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From rumor to genetic mutation 
detection with explanations: a GAN 
approach
Mingxi Cheng1, Yizhi Li2, Shahin Nazarian1 & Paul Bogdan1*

Social media have emerged as increasingly popular means and environments for information 
gathering and propagation. This vigorous growth of social media contributed not only to a pandemic 
(fast-spreading and far-reaching) of rumors and misinformation, but also to an urgent need for text-
based rumor detection strategies. To speed up the detection of misinformation, traditional rumor 
detection methods based on hand-crafted feature selection need to be replaced by automatic artificial 
intelligence (AI) approaches. AI decision making systems require to provide explanations in order to 
assure users of their trustworthiness. Inspired by the thriving development of generative adversarial 
networks (GANs) on text applications, we propose a GAN-based layered model for rumor detection 
with explanations. To demonstrate the universality of the proposed approach, we demonstrate its 
benefits on a gene classification with mutation detection case study. Similarly to the rumor detection, 
the gene classification can also be formulated as a text-based classification problem. Unlike fake news 
detection that needs a previously collected verified news database, our model provides explanations 
in rumor detection based on tweet-level texts only without referring to a verified news database. 
The layered structure of both generative and discriminative models contributes to the outstanding 
performance. The layered generators produce rumors by intelligently inserting controversial 
information in non-rumors, and force the layered discriminators to detect detailed glitches and 
deduce exactly which parts in the sentence are problematic. On average, in the rumor detection task, 
our proposed model outperforms state-of-the-art baselines on PHEME dataset by 26.85% in terms of 
macro-f1. The excellent performance of our model for textural sequences is also demonstrated by the 
gene mutation case study on which it achieves 72.69% macro-f1 score.

Sequential synthetic data generation such as generating text and images that are indistinguishable to human eyes 
have become an important problem in the era of arti�cial intelligence (AI). Generative models, e.g., variational 
autoencoders (VAEs)1, generative adversarial networks (GANs)2, recurrent neural networks (RNNs) with long 
short-term memory (LSTM)  cells3, have shown outstanding generation power of fake faces, fake videos, etc. 
GANs as one of the most powerful generative models estimate generative models via an adversarial training 
 process2. Real-valued generative models have found applications in image and video generation. However, GANs 
face challenges when the goal is to generate sequences of discrete tokens such as  text4. Given the discrete nature 
of text, backpropagating the gradient from the discriminator to the generator becomes  infeasible5. Training 
instability is a common problem of GANs, especially those with discrete settings. Unlike image generation, the 
autoregressive property in text generation exacerbates the training instability since the loss from discriminator 
is only observed a�er a sentence has been generated  completely5. To remedy some of these di�culties, several 
AI approaches (e.g., Gumbel-so�max6,7, Wasserstein GAN (WGAN)8,9, reinforcement learning (RL)4,10) have 
been  proposed11,12. For instance, the Gumble-so�max uses a reparameterization trick and so�max calculation 
to approximate the undi�erentiable sampling operation on the generator output, which allows the model to 
perform backward propagation as well as provide discrete outputs approximating to actual values. GANs with 
Gumbel-so�max take the �rst step to generate very short sequences of small  vocabulary7. WGAN method for 
discrete data directly calculates Wasserstein divergence between discrete labels and generator’s output as the 
criterion of discriminator. As a result, WGAN models can update parameters to learn the distribution of dis-
crete data and produce some short sentences in character-level9. As a result, generating natural language-level 
sentences is still non-trivial. GANs with RL can skirt the problem of information loss in the data conversion by 
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modeling text generation as a sequence of decisions and update the generator with reward function. Compar-
ing to previous methods, RL can help GANs generate interpretable text closer to natural  language4. In addition 
to the recent development in GAN-based text generation, discriminator-oriented GAN-style approaches are 
proposed for detection and classi�cation applications, such as rumor  detection13. Di�erently from the original 
generator-oriented GANs, discriminator-oriented GAN-based models take real data (instead of noise) as the 
input to the generator. Fundamentally, the detector may get high performance through the adversarial training 
technique. Current adversarial training strategies improve the robustness against adversarial samples. However, 
these methods lead to reduction of accuracy when the input samples are  clean14.

Social media and micro-blogging have become increasingly  popular15,16. �e convenient and fast-spreading 
nature of micro-blogs fosters the emergence of various rumors. Social media rumors / misinformation / fake 
news are major concerns especially during major events, such as the global rise of COVID-19 and the U.S. 
presidential election. Some of the coronavirus rumors have been veri�ed later to be very dangerous false claims, 
e.g., “those that suggest drinking bleach cures the illness”17 have made social media companies such as Facebook 
to �nd more e�ective  solutions18. Commercial giants, government authorities, and academic researchers take 
great e�ort in diminishing the negative impacts of  rumors19. Rumor detection has been formulated into a binary 
classi�cation problem by a lot of researchers. Traditional approaches based on hand-cra�ed features describe the 
distribution of  rumors20,21. However, early works depending on hand-cra�ed features require heavy engineering 
skills. More recently, with the rise of deep learning architectures, deep neural network (DNN)-based methods 
extract and learn features automatically, and achieve signi�cantly high accuracies on rumor  detection22. Gen-
erative models have also been used to improve the performance of rumor  detectors13, and formulate multi-task 
rumor classi�cation  systems23 to realize rumor detection, tracking, stance and veracity classi�cation. However, 
binary rumor classi�cation lacks explanation since it only provides a binary result without expressing which 
parts of a sentence could be the source of the problem. �e majority of the literature de�nes rumors as “an item 
of circulating information whose veracity status is yet to be veri�ed at the time of posting”24. Providing explana-
tions is challenging for detectors working on unveri�ed rumors. Comparably, fake news is more well-studied, 
as it has a veri�ed veracity. Attribute information, linguistic features, and semantic meaning of  post25 and/or 
 comments26 have been used to provide explainability for fake news detection. A veri�ed news database has to be 
established for these approaches. However, for rumor detection, sometimes a decision has to be made based on 
the current tweet only. Text-level models with explanations that recognize rumors by feature extraction should 
be developed to tackle this problem.

Gene classi�cation and mutation detection usually work with textual-gene data and also relate to a broad 
range of real-world applications, such as gene-disease association, genetic disorder prediction, gene expression 
classi�cation, and gene selection. Machine learning-based classi�cation and prediction tools have been pro-
posed to solve these genetic  problems27,28. Since essentially a gene sequence is of textual nature, we can process 
a genetic sequence as text. Gene mutation detection looks for abnormal places in a gene  sequence29. Hence, we 
propose to solve this problem by using a natural language processing-based mutation detection model. When 
comparing a gene sequence with a natural language sequence, we observe that the mutations in genetic sequences 
represent abnormalities that makes the sequence do not �t well compared to other sequences from a biological 
perspective. �e known genetic mutation detection and classi�cation problem has been e�ectively explored in 
the literature, while the unknown mutation detection and classi�cation has remained as a harder problem in 
both medical and machine learning �elds. To detect unknown mutations and classify them, we propose a GAN-
based framework that maintains a high performance level while facing unseen data with unknown patterns and 
providing explainability capabilities.

In this work, we propose a GAN-based layered framework that overcomes the afore-mentioned technical 
di�culties and provides solutions to (1) text-level rumor detection with explanations and (2) gene classi�-
cation with mutation detection. In terms of solving the technical di�culties, our model keeps the ability of 
discriminating between real-world and generated samples, and also serves as a discriminator-oriented model 
that classi�es real-world and generated fake samples. We overcome the infeasibility of propagating the gradient 
from discriminator back to the generator by applying policy gradient similar to  SeqGAN4 to train the layered 
generators. In contrast to prior works, we adopt a RL approach in our framework because by combining the 
GAN and RL algorithmic strategies the framework can produce textural representations with higher quality and 
balance the adversarial training. �e training instability of long sentence generation is lowered by selectively 
replacing words in the sentence. We solve the per time step error attribution di�culty by word-level generation 
and evaluation. We show that our model outperforms the baselines in terms of addressing the degraded accuracy 
problem with clean samples only.

Our GAN-based framework consists of a layered generative model and a layered discriminative model. �e 
generative model generates high-quality sequences by �rst intelligently selecting items to be replaced, then choos-
ing appropriate substitutes to replace those items. �e discriminative model provides classi�cation output with 
explanations. For example, in the gene classi�cation and mutation detection task, the generative model mutates 
part of the genetic sequence and then the discriminative model classi�es this genetic sequence and tells which 
genes are mutated. �e major contributions of this work are: (1) this work delivers an explainable rumor detec-
tion without requiring a veri�ed news database. Rumors could stay unveri�ed for a long period of time because 
of information insu�ciency. Providing explanations of which words in the sentence are problematic is critical 
especially when there is no veri�ed fact. When a veri�ed news database is achievable, our model is capable to 
realize fake news detection with minor modi�cations. (2) Our model is a powerful textural mutation detection 
framework. We demonstrate the mutation detection power by applying our proposed model to the task of gene 
classi�cation with mutation detection. Our model accurately identi�es tokens in the gene sequences that are 
exibiting mutations, and classi�es mutated gene sequences with high precision. (3) �e layered structure of 
our proposed model avoids the function mixture and boosts the performance. We have veri�ed that using one 
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layer to realize two functions either in generative or discriminative model causes function mixture and hurts 
the performance.

Results
Rumor detection with explanations. Rumors, de�ned as “items of circulating information whose 
veracity status is yet to be veri�ed at the time of posting”24, usually emerge when there are in�uential events 
and spread rapidly with the rise of social media. Far-reaching and fast-spreading rumors can cause serious 
consequences, for example, they are growing threats to the democratic  process30. Rumor detection su�ers from 
the limitation of datasets scale and the uncertain nature of rumors makes the early-detection and classi�cation 
with explanation challenging. In this section, the proposed discriminator-oriented GAN framework utilizes 
the layered generative model to generate augmented rumor dataset, and uses Dclassify to classify a rumor while 
relying on Dexplain to indicate which parts of the sentence are suspicious. �e detailed model description can be 
found in “Methods” section.

Detection results. Table 1 and Fig. 1 illustrate a comparison between the proposed model Dclassify and the base-
lines for rumor detection. In this experiment, we use PHEME data to train our model. During training, our 
model generates PHEME’ to enhance the discriminative model. Data in PHEME are either rumor (R), or non-
rumor (N), and generated data in PHEME’ are all labeled as R since we would like our Dclassify to be conservative 
and �lter out human-written non-rumors. Hence, all models in Table 1 perform 2-class classi�cation (R/N). In 
real world applications, the original clean dataset is available all the time. However, the modi�ed or adversarial 
data that contains di�erent patterns are not always accessible. Models like LSTM and CNN do not have gener-
alization ability and usually perform worse facing adversarial input. Generative models such as GANs are more 
robust. In VAE-LSTM and VAE-CNN, we �rst pre-train VAEs, then LSTM and CNN are trained under latent 
representations of pre-trained VAEs. Under the �rst evaluation principle, our model and the variation of our 

Table 1.  Macro-f1 and accuracy comparison between our model and baselines on the rumor detection 
task. �e models are trained on PHEME and tested on both original dataset PHEME and augmented dataset 
PHEME+PHEME’. *indicates the best result from the work that proposed the corresponding model. L 
represents the model is evaluated under leave-one-out principle. Variance results in cross-validations are 
shown in Table 2. �e best results are marked in bold.

PHEMEv5 PHEMEv9

PHEMEv5 PHEME+PHEME’v5 PHEMEv9 PHEME+PHEME’v9

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM 0.6425 0.6542 0.4344 0.4345 0.6261 0.6269 0.4999 0.5283

CNN 0.6608 0.6660 0.4792 0.4833 0.6549 0.6552 0.5028 0.5253

VAE-LSTM 0.4677 0.5625 0.2582 0.2871 0.4454 0.4589 0.4231 0.4326

VAE-CNN 0.5605 0.5605 0.4655 0.4902 0.3859 0.5029 0.2513 0.2778

GAN-GRU 0.7810
∗

0.7810
∗ – – – – – –

Our model-LSTM 0.8242 0.8242 0.6259 0.6302 0.8066 0.8066 0.6884 0.7044

Our model-CNN 0.8475 0.8476 0.6524 0.6777 0.8084 0.8095 0.7620 0.8085

LSTM (L) 0.5693 0.6030 0.5260 0.5710 0.5217 0.5827 0.5055 0.5906

CNN (L) 0.5994 0.6406 0.5324 0.5779 0.5477 0.6035 0.5051 0.5769

VAE-LSTM (L) 0.3655 0.3996 0.3620 0.3959 0.4256 0.5367 0.4284 0.5397

VAE-CNN (L) 0.4807 0.5190 0.4816 0.5214 0.4316 0.4597 0.4314 0.4587

DATA-AUG (L) 0.5350
∗

0.7070
∗ – – – – – –

Our model-LSTM (L) 0.6666 0.6866 0.5703 0.6411 0.5972 0.6272 0.5922 0.6371

Our model-CNN (L) 0.6745 0.7016 0.6126 0.6342 0.6207 0.6438 0.6016 0.6400

Table 2.  Variance results in cross-validations on the rumor detection task.

Methods/variance

PHEMEv5 PHEME+PHEME’v5 PHEMEv9 PHEME+PHEME’v9

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM (L) 0.0028 0.0060 0.0003 0.0024 0.0262 0.0036 0.0022 0.0016

CNN (L) 0.0022 0.0013 0.0003 0.0012 0.0215 0.0048 0.0017 0.0015

VAE-LSTM (L) 0.0204 0.0086 0.0001 0.0006 0.0103 0.0082 0.0067 0.0013

VAE-CNN (L) 0.0037 0.0029 0.0013 0.0014 0.0006 0.0031 0.0020 0.0020

Our model-LSTM (L) 0.0022 0.0025 0.0015 0.0020 0.0095 0.0059 0.0093 0.0066

Our model-CNN (L) 0.0013 0.0023 0.0022 0.0029 0.0101 0.0048 0.0079 0.0051
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model with LSTM cells outperform all baselines in terms of both macro-f1 and accuracy. Accuracy is not su�-
cient when the test data are not balanced, hence macro-f1 is provided for comprehensive comparison. Under the 
�rst evaluation principle, the robustness and generalization ability of our model are shown by comparing with 

Figure 1.  Macro-f1 (a) and accuracy (b) comparison between our model (-CNN and our model-LSTM) and 
baselines on the rumor detection task. �e models are trained on augmented dataset PHEME+PHEME’ and 
tested on both original PHEME and augmented PHEME+PHEME’. L represents the model is evaluated under 
leave-one-out principle.
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baselines under PHEME+PHEME’. Our model reaches the highest values in both versions of PHEME+PHEME’ 
and the variation of our model with LSTM cells follows as the second best. Under leave-one-out (L) principle 
(i.e., leave out one news topic for test and use the rest for training), our proposed model and the variation achieve 
the highest macro-f1 scores in all cases. �ese results con�rm the rumor detection ability of the proposed layered 
structure under new, out-of-domain data. Adversarial training of baselines improves generalization and robust-
ness under PHEME+PHEME’, but hurts the performance under clean data as expected. Although our model and 
the variation are trained adversarially, they achieve the highest macro-f1 under clean data PHEME. �e results 
con�rm that our model outperforms the baselines in terms of addressing the accuracy reduction problem.   

Table 3 shows two examples that are correctly detected by our model but incorrectly detected by other base-
lines. For the �rst rumor, baselines CNN, LSTM, VAE-CNN, and VAE-LSTM provide scores 0.9802, 0.9863, 
0.4917, and 0.5138, respectively. Our model provides a very low score for a rumor, while other baselines all 
generated relatively high scores, and even detect it as non-rumor. �is is a very di�cult example since from the 
sentence itself, we as human rumor detection agents even cannot pick the suspicious parts con�dently. However, 
our model gives a reasonable prediction and shows that it has the ability to understand and analyze complicated 
rumors. For the second non-rumor, baselines CNN, LSTM, VAE-CNN, and VAE-LSTM provide scores 0.0029, 
0.1316, 0.6150, and 0.4768, respectively. In this case, a non-rumor sentence gains a high score from our model, 
but several relatively low scores from the baselines. �is example again con�rms that our proposed model indeed 
captures the complicated nature of rumors and non-rumors.

Explanation results. A component for decision explanation is realized by Dexplain , which o�ers insight into the 
detection problem by suggesting suspicious parts of given rumor texts. Our model’s Dexplain recognizes the mod-
i�ed parts in sequences accurately. In 2-class PHEME experiments, its macro-f1 on PHEME’v5 and PHEME’v9 
are 80.42% and 81.23% , respectively. Examples of Dexplain predicting suspicious parts in rumors are shown in 
Table 4. In the �rst rumor, “hostage escape” is the most important part in the sentence, and if these two words 
are problematic, then the sentence is highly likely to be problematic. Given an unveri�ed or even unveri�able 
rumor, Dexplain provides reasonable explanation without requiring a previously collected veri�ed news database.

Rumor/non-rumor, true/false, and real/fake. Misinformation, disinformation, fake news, and rumor classi�ca-
tions have been studied in the  literature23,30–32 and frequently su�er from small-scale datasets. �e di�erence 
between misinformation, disinformation, fake news, and rumor is not well-de�ned and the labeling in these 
tasks is sometimes ambiguous and imprecise. In this work, we speci�cally refer rumor as a piece of information 
whose veracity is not veri�ed, and its label in detection task is rumor (R)/non-rumor (N). With the considera-
tion of veracity status, we refer facts as true (T) and false statements as false (F). Furthermore, we refer purely 
human-written statements as real (E) and machine-generated statements as fake (K). In the previous detection 
section, we do binary classi�cation in rumor detection task. Our generative model replaces parts of a sequence 
and due to the uncertain nature of rumors, we label the generated (modi�ed) rumors as R, and non-rumor in 
original dataset as N to emphasize the purpose of �ltering out non-rumor in real-world applications. However, 
with real / fake and true/false labeling in misinformation or fake news classi�cation, the labeling should be pre-
cise and 2-class labeling is not su�cient anymore for the generated (modi�ed) sequences. Speci�cally, if an input 
sequence is labeled as Y, its modi�ed version (i.e., the output of our generative model) is labeled as Y ′ to repre-
sent that it is modi�ed from a sequence with label Y. In what follows, we perform the following experiments: (1) 
rumor classi�cation with PHEME again using 4-class labels: R, R′ , N, N ′ ; (2) misinformation (disinformation) 
classi�cation with FMG (a misinformation/fake news dataset) using 4-class labels: T, T ′ , F, F ′ ; and (3) fake news 
classi�cation with FMG using 4-class labels: E, E′ , K, K ′.

Experimental results of PHEME (4-class) are shown in Table 5. Similar to previous PHEME experiment 
in Table 1, we generate a dataset PHEME’ to do data augmentation. However, di�erent than before, this new 

Table 3.  Examples of Dexplain and Dclassify ’s prediction on rumor (�rst) and non-rumor (second). �e 
suspicious words in the rumor predicted by Dexplain are marked in bold. Dclassify provides a score ranging from 
0 to 1. 0 and 1 represent rumor and non-rumor, respectively.

0.1579 Who’s your pick for worst contribution to sydneysiege mamamia uber or the daily tele

0.8558 Glad to hear the sydneysiege is over but saddened that it even happened to begin with my heart goes out to all those a�ected

Table 4.  Examples of Dexplain predicting suspicious words in rumors (marked in bold). Dclassify outputs 
probabilities in range [0, 1], where 0 and 1 represent rumor and non-rumor, respectively.

0.0010 Breaking update 2 hostages escape lindt café through front door 1 via �re door url sydneysiege url

0.0255 Newest putin rumour his girlfriend just gave birth to their child url cdnpoli russia

0.0300 Soldier gets cpr a�er being shot at war memorial in ottawa url

0.0465 Sydney’s central business district is under lockdown as gunman takes hostages at a cafe live stream as it unfolds url

0.2927 So in 5mins mike brown shaved his head and changed his scandals to shoes i think your being lied too
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generated PHEME’ (4-class) has four labels: R, R′ , N, N ′ and our GAN models are trained with 4-class classi�ca-
tion. In addition, we train baselines with augmented dataset PHEME+PHEME’ (4-class) and test it with PHEME. 
Moreover, we �nd that training with augmented data improves the performance of baselines. Our models (-LSTM 
and -CNN) still provide best results compared to (augmented) baselines.

Besides rumor detection, we apply our framework in misinformation and fake news detection tasks using a 
fake news dataset (FMG)33, which includes both real/fake and true/false data. In real/fake task, models di�eren-
tiate between purely human-written statements and (partially or fully) machine-generated statements, while in 
true/false task, models are required to identify true statements and false claims. We augment the original dataset 
(denoted as FMG) with our GAN-generated data (denoted as FMG’) and train several models with the augmented 
dataset (denoted as FMG+FMG’). Similarly in PHEME (4-class) experiments, we �nd that models trained with 
augmented FMG+FMG’ achieve higher performance on original FMG as shown in Table 6. From these experi-
mental results, we conclude that our framework is e�ective in data augmentation and helps models to achieve 
higher accuracy. One thing to note is that in this experiment, our models do not outperform augmented LSTM 
and CNN in provenance classi�cation task (although it is better than unaugmented ones). �is could be due to the 
fact that the nature of provenance classi�cation is to distinguish patterns between human-written and machine-
generated sentences. In the early training process of our model, the training data (generated sequences) of our 
discriminative model are low-quality since the generative model is not well-trained. �e generated sequences 
contain our machine-generated noisy patterns, which could make our model converge to suboptimal results. 

Limitations and error cases in rumor detection. Examples of error cases of our model in rumor detection task 
are presented in Table 7. For some short sentences, Dexplain sometimes fails to predict the suspicious parts. �e 
reason is that the majority of training data are long sentences, hence Dexplain performs better with long sentences. 

Table 5.  Marco-f1 and accuracy comparison between our model and baselines on the extended 4-class 
experiments of rumor detection task on PHEME dataset. U indicates that the model is trained on 
PHEME+PHEME’, otherwise it is train on original PHEME dataset. All models are tested on PHEME (R/N) 
and PHEME+PHEME’ (R/N/R′/N ′). �e best results are marked in bold.

PHEMEv5 PHEMEv9

PHEMEv5 (2-class)
PHEME+PHEME’v5 
(4-class) PHEMEv9 (2-class)

PHEME+PHEME’v9 
(4-class)

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM 0.6095 0.6259 0.2753 0.4121 0.6304 0.6484 0.2788 0.4179

LSTM (U) 0.6774 0.7480 0.5082 0.5073 0.6836 0.7446 0.5194 0.5205

CNN 0.6052 0.6210 0.2766 0.4135 0.6211 0.6396 0.2759 0.4135

CNN (U) 0.6760 0.7534 0.5109 0.5083 0.6678 0.7402 0.5239 0.5229

VAE-LSTM 0.5188 0.6591 0.2464 0.2753 0.4693 0.5205 0.1976 0.2416

VAE-LSTM (U) 0.4877 0.5810 0.2473 0.2578 0.4879 0.5351 0.2135 0.2602

VAE-CNN 0.4983 0.5629 0.2239 0.2529 0.4303 0.7495 0.1514 0.2504

VAE-CNN (U) 0.4912 0.5361 0.2566 0.2719 0.4813 0.5214 0.2160 0.2617

Our model-LSTM 0.7776 0.8271 0.5703 0.5678 0.7830 0.8339 0.5631 0.5610

Our model-CNN 0.7485 0.8017 0.5352 0.5419 0.7693 0.8232 0.5558 0.5600

Table 6.  Marco-f1 and accuracy comparison between our model and baselines on the extended 4-class 
experiments of provenance (real/fake) and veracity (true/false) tasks. U indicates that the model is trained on 
FMG+FMG’, otherwise it is train on FMG. All models are tested on FMG and FMG+FMG’. �e best results are 
marked in bold.

Provenance Veracity

FMG (E / K) FMG+FMG’ (4-class) FMG (T / F) FMG+FMG’ (4-class)

Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy Macro-f1 Accuracy

LSTM 0.3963 0.3965 0.2752 0.3745 0.4786 0.4890 0.1792 0.2739

LSTM (U) 0.7062 0.7989 0.6401 0.6450 0.6339 0.7689 0.4985 0.5194

CNN 0.3964 0.3965 0.2738 0.3730 0.5478 0.6352 0.1940 0.2984

CNN (U) 0.7082 0.7824 0.6287 0.6325 0.6802 0.7724 0.5392 0.5613

VAE-LSTM 0.4967 0.6305 0.2137 0.2288 0.5099 0.6175 0.2268 0.2740

VAE-LSTM (U) 0.4871 0.6910 0.2630 0.2797 0.5105 0.6172 0.2793 0.2920

VAE-CNN 0.4624 0.5055 0.2207 0.2494 0.4676 0.4989 0.2075 0.2495

VAE-CNN (U) 0.5122 0.6158 0.2607 0.2615 0.5013 0.6007 0.2644 0.2650

Our model-LSTM 0.6562 0.7529 0.5027 0.5054 0.6560 0.7524 0.5027 0.5054

Our model-CNN 0.5639 0.6984 0.4543 0.4615 0.7134 0.7779 0.5637 0.5673
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We can solve this problem by feeding more short sentences to our model. In most cases, although Dexplain does 
not generate predictions, Dclassify still can provide accurate classi�cation. As shown in Table 7, Dclassify outputs 
low score, i.e., classi�es the input as rumor, for four out of �ve rumors.

Gene classification with mutation detection. Genetic sequence classi�cations, gene mutation detec-
tion/prediction, DNA / RNA classi�cation all work with genetic sequences, and deep learning-based methods 
in the literature take sequential data as input, and output the classi�cation  results27,28,34. Since our proposed 
framework demonstrates very good results for sequential / textural data (as shown in previous sections), next, 
we adopt a textural  representation35,36 of gene sequences and investigate a gene mutation phenomenon. Note 
that binary format representation of genetic sequences is also frequently used in the  literature37,38. In our GAN 
framework, the input to the models is �rst encoded into a high-dimensional vector, therefore, the binary for-
matting does not a�ect the experimental results. In this experiment, we �rst perform a mutation in genetic 
sequences by the generative model, and then use Dclassify to classify a genetic sequence and predict which parts of 
the sequence is mutated. We �nd that our framework not only provides high accuracy in classi�cation task, but 
also accurately identi�es the mutations in the generated sequences.

In this experiment, all models are trained under NN269+NN269’ (an augmented dataset) to ensure fairness, 
and we follow the labeling rule in misinformation/fake news detection task. When testing with NN269+NN269’, 
there are 8 classes in total: AP, AN, DP, DN from NN269 (original splice site dataset) and AP′ , AN ′ , DP′ , DN ′ 
from NN269’ (generated dataset). Detailed experiment setup can be found in “Methods” section. If solely clean 
data from NN269 is accessible during training, then our proposed model and the variation of our proposed 
model are the only models that can recognize if a given sequence is modi�ed or unmodi�ed. Comparison 
between our model’s (and the variation’s) Dclassify and baselines is shown in Table 8. Under long acceptor data, 
baselines perform signi�cantly worse than our model and the variation. Under short donor data, our model 
and the variation achieve highest AURoCs. �is implies that our model and the variation are stronger when the 
input are long sequences. �e layered structure and adversarial training under the augmented dataset provide 
our model the ability of extracting meaningful patterns from long sequences. For short sequences, our model and 
the variation provide highest AURoC, and simpler models such as CNN can also give good classi�cation results. 
�is is because for short sequences, textural feature mining and understanding is relatively easier then in long 

Table 7.  Examples of Dexplain failing to predict suspicious words in some short rumors. Dclassify outputs 
probabilities in range [0, 1], where 0 and 1 represent rumor and non-rumor, respectively.

0.0112 Ottawa police report a third shooting at rideau centre no reports of injuries

0.0118 Breaking swiss art museum accepts artworks bequeathed by late art dealer gurlitt url

0.0361 Breaking germanwings co pilot was muslim convert url

0.4451 Germanwings passenger plane crashes in france url

0.5771 �e woman injured last night ferguson url

Table 8.  Comparison between our model and baselines on the gene classi�cation with the mutation detection 
task. *�e best result from the corresponding paper. 2-class refers to AP, AN for acceptor, and DP, DN for 
donor. 4-class refers to AP, AN, AP′ , AN ′ for acceptor, and DP, DN, DP′ , DN ′ for donor. A and D indicate 
acceptor and donor. �e best results are marked in bold.

NN269 (2-class) NN269+NN269’ (2-class) NN269+NN269’ (4-class)

Macro-f1 Accuracy AURoC Macro-f1 Accuracy AURoC Macro-f1 Accuracy AURoC

LSTM (A) 0.8120 0.8870 0.9305 0.7794 0.8580 0.9036 0.7800 0.8580 0.9715

CNN (A) 0.5663 0.7933 0.6324 0.5594 0.7808 0.6131 0.5593 0.7808 0.8875

VAE-LSTM (A) 0.7664 0.8566 0.8451 0.6781 0.8323 0.7780 0.6531 0.8342 0.8806

VAE-CNN (A) 0.5657 0.7539 0.6135 0.5744 0.7651 0.6219 0.5379 0.7470 0.8411

EFFECT (A) – – 0.9770
∗ – – – – – –

Our model-LSTM (A) 0.9131 0.9458 0.9781 0.8794 0.9243 0.9658 0.8758 0.9223 0.9879

Our model-CNN (A) 0.9175 0.9494 0.9807 0.8831 0.9301 0.9691 0.8839 0.9311 0.9894

LSTM (D) 0.8336 0.8214 0.9003 0.8148 0.7998 0.8802 0.7648 0.7530 0.9246

CNN (D) 0.9131 0.9393 0.9795 0.9025 0.9323 0.9746 0.8336 0.8583 0.9596

VAE-LSTM (D) 0.8011 0.8515 0.9218 0.7336 0.8329 0.8217 0.5774 0.7692 0.9194

VAE-CNN (D) 0.8386 0.8772 0.9554 0.7909 0.8593 0.8528 0.5585 0.7415 0.9190

EFFECT (D) – – 0.9820
∗ – – – – – –

Our model-LSTM (D) 0.9272 0.9484 0.9822 0.8802 0.9140 0.9766 0.8113 0.8580 0.9541

Our model-CNN (D) 0.9274 0.9494 0.9810 0.8988 0.9296 0.9635 0.8119 0.8470 0.9776
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sequences. Under NN269’, our model’s Dclassify and Dexplain achieve 92.25% and 72.69% macro-f1, respectively. 
Examples of Dexplain ’s prediction are shown in Table 9. �e results suggest that our model can not only classify 
a gene-sequence, but also provide an accurate prediction that explains which part of the sequence is modi�ed. 

Discussion
Rumor, as a piece of circulating information without veri�ed veracity status, is hard to detect, especially when we 
have to point out why it is a rumor. Misinformation, whose veracity is determined, can be detected where there 
exists a veri�ed database containing information about why the misinformation is wrong. Rumor detection is a 
hard problem and rumor detectors in the literature usually su�er from the low accuracy. �e reason for unsatis-
factory performance is multi-fold: for example, rumor dataset is usually small and imbalanced. �e data-driven 
machine learning detectors don’t have su�cient high-quality data to work with, hence the data shortage causes 
the low or extremely imbalanced performance. Rumors usually emerge violently during emergent national or 
even international events and con�rming the veracity of rumors can take a long time and an aggressive amount of 
human resource. �erefore, rumors could stay as �oating and circulating pieces of information without veracity 
con�rmed for a long time and provoke social panic, such as in the recent coronavirus breakout events. Rumors 
are associated with di�erent events, so if the detector is trained with previously observed rumors on other events, 
the detection of current unseen rumors associated with the new event usually results in low accuracy because 
the patterns of the rumors are changed. Compared to the detection problem, pointing out the problematic parts 
of the rumors is even more di�cult due to the similar reasons.

We propose a framework that addresses the afore-mentioned issues. To solve the limited and imbalance 
data issue and the low performance problem, our proposed GAN-based framework augments the dataset by 
generating new rumors/misinformation/fake news and uses the augmented data to train the discriminators to 
achieve high accuracy. �e layered generative model intelligently decides about where and how to modify the 
input sequences. �is process injects noise in data and pushes the discriminators to learn the essential semantic 
and syntactic features of the rumors. �erefore, this process alleviates the impact of event-associated patterns. 
To provide reasonable explanations of why the sentence is potentially a rumor, we improve the discriminator 
in GAN to include a layered structure to (1) make the detection decision, (2) generate the explanation, and (3) 
provide a corresponding layered model-tuning signal to the layered generative model.

Genetic sequences classi�cation, genetic mutation detection/prediction, gene-disease association, and DNA 
expression classi�cation all work with gene sequences. Machine learning-based methods such as support vector 
machines and deep neural networks have already been used to solve these problems. We propose and verify the 
applicability of our designed framework on gene classi�cation and mutation detection in this work. �e funda-
mental rationality comes from that the genetic sequence essentially is textual data. Since our proposed framework 
is aiming to take textual data as input and make classi�cation decisions, it is reasonable to apply the framework 
to gene data. Mutation detection in gene data is to �nd the abnormal places in a gene sequence and rumor detec-
tion with explanation is to �nd the abnormal places in a sentence. One problem facing by gene mutation detec-
tion is that there might be some unknown patterns in the gene sequence, which is similar to the generalization 
problem in rumor detection: unknown patterns exist in unobserved rumors. Hence, our proposed GAN-based 
model can alleviate this issue by intelligently augmenting the dataset. From an algorithmic perspective, the prob-
lem of rumor detection and gene classi�cation can be formulated as a textual sequence classi�cation problem. 
(Although genetic sequence representation can be in binary format, we have discussed that binary formatted 
genetic sequences can be further encoded into vectors as the input to our model, which does not generate dif-
ferent results in our experiments). �erefore, our framework as a sequential data classi�cation model should be 
applicable to both rumor and gene classi�cation. We can learn which parts are suspicious/machine generated in 
a rumor, and this is no di�erent than given a sequence, we learn which parts contain abnormal patterns. Follow-
ing similar reasoning, in gene mutation detection task, our model learns which parts in a genetic sequence are 

Table 9.  Examples of the generative model modifying gene sequences and the discriminative model detecting 
the modi�cations (marked in bold).

Original
GGT GGG TGT AGC CGT GGC TAG GGC TGA CGG GGC CAC TTG GGC TTG GCC GCA TGC CCC TGT GCC CCA CCA GCC ATC CTG 
AAC CCA ACC TAG 

Modi�ed
GGTGGGTGTAGCCGTGGCTAGGGCTGACGGGGCCACTTGGGCTTGGCAGCATGNNNCTGTGCCCCACCAGCCATGC

TGAACCCAACCTAG

Prediction
GGTGGGTGTAGCCGTGGCTAGGGCTGACGGGGCCACTTGGGCTTGGCAGCATG

NNNCTGTGCCCCACCAGCCATGCTGAACCCAACCTAG

Original
GCG CGG GGC GCT GAG CTC CAG GTA GGG CGC GCA GCC TGG TCA GGT GGC AGC CTT ACC TCA GGA GGC TCA GCA GGG 
GTC CTC CCC ACC TGC 

Modi�ed
GCGCGGGGCGCTGAGCTCCAGGTAGGGCGCGCAGCCTGGTCAGGTGGCAG

GNTTATSTCAGGAGGCTCAGCAGGGGTCATCCCCACCTGC

Prediction
GCGCGGGGCGCTGAGCTCCAGGTAGGGCGCGCAGCCTGGTCAGGTGGCAGG

NTTATSTCAGGAGGCTCAGCAGGGGTCATCCCCACCTGC

Original
TGG TGG CTA ATT CAG GAA TGT GCT GCT GTC TTT CTG CAG ACG GGG GCA AGC ACG TGG CAT ACA TCA TCA GGT CGC ACG 
TGA AGG ACC ACT 

Modi�ed
TGGTGGCTAATTCAGGAATGTGNTGNTGTSTTT

GTGCAGACGGGGGCAAGCACGTGGCATACATCATCAGGTNGCACGTGAAGGACCACT

Prediction
TGGTGGCTAATTCAGGAATGTGNTGNTGTSTTTG

TGCAGACGGGGGCAAGCACGTGGCATACATCATCAGGTNGCACGTGAAGGACCACT



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5861  | https://doi.org/10.1038/s41598-021-84993-1

www.nature.com/scientificreports/

abnormal. �e di�erence is that language has intuitive semantic meanings, however, genetic sequence may have 
unknown hidden semantic meanings. Our goal is to investigate them both even though are di�erent in order to 
provide this as an example of a methodology for interdisciplinary research and analysis.

In summary, we proposed a layered text-level rumor detector and gene mutation detector with explanations 
based on GAN. We used the policy gradient method to e�ectively train the layered generators. Our proposed 
model outperforms the baseline models in mitigating the accuracy reduction problem, that exists in case of 
only clean data. We demonstrate the classi�cation ability and generalization power of our model by comparing 
with multiple state-of-the-art models in both rumor detection and gene classi�cation with mutation detection 
problems. On average, in the 2-class rumor detection task, our proposed model outperforms the baselines on 
clean dataset PHEME and enhanced dataset PHEME+PHEME’ by 26.85% and 17.04% in terms of macro-f1, 
respectively. Our model provides reasonable explanation without a previously constructed veri�ed news database, 
and achieves signi�cantly high performance. In the gene classi�cation with mutation detection task, our model 
identi�es the mutated gene sequence with high precision. On average, our model outperforms baselines in both 
NN269 and NN269+NN269’ (2-class) by 10.71% and 16.06% in terms of AURoC, respectively. In both rumor 
detection and gene mutation detection tasks, our model’s ability of explanation generation is demonstrated by 
identifying the mutations accurately (above 70% macro-f1). We �nd that using two discriminators to perform 
classi�cation and explanation separately achieves higher performance than using one discriminator to realize 
both functions. We also found the pre-train of Dclassify and varying Nreplace contribute to the high accuracy of 
Dexplain.

Despite the high performance in both applications, we do �nd a limitation of our framework. Dexplain some-
times fails to provide explanations in rumor experiments when the input sentences are very short, even though 
the corresponding Dclassify generates accurate predictions. One potential reason for this result is that the dataset 
contains a small number of short sentences and the model is not trained enough in short sentence cases. We also 
observed Dexplain performs a bit worse in gene mutation detection experiments than in rumor detection task. 
It could be caused by the choice of Nreplace (the number of items to be replaced in a sequence), which is a hyper 
parameter that a�ects the mutation detection ability. As part of our future work, to improve the performance of 
the discriminators, we would like to choose Nreplace intelligently. To enhance the performance of our generators, 
we would like to explore the application of hierarchical attention  network39. We will also investigate the depend-
encies between the discriminators of our model to bene�t Dexplain from the accurate Dclassify.

We believe our proposed framework could be bene�cial to numerous textual data-based problems, such as 
rumor and misinformation detection, review classi�cation for product recommendation, twitter-bot detection 
and tracking, false information generation and attack defense, and various genetic data-based applications. 
We connect the genetic data processing and the natural language processing �eld and provide new angles and 
opportunities for researchers in both �elds to contribute mutually.

Methods
Our model—overview. Figure 2 shows the architecture of our proposed model. We have a layered genera-
tive model, which takes an input sequence and makes modi�cations intelligently; then a layered discriminative 
model to do classi�cation and mutation detection. In rumor detection task, the generators must intelligently 
construct a rumor that appears like non-rumor to deceive the discriminators. Given a good lie usually has some 
truth in it, we choose to replace some of the tokens in the sequence and keep the majority to realize this goal. In 
our framework, two steps for intelligently replacing tokens in a sequence are: (1) determine where (i.e., which 
words / items in the sequence) to replace, and (2) choose what substitutes to use. Gwhere and Greplace are designed 
to realize these two steps. Having constructed the strong generators, the discriminators are designed to provide 
a defense mechanism. �rough adversarial training, the generators and discriminators grow stronger together, 
in terms of generating and detecting rumors, respectively. In the rumor detection task, given a sentence, there 
are two questions that need to be answered: (1) is it a rumor or a non-rumor, and (2) if a rumor, which parts 
are problematic. Dclassify and Dexplain are designed to answer these two questions. We found that realizing two 
functions in one layer either in discriminative model or generative model hurts the performance. Hence, our 
framework was designed to embed a layered structure, and the detailed descriptions of the generative and dis-
criminative model are as follows.

Our model—generative model. �e sequence generation task is done by the generative model: Gwhere 
and Greplace . Given a human-generated real-world sequence input x = (x1, x2, . . . , xM) with length M, such as 
a tweet-level sentence containing M words, Gwhere outputs a probability vector p = (p1, p2, . . . , pM) indicating 
the probabilities of each item xi ( i ∈ [1,M] ) to be replaced. p is applied to input x to construct a new sequence 
x
where with some items replaced by blanks. For example, x2 becomes a blank and then xwhere = (x1, _ , . . . , xM).

where f (·) binarizes the input based on a hyperparameter Nreplace . It determines the percentage of the words to 
be replaced in a sentence. Operator ◦ works as follows. If a = 1 , then a ◦ b = b . If a = 0 , then a ◦ b = _ . Greplace 
is an encoder-decoder model with the attention mechanism. It takes xwhere and �lls in the blank, then outputs a 
sequence xreplace = (x1, x

replace
2 , . . . , xM) . �e generative model is not fully di�erentiable because of the sampling 

operations on Gwhere and Greplace . To train the generative model, we adopt policy  gradients40 from RL to solve 
the non-di�erentiable issue.

xwhere = f (p) ◦ x = f (Gwhere(x)) ◦ x,
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Greplace GRU-based encoder. Gated Recurrent Units (GRUs)41 are the improved versions of standard 
RNNs that use update gates and reset gates to resolve the vanishing gradient problem of a standard RNN. In our 
GRU-based encoder, the hidden state ht is computed as GRUencoder(x

where
t , ht−1):

where Wenc
z  , Wenc

h
 , bencr  , bencz  , benc

h
 , Wenc

r  , U enc
z  , U enc

h
 and U enc

r  are encoder weight matrices. σ(·) is the sigmoid func-
tion. ⊙ represents element-wise multiplication. z, r, and h′ are update gate, reset gate, and candidate activation 
in encoder, respectively.

Greplace GRU-based decoder with attention mechanism. Our encoder-decoder Greplace utilizes atten-
tion  mechanism42 to automatically search for parts of a sentence that are relevant to predicting the target word. 
�e content vector ct summarizes all the information of words in a sentence. It depends on the annotations ht 
and is computed as a weighted sum of these ht:

where etj scores how well the inputs around position j and the output at position t match. Alignment model a is 
a neural network that jointly trained with all other components. �e GRU decoder takes the previous target yt−1 
and the context vector ct as input, and utilizes GRU to compute the hidden state st as GRUdecoder(yt−1, st−1, ct):

where Wdec
z  , Wdec

s  , Wdec
r  , Udec

z  , Udec
s  , Udec

r  , Cdec
z  , Cdec

s  and Cdec
r  are decoder weight matrices. z′ , r′ , and s′ are update 

gate, reset gate, and candidate activation in decoder, respectively. �rough this attention-equipped encoder-
decoder, Greplace intelligently replaces items in sequences and outputs adversarial samples.

Our model—discriminative model. �e generated adversarial samples xreplace combined with original 
data x are fed to the discriminative model. Dclassify and Dexplain are trained independently. We note that the two 
discriminators can depend on each other, but we have chosen to explore the dependency as part of our future 

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h
′

t ,

zt = σ(Wenc
z x

where
t + U

enc
z ht−1 + b

enc
z ),

h
′

t = tanh(Wenc

h
x
where
t + U

enc

h
(rt ⊙ ht−1) + b

enc

h
),

rt = σ(Wenc
r x

where
t + U

enc
r ht−1 + b

enc
r ),

ct =

M∑

j=1

αtjhj , αtj =

exp(etj)∑M
k=1 exp(etk)

, etj = a(st−1, hj),

st = (1 − z′

t) ⊙ st−1 + z′

t ⊙ s′t ,

z′

t = σ(Wdec
z yt−1 + Udec

z st−1 + Cdec
z ct),

s′t = tanh(Wdec
s yt−1 + Udec

s (r′t ⊙ st−1) + Cdec
s ct),

r′t = σ(Wdec
r yt−1 + Udec

r st−1 + Cdec
r ct),

Figure 2.  Our proposed framework. �e generative model (shown on the le� hand side) consists of two 
generators Gwhere and Greplace . �e discriminative model (shown on the right hand side) consists of two 
discriminators, namely Dexplain for explainability and Dclassify for classi�cation.
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work. Dclassify provides a probability in rumor detection, and Dexplain provides the probability of each word in 
the sentence being problematic. �e explainability of our model is gained by adversarial training. We �rst insert 
adversarial items in the sequence, then train Dexplain to detect them. �rough this technique, our model can not 
only classify data with existing patterns, but also classify sequences with unseen patterns that may appear in the 
future. Adversarial training improves the robustness and generalization ability of our model.

Training. In the rumor detection task, a sequence x has a true label Y being either a rumor R or a non-rumor 
N. A�er manipulating the sequence x , output of the generative model xreplace is labeled as R since it is machine 
generated. �e objective of a φ-parameterized generative model is to mislead the θ-parameterized discrimina-
tors. In our case, Dθ

classify(x
replace) indicates how likely the generated xreplace is classi�ed as N. Dθ

explain(x
replace) 

indicates how accurately Dθ

explain detects the replaced words in a sequence. �e error attribution per time step is 
achieved naturally since Dθ

explain evaluates each token and therefore provides a �ne-grained supervision signal to 
the generators. For example, a case where the generative model produces a sequence that deceives the discrimi-
native model. �en the reward signal from Dθ

explain indicates how well the position of each replaced word con-
tributes to the error result. �e reward signal from Dθ

classify represents how well the combination of the position 
and the replaced word deceived the discriminator. �e generative model is updated by applying a policy gradient 
on the received rewards from the discriminative model.

�e rumor generation problem is de�ned as follows. Given a sequence x , G
φ

where
 is used to produce a sequence 

of probabilities p indicating the replacing probability of each token in x . G
φ

replace takes xwhere and produces a new 
sequence xreplace . �is newly generated xreplace is a sentence, part of which is replaced and labeled as R. At time 
step t, the state s consists of swhere and sreplace . swhere = (p1, . . . , pt−1) , s

replace
= (x

replace
1 , . . . , x

replace
t−1 ) . �e policy 

model G
φ

where(pt |p1, . . . , pt−1) and G
φ

replace(x
replace
t |x

replace
1 , . . . , x

replace
t−1 ) are stochastic. Following RL, G

φ

where
 ’s objec-

tive is to maximize its expected long-term reward:

where QGφ

Dθ (s0, a) is the accumulative reward following policy Gφ starting from state s0 = {swhere0 , s
replace
0 } . 

−Dθ
explain(s

replace) indicates how much the generative model misleads Dθ

explain . a is an action set that contains 
output of both G

φ

where
 and G

φ

replace . RT is the reward for a complete sequence. Similarly to G
φ

where
 , G

φ

replace maximizes 
its expected long-term reward:

We apply a discriminative model provided reward value to the generative model a�er the sequence is produced. 
�e reason is that our G

φ

replace doesn’t need to generate each and every word in the sequence, but only �lls a few 
blanks that are generated by G

φ

where
 . Under this assumption, long-term reward is approximated by the reward 

gained a�er the whole sequence is �nished.
�e discriminative model and the generative model are updated alternately. �e loss function of discrimina-

tive model is de�ned as follows:

where �
explain
D  and �

classify
D  are the balancing parameters.

We adopt the training method in GANs to train the networks. In each epoch, the generative model and the 
discriminative model are updated alternately. Over-training the discriminators or the generators may result in a 
training failure. �us hyper-parameters GSTEP and DSTEP are introduced to balance the training. In each epoch, 
the generators are trained GSTEP times. �en discriminators are trained DSTEP times.

Experiment setup—model setup. Our model contains a layered generative model, Gwhere and Greplace , 
and a layered discriminative model, Dexplain and Dclassify . �e architecture setup is as follows. Gwhere consists of 
an RNN with two Bidirectional LSTM (BiLSTM) and one dense layer and seeks to determine the items in a 
sequence to be replaced. �e Gwhere architecture we used in all experiments has the architecture of EM-32-32-16-
OUT, where EM, OUT represent embedding and output, respectively. Greplace is an encoder-decoder with atten-
tion mechanism and is responsible for generating the substitutes for the items selected by Gwhere . �e encoder 
has two GRU layers, and the decoder has two GRU layers equipped with attention mechanism. �e architecture 
of Greplace we used in all experiments is EM-64-64-EM-64-64-OUT. Dexplain has the same architecture as Gwhere 
and is responsible for determine which items are problematic. Dclassify is a CNN with two convolutional layers 
followed by a dense layer. It is used for classi�cation. �e architecture we used in all experiments is EM-32-64-
16-OUT.

Jwhere(φ) = E[RT |s0,φ] =
∑

p1
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Experiment setup—data collection and augmentation. We evaluate our proposed model on a 
benchmark Twitter rumor detection dataset  PHEME43, a misinformation/fake news dataset  FMG33, and a splice 
site benchmark dataset  NN26944. PHEME has two versions. PHEMEv5 contains 5792 tweets related to �ve news, 
1972 of them are rumors and 3820 of them are non-rumors. PHEMEv9 contains 6411 tweets related to nine 
news, 2388 of them are rumors and 4023 of them are non-rumors. �e maximum sequence length in PHEME 
is 40, and we pad the short sequences with zero padding. FMG dataset contains two parts corresponding to a 
veracity detection task (i.e., determine a news is true/false) and a provenance classi�cation task (i.e., determine a 
news is real/fake), respectively. Input sequences with true label in veracity classi�cation task are veri�ed fact and 
false sequences are veri�ed false statements. Input sequences with real label in provenance classi�cation dataset 
are purely human-written sentences while the fake data are generated with pre-trained language models. We set 
the maximum sequence length as 1024 and 512 in true/false and real/fake tasks, respectively, and we pad the 
short sequences with zero padding and do post truncation on the text longer than length threshold. NN269 data-
set contains 13231 splice site sequences. It has 6985 acceptor splice site sequences with length of 90 nucleotides, 
5643 of them are positive AP and 1324 of them are negative AN. It also has 6246 donor splice site sequences with 
length of 15 nucleotides, 4922 of them are positive DP and 1324 of them are negative DN.

In rumor detection task, we generate a rumor/fake news/misinformation dataset denoted as PHEME’ (and 
FMG’), and then augment the original dataset with the generated sequences. Similarly, for the gene classi�cation 
with mutation detection task, the proposed model generates a dataset NN269’ by replacing nine characters in 
acceptor sequences and three characters in donor sequences. We label the generated sequences by the follow-
ing rules. In rumor detection with explanation task, (1) generated rumors based on PHEME are labeled as R 
(rumor) in 2-class classi�cation (corresponds to results in Table 1); (2) in 4-class classi�cation (corresponds to 
results in Table 5 and Table 6), if the input sequence x has label Y, then the output sequence xreplace is labeled as 
Y

′ , indicating that xreplace is from class Y but with modi�cation. In gene mutation detection task, we follow the 
labeling rule described in (2), and the �nal classi�cation output of our model is two-fold: AP, AN for acceptor, 
or DP, DN for donor. We merge the generated classes AP′ , AN ′ and DP′ , DN ′ with original classes to evaluate the 
noise resistance ability of our model. Given a sequence, our model can classify it into one of the known classes, 
although the sequence could either be clean or modi�ed.

Experiment setup—baseline description. In the rumor detection task, we compare our model with 
six popular rumor detectors: RNN with LSTM cells, CNN, VAE-LSTM, VAE-CNN, a contextual embedding 
model with data augmenting (DATA-AUG)45, and a GAN-based rumor detector (GAN-GRU)13. One of the 
strengths of our proposed model is that under the delicate layered structure that we designed, the choice of 
model structure a�ects the results but not signi�cantly. To showcase this ability of the layered structure, we 
generate a variation of the proposed model by replacing Greplace with a LSTM model as one baseline. It utilizes 
an LSTM-based encoder-decoder with architecture EM-32-32-EM-32-32-OUT as Greplace . Our model gener-
ates a set of sequences by substituting around 10% of the items in original sequences. We pre-train the Dclassify 
by �xing the number of replacement Nreplace = 10% . We then freeze Dclassify and train the other three models. 
During training, we lower Nreplace from 50% to 10% to guarantee data balancing for Dexplain and better results 
in terms of explanations. All the embedding layers in the generators and discriminators are initialized with 50 
dimension  GloVe46 pre-trained vectors. Early stopping technique is applied during training. �e generated data 
in the rumor task are labeled as R, and we denote this dataset as PHEME’. For fairness and consistency, we train 
baselines LSTM, CNN, VAE-LSTM, and VAE-CNN with PHEME and PHEME+PHEME’. For all baselines, we 
use two evaluation principles: (1) hold out 10% of the data for model tuning, i.e., we split the dataset into training 
(with 90% data) and test (with 10% data) set. (2) Leave-one-out (L) principle, i.e., leave out one news for test, and 
train the models on other news. E.g., for PHEMEv5, where there are 5 events in the dataset, we pick 1 event as 
our test set and use the remaining 4 events as our training set. (Similarly, for PHEMEv9, where there are 9 events 
in the dataset, we pick 1 event as our test set and use the remaining 8 events as our training set.) Moreover, with 
L principle, we apply 5- and 9-fold cross validation for PHEMEv5 and PHEMEv9, respectively. Final results are 
calculated as the weighted average of all results. L principle constructs a realistic testing scenario and evaluates 
the rumor detection ability under new out-of-domain data. For DATA-AUG and GAN-GRU, we import the best 
results reported in their papers.

In gene classi�cation with mutation detection task we compare our models with �ve models: RNN with 
LSTM cells, CNN, VAE-LSTM, VAE-CNN, and the state-of-the-art splice site predictor  EFFECT47. �e �rst 
four baselines are trained under NN269+NN269’, and tested on both NN269+NN269’ and clean data NN269. 
We import EFFECT’s results from the original  work47. �e architectures of baselines LSTM, CNN, VAE-LSTM, 
and VAE-CNN used in both tasks are de�ned as in Table 10. VAE-LSTM and VAE-CNN use a pre-trained VAE 
followed by LSTM and CNN with the architectures we de�ned in Table 10. �e VAE we pre-trained is a LSTM-
based encoder-decoder. �e encoder with architecture EM-32-32-32-OUT has two LSTM layers followed by a 
dense layer. �e decoder has the architecture IN-32-32-OUT, where IN stands for input layer.
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