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Abstract—Regeneration of templates from match scores has security and privacy implications related to any biometric authentication

system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first

modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the

distancescomputedbya face recognitionalgorithmbetween two facesbydistancesbetweenpoints, representing these faces, in an affine

space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the

targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine

(nonorthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is

reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three fundamentally different face

recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal

classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we

select face templates from two different databases: the FaceRecognitionGrandChallenge (FRGC) database and the Facial Recognition

Technology (FERET) database.With an operational point set at 1 percent FalseAcceptanceRate (FAR) and 99percent TrueAcceptance

Rate (TAR) for 1,196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a

73 percent chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With a similar

operational setup, we achieve a 72 percent and 100 percent chance of breaking in for the Bayesian and PCA-based face recognition

systems, respectively. With three different levels of score quantization, we achieve 69 percent, 68 percent, and 49 percent probability of

break-in, indicating the robustness of our proposedscheme to score quantization.Wealso show that the proposed reconstruction scheme

has 47 percent more probability of breaking in as a randomly chosen target subject for the commercial system as compared to a hill

climbing approach with the same number of attempts. Given that the proposed template reconstruction method uses distinct face

templates to reconstruct faces, thiswork exposesamore severe formof vulnerability thanahill climbingkind of attackwhere incrementally

different versionsof the same faceareused.Also, theability of the proposedapproach to reconstruct theactual face templatesof the users

increases privacy concerns in biometric systems.

Index Terms—Face template reconstruction, probability of break-in, multidimensional scaling, security and privacy issues in biometric

systems, hill climbing attack.

Ç

1 INTRODUCTION

RECENTLY, biometric technologies have become an integral
part of many secure access systems. Biometric-based

authentication systems are being deployed in both low-risk
secure systems such as laptops and cell phones to relatively
high-risk secure systems such as military bases and airports.
The increasingdemandsofbiometric technologies canbewell
justified with its advantages over password or smart-card-
based technologies, such as user convenience, high security,
and less fraud. However, like many other authentication
technologies, biometric-based systems also possess vulner-
able points of security breaches in biometric-based authenti-
cation systems [1]. The cost of replacing a biometric token or
template is higher when compared to that of a password or a
smart card, with severe security and privacy implications.
The templates can be reused over digital networks or can be

used to reproduce synthetic biometric templates such as fake
fingersormodel faces [2], [3]. In caseof face templates, there is
an additional risk that the identity of a person using a
biometric access system in a highly secure facility can be
revealed. Several authors have successfully pointed out
various sources of security breaches in biometric-based
authentication systems [4], [5]. Lately, somecountermeasures
have also been proposed to nullify such threats [6], [7], [8],
and the standardized biometric application programming
interface (BioAPI) has been continuously updated with
countermeasure guidelines such as to encrypt templates,
avoid storage and transmission of original templates, and
perform quantization of match scores [9].

In general, most biometric authentication systems have
four major modules [10], a biometric template acquisition
sensor, a matching module to compare a new template to an
enrolled template, a decision module using predefined
thresholds for particular operational points, and a database
for enrolled templates (gallery). Inmanyapplications, it is not
possible to integrate all these modules to one unit. In such
scenarios, the information fromoneunit to the other is passed
through digital channels and/or stored in digital media for
offline processing. As reported bymany authors [3], [8], each
of thesemodulespossesses different levels of security threats,
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and different countermeasures are necessary to nullify such
threats. For instance, liveness detection at the sensor unit will
detect any attempts to hack the system with synthetic
templates. Similarly, a secure database or a secure digital
channel will prevent any unauthorized access of templates
over anetwork. In thispaper,wemadea successful attempt to
explore one such point of vulnerability between a matching
module and a decision module. In applications, where the
matching module and decision module are not integrated
together, we need to store the “match scores” in a digital
mediaor transmit thematch score throughadigital channel to
a decision module [11]. This scenario can arise in distributed
network cluster biometric systems with a central decision
unit. Such networks can arise in wide area monitoring
contexts. In this paper, we consider the question: “Can
unauthorized access of these match scores result in security
and privacy breaches?”

We propose a model-based template reconstruction
scheme from match scores using distinct face images. The
schematic diagramof theproposedmethod is shown inFig. 1.
Weconsider a set of face imagesdifferent fromthegalleryand
probe sets andname it as the “break-in” set. Then,webuild an
affine transformationmodel of the face recognition algorithm
that is assumed to be known. It can be noted that the face
recognition system is treated as a complete black box, andwe
do not perform any reverse engineering on the recognition
system. The assumption of the knowledge of the face
recognitionalgorithmisaweakone. (Itmightevenbepossible
to identify the recognition algorithm given score matrices of
known algorithms. However, we do not explore that angle
here.) The modeling of the recognition system is an offline
procedure and needs to be constructed only once for a given
recognition algorithm. Once we have built such a model, we
present the templates fromourbreak-in set to the system tobe
broken and observe the match scores to an assumed identity.
Therefore, in real-time scenarios, our proposed method only
requires access to a set ofmatch scores equal to the number of
images in thebreak-in set. Thesematch scores are thenused to
embed the unknown template of a targeted subject in the
modeled affine space. Finally, we use the inverse of the affine
transformation to reconstruct the unknown template of a
targeted subject in the original image space. We validate our
proposed template reconstruction scheme on three different
types of face recognition systems using two standard public
databases, FERET [12] and FRGC [13]. Two template-based
algorithms, namely, Principal Component Analysis with
cosine distance measure [14] (widely accepted as a baseline
algorithm) and Moghaddam and Pentland’s algorithm,
popularly known as the Bayesian intrapersonal/extraperso-
nal classifierwithMaximumLikelihood (ML)estimation [15],

and a feature-based commercial face recognition system are
used for this experiment.

2 PREVIOUS APPROACHES: HILL CLIMBING-BASED

ATTACKS

The dominant approach for a match score-based attack on a
biometric system is based on hill climbing. Here, we outline
the relevant work in this regard. In Section 5.4, we present a
more systematic evaluation of our proposed method against
one version of the hill climbing attack and demonstrate the
efficiency of our method both qualitatively in terms of
reconstructed templates and quantitatively in terms of the
probability of breaking into a recognition system.

Soutar [16] was the first to propose an iterative template
adaptation scheme, popularly known as the hill climbing
attack, to break into a biometric system based on match
scores. The proposed scheme attacks the account of a subject,
referred to as the targeted subject, by starting from an
arbitrary face template and iteratively refining it. At every
iteration, if themodified template results inabetter score than
the previous match score, then the modified template is
retained, or else, it is discarded. The process is iterated until
the template is accepted as the targeted subject. The basic
block diagram of the hill climbing attack is shown in Fig. 2.
Note that with this method one might break into a system
using a final template that does not look like any face as long
as it “fools” the system. In other words, it is not a face
reconstructionmethodbut rather abreak-in strategy. Though
Soutar did not report any quantitative results of biometric
template reconstruction, good performance of similar ap-
proaches has been reported by several others [17], [18].

One countermeasure for the first generation of hill
climbing approaches is to quantize the scores. With appro-
priate quantization, it will not be possible to get an
incremental feedback as is needed by these approaches.
Therefore, Adler [17] proposed a modified hill climbing
attack for a face recognition system with quantized match
scores using an additional independent set of eigenfaces. The
recognition systems that output quantized match scores do
not alter thematch scoreswith small changes in input images,
which canprevent the first generationof hill climbing attacks.
After initializing the process with an arbitrary face template,
at every iteration, the previously updated template is multi-
plied with randomly selected eigenfaces with different
weights. This is expected to generate templates farther away
from theprevious template. The face template that results in a

2066 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 12, DECEMBER 2007

Fig. 1. Schematic of processes in the proposed model-based approach.

The proposed approach is a model-based one-shot method employing

multiple face templates—the break-in set.
Fig. 2. Schematic of processes in a hill climbing attack. The hill climbing

attack is an iterative process that starts from a face template and then

iteratively updates the template until an accept decision is generated by

the system.



better match score is retained as the updated image for the
next iteration.Theprocess terminateswhen there isno further
improvement in match scores. Experimental results on a
commercial face recognition algorithm show that after nearly
4,000 attempts, a highmatch score is achievedwith 99percent
confidence. Later, Adler [19] extended this idea to work with
encrypted face templates.

Security breaches are possible not only in face biometrics
but in other biometrics too.Uludag and Jain [18] extended the
hill climbing attack idea to break into minutiae-based
fingerprint recognition algorithms. Initially, random minu-
tiae templates are created and matched against the targeted
user by a fingerprint matching system. The best matched
template is then used to generate another set of minutiae
templates by randomly adding and deleting existing minu-
tiae. The iteration process is continued till the system accepts
the template. The authors reported that all 160 enrolled
accounts could be broken with less than 1,000 attempts for
each account. Lopresti and Raim [20] proposed an attack on
an online handwriting recognition system by randomly
generating feature vectors through a generative model of
human handwriting. A set of different text samples from the
enrolled userswas fed to the generativemodel.With few text
samples from the enrolled users, the model reproduced
different text templates thorough random partition and
concatenation of the input text until a template was accepted
as a successful match. Preliminary results show that this
attack succeeded 49 percent of the time.

Although hill climbing-based attacks can quite success-
fully break a particular targeted account, effective counter-
measures for such type of attacks can also be generated. One
property of hill climbing-based attacks is that they require a
large number of attempts before success. Hence, one possible
countermeasure for such attacks is to restrict the number of
consecutive unsuccessful attempts. However, this still leaves
the system vulnerable to a spyware-based attack that
interlaces its false attempts with the attempts by genuine
users (successful attempts) and collects information to iterate
over a period of time. However, in most hill climbing-based
attacks, the templates at the ith attempt (iteration) are
generated from the ði� 1Þth attempts (iterations) and are
similar to each other. Hence, if we monitor all unsuccessful
attempts for a particular targeted account within a fixed time
interval, we will discover a pattern of similar faces with
decreasing dissimilarity scores (see Fig. 3). Therefore, a
continuous observation of unsuccessful match scores will
help to detect hill climbing-based spyware attacks. In this
paper, we expose a more severe form of vulnerability where
such countermeasures will be hard to design since we use
scores from distinct face images with no obvious patterns in
the scores.

In Fig. 3, we present a schematic visualization of the
search process to illustrate the differences between a hill
climbing attack and our proposed linear scheme. Our
algorithm requires the distances or scores between the face
of the targeted subject and a set of faces from the break-in set
that is distributed throughout the space. Whereas a hill
climbing-based attack computes scores for faces along a
trajectory of incremental scores from an arbitrary template to
that of targeted subject, there are no obvious patterns in the
scores needed by our approach; hence, the proposed scheme
is not incrementally iterative. As discussed earlier, the
statistically decreasing dissimilarity scores generated by a

hill climbing-based approach can indeed be used to detect
such attacks, but a similar strategy cannot be applied to our
proposed method. The hill climbing approach is considered
as a break-in strategy to a recognition system, whereas the
proposed method is a template reconstruction scheme for
any face recognition system. In our case, the break-in
performance shows the accuracy and confidence in recon-
structed templates. As a result, the proposed algorithm has
vulnerability implications related to both security and
privacy issues of the users. Also, the numbers of attempts
in our break-in scheme are predefined by the number of
images in the break-in set, which allows such attacks to be
more feasible in real-time applications.

3 MODELING OF THE RECOGNITION ALGORITHM

The heart of our proposed template reconstruction approach
is themodeling of a face recognition algorithmusing anaffine
transform and then inverting this transformation to recon-
struct templates.The inputs toany face recognitionsystemare
two face templates xi and xj, and the output is a dissimilarity
or similarity score dij. Typically, a recognition algorithm
transforms the given image into a point in a low-dimensional
space, followed by a distance measure on this model space.
This low-dimensional space is usually constructed by
statistical methods such as PCA [14], linear discriminant
analysis (LDA) [21], or independent component analysis
(ICA) [22] or constructed out of low-level features detected in
the images, such as in the elastic bunch graph matching
approach [23]. We adopt a black box-based modeling
approach. Given the success of template-based recognition
approaches such as the Bayesian, PCA, LDA, and ICA that
rely on linear transformations of the original image space, we
seek to model the given face recognition algorithm, even
feature-based ones, by an affine transformation, followed
by euclidean distance computation in this model space.
However, unlike previous template-based approaches, we
allow the transformation to be nonorthogonal. We seek an
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Fig. 3. Visualization of the search process of a hill climbing attack and
the proposed model-based approach. The dotted line represents one of
possible path in a hill climbing attack starting from a chosen template. At
each point on the path, the distance to the template is needed. The solid
arrow represents a one-time comparison of templates of the targeted
subject with members of the break-in set templates that is needed by the
proposed approach.



approximating affine transformationA that is a composition
of an orthogonal (or rigid) and a nonrigid (shear and stretch)
transformationA ¼ AnrAr. Similar questions have also been
considered by Liu et al. [24] but just for orthogonal
transformations, that is, Anr ¼ I, the identity matrix. They
cast it as an optimization problem over the space of possible
transformations. We offer a more direct method to find the
general affine transformation, not necessarily orthogonal.We
have found that the nonrigid part of the transformation does
help in enhancing performance [25]. The approximating
affine transformation preserves the distances among the
templates generated by the face recognition system. In Fig. 4,
we outline the steps involved in designing the affine model
space. Given this affine space, we can embed any template in
this space based on its distance d from a known set of
templates—the set of break-in templates. Once we have the
embedded affine coordinates for template yz, we can
reconstruct the face by inverting the affine transformation.

The objective of the modeling is to determine an affine
transform A such that when the given images xi’s, are
transformed to the affine space, the euclidean distance
between the transformed coordinates of two face images are
similar to the distances computed between them by the face
recognitionalgorithm. In this notation,xis areN-dimensional
row-scanned representations of the images, and the affine
transformation A has dimensions M �N , with M < N . We
find this model in two steps: First, we express the given
distances (or their monotonically increasing transformation)
between known images as a dot product distance between
vectors. Then, we construct the affine transformation
between these vectors and the images. Pekalska et al. [26]
discuss a similar mechanism to derive models for standard
classifiers such as the nearest neighborhood rule, linear
discriminant analysis, and linear programming problems
from the dissimilarity scores between objects. The distances
are embedded to the euclidean/pseudoeuclidean space
depending on the presence/absence of the euclidean prop-
erty of the original distance matrix, and then, unknown
objects are projected to the embedded space and classified
accordingly with a euclidean distance measure.

3.1 Dot Product Distances

Let dij be the distance between two images xi and xj, ðx
T
i 2

<NÞ as computed by the given face recognition algorithm.
Here, we assume that the face recognition algorithm outputs
the dissimilarity scores of two templates. However, if a
recognition algorithm computes similarities instead of dis-
tances, we can always convert the similarity scores sij into
distances using a variety of transformations such as ð1� sijÞ,
� logðsijÞ,

1
sij
� 1, and so forth. Then, these distances can be

arranged as aK �KmatrixD ¼ ½d2ij�, whereK is the number
of images in the breaking set. In this paper, we will denote
matrices by bold capital lettersA and column vectors by bold
small letters a. We will denote the identity matrix by I, a
vector of ones by1, a vector of zeros by0, and the transpose of
A by AT. For each image, we would like to find vectors yi

such that yT
i yj ¼ fðdijÞ, where fð:Þ is a monotonically

increasing function, and yT
i 2 <M . For biometric systems, if

the original match score between two templates is not
modified based on other templates on the gallery, then a
monotonically increasing transformation of the distances
does not affect the model of the system. The choice of this
monotonically increasing function depends on the face
recognition algorithm under consideration. However, a
commonapproach is to express thismonotonically increasing
transformation as a composition of two transformations, the
first one transforms the given distances into euclidean
distances, and the second one “centers” the euclidean
distances into dot product distances. For many recognition
algorithms, the underlying distance measure may not be
euclidean, and in some case, the observed dissimilarity
matrix may not exhibit metric properties as well. In such
cases, we need to transform the distance matrix D to the
equivalent euclidean distance matrix DE. Although the
process of converting a noneuclidean distance matrix to an
equivalent euclidean distance matrix is not feasible in all
cases, an approximation to noneuclidean distance matrix D

canbeused for suchembedding [26]. In the rest of this section,
we discuss the mathematical derivation of configuration
points yi from the euclidean distance matrixDE. Note that if
the original observed distance matrix D is euclidean, then
DE ¼ D. On the other hand, if D is a noneuclidean distance
matrix, then DE represents a monotonically modified
equivalent euclidean distance matrix of the original distance
matrixD. For better readability, thederivation ofDE from the
noneuclidean distance matrix D is discussed in Section 3.3.
For now, we will assume that we have the score matrixDE.

Althoughmany different schemes [27], [28] can be used to
arrive at a set of configuration points that preserve the
pairwise distances given by an input distance matrix, for this
experiment, we followed a simple scheme commonly known
as classical scaling ormetricmultidimensional scaling (MDS)
[29], [30]. Given the euclidean distance matrix DE, here, the
objective is to findK vectors fy1; � � � ;yKg such that

DEði; jÞ ¼ ðyi � yjÞ
T ðyi � yjÞ: ð1Þ

Note that the above configuration points yi’s are not
unique. Any translation or rotation of vectors yi’s can also
be a solution to (1). To reduce such degrees of freedom of
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Fig. 4. Block diagram of the modeling strategy. Starting with a set of face templates (break-in set), we estimate a rigid and a nonrigid transformation

that model the behavior of the recognition algorithm in terms of distance measure on these templates.



the solution set, we constrain the solution set of vectors to
be centered at the origin and the sum of the vectors to zero,
that is,

P

i yi ¼ 0.
Equation (1) can be compactly represented in matrix

form as

DE ¼ c � 1T þ 1 � cT � 2YTY; ð2Þ

where Y is a matrix constructed using the vectors yi as the
columns Y ¼ ½y1; � � � ;yK�, and c is a column vector of the
magnitudes of the vectors yi’s. Thus,

c ¼ ½y1
Ty1; � � � ;yK

TyK�
T
: ð3Þ

To simplify (2), if we pre and postmultiple each side of the
equation by centering matrixH ¼ ðI� 1

K
11T Þ, we have

HDEH¼Hc � 1THþH1 � cTH�2HYTYH ¼ �2YTY; ð4Þ

where we have used the constraint that we are looking for
the centered solution set, that is,

P

i yi ¼ 0; thus, Hc ¼ 0

andHYT ¼ YT . UsingB to represent � 1
2
HDEH, the search

for the coordinates can be cast as

B ¼ �
1

2
HDEH ¼ YTY: ð5Þ

SinceDE is a euclideanmatrix, thematrixB is also a distance
matrix, representing dot product distances between the
vectors yi’s and is a symmetric positive semidefinite matrix
[29], [30].

3.2 Distance to Vectors

The next task is to find a set of vectors such that YTY ¼ B,
where B is the dot product distances derived from the
monotonically increasing transformation of the distances
computed by the face recognition algorithm being modeled.
One such solution strategy is to use the eigenvalue decom-
position (EVD) of B. Since B is a symmetric positive
semidefinite matrix, let us assume that the rank of B is
M � N , soBhasM nonnegativeeigenvaluesandN �M zero
eigenvalues. Hence,

B ¼ VEVD�EVDVEVD
T ; ð6Þ

where �EVD is N �N diagonal matrices where the first
M diagonal entries represents the nonzero eigenvalues of
matrix B sorted in ascending order. VEVD represents the
correspondingeigenvectorsofB.Thesolutionis thengivenby

Y ¼ ðVM
EVD�

M
EVD

1
2ÞT ; ð7Þ

where �M
EVD is M �M diagonal matrices consisting of

M nonzero eigenvalues of B, and VM
EVD represents the

corresponding eigenvectors of B.

3.3 Noneuclidean Distance to Euclidean Distance

In this section, we will discuss the derivation of euclidean
distance matrix ðDEÞ from a noneuclidean distance matrix
ðDEÞ. The procedure discussed in this section was first
proposed by Gower and Legendre [31] and later followed by
many authors [29], [30], [32]. We are presenting a similar
discussion adapted from [26]. In order to understand the
detailsof theeuclideanmatrix, letusrecall themetricproperty
and a related theorem on the euclidean distance matrix.

Definition 1 (Metric property). A distance measure d is called
a metric if it satisfies the following properties:

1. dðx; yÞ ¼ 0 iff x ¼ y (reflexive).
2. dðx; yÞ � 0 8x 6¼ y (positivity).
3. dðx; yÞ ¼ dðy; xÞ (symmetry).
4. dðx; yÞ � dðx; zÞ þ dðz; yÞ (triangle inequality).

Theorem 3.1. A distance matrix D is euclidean iff B ¼
� 1

2
HDEH is a positive semidefinite metric [29], [31].

Let theobserveddistancematrixDbenoneuclidean.Then,
either thedistancemeasure inD isnotametricand/orD isnot
a positive semidefinite matrix. In this section, we will try to
reinforce the missing properties of a euclidean distance
matrixwithout affecting the overall recognition performance
from D. First, let us examine each of the metric properties
more closely on D. In most of the applications such as
biometric template matching, the reflexive and positivity
properties are straightforward. As we know, two different
templates with little variation always produce a nonzero
dissimilarity. Hence, we can assume that the reflexive and
positivity properties always hold unless small scores are
forcefully suppressed to zero. Even if the scores are rounded
off to the nearest number or small scores are suppressed to
zero, as long as we do not have a sparse distance matrix with
few positive entries, we still can find an embedding in the
model space that can approximate the distance matrix D.
Now, if the distance matrix D violates the symmetric
property, then this property can be reinstated by replacing
Dwith 1

2
ðDþDTÞ.Although this simple solutionwill change

the performance of the algorithm, this correction can be
viewedas a first cut fix forourmodeling transformation to the
algorithms that violate the symmetric property of match
scores. Finally, if D violates the triangle inequality, then we
can also enforce the triangle inequality by adding a constant
factor & to nondiagonal entries ofD, where & � maxi;j;k jdij þ
djk � djkj (see [29, p. 21]). Thevalueof & is learnedusingbreak-
in set templates only. Using an offline copy of the face
recognition system, we compute pairwise distance between
every template of the break-in set; as a result, we have a full
distance matrixD with diagonal elements representing self-
distance that is set to zero.While computing thedistance from
the targetedsubject toeach template in thebreak-inset,weuse
the learned value of &. Note that & is added to the nondiagonal
entries of D irrespective of genuine and impostor scores;
therefore, the overall performance of the face recognition
system, as represented by the distance matrix, is not affected
by the addition of & to the computed distances.

With the above discussion, at this point, we can assume
that D is a metric distance, and if D is noneuclidean, then it
must be violating the positive semidefinite property of the
distancematrix. In that case,B has negative eigenvalues, and
we can not use (7) to derive configuration points yi’s. As
discussed in [26, Section 3.2]), there are two alternatives to
derive configuration points yi. One possible solution is to
consider onlyM positive eigenvalues of B. This approach is
usefulwhen themagnitude of the largest negative eigenvalue
is much smaller than the largest positive eigenvalues of B,
and the total energy contributedbypositive eigenvaluesmust
be greater than that of negative eigenvalues. This indicates
that the original distance matrix D is closed to a euclidean
distancematrix, and the negative eigenvaluesmay occur due
to error in observing the distance. However, for biometric
applicationswhere noneuclideandistancemeasures are used
successfully, this method may not be suitable. Therefore, in
this experiment, we follow the alternate approach where the
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original distancematrix ismodified according toTheorem3.2
to create a new euclidean distance matrixDE.

Theorem 3.2. IfD is a metric distance, then there exists a constant
h such that the matrix with elements ðd2ij þ hÞ

1
2; i 6¼ j is

euclidean, whereh � �2�n is the smallest (negative) eigenvalue
ofHDH, whereH ¼ ðI� 1

K
11T Þ [29], [31], [32].

3.4 Affine Transformation

So far, we have seen how to find a set of coordinates Y such
that the euclidean distance between these coordinates is
related to the distances computed by the recognition
algorithm by an additive constant. We now find an affine
transformation A that will relate these coordinates Y to the
images X such that

Y ¼ AðX� �Þ; ð8Þ

where � is the mean of the images in the break-in set, that is,
average face. We do not restrict this transformation to be
orthonormal or rigid. We considerA to be composed of two
subtransformations: nonrigid transformation Anr and rigid
transformationAr, that is,A ¼ AnrAr. The rigid partAr can
be arrived at by any analysis that computes an orthonormal
subspace from the given set of training images. In this
experiment, we use PCA for the rigid transformation. Let the
PCA coordinates corresponding to the nonzero eigenvalues,
that is, non-null subspace, be denoted by Xr ¼ ArðX� �Þ.
The nonrigid transformation Anr relates these rigid coordi-
natesXr to the distance-based coordinatesY

Y ¼ AnrXr: ð9Þ

Substituting (7) in (9), we have

AnrXr ¼ VM
EVD�

M
EVD

1
2

� �T

: ð10Þ

Multiplying both sides of (10) by XT
r and using the result

thatXrX
T
r ¼ �PCA, where �PCA is the diagonal matrix with

the nonzero eigenvalues computed by PCA, we have

Anr ¼ VM
EVD�

M
EVD

1
2

� �T

XT
r �

�1
PCA: ð11Þ

This nonrigid transformation, allowing for shear and stress,
and the rigid transformation, computed by PCA, together
model the face recognition algorithm. Note that the rigid
transformation is not dependent on the face recognition
algorithm; it is only the nonrigid part that is determined by
the distances computed by the recognition algorithm. An
alternative interpretation could be that the nonrigid trans-
formation captures the difference between a PCA-based

recognition strategy—the baseline—and the given face
recognition algorithm.

4 EMBEDDING AND RECONSTRUCTION

For the break-in scenario, we will not have access to the
template of targeted subject; however, we will be able to
retrieve the distances of the targeted subject to any given
image.Therefore,weneedamechanism tobeable to compute
the coordinates of the targeted subject from the given
distances, that is, embed the image of the targeted subject in
the modeling affine space. Given the embedded coordinates,
wewill use the inverse transformation to reconstruct the face
template of the targeted subject. In this section,we explain the
embedding solution, outlined Fig. 5. Let yz be the unknown
template coordinate vector of the targeted subject in the affine
space. Letd ¼ ½d̂1; d̂2; � � � ; d̂K �

T be the vector of distances of yz

from the K images Y ¼ ½y1; � � � ;yK� in the break-in set as
computed by the face recognition algorithm, along with the
euclidean correction factor that was found during the
estimation of the recognition algorithm (see Section 3.1).
Based on the nature of the construction of the affine space,
these distances would be equal to the euclidean distance
between the vectors yz and yi.

Mathematically,

d̂2i ¼kyi�yzk
2¼kyik

2þkyzk
2�2yT

i yz; 8i ¼ 1; � � � ; K: ð12Þ

Subtracting d̂2i from d̂2ðiþ1Þ and simplifying, we have

Eyz ¼F

yz ¼EyF;
ð13Þ

where

ET ¼ ðy2 � y1Þ
T
; ðy3 � y2Þ

T
; � � � ; ðyK � yK�1Þ

T
h i

; ð14Þ

FT ¼ fi½ �; fi¼
1

2
d̂2i � kyik

2
� �

� d̂2iþ1 � kyiþ1k
2

� �h i

; ð15Þ

and Ey represents the pseudoinverse of E. Here, we assume
that E does not map all points to the null space of F; hence,
the pseudoinverse of E exists. Since, E consists of all
projected points yi’s in the model space, a very low rank of
E, say, two or three, indicates that either the face recognition
algorithm computes the distance between two templates in
such low-dimensional space, or the templates in the break-in
set are similar to each other and, hence, lying in a subspace of
dimension two or three. The later scenario can be avoided by
selectingdistinct templates in the break-in set; however, if the
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Fig. 5. Block diagram of the embedding scheme. After estimating the affine transformation A, we use the distance between a template of the

targeted subject and selected break-in set templates to compute the coordinate of the targeted subject in lower dimensional space.



recognition algorithm projects the templates to two or three-
dimensional spaces, then the performance of the system will
have a low False Acceptance Rate (FAR), and any arbitrary
template has a high probability of breaking into the system.

Now, given distances d̂ ¼ ½ d̂1; d̂2; � � � ; d̂K � of any un-
known template yz from K images in the break-in set, we
can use (13) to compute the coordinates of yz in the
approximating affine space.

Once we obtain the coordinate of any unknown template
in the affine space, we invert the transformation to
reconstruct the template (see Fig. 6). Mathematically, if yz

is the embedding coordinate of unknown template xz, then

AnrArxz ¼yz;

xz ¼AT
r A

y
nryz:

ð16Þ

In summary, the individual steps involved in recon-
structing a template of the targeted subject follows:

Inputs

1. knowledge of the face recognition algorithm,
2. a set of K face images (break-in set), and
3. a set of match scores between the templates from

break-in set to the assumed identity’s template.

Modeling

1. Compute distance matrix D between these
K templates using the underlying face recogni-
tion algorithm.

2. If D is not euclidean, then compute the equivalent
euclidean distance matrix DE.

3. Calculate XEVD from DE:

a. Construct the matrixB by double centering with
H. This step “centers” the given distances and
converts them into equivalent dot product
distances B ¼ � 1

2
HDH.

b. Compute the EVD of B as

B ¼ VEVD�EVDVEVD
T :

c. Compute coordinatesY asY ¼ ðVM
EVD�

M
EVD

1
2ÞT .

4. Build the affine transformation A ¼ AnrAr:

a. The rigid partAr of the affine transformation can
be arrived at by PCA. Let the PCA coordinates be
denoted by Xr ¼ ArX. The nonrigid part Anr of
the transformation is given by

Anr ¼ VM
EVD�

M
EVD

1
2

� �T

Xr
T�PCA

�1;

where �PCA is the diagonal matrix with the
PCA eigenvalues.

Embedding and Reconstruction

5. Find theMDS coordinate yz of the targeted subject xz:

a. Compare the templates in the break-in set with
the template of the target subject to create
distances vector d̂.

b. The coordinate of the targeted subject yz in MDS
space is constructed as yz ¼ Ey � F.

6. Reconstruct the unknown template xz using (16).

5 EXPERIMENTAL SETUP AND RESULTS

We demonstrate our reconstruction scheme using three
fundamentally different face recognition algorithms: PCA
with the Mahalanobis cosine distance measure, the Bayesian
intra-extrapersonal classifier (BIC), and a feature-based
commercial algorithm. In order to emphasize the true
independence of the break-in set and gallery set, we use
two distinct public databases. The FERET [12] database is
used for the gallery images, and the FRGC database [13] is
used to construct different break-in sets. In this section, we
first provide an overview of the two databases and face
recognition algorithms used in our experiments. Then, we
present the reconstructed templates and corresponding
break-in performance for each of the face recognition
algorithms. Later, we compare our approach with hill
climbing-based attacks and show the efficiency of our
proposed method over a hill climbing-based approach [17]
both in termsof quality of reconstructed templates andbreak-
in performance. Finally, we demonstrate the robustness of
our proposed algorithm to score quantization.

5.1 Experimental Setup

5.1.1 Database

The face images used in this experiment are selected from the
FERET [12] and FRGC face databases [13]. To ensure the
distinctiveness of the break-in set with the gallery set, we
choose our break-in set from a subset of the FRGC training set
and reconstructed all the images from the FERET gallery set
containing 1,196 images from 1,196 subjects. The FERET face
database is awidely used public database, and the gallery set
is predefined (feret_gallery.srt in [33]) in that database.Weuse
the Colorado State University (CSU) Face Identification
Evaluation System to normalize the original face images
[33]. Thenormalized face images have the same eye locations,
the same size (150� 130), and similar intensity distribution.
Few preprocessed face images are shown in Fig. 7. For break-
in sets, we selected a subset of the FRGC training set with
600 controlled images from the first 150 subjects (in the
increasing order of their numeric ID) with four images per
subject. In order to validate the effectiveness of the proposed
template reconstruction scheme and break-in strategy, it is
necessary that the selected face recognition algorithms have
high recognition rates at low FAR. Since most of the face
recognition algorithms perform poorly on a data set with one
or more variations in face images [13], we restrict our
experiments to controlled frontal face images only. Similarly,
current template-based algorithms require the images to be
scaled to the same size with the same eye location, so a
preprocessing step is inevitable for such algorithms.
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Fig. 6. Block diagram of the reconstruction scheme. Once the

coordinates of the targeted subject in the lower dimensional space is

known, we simply use the pseudoinversion of the affine transformation

to reconstruct the original template of the targeted subject.



However, if a face recognition system has high performance
without such restriction on thevariation of face images or size
of the face images, then theproposed scheme can be extended
naturally to such systems.

5.1.2 Face Recognition Algorithms

We evaluate the proposed reconstruction scheme on two
template-based algorithms and one feature-based face
recognition system: 1) PCA approach with Mahalanobis
cosine angle as the distance measure, which, by default, is
considered as the baseline algorithm for the face recognition
system [14], 2) Moghaddam and Pentland’s algorithm,
popularly known as the Bayesian intrapersonal/extraperso-
nal classifier [15], and 3) a commercial face recognition
system. The commercial system is based on a Local Feature
Analysis of face images andwidely regarded as being among
the best available at present. Both the baseline and Bayesian
algorithmswere trainedusing thebreak-in set from theFRGC
training set, but the commercial algorithmdidnot require any
training process and was used as a black box in all of our
experiments. Since all the face images are normalized with
fixed eye coordinates () and fixed-size (150� 130) face
images, we did not utilize the face and eye detector module
embedded in the commercial face recognition system. Using
the fafb probe set of the FERET distribution, we observe that
the baseline, the Bayesian, and the commercial algorithms
have 97 percent, 95 percent, and 99 percent True Acceptance
Rate (TAR) at 1 percent FAR, respectively, on the fafb

experiment in the FERET database.

5.1.3 Distance Measure

The three algorithms used in this experiment have
completely different approaches of comparing two faces
and generate similarity and/or dissimilarity scores with
different distance measures. The baseline algorithm uses a
Mahalanobis cosine angle and has dissimilarity scores
between �1 and 1. Similarly, the Bayesian maximum
likelihood classifier reports the similarity between two
faces in terms of probability of difference image to the
intrapersonal/extrapersonal space. For this experiment, we
use the CSU implementation of the Bayesian algorithm [33],
where a negative logarithm transformation is applied to the
probabilistic similarity score to convert them into a distance

measure [34]. However, in order to have an upper bound
for the dissimilarity scores, we row normalize the distances
to the interval [0, 1]. The similarity measure used in the
feature-based commercial algorithm is not known, but the
similarity scores are within a finite range of ½Smin Smax�.
We convert similarity scores to distances by simply
subtracting each match score Sij from the maximum
possible match score ðSmax � SminÞ. In our experiments,
we use raw match scores from the commercial system
without any score normalization. We observe that all the
three distance measures used by respective algorithms
exhibit the symmetric property but violate the triangle
inequality property. Hence, we reinforce the triangle
inequality property in the respective distance matrices, as
discussed in Section 3.3. The values of & learned from the
break-in set are 1.297, 2.094, and 19.970 for the baseline, the
Bayesian, and the commercial algorithms, respectively.

5.2 Affine Modeling

Our first objective is to model the behavior of each face
recognition algorithm in terms of an affine transformation.
In other words, the distance between two templates
computed by these algorithms should be close to the
euclidean distance between the two templates in the
respective affine spaces. Here, we present some of the
intermediate results showing the accuracy of our modeling
scheme and the behavior of the constructed affine spaces.

In Fig. 8, we plot the eigenvalues of the transformed
distance matrices B defined in (5). The eigenvalues of the
individual algorithms reflect the nature of the affine space for
each individual algorithm.Theplots for theeigenvaluesof the
three distance matrices from the three algorithms appear
different due to different scales of eigenvalues for each
algorithm. InFig. 8a,wecanobserve that theeigenvaluesdrop
from9.4 to zero at 360 index of the eigenvector,which is about
60 percent of the total number of images. Thus, it can be
inferred that thebaseline algorithmuses topeigenvectors that
contribute 60percent of the total energy.Moreover, Fig. 8 also
provides estimation for the dimension of each affine space.
For example, we can expect that for the baseline algorithm,
any break-in set with more than 360 images will result in
approximately the same probability of break-in. In other
words, 360 images (attempts) are sufficient to achieve an
optimal break-in performance for the baseline algorithm.
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Fig. 7. Sample images from (a) the break-in set and (b) the gallery set. The break-in set and gallery set are independent of each other and have no

subjects in common.



However, in thecaseof theBayesianalgorithm, it appears that
eigenvalues do not drop to zero even with 600 images in the
break-in set.Hence,we can expect the loss of sharp features in
the reconstructed images for the Bayesian algorithmwith 600
or less images in thebreak-in set. Similarly, for thecommercial
algorithm, we can expect a near optimal performance with
600 images in the break-in set. Fig. 9 represents the top three
dimensions of the affine approximation of the three face
recognition algorithms. These dimensions indicate the
amount of variations (darker shades) captured by the affine
transformation along the corresponding dimensions.
Although individual dimensions of the affine transformation
for each algorithm differs, a collective observation at the top
threedimensions reveals that eachalgorithmtries to capturea
similarvariation in face images in the first threedimensionsof
the respective affine transformation. For example, the second
dimension of affine transformation of the commercial
algorithm (Fig. 9h) is similar to the third dimension of affine

transformation of the Bayesian algorithm (Fig. 9f). Similarly,
the first dimension of affine transformation for the baseline
algorithm (Fig. 9a) captures similar variations as that of the
second dimension of affine transformation for the Bayesian
algorithm (Fig. 9e). To quantify the modeling error, we
compute theeuclideandistancebetween theprojected images
in the affine space and compare it with the actual distance
matrices computed by the respective algorithms after the
correction of the additive constant factor. The normalized
error " is then computed as follows:

" ¼
~dij � dij

dij
;

where ~dij represents the euclidean distance between
projected images i and j in the affine space, and dij
represents the actual distance computed by the recognition
algorithm. We observe that the mean of the normalized
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Fig. 8. The eigenvalues of the B matrix for the three face recognition algorithms: (a) baseline algorithm, (b) Bayesian algorithm, and (c) commercial

algorithm. This distribution of eigenvalues provides an estimation of the dimension of the corresponding MDS space for each algorithm.

Fig. 9. Top three dimensions of the affine approximation to the three face recognition algorithms: (a) baseline algorithm, (b) Bayesian algorithm, and

(c) commercial algorithm. The darker shades represent the variation captured along that particular dimension.



errors " are 0.002, 0.0457, and 0.1881 with standard
deviations of 0.1563, 0.0915, and 0.2554 for the baseline,
Bayesian, and commercial algorithms, respectively.

5.3 Reconstruction and Break-In

To study the effect of the number of images in the break-in set
on the quality of reconstructed templates and break-in
performance, we created five different break-in sets from
the FRGC training set. Two break-in sets contain 75 and
150 images with one image per subject, and the other three
break-in sets contain 300, 450, and 600 images with multiple
images per subject. Sample images from the break-in set and
gallery set are shown in Fig. 7. We reconstructed all the
1,196 images in the FERET gallery set using each of the five
break-in sets. In Fig. 10, we present some of the reconstructed
images using a break-in set with 600 images. In Fig. 11, we
show the reconstruction templates of a particular targeted
subject with all the five break-in sets. As expected, the
reconstruction of the targeted subject’s template improves
with thenumberof images in thebreak-insets.Thenoise in the
reconstructed images isduetothe fact that thebreak-insetand

gallerysetare fromtwodistinctdatabasescollected ina totally
different environment. In the case of the Bayesian algorithm,
the reconstructed images appear much smoother than the
original image. Asmentioned earlier, the Bayesian algorithm
requires more than 600 numbers of images in the break-in set
for better reconstruction. To quantify the performance of
breaking into a system with reconstructed images, we
compute the probability of break-in, which is defined as the
probability of breaking a randomly chosen targeted subject:

Prob: of break-in ¼
No: of successfully verified targeted subject using reconstructed images

Total no: of enrolled subjects
:

ð17Þ

The reconstructed templates of the targeted subject are
matchedagainst theoriginal templates of the targetedsubject,
and a dissimilarity matrix is generated for each of the three
algorithms. From each of these dissimilarity matrices, we
compute the TAR at 1 percent FAR from the respective
Receiver Operating Characteristic (ROC) curves. The prob-
ability of breaking into anyparticular face recognition system
is computed as the ratio between the number of accounts
successfully broken at 1 percent FAR and the total number of
accounts. Note that this performance measure for break-in is
different from that used in other related works [18], [20],
where the number of attempts is considered as a measure of
the breaking into a security system. In our case, the number of
attempts is fixed and the same as the number of images in the
break-in set. In Fig. 12, we demonstrate the trade-off between
probabilities of break-in for the system and the number of
attempts, which is the same as the number of images in the
break-in set. For the baseline algorithm, only 300 attempts is
sufficient to achieve a 100 percent success rate to break into
the system. For the feature-based commercial algorithm,
600 numbers of attempts are needed to break into the system
with a probability of 0.73. For the template-based Bayesian
algorithm, 600 attempts are required to break into the system
with a probability of 0.72. Note that at 1 percent FAR, the
probability of break-in with any random template after
600 attempts is 0.01.

5.4 Comparison with the Hill Climbing Approach

In this section, we compare our proposed template recon-
struction scheme with a hill climbing-based approach [17],
[18] on the commercial face recognition system. The eigen-
faces required to modify the previous template in a hill
climbing approach are created using 600 images from the
break-in set. At each iteration, a randomly selected eigenface
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Fig. 10. Reconstructed face templates using a break-in set with
600 images: The first row represents the original templates. The

second, third, and fourth rows represent the reconstructed templates for

the baseline, Bayesian, and commercial algorithms, respectively.

Fig. 11. Variation in reconstructed templates for the three algorithms
using five different break-in sets with 75, 150, 300, 450, and 600 images.
The first column represents the original template of the targeted subject.
The first, second, and third rows represent the reconstructed templates
for the baseline, Bayesian, and commercial algorithms, respectively.

Fig. 12. Probability of break-in using five different break-in sets for the

three algorithms at 1 percent FAR on the FERET gallery set.



is added or subtracted from the previous template. Due to the
computational demand of the hill climbing process, we
restrict our version of the hill climbing method to the first
100 subjects of the FERET gallery set, and a maximum of
600 attempts are allowed per subject. The commercial
algorithm is set to operate at 1 percent FAR with 99 percent
TAR, andwe let the systemdecide the acceptance or rejection
of a probe template based on this operational setup.We count
the number of targeted subjects that are successfully broken
by the hill climbing method and compare that with the
number of successfully accepted reconstructed templates
usingour break-in setwith 600 images. It shouldbenoted that
once we reconstruct a targeted subject’s face template, we
treat the reconstructed template as an original face template
and match it with the gallery set. This comparison shows the
efficiency of our approach against the hill climbing approach
after 600 iterations. In Table 1, we present few reconstructed
templates from the hill climbing approach at 300 and
600 iterations and the corresponding reconstructed templates
with our approachusing the samenumber of comparisons. In
the first column in Table 1, we show three different targeted
subjects enrolled with templates marked as easy, moderate,
and hard accounts to break in. The first row in Table 1
representsa targetedsubject (easy)whoseaccount isbrokenby
both the hill climbing approach and our approach. However,
it should be noted that the hill climbing approach requires
600attempts tobreak into this easyaccount,whereas the same
result can be achieved with only 300 iterations using our
proposed scheme. Similarly, in the second row in Table 1, we
present a targeted subject (moderate)whose account cannot be
broken by the hill climbing approach after 600 attempts, but
the proposed scheme successfully broke that account with
600 attempts. Finally, in the third row, we present a targeted
subject (hard) whose account cannot be hacked by either
scheme.

In Fig. 13, we compare the overall break-in performance of

both schemes using the first 100 subjects from the FERET

gallery set. Note that the probability of breaking into the

system with any random template is equal to the FAR of the

system, which is 0.01 in all of our experiments. We can

observe that the proposed scheme has a 47 percent higher

chance of breaking into a random account compared to the

hill climbing attack with 600 attempts. It is worth to mention

here that in [17], Adler shows that this particular hill

climbing-based approach requires approximately 3,000 to

4,000 iterations to successfully break an account, which is

much higher compared to the 600 iterations we used here.

This count does not include the comparisons needed during

the modeling procedure, which is done offline.
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TABLE 1
Comparison of Reconstructed Template Using Our Approach against the Hill-Climbing Approach

Fig. 13. Comparison of the probability of break-in at 1 percent FAR for
the commercial algorithm with the first 100 subjects on the FERET

gallery set. The commercial algorithm is set to operate at a predefined

threshold such that TAR ¼ 99 percent at 1 percent FAR.



5.5 Score Quantization

One countermeasure to the first-generation hill climbing
attack is to quantize match scores. The systems with
quantized match scores do not alter the output match scores
with small changes in input images, which can prevent
general hill climbing attacks. In such cases, if two similar
probe templates, when matched with a template of the
targetedsubject,have theoriginalmatchscores, say, 42.56and
43.4, in the range [0, 100] and if the system quantizes the
output match scores to the nearest integer (round-off), then
both the scores will be quantized to 43. For such type of
quantized scores, a hill climbing-based approach will fail to
observe the improvement in the modified template and will
fail to regenerate a template for the next iteration. However,
such quantization of match scores has minimal effect on the
proposed break-in scheme. Though, in [19],Adler proposed a
modified hill climbing approach for systems with quantized
match scores, our version of the hill climbing approach failed
with quantized match scores and, therefore, we did not
compare the break-in performance of the hill climbing
approach with our approach on quantized match scores. In
our proposed scheme,we comparedifferent face templates to
the targeted subject and do not need to observe any
improvement in the match scores; hence, the proposed
scheme is robust to the system with quantized match scores.
In this experiment, we compute the probability of break-in
using quantized match scores for the commercial face
recognition system. We define a quantization index Qs that
controls the level of quantization:

Squant ¼
Sorig � Smin

�S

� �

��S þ Smin;

Qs ¼
�S

ðSmax � SminÞ
;

ð18Þ

where Sorig, Squant, Smax, and Smin represent the original, the
quantized, the minimum, and the maximummatch scores of
the recognition system, respectively. In (19), the parameter
�S controls the level of the quantization of the original scores
and is defined as the length of the quantized intervals, that is,
the difference between two successive quantized scores. To
be consistent with the variable range of match scores for
different algorithms, we define quantization index Qs by
normalizing �S over a possible range of match scores of a
recognition system. If the quantization index is set to 0.1, then
the original scores are quantized at 10 different points, and if
Qs equals to 0.01, then the original scores are quantized at
100 different points. For this experiment, we use four

different levels of quantization by setting the value of Qs to
0.0001, 0.001, 0.01, and 0.1. Fig. 14 shows the probability of
break-in at 1 percent FAR for the commercial algorithmwith
the proposed quantization of match scores. We observe that
the probabilities of break-in do not change significantlywhen
the original scores quantized with Qs equals to 0.0001 or
0.001, and the probability of break-in drops from 0.68 to 0.45
whenQs equals to 0.01. However, we can observe that forQs

equal to 0.1, the probability of break-in dropped from 0.45 to
0.22. In Table 2, we demonstrate the effect of quantization on
a reconstructed template alongwith the acceptance/rejection
decision from the system using that particular reconstructed
template. As we can observe, with an increasing value ofQs,
the quality of the reconstructed template starts to degrade
and is eventually rejected by the system. If the system
outputs a very high level of quantized scores, for example,
with Qs ¼ 0:1, then the original match scores are highly
distorted, and the affine modeling of the underlying
algorithm is erroneous, and as a result, the overall break-in
performance is affected. However, it should be observed that
such quantization of match scores has a trade-off with the
operational flexibility of a system. For example, if the
recognition system, with the range of original scores in the
interval [0, 100], quantizes the original scores at 10 different
points with Qs equal to 0.1 (that is, output scores as a
multiplier of 10), then the system is restricted to operate only
at these 10 distinct operational points (thresholds) and lose
the flexibility to operate at any intermediate threshold or
FARs.
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Fig. 14. Probability of break-in at 1 percent FAR for the commercial

algorithm with quantized scores. The value of quantization parameter
�S in (19) is set to 0.001, 0.01, 0.1, and 1 to quantize the original match

score at four different levels.

TABLE 2
Effect of Quantization of Match Scores on Reconstructed Templates



6 CONCLUSION

In this paper,wediscussed anovel scheme to reconstruct face
images frommatch scores and exposes a potential source for
security breach in the face recognition systems. We used an
affine transformation to approximate the behavior of the face
recognitionsystemusingan independent setof face templates
termedas thebreak-in set. Selected subsets of templates in the
break-in set were then matched only once with the enrolled
templates of the targeted subject. Given the distances of the
targetedsubject’s template,weembeddedthat template in the
learned affine space and inverted the modeling affine
transformation to arrive at the original template. We used
three fundamentally different face recognition algorithms
and observed that with the proposed scheme, only 300 at-
tempts were required to achieve a 100 percent probability of
breaking into the baseline face recognition algorithm, and
600 attempts were required for the Bayesian algorithm to
achieve a 72 percent success. For the commercial algorithm,
we achieved a 73 percent success rate to break into the system
with 600 attempts. This observation leads us to investigate
further on the easiness/hardness property of a particular
target subject. In Fig. 15,wepresented few target subjects that
were hard to break with 600 numbers of attempts, and we
showed few target subjects that were easy to break with only
75 attempts. It will be interesting to investigate further on the
hardness/easiness of a particular target subject and the
abilities to quantize any face template in terms of a hard/easy
template to be used to sneak into a system.

A cursory look at match scores from a biometric system
may not appear to be a weak link in terms of security and
privacy issues; however, with our proposed scheme, we
revealed that even match scores carry sufficient information
for the reverse engineering of the original templates and
should be protected in the same way as the original

templates. The major advantage of the proposed scheme
over the earlier proposed hill climbing attack is that it is not
based on a local search, and the number of attempts is less.
Using two different data sets for gallery and break-in
templates, we demonstrated that our proposed modeling
scheme is also generalized across databases. Our scheme
uses distinct templates in each attempt when compared to a
targeted subject. Therefore, such an attack is difficult to
detect automatically and cannot be neutralized by a simple
quantization of match scores. Thus, future face recognition
systems should emphasize issues related to the privacy of
the face template and system robustness to such types of
attacks. Recently, cancelable biometrics have been proposed to
encrypt both gallery and probe templates in an attempt to
restrict the unauthorized access of biometric templates [35].
Similarly, in [36], Boult proposed revocable biometrics with a
robust distance measure where face templates are en-
crypted, along with the redistribution of match scores,
within a predefined range for each subject in the gallery set.
These developments have the potential to be used as
countermeasures to our proposed template reconstruction
scheme; however, this remains to be demonstrated.
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