
From RUP to Scrum in Global Software Development: A Case Study

Ramon Noordeloos

Dept. of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email:ramon.noordeloos@gmail.com

Christina Manteli

Dept. of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email:c.manteli@vu.nl

Hans van Vliet

Dept. of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email:hans@cs.vu.nl

Abstract—In this paper we present the results of a case
study at two offshore projects that recently adopted the
agile way of working. We analyze their multi-site governance
activities adopted and adjusted based on the Scrum method-
ology. Furthermore, we identify those changes that the Scrum
adoption brought, in comparison with the previous governance
structure of the Rational Unified Process (RUP). We find that
a transition from RUP to Scrum brings a positive effect in
requirements engineering, communication, cost management
and cross-functionality of the distributed teams. We also
observe a negative change with regard to the development pace
and delivery time. Overall, we add to the body of knowledge
in the field of distributed agile, with an additional field study
where we describe and compare the migration from RUP to
Scrum, and the implications of this transition.

Keywords-agile methodology, Scrum, global software devel-
opment, governance.

I. INTRODUCTION

In Global Software Development (GSD), agile methods

are gaining in popularity [1]. Agile methods can help im-

prove communication and collaboration in offshore develop-

ment, which often results in better business / IT alignment

and responsiveness to business changes [2]. However, when

using agile methods in GSD, the main principles of agile be-

come more challenging: direct face-to-face communication

occurs less often and the team is not collocated anymore.

In offshore development, communication and collaboration

is always more challenging [3]. Since agile relies more on

good communication and face-to-face contact than other

software development methodologies, the implications will

be far higher as well.

Whether a global software company decides to adopt an

agile way of working or more traditional methodologies,

it must be clear how the multi-site activities are governed.

In other words, in order to organize and manage their

distributed software development activities, organizations

must adopt a governance model [4]. The selection of certain

governance activities can influence the communication and

knowledge management activities between the distributed

teams [5].

In this paper, we present the results of a case study at

two offshore projects that recently adopted the agile way of

working. The projects are developed in a consultancy firm

located in the Netherlands, together with an offshore site in

India, and the client is a finance firm. We use the multi-

site governance model introduced by [5], to analyze their

multi-site governance activities adopted and adjusted based

on the Scrum methodology. Furthermore, we identify those

changes that the Scrum adoption brought, in comparison

with the previous governance structure of the Rational

Unified Process (RUP). The aim of the study is to add to the

body of knowledge in the field of distributed agile, with a

complementary field study where we describe and compare

the migration from RUP to Scrum, and the implications of

this transition.

In section II we elaborate on previous work on multi-

site software governance theory and on the distributed agile

methodologies and the improvements that these approaches

can bring to the global software development challenges.

Sections III and IV describe the project overview and the

research methodology followed in this case study. In section

V, we present our results and analyze the changes that

occurred in the transition from RUP to Scrum. Finally,

we conclude in section VI with a summary of our main

observations and suggestions for further research in the

future.

II. RELATED WORK

In this section, we describe the background literature

related to the way multi-site software activities can be

organized and governed. We also discuss current research on

the benefits and challenges that agile methodologies brought

in the world of the traditional global software development.

A. Multi-site Governance Model

Governance is defined as those arrangements and practices

that an organization puts in place to ensure that the activ-

ities are appropriately managed [6]. In fact, only recently

attention has been paid to define governance in software

development: what are the structural attributes of software

development governance and what are the coordination

mechanisms that this governance embraces. For example,

Heeks et. al. [4] investigate different strategies in multi-site

cooperation that can lead to either synching, that is a suc-

cessful cooperation, or sinking, an unsuccessful cooperation.

2012 IEEE Seventh International Conference on Global Software Engineering

978-0-7695-4787-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICGSE.2012.11

31

Additionally, previous research suggest a structural per-

spective of the various multi-site governance activities that

a global software company must adopt [5]. According to

this perspective, global software activities can be categorized

based on three structural aspects; the business strategy
that binds the relationship of the remote offices, the team
structure and composition of the remote offices and the task
allocation that is the way activities and responsibilities are

distributed across locations [5].

In this paper, we use the above mentioned multi-site gov-

ernance model in order to analyze the distributed software

activities of the case study company. Such a model can

provide us with a structured outline in order to classify

the various multi-site activities and how these activities are

governed. Later in this paper, we compare the current multi-

site governance model, which is based on Scrum, with the

previous multi-site governance model applied, which was

based on the RUP methodology.

B. Distributed agile: benefits and challenges

The use of agile methodologies in global software de-

velopment is an emerging trend. Usually, organizations turn

either to offshore development or to agile development to

deal with software engineering challenges like reducing

development costs, improving quality, aligning business and

IT. Agile aspects like intensive collaboration and low-weight

documentation seem to make the two approaches diametri-

cally opposed. Intensive collaboration is quite challenging

when one part of the team is located at an offshore loca-

tion. Distributed software development often requires more

documentation and a strict plan. Yet, it seems organizations

who successfully overcome the complexities of merging the

two approaches can gain advantages from both.

The transition from the more traditional methodologies

towards an agile way of working is a challenge that comes

with both benefits as well as risks. Nevertheless, such a

change must been seen as an “ally rather than an enemy” [7].

According to [7] some of the challenges that can accompany

a transition from the traditional methodologies to an agile

approach relate to the requirements engineering, communi-

cation, cost estimation and other process-related challenges.

Global software development is usually characterized by en-

gagements with different national and organizational cultures

in various geographic locations and time zones. Therefore,

GSD practitioners need to employ suitable context specific

mechanisms to mitigate these problems [8].

An important part of global software activities that can be

influenced by agility is the requirements related activities

such as requirements elicitation, prioritization, design and

communication [9]. Requirements engineering is a difficult

task even in a co-located environment, but it becomes

even more challenging when requirements must be managed

across time, distance, cultural and language differences. A

prominent issue for example that prohibits requirements

elicitation in GSD is the distance between the client site and

the development team, as well as the trust issues that might

exist between the two parties [10]. Agility seems to help

mitigate challenges in requirements engineering in global

environments. For example, agile methodologies such as

the XP programming, promote a more frequent interaction

between the customer and the developer which ultimately

brings the two parties closer to each other and “motivates”

the distributed teams to improve communication volume

and frequency between them [10]. Furthermore, frequent

integration and testing also help to ensure that every team

member has understood the requirements correctly [11].

This is especially helpful if the participants in a globally

dispersed team are from different cultures and have not

worked together before. Through frequent integration and

testing, team members will get a lot of feedback and any

misunderstandings become visible in an early stage of the

project. This prevents problems to grow or accumulate [11].

Short iterations bring also transparency of the work progress

to all participants. Offshore developers for example can get

instant feedback on their work which helps to motivate

them and build trust between the different participants in

the project.

Agile methods emphasize communication and provide

useful coordination and collaboration practices. Applying

those practices in offshore development can help improve

many issues related to distance [12]. Increased collaboration

and communication between the dispersed team members

can also reduce cultural differences between the participants

[11]. Frequent and open communication between team mem-

bers and the frequent releases to the customer builds trust

and helps to better understand each other’s culture. Within

the field of knowledge management, intensive collaboration

and communication can increase shared tacit interpersonal

knowledge between the distributed team members and re-

duces the need of sharing explicit knowledge [3]. For

example, it can improve the knowledge on the business

domain of the customer at the offshore site and it lowers

the need to make these requirements clear through extensive

documentation.

Applying agile methods in offshore development brings

also additional flexibility to the contractual relationship be-

tween the involved parties. In the traditional global software

projects, due to the limited ability to control the activities of

the distributed teams, projects often rely on fixed commit-

ments and pre-defined requirements [1]. On the contrary,

agile processes are more flexible and adaptive and they

emphasize changes during the development process. The

customer can apply changes during the development phase

without big consequences related to contract negotiations

[11]. The customer does not need to specify all the require-

ments beforehand since agile processes are adaptive and

focus on creating value to the customer. Requirements can

change over time and they can be derived from a constant

32

negotiation between the developer and the customer.

Finally, agile methodologies use short iteration, frequent

builds and continuous integration. These practices bring

challenges to configuration management and version control

in software engineering in general [11]. This practice is even

more challenging in global software development where part

of the projects must be managed over different, distributed

locations. When teams are dispersed, long distances and bad

infrastructure can create extra impediments in communica-

tion and cooperation.

The status of combining agility and GSD is captured in

two systematic reviews [13], [14]. Many of the case studies

reported therein concern situations where one company is

developing software for its own use, or a product they sell,

and outsource part of the development to another party. That

is, there is no third party client. Examples hereof are [15] and

[16]. If there is an outside client, he is not part of the team,

as in [17]. Another typical aspect is that many of the case

studies concern situations where the different sites operate

relatively independently, and their work is coordinated at

regular intervals. In the case of Scrum, this means different

Scrum teams at the different sites, and Scrum masters that

coordinate the work through a Scrum of Scrums, a practice

advocated by the Scrum Alliance. This is different from a

fully distributed Scrum team, where members of one Scrum

team are distributed across geographies. An example of the

latter is [17]. The characteristics of our case study that,

together, distinguish ours from others, are:

• An agile project involving an outside client as well as

a professional software development organization,

• A fully distributed team that evolved from a traditional

(RUP) way of working to agile (Scrum).

III. PROJECT OVERVIEW

The case study was conducted in a software consultancy

firm, located in the Netherlands. We focus on two devel-

opment projects that the company was working on, for a

financial firm. The names of the case study company and

its client were not allowed to be disclosed and for this

reason, we will refer to the consultancy firm as Company

A and to the financial institute as Company B. The two

projects were derived from an initial project where Company

A used Scrum for the first time in an offshore context, with

team members being located in the Netherlands, and in an

offshore office in India.

In both projects two different independent applications

are built, but there are also a lot of similarities between the

projects. Because of this, team members do often switch

from one to the other project if needed. Furthermore, at

the onshore site the two projects are also located in the

same room. For this reason we will not make a distinction

between the two projects in this field study when analyzing

the results.

What is interesting in this case study is that both projects

used initially traditional software development methodolo-

gies. They first used the Rational Unified Process (RUP) [18]

as their main development methodology. In 2010 a manager

of the client company challenged his employees to come up

with an approach to deliver twice as much value for the same

amount of money. As a result, they decided to adopt Scrum

as their new approach. Most team members who are now

working on the two projects have experienced this transition

from RUP to Scrum and thus they have experience working

with both RUP and Scrum, in a global environment.

Note that the projects started off using RUP. So an

architecture-centric process was followed for a while, and

the basic architecture was in place when the transition to

Scrum was made.

IV. RESEARCH METHODOLOGY

The research was conducted based on a qualitative data

analysis approach. Qualitative research refers mainly to

the investigation and analysis of personal experiences and

behaviors, as well as organizational functions and social

interactions [19]. In order to gather the required data for the

analysis, we chose to perform semi-structured interviews.

In semi-structured interviews, questions can be open-ended

allowing a conversational manner, while at the same time,

an interview protocol can still be followed [20].

We interviewed 13 team members from both projects in a

period of one month through semi-structured interview ses-

sions. Each session took about one hour. The questions were

predefined but open ended. During the period of interviewing

the prime investigator worked in the same room with the

onshore Scrum team members and also participated in some

typical Scrum practices like the daily Scrum meetings and

the demo meetings. Through this we could also observe and

experience their way of working during the case study. Table

I provides an overview of the different interviewees with

their role, current project, site and company.

Table I
INTERVIEWEE PROFILES

Role Project Company Site
Software architect & developer 1 Company A Netherlands
Software architect & developer 2 Company A Netherlands
Developer 2 Company A India
Developer 1 Company A India
Project Leader 1 & 2 Company A Netherlands
Project Manager 1 Company B Netherlands
Scrum master & Business analyst 1 Company B Netherlands
Scrum master & Test manager 2 Company B Netherlands
Tester 1 Company B Netherlands
Tester 2 Company A Netherlands
Tester 1 Company A India
Tester 2 Company A India
Tester 1 & 2 Company A India

In the following paragraphs, we describe the case study in

detail, by focusing on how Company A works using Scrum

in a global software environment, what kind of activities and

33

processes are performed and how they are organized among

the remote teams that participate in the project. We do that

using the multi-site governance model, introduced in section

II.

A. Business Strategy

In this case study, there are three parties involved; the

client (Company B), the onshore provider in the Netherlands

(Company A), and the offshore party in India. According

to the multi-site governance model, the multi-site business

strategy should consider the contractual and legal relation-

ships between the remote sites. In our case study, Company

A has a captive center in India, which means that the two

remote offices belong to the same firm. A captive center is

a subsidiary that a company creates in a offshore location,

either by acquiring an existing company or by building one

[21].

There is also a legal barrier between the onshore and

offshore location; according to the European Union rules and

regulations, a person from outside the European Union is not

allowed to access financial systems of a company within the

EU. This has several implications on the multi-site activities;

integration testing can not be performed by people in India

and the two remote locations work in different technical

environments which they have to keep synchronized on a

daily basis.

Additionally, the business strategy between Company A

and Company B involves a flexible contractual relationship

where change requests can be accepted without extra costs

from the client part. This relationship is in line with the

Scrum methodology which “dictates” shorter iterations and

more changes can be considered during development. Fi-

nally, the client site is actively participating in the develop-

ment process, by having members from Company B within

the Scrum team.

B. Team Structure and Composition

In software development, team structure and composition

is a critical factor for good performance [22]. Team size,

role descriptions and role distribution are among those

characteristics in distributed teams that can influence team

coordination and communication and therefore team perfor-

mance [5]. In this case study, we observe several aspects

that characterize the way remote and co-located teams are

organized and structured. More particularly, for each one of

the two projects under investigation, there is one, unified

Scrum team, with members from all three engaged parties.

According to [13], this type of team structure is defined

as a fully integrated Scrum team, where the team is cross-

functional and the members are distributed across locations.

Figure 1 illustrates the members that comprise the Scrum

team.

The Scrum team is composed of different roles and

responsibilities. In line with the standard Scrum methodol-

Figure 1. A Fully Integrated Scrum Team

Onshore Site Offshore Site

Company A
- The

Netherlands

Company A
- India

Company B
- The

Netherlands

Scrum Team

ogy, there is a Scrum Master whose role is coaching the

Scrum team and guiding it through the Scrum practices

and rules. The Scrum Master is a person from Company

A in the onshore site. Other members from this site include

architects, system analysts and test coordinators. From the

offshore side in India, there are mainly developers, testers

and a team leader as part of the Scrum team. Additionally,

based on the Scrum framework, there is also the role of

the Product Owner, the person responsible for managing the

requirements list (the product backlog). Here, the Product

Owner is represented by a member from the client site

(Company B). Other members from Company B include

business analysts and requirements managers.

C. Task Allocation

Development is mainly done in the offshore site in India,

where the developers and testers are positioned. Architecture

and requirements management activities are the responsibil-

ity of the Scrum team members located in the Netherlands.

Nevertheless, developers and testers from the offshore site

actively participate in the requirements decisions, e.g. which

requirements will be included in the upcoming Sprint, how

to prioritize those requirements etc.

Within the Scrum team tasks and responsibilities are

divided into two sub-groups. The first sub-group is respon-

sible for implementing all changes and requirements in

the product backlog, and make sure that everything goes

according to plan. Part of this sub-group are the developers,

the testers and the architects from the onshore and offshore

site of Company A, and the system analyst and requirements

manager from Company B. The second sub-group of the

Scrum team is responsible for preparing the product backlog,

34

deciding what changes are to be implemented and make

sure that everything is arranged and agreed upon, before

the next Sprint begins. Members of this sub-group include

the Product Owner and the business analyst from the client

site, as well as a system analyst from Company A. Figure 2

illustrates the two sub-groups of the Scrum team, based on

their preparation and implementation tasks.

Figure 2. Sub-groups of the Scrum Team

SCRUM Team

Implementation Sub-group
Members from India site
- Developers
- Testers
- Team Leader

Members from NL site

Company A

- Architect
- Test Coordinator
- Project Leader
- System Analyst*

Company B
- Scrum Master*
- Requ. Manager*
- System Analyst*
- Project Manager

Members from NL site
- System Analyst* Company A
- Product Owner (PO)
- Business Analyst
- Requ. Manager*
- Scrum Master*
- System Analyst*

Company B

Preparation Sub-group

* people that participate in both sub-groups

Furthermore, according to [13], Scrum practices need

to be extended or modified in order to support global

software development teams. In this case study, Company

A has extended the standard Scrum framework, to fit the

company’s needs. More particularly, they use an additional

phase at the end of the Scrum life cycle, during which all

activities are summarized, documentation is completed and

all the responsible team members ensure that the backlog is

completed and the product is ready to be delivered.

Finally, cross-functionality is highly promoted within the

teams. Since Scrum prescribes that every team member

should be crossfunctional this is also applied in the two

projects. Although all team members still have their pri-

mary role, they are now also involved into other tasks like

elaborating stakeholder requests.

V. THE TRANSITION FROM RUP TO SCRUM

As mentioned in section III, the team members of the

current Scrum projects were also participating in older

projects where RUP was applied. Therefore, they have

experience working in a software global project with both

a more traditional methodology (RUP) as well as with an

agile methodology (Scrum). In this section, we present the

changes that were observed in the transition from RUP to

Scrum and the implications that such a transition brought

to the projects’ performance. In other words, we compare

the current multi-site governance structure of the projects,

which is based on the Scrum methodology, with the pre-

vious multi-site governance structure based on the Rational

Unified Process. Overall, we observe that Scrum improved

or eliminated the challenges that the distributed teams were

facing when they were working with the more traditional

development methodology. One of the onshore interviewees

said:

“I am still working on this project because
we now use Scrum which works a way better
and is a lot more fun to do. If we would have
continued working in the traditional way I would
have already gone to another project.”

Change 1: Requirements engineering & Customer in-
volvement. One of the major changes of the transition

from the RUP to Scrum concerns the process of re-

quirements engineering. During the traditional way of

working, requirements were discussed in the onshore

site, between people from Company A and the partic-

ipants from Company B. After deciding on which re-

quirements and which changes were to be implemented

they were “throwing the requirements over the fence”,

that is they were communicating them to the team in

India. As a consequence, the developers and the testers

in the offshore site were not participating in the process

of requirements elicitation and prioritization. With the

current Scrum approach this aspect has changed. All

team members, including the developers and testers

from India, participate in requirements management,

and they can all share ideas and solutions.

The most prominent consequence of such a change is

that the team members in India can now gain more

domain knowledge. They have the chance to develop

personal skills and not only “act as robots”. Addition-

ally, the team feeling has increased, as the people in

India feel more close to the their colleagues in the

onshore site, as well as to the client site, and their

motivation has increased. A developer from the team

in the offshore site told us:

“In the RUP model, we worked more isolated
and I often felt like I was a robot since I was
just developing what I got through documentation,
without knowing what it was meant for. Today,
we are interacting with the client and I can now
also increase my knowledge on their domain which
makes the work more interesting.”

Furthermore, while following the RUP, there were three

separate teams participating in the project; the onshore

site of the consultancy firm, their offshore captive cen-

ter in India, and the client site. As a result, requirements

were first discussed between the onshore people of

Company A and Company B, and then the members

of Company A were communicating the requirements

to the team in India. In other words, the people in the

onshore site were acting as the intermediate between the

client and the developers. That also meant that when-

ever the development team in India had questions about

the implementation of certain requirements or changes,

35

they first had to ask their onshore colleagues, a process

that can cause more delays and misunderstandings. An

onshore interviewee from the client site said:

“In the past a lot of parties were involved in
communicating things to India. This adds a lot
of noise and delay in the communication process.
Now, we can directly talk to India team members
and explain them certain things face-to-face. This
really improves progress of the project and the
quality of the delivered work.”

In the current governance, with the use of Scrum, there

is only one, unified Scrum team with members from all

three parties involved in the development. That means

that the client site is also actively participating in the

development process, and they are closely connected

with the offshore site. Consequently, requirements are

better communicated and understood by all Scrum

members. People in India understand better what needs

to be implemented and together with their colleagues

from the onshore site, they can prioritize the require-

ments more efficiently. In addition, the members from

India can directly communicate with the client site,

and as a result communication lines are shorter and

less misunderstandings occur. According to an offshore

developer:

“Because of agile, we now directly commu-
nicate with the client. This helps us understand
better what they want and this results in a better
product. It is also more interesting to work with
the business people (Company B) and hear what
they find about the product.”

Change 2: Communication.
Another change that is observed in the transition from

RUP methodology to Scrum practices, is the frequency

in the meetings held between the team members and

consequently the changes in the frequency of commu-

nication. Following the Scrum project life-cycle, the

team members meet daily in the stand-up meetings.

They have adjusted the time frame of those meetings,

from 15 minutes that is prescribed in the standard

Scrum practice, to 25 minutes, in order to accommodate

the proximity between the Scrum members and the

involved delays. An onshore interviewee from the client

site said:

“It is easier to handle business when people
are working together. I always said that people
should work more together and see each other on a
daily basis. Now, we are finally doing this through
Scrum practices.”

With the daily meetings and the more frequent feedback

that the team members can get and receive, misun-

derstandings between them have been eliminated and

issues are now resolved faster. According to an onshore

interviewee:

“Today misunderstandings and impediments
are identified much earlier than in RUP. Now we
can work on something wrong for maximum one
day. In the past, we could be working on a partic-
ular task for weeks before any misunderstandings
or impediments were identified.”

Additionally, it was observed that through the daily

interactions of the Scrum team, the members can syn-

chronize better their activities between the onshore and

the offshore locations. It becomes easier to keep track

of each others’ progress and status, since the frequent

communication allows them to get a daily insight on

which part of the project their colleagues work on.

Finally, another change with regard to the communi-

cation is the increase of the face-to-face interactions,

through their video-conferencing tool. Company A uses

a commercial tool called the Eye-Catcher1 for video-

conferences. The EyeCatcher is located in separate

rooms where team members can talk to each other.

In RUP, only certain people were communicating with

each other using video-conference. The rest were using

emails and instant messaging tools for their commu-

nication needs. Now with the daily meetings, where

all Scrum members participate, they all participate in

the video-conference and they all can see each other

face-to-face. This increases trust between the remote

and local colleagues and as a result people feel more

motivated to collaborate with each other.

“During the Daily Scrum meeting we can
see each other through the video-conference tool,
which makes it more easy to detect if someone
from the offshore site is holding information back.
During the meeting it is also easy to break the
ice through little jokes for instance. As a result,
the offshore colleagues are more comfortable to
speak.”

The client site, which in the past had no or very little

direct face-to-face contact with the offshore site, now

they also appreciate more their offshore colleagues

and they show more respect to them since they are

participating in the same Scrum practices and see each

other daily. An onshore interviewee of the consultancy

company said about this:

“In the past there was no face-to-face contact
with India. It often happened that someone from
the offshore site had some questions about a
particular subject and asked this through email
to a team member from the client site. As a result,
the team member from the client site came to me
saying: ‘That person from India with the strange

1http://www.qconferencing.eu/product/eye-catcher/

36

name is asking me strange questions again...’. This
reflects how the client site was seeing the India
site. Today this has totally changed since India and
the client are fully involved and see each other on
a daily basis.”

Change 3: Pricing model and Internal costs.
A change that came with the introduction of Scrum

practices concerns the pricing model between Company

A and the client (Company B). Because of the agile

way of working and the Scrum project life-cycle, there

are smaller and shorter iterations between deliveries.

Consequently, the members of Company A are more

flexible in accepting and incorporating changes that

members from Company B request. This arrangement

benefits the client site because they don’t need to pay

extra for every change they request or for overwork.

According to an interviewee from the client site:

“Since we have different agreements with
the consultancy company I experience that the
consultancy company colleagues are more open
for changes from the client. In the past we had to
negotiate about the price for every additional fea-
ture which was not part of the initial agreement.”

Transition from RUP to Scrum also benefited the inter-

nal costs of Company A for communication purposes.

In RUP, they were experiencing a lot of communication

impediments, which resulted in more internal expenses

in order to facilitate communication and collaboration

between the remote offices. As a result, the internal

costs of Company A were more than the benefits gained

from outsourcing to a lower cost country. With the

adoption of the Scrum methodology, and the improve-

ment in communication between remote team members,

Company A experiences less internal costs and now

they can fully profit from the outsourcing benefits.

Change 4: Cross-functionality.
Another improvement that was introduced with the

change from RUP to Scrum is the cross-functionality of

the team members. Team members can be involved in

more than one task and the moment they finish working

on one task, they can immediately start working on

another.

“During RUP it was quite common that the
India site had nothing to do since they had to
wait for tasks from the Netherlands, but it also
happened that they worked the whole weekend to
get a certain task done. Since the introduction of
Scrum the offshore site can easily pick up other
tasks from the Scrum board. Also, no overworking
hours are any longer reported.”

With the traditional way of working, the offshore mem-

bers did not have the “freedom” to get involved in more

tasks, and they had to wait for instructions from their

colleagues at the onshore site. This process was causing

delays. Now with Scrum, people from the India site can

always work on something and therefore their feeling of

responsibility and motivation is improved. An offshore

interviewee said about this:

”In the RUP model we worked more isolated
and I often felt I was like a robot since I was
just developing what I got through documentation
without knowing where it was meant for. Today
we are interacting with the business and I can now
also increase my knowledge on their domain which
makes the work more interesting to do. The Daily
Scrum meetings also helps to keep you motivated”

It should be noted that some people want to stick to

their own role, for various reasons. For some, it has

to do with building up a resume. For others, it has to

do with difficulties handing over work. One has to pay

explicit attention to this aspect.

Change 5: Delivery time and Development pace
During the analysis of the case study, we have observed

certain changes that were introduced with the migration

from RUP to Scrum which had a negative impact for

the projects’ performance. The first change relates to

the delivery time. In RUP, delivery was every 6 months

while now with Scrum delivery is every 2 months. Be-

cause things go faster with the Scrum way of working,

there is not enough time for proper documentation. This

has a negative effect later in the development phase,

because the team members “miss the tracing lines”. In

other words, if something goes wrong people find it

hard to go back and trace the issue because decisions

are not well documented.

Finally, another disadvantage that was introduced with

the transition from RUP to Scrum relates to the de-

velopment pace. Because processes and activities are

running now faster than before, the client site finds

it hard to follow the pace with which changes are

implemented and deliveries are ready. This is because

within Company B there are certain departments in-

volved in various aspects of the product such as risk

management or quality assurance. Before the software

can be released, or before a new feature is introduced,

the Scrum team needs approval from these departments.

According to their SLA’s this process can take up

to 10 days for instance, but during Scrum, people

need approval the same day in order to implement

requirements and changes instantly and create more

business value. Consequently the client site creates

delays and bottlenecks.

The changes we observed map well onto the challenges

of distributed agile projects, as observed in [1]:

• Communication need versus communication
impedance. Communication is an obvious challenge

37

Figure 3. The transition from RUP to SCRUM

RUP (Before) SCRUM (After)
M

ulti-site

Governance

M
odel

Change 1: Customer
Involvement &
Requirements
Engineering

The offshore site is involved in the development and
testing phases only. They were receiving the
requirements and they had to implement them.

The offshore team is involved from the beginning in requirements
management.
� They have the chance to develop personal skills and not only
"act as robots".
� Team feeling has increased.

Task
Allocation

The onshore team was acting as an intermediate
betweem the offshore team and the client site, for
requirements communication.

There is one unified Scrum team with members from all three
engaged parties. There is a direct contact between the client and the
offshore team.
� Offshore team understands better the requirements
� Shorter lines of communication, less delays.

Team
Structure &
Composition

Feedback was not so often. Someone might have been
working on a wrong task for weeks or months before
they realize.

With the daily meetings they can get daily feeback:
� Less misunderstandings. Worst case is that someone is working
on a wrong task for a day. Issues are identified immediately.
� They can sychronize the work between the remote sites better.
� They can keep track of each others progress and get an insight
on which part of the project their remote colleagues are working on.

Task
Allocation

Only certain people were communicating with each
other using the video-conference tool. All other
members we using only emails and/or the chat tool.

Now everyone communicates with each other daily through the eye-
catcher. Therefore, all Scrum members know each other, trust is
increased, and they are more motivated to collaborate as a team.

Team
Structure &
Composition

There was a fixed-price contract between Company A
and Company B:
� It was harder to accept changes
� Company B had to pay extra for changes.

In Scrum there are small and short iterations:
� Company A is more flexible in accepting changes.
� Company B benefits, because they don't need to pay overwork
(more cost efficient).

Company A was experiencing a lot of communication
impediments which resulted in more intenal expenses
in order to facilitate communication and knowledge
transfer. Therefore the costs were more than the gains
from outsourcing in a lower cost country.

With the adoption of Scrum, and the improvement in
communication, Company A experiencse less internal costs, which
is the initial driver of outsourcing, and that means that now they can
"fully profit from the outsourcing benefits"

Change 4:
Cross-Functionality

In RUP, the offshore site should wait until the onshore
team assigns them a new task to do. This caused
delays.

The Scrum team is cross-functional. Once the offshore members
finish their current task, they can immediately start working in
another.
� The feel of responsibility grows, motivation is improved and
consequently performance is improved. (The members in India are
more motivated to ask more questions, than before.)

Task
Allocation

Change 5:
Development pace &

Delivery time
With RUP delivery was every 6 months.

With Scrum now they deliver every 2 months. Things "go faster",
processes and development are running much faster than before.
� Disadvantage: The client part (Company B) find it difficult to
"keep up with the pace", especially because for them Risk
Management and security are important issues. As a result
communication bottlenecks occur.
� Disadvantage: Less documenation is produced: they miss "trace
lines" which means that if something is missing or something goes
wrong, it is hard to trace it back because it is not documented.

Task
Allocation

Change 1: Customer
Involvement &
Requirements
Engineering

Change 2:
Communication

Change 3:
Pricing Model &

Internal Costs

Business
Strategy

in distributed development, and a vital part of agile

processes. Change 2 above shows that the transition to

agile actually improved communication in our case.

• Fixed requirements versus evolving requirements.
Due to the limited ability to control activities in dis-

tributed projects, global projects often resort to fixed

requirements, while agile projects emphasize change.

In the projects discussed, requirements could change

in between sprints, as is normal in Scrum projects.

The active participation of the offshore site in the

requirements discussion improved their understanding

of and commitment to the requirements (change 1).

• People-oriented versus process-oriented control and

Formal agreements versus informal agreements. In

global development, control is often achieved through

formal processes, while control is achieved informally

in agile processes. The lower control that resulted from

the transition to agile necessitated a different pricing

model, and actuially reduced overall cost (change 3).

• Short iterations versus distance complexity. Agile

projects uses short iterations, which brings challenges

to configuration management, version control and doc-

38

umentation. This becomes even more difficult to man-

age over different sites. This increase complexity was

indeed observed in the current projects (change 5).

• Team cohesion versus team dispersion. Team cohe-

sion is easier to realize when the team is collocated, and

agile processes emphasize the importance of this team

aspect. As noted in change 1, team feelings actually

improved through the move from RUP to Scrum.

VI. CONCLUSION

The aim of this study was to investigate the transition

from a traditional development methodology, to an agile way

of working in global software development. We used the

multi-site governance model to classify the different global

activities based on three aspects; the business strategy, the

team structure and the task allocation. Overall, we observed

five different changes in the governance structure and the

resulted implications. Figure 3 presents the results of our

case study.

All changes, except one, had a positive impact on project

performance. Scrum methodology introduced a fully inte-

grated Scrum team, with members from all engaged parties

instead of separate teams which shortened communica-

tion lines among the members and improved requirements

communication. Additionally, the daily standup meetings

improved performance, because the team members are now

able to identify issues sooner and resolve misunderstandings.

The cross-functionality of the teams creates a feel of respon-

sibility and improves motivation of the offshore colleagues.

Furthermore, cost benefits were observed as a result of the

more flexible way of working introduced by Scrum with

shorter and smaller iterations. Finally, there seems to be

a negative impact from this transition due to the faster

development life-cycle of Scrum methodology which also

implies limited documentation. Despite the latter negative

effect, we can conclude that overall, agile practices can have

a positive impact on GSD projects and can help to mitigate

many of the well-known challenges of GSD.

REFERENCES

[1] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?” Communications of the
ACM, vol. 49, no. 10, pp. 41–46, 2006.

[2] S. Moore and L. Barnett, “Offshore Outsourcing and Agile
Development,” Forrester, Tech. Rep., 2004.

[3] P. Ågerfalk and B. Fitzgerald, “Flexible and Distributed
Software Processes: Old Petunias in new Bowls?” Communi-
cations of the ACM, vol. 49, no. 10, pp. 26–34, 2006.

[4] R. Heeks, S. Krishna, B. Nicholson, and S. Sahay, “Synching
or sinking: Global software outsourcing relationships,” IEEE
Software, vol. 18, pp. 54–60, 2001.

[5] C. Manteli, B. van den Hooff, A. Tang, and H. van Vliet, “The
impact of multi-site software governance on knowledge man-
agement,” in Global Software Engineering (ICGSE), 2011 6th
IEEE International Conference on, 2011, pp. 40 –49.

[6] P. L. Bannerman, “Software development governance: A
meta-management perspective,” in Proceedings of the 2009
ICSE Workshop on Software Development Governance, ser.
SDG ’09. IEEE Computer Society, 2009, pp. 3–8.

[7] B. Boehm and R. Turner, “Management challenges to imple-
menting agile processes in traditional development organiza-
tions,” IEEE Softw., vol. 22, pp. 30–39, September 2005.

[8] E. Hossain, P. Bannerman, and D. Jeffery, “Scrum practices
in global software development: A research framework,” in
Product-Focused Software Process Improvement, ser. Lecture
Notes in Computer Science, D. Caivano, M. Oivo, M. Baldas-
sarre, and G. Visaggio, Eds. Springer Berlin / Heidelberg,
2011, vol. 6759, pp. 88–102.

[9] L. Layman, L. Williams, D. Damian, and H. Bures, “Essen-
tial communication practices for extreme programming in a
global software development team,” Information and Software
Technology, vol. 48, no. 9, pp. 781 – 794, 2006.

[10] D. E. Damian and D. Zowghi, “Re challenges in multi-site
software development organisations,” Requirements Engineer-
ing, vol. 8, pp. 149–160, 2003.

[11] M. Paasivaara and C. Lassenius, “Could Global Software
Development Benefit from Agile Methods?” in Proceedings
International Conference on Global Software Engineering
(ICGSE’06). IEEE Computer Society, 2006, pp. 109–113.

[12] H. Holmström, B. Fitzgerald, P. Ågerfalk, and E. Conchúir,
“Agile Practices Reduce Distance in Global Software Devel-
opment,” Information Systems Management, vol. 23, no. 3,
pp. 7–18, 2006.

[13] E. Hossain, M. Ali Babar, and H.-Y. Paik, “Using Scrum
in Global Software Development: A Systematic Literature
Review,” in Proceedings 4th International Conference on
Global Software Engineering. IEEE Computer Society, 2009,
pp. 175–184.

[14] S. Jalali and C. Wohlin, “Global software engineering and
agile processes: a systematic review,” Journal of Software
Maintenance and Evolution: Research and Practice, in press,
2012.

[15] M. Vax and S. Michaud, “ Distributed Agile: Growing a
Practice Together,” in Proceedings Agile 2008 Conference.
IEEE, 2008, pp. 310–314.

[16] T. Niinim’́aki, “ Face-to-face, Email and Instant Messaging
in Distributed Agile Software Development Project,” in 2011
Sixth IEEE International Conference on Global Software
Engineering Workshops. IEEE, 2011, pp. 78–84.

[17] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Distributed
Agile Development: Using Scrum in a Large Project,” in
Proceedings 2008 IEEE International Conference on Global
Software Engineering. IEEE, 2008, pp. 87–95.

39

[18] P. Kruchten, The Rational Unified Process: An Introduction,
Third Edition, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[19] A. L. Strauss and J. M. Corbin, Basics of Qualitative Re-
search: Techniques and Procedures for Developing Grounded
Theory. Sage Publications, Inc., 1998.

[20] R. K. Yin, Case Study Research: Design and Methods. Sage
Publications, Inc, 2003.

[21] R. Prikladnicki, J. L. N. Audy, D. Damian, and T. C.
de Oliveira, “Distributed software development: Practices
and challenges in different business strategies of offshoring
and onshoring,” Global Software Engineering, International
Conference on, vol. 0, pp. 262–274, 2007.

[22] H.-L. Yang and J.-H. Tang, “Team structure and team per-
formance in is development: a social network perspective,”
Information & Management, vol. 41, no. 3, pp. 335 – 349,
2004.

40

