would
have been used in a table. The exact savings depends on a
variety of factors, including the length of the strings, the
strings’ compressibility, and how many string fields are
present in a table. The expectation was that by convert-
ing long values into integers, the ID-remapping mecha-
nism would improve ingestion performance. Indeed, we
found that using IDs sped up merge performance for a
simulated file creation benchmark by an average of 54%.
However, ID-remapping has both query and ingestion
costs that must be considered.

The LazyBase prototype included IDs for a variety of
string fields, including pathnames, and used these IDs as
the primary key for most tables. Because LazyBase uses
in-memory extent indexes to support point and range
queries, sorting a table by the ID effectively randomized
the data order, requiring a full table scan for what oth-
erwise should be point or range queries. Furthermore,
every query that selected or filtered on an ID-remapped
attribute (in combination with other attributes) required
a join with the ID table. In the file system context, this
meant that all pathname-based queries (e.g., “find all files
in a directory” or “show pathnames for all files modified
in the last day”) required a join between the path ID ta-
ble and the table(s) containing the other metadata; often,
these other tables required full table scans. In contrast,
if IDs were not used and pathnames were included in
the tables containing the other metadata attributes, with
a sort order by pathname, path-based lookups could have
been satisfied by an indexed lookup to the table(s) con-

USENIX Association 12th USENIX Conference on File and Storage Technologies 195

Experiment IDs (sec) No IDs (sec)
File lookup 55.16 +/- 4.23 0.12 +/- 0.14
Directory lookup (small) 509.83 +/- 12.51 0.44 +/- 0.03
Directory lookup (med) 819.42 +/- 105.11 8.28 +/- 0.10

Table 1: ID vs. no-ID execution time (in seconds) for file and directory
lookup queries, for 100M file dataset. Values shown are average +/-
standard deviation for ten trials. The small directory lookup examines
about 148k files; the medium directory lookup examines about 3.84M
files. Directory lookups compute the max file size to eliminate output
processing costs.

taining the other attributes. As shown in Table 11, the
combination of full table scans and joins proved to be
unacceptably inefficient.

The ingestion costs proved to be non-trivial, as well. The
ID-remap stage must look up each incoming value to
determine what global ID to assign, which requires all
prior SCUs to be queryable and thus violates the goal
of delayed processing for efficiency. Because the pre-
ceding individual SCUs may not have been merged into
larger SCUs, remapping may require reading input data
from many files, with the number of I/Os depending on
the distribution of values in the input data. Additionally,
the ID-remap stage proved to be a scalability bottleneck:
since processing is serialized due to the need to look at all
prior SCUs, the stage can only be scaled by partitioning
the namespace. Although parallelizing ID-remap would
help ingest-time scalability, it still would not address the
query-time concerns described above.

Our solution was to eliminate the use of auto-
incrementing IDs and the ID-remap stage entirely. This
approach improved query performance dramatically and
simplified many stages of the pipeline, including the co-
ordinator job scheduling and recovery processing.

3.4 Primary key

Our initial Express Query design used pathname as the
primary key for most tables, to transparently support
backup/restore and remote replication, which preserve
pathnames. This choice worked well for the archival
use cases we initially targeted, where files were almost
never modified after being created, and were not re-
named. However, to support a more general file system
use case, the system needed to provide support for re-
names and hard links. Unfortunately, with pathname as
the primary key, this more general use case required re-
assigning the primary key, a costly operation. As a result,

1The equipment used for all experiments is an HP DL380p Gen8
server (2 x Intel Xeon E5-2697v2 CPUs, 2.70 GHz, 12 cores, 24 hy-
perthreads) with 384GB of DRAM. LazyBase/Express Query data is
stored on an HP D2700 disk array with a P822 RAID controller and 25
146GB 15k RPM SAS drives.

Primary Secondary
sort order (sec) sort order (sec)

Point key 129.08 +/- 4.17 0.05 +/- 0.01
Range (10%) 131.48 +/- 2.94 16.97 +/- 0.17
Range (25%) 136.44 +/- 2.60 39.68 +/- 0.34
Range (50%) 138.52 +/- 4.91 77.60 +/- 0.37
Range (75%) 142.02 +/- 3.67 115.80 +/- 1.00

Table 2: Execution time (in seconds) for point and range queries for
primary sort order (table scan) vs. secondary sort order (index lookup),
for 100M file dataset. Values shown are average +/- standard deviation
for ten trials. The table shows range query results for four different
selectivities (fraction of rows used to calculate result). Range queries
compute a count to eliminate output processing costs.

the next version of our design chose as its primary key a
globally unique file system-internal identifier for all file
system objects. Tables continue to store the file system
object’s pathname and to define a secondary sort order
based on the pathname, to avoid the auto-increment ID
issues described in §3.3.

3.5 Secondary sort orders

As with any data management system, a universal chal-
lenge is how to organize the data to balance between
query cost efficiency and data maintenance efficiency.
In Express Query, this challenge amounts to which sec-
ondary sort orders to maintain, and how many columns
each secondary sort order should contain.

For queries that filter on a secondary sort order’s search
key, the sort order provides efficient indexed lookups.
Table 2 compares query execution time for indexed
lookups vs. full table scans. If the secondary sort order is
populated with a sufficiently large subset of the columns
of the primary sort order, then a single secondary sort
order can satisfy queries that access multiple attributes.
For example, a query to select all pathnames, file sizes
and file owners for files that have been recently modified
could be efficiently satisfied by a secondary sort order
that is sorted according to mtime and also contains the
pathname, size and owner.

Creating and maintaining secondary sort orders during
the update pipeline requires resources, however. The
more secondary sort orders and the more columns per
secondary sort order, the longer ingesting takes, and
hence the freshness of the queryable data suffers. Ta-
ble 3 quantifies the cost of update pipeline processing
for additional fully-populated secondary sort orders.

To reap the potential query-time performance benefits
from secondary sort orders, our initial Express Query
schema maintained a fully-populated secondary sort or-
der for each of the system attributes in the file objects
table. We continue to experiment with reducing the num-

196 12th USENIX Conference on File and Storage Technologies USENIX Association

Primary Primary +
only 15 secondary Slowdown

Durable 1965 sec 6939 sec 3.53X
Queryable 2379 sec 11157 sec 4.69X

Table 3: Update pipeline processing time (in seconds) for ingesting
100M simulated file creations. “Durable” is time until the data is made
durable (i.e., through the ingest pipeline stage). “Queryable” is time
until the data is queryable (i.e., through the complete pipeline, includ-
ing ingest). “Primary only” is a schema with no secondary sort orders
for the file object data. “Primary + 15 secondary” is a schema with 15
fully-populated secondary sort orders, one per system attribute.

ber of secondary sort orders and the fraction of columns
in various secondary sort orders, to improve ingest re-
source utilization and query freshness.

4 New Features

The goals for StoreAll’s metadata database were to sup-
port user-initiated operations, such as assigning custom
metadata tags to files, efficiently performing ad hoc file
searches (e.g., a fast Unix find) and generating file sys-
tem utilization reports. Additionally, the database needed
to support external applications, such as a backup service
tracking recently changed files. Finally, it needed to sup-
port internal file system operations, such as content vali-
dation scans and storage tiering policies. The query API
needed to be flexible in the face of schema changes, and
to facilitate rapid prototyping and experimentation by de-
velopers of the file system services using the database.
The end user-visible interface needed to be intuitive and
simple.

This section describes two APIs – SQL and REST – that
we implemented to improve usability and flexibility for
internal and external users of the database, respectively.
The system continues to support programmatic queries
where flexibility is not required, or performance over-
rides other considerations.

4.1 SQL API

We added a full SQL front end to Express Query, us-
ing the foreign data wrapper (FDW) API from Post-
greSQL [5]. We define FDWs on top of the Express
Query native tables, using the DataSeries (DS) storage
layer and translation logic to access the tables. SQL
queries are parsed, optimized, and partially executed by
PostgreSQL, using foreign table accesses (table scans
and index lookups) at the leaf nodes of the query exe-
cution tree, instead of native PostgreSQL table or index
scans. Our approach uses multiple components: a Trans-
action Manager, a DS FDW, a DS row iterator, and a

shim layer to translate between the FDW and row itera-
tor. These components cooperate to request data from the
Express Query pipeline workers, perform data transla-
tion operations, and implement transactional properties.

The Transaction Manager keeps track of active trans-
actions and which versions of the Express Query ta-
bles they access, to ensure that all table accesses in the
same transaction see a consistent view of the underlying
database (i.e., per-transaction snapshot isolation). This
mapping also informs garbage collection: the Transac-
tion Manager prevents the garbage collector from re-
claiming any versions that are still in use by an active
transaction.

FDW. The FDW interfaces with the rest of PostgreSQL’s
query execution engine. It allows query qualifications
(e.g., conditions in a SQL SELECT WHERE statement)
to be passed to Express Query, to permit filtering of the
rows examined to satisfy the query, rather than requiring
a full table scan. Only qualifications with =, <, <=,
>, >=, or LIKE operators on search keys are passed
through, because they can be used by Express Query’s
index interface.

Translation shim. For each foreign table involved in
a query, this layer communicates with the rest of Ex-
press Query to register the foreign table’s transaction id
with the Transaction Manager and learn which ingest
pipeline worker(s) to contact to retrieve the data. The
shim layer translates PostgreSQL’s generic data types
into Express Query data type-specific values, and pre-
pares the DS search keys from the PostgreSQL qualifica-
tions. It uses these search key(s) to request data from the
Express Query ingest worker(s) for the table.

DS row iterator. This layer applies the appropriate equal-
ity or range search key filters, and returns data from the
Express Query pipeline worker one row at a time.

With this breakdown, the FDW needs no knowledge of
Express Query, and Express Query needs no knowledge
of PostgreSQL.

4.2 REST API

Although Express Query’s SQL read query front end met
the goal of enabling ad hoc queries, it did not isolate end
users from the specifics of the database schema. To pro-
vide a simpler and more flexible interface, we defined
a REST API [6], to permit users to request file and di-
rectory attributes, search for all paths matching a set of
attribute criteria, and define custom attributes.

File-mode REST requests (“queries” in REST parlance)
have three components: the path to be queried, the at-

USENIX Association 12th USENIX Conference on File and Storage Technologies 197

tributes to be returned, and the query expression itself.
In addition, several options specify recursive search, lim-
itations on the number of results returned, and result or-
der. The API supports both system and custom attributes.
System attributes include the attributes stored in the file’s
inode (e.g., size and mode), as well as attributes particu-
lar to StoreAll’s retention-enabled file system (e.g., stor-
age tier, retention state). The API also provides attributes
that summarize the last activity for a file (e.g., content
modifications, custom metadata changes, file creations
and deletions); we added these attributes to help database
clients like backup providers efficiently discover what
files had recent changes, to facilitate their own opera-
tions (e.g., choosing which files to back up). Users can
also specify their own custom attributes, which are asso-
ciated with paths as string key-value pairs.

We automatically translate each REST API query into a
SQL query to retrieve the relevant metadata; results are
presented in JSON.

5 Related work

Spyglass [12] provides an engine customized for file
metadata indexing and querying. It leverages the prop-
erty that files have many common attributes (e.g., owner
and path prefix) to optimize index structures. Exploiting
these properties achieves very high query performance,
but sacrifices flexibility, in that the system does not sup-
port arbitrary user-specified attributes. Instead of con-
stantly updating as the file system changes, Spyglass re-
lies on efficient scans of periodic snapshots, which can
result in highly variable freshness, depending on how of-
ten snapshots are taken. It also prevents the system from
offering auditing capabilities, but enables a valuable fea-
ture in historical metadata search.

A number of systems (e.g., [4, 8, 1, 2, 13]) offer full file
system search capabilities that can include metadata at-
tributes. They typically rely on either some form of in-
verted index (fast for queries, but expensive to update
and rebuild) or rely on a conventional RDBMS, which
severely limits their scalability and performance prop-
erties. (Our early experiments with using both open-
source and commercial RDBMSs for this purpose mo-
tivated the original LazyBase research.) By focusing on
keyword search, these systems are somewhat orthogonal
to our purposes, as they are not customized for metadata-
intensive applications; many do not even index file meta-
data. Many of these systems also do not allow for custom
metadata, rely on inefficient file system scans, or are not
integrated into the kernel, and thus cannot offer auditing.

6 Conclusions

This paper highlights some of our experiences transform-
ing a research prototype of a pipelined database into a
production metadata database in a scale out file system.
We summarize these experiences as follows:

Fallacies in our initial design. Despite our initial intu-
ition, auto-incrementing IDs and ID-remapping provided
unacceptable query and ingest performance slowdowns;
therefore we removed them. We also realized that in
a distributed environment, freshness is a window, not a
single number; this complexity compelled us to disable
freshness queries and report the achieved freshness range
as part of query results.

Usability and flexibility sometimes override perfor-
mance. Although our initial focus was on performance of
the update pipeline and a fast programmatic query API,
we learned that the flexibility to do ad hoc queries and
rapid prototyping merited the inclusion of a SQL query
API. Similarly, the desire to provide a simple interface
that isolated users from schema changes prompted the
development of a REST API.

Issues that we hadn’t considered, motivated by our use
case. LazyBase’s lack of read-modify-write transactions
meant that some data integrity constraints (e.g., custom
attribute suppression for deleted files) needed to be ex-
plicitly enforced. Similarly, our initial choice of path-
name as a primary key, while convenient for our initial
archive use case, proved to be the wrong choice for a
more general file system use case.

Modifications to the environment to ensure LazyBase as-
sumptions hold. For example, we forced batches to con-
tain only updates from a single source to ensure isolation
between sources. Additionally, we forced timestamps on
a particular field to have a total ordering, to ensure that
LazyBase’s out-of-order processing worked correctly.

Need to balance ingest-time and query-time processing.
We observed tensions between ingest processing effi-
ciency and query performance when selecting batch sizes
and choosing which secondary sort orders to include in
the schema. As in most data management systems, such
design decisions must balance these competing demands.

7 Acknowledgments

We thank Jiri Schindler, our shepherd; Steven Hand; and
the anonymous reviewers for constructive comments that
have significantly improved the paper.

198 12th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Apache Solr. http://lucene.apache.org/solr/, Jan. 2014.

[2] Autonomy. http://www.autonomy.com/, Jan. 2014.

[3] HP StoreAll with Express Query. http://www.hp.com/go/

storeall/, Jan. 2014.

[4] Introduction to Spotlight. https://developer.apple.

com/library/mac/documentation/Carbon/Conceptual/

MetadataIntro/MetadataIntro.html, Jan. 2014.

[5] PostgreSQL. http://www.postgresql.org/, Jan. 2014.

[6] Representational state transfer. http://en.wikipedia.org/

wiki/Representational_state_transfer, Jan. 2014.

[7] Surrogate key. http://en.wikipedia.org/wiki/

Surrogate_key, Jan. 2014.

[8] Windows search. http://windows.microsoft.com/en-us/
windows7/products/features/windows-search, Jan.
2014.

[9] ANDERSON, E., ARLITT, M., MORREY III, C. B., AND
VEITCH, A. DataSeries: An efficient, flexible data format for
structured serial data. ACM SIGOPS Operating Systems Review
43, 1 (January 2009), 70–75.

[10] CIPAR, J., GANGER, G., KEETON, K., MORREY III, C. B.,
SOULES, C. A. N., AND VEITCH, A. LazyBase: Trading fresh-
ness for performance in a scalable database. In Proc. of European
Systems Conference (EuroSys) (April 2012), pp. 169–182.

[11] GANTZ, J., AND REINSEL, D. Extracting value from chaos. IDC
report (June 2011).

[12] LEUNG, A. W., SHAO, M., BISSON, T., PASUPATHY, S., AND
MILLER, E. L. Spyglass: Fast, scalable metatdata search for
large-cale storage systems. In Proc. 7th USENIX Conf. on File
and Storage Technologies FAST (2009), pp. 153–166.

[13] MANBER, U., AND WU, S. Glimpse: A tool to search through
entire file systems. In Proc. of the Winter 1994 USENIX Confer-
ence (San Francisco, CA, 1994), pp. 23–32.

