

King's Research Portal

DOI: 10.1039/C8MT00078F

Document Version Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA): Thompson, E. D., Hogstrand, C., & Glover, C. N. (2018). From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals. *Metallomics*. https://doi.org/10.1039/C8MT00078F

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights

Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Metallomics

From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals

Journal:	Metallomics
Manuscript ID	MT-CRV-04-2018-000078.R2
Article Type:	Critical Review
Date Submitted by the Author:	21-May-2018
Complete List of Authors:	Thompson, David; Northern Kentucky University, Hogstrand, Christer; King's College London, Diabetes and Nutritional Sciences, School of Medicine Glover, Chris; Athabasca University

SCHOLARONE[™] Manuscripts

1		
2		
3	1	From sea squirts to squirrelfish: facultative trace element
4 5		
6	2	hyperaccumulation in animals
7		
8	3	
9		
10	4	E David Thompson ^{1,*} Christer Hogstrand ² Chris N Glover ^{3,4}
11	·	E. Duria mompson , emister megsaana, emis n. erever
12	5	
13 1 <i>1</i>	-	
14	6	¹ Department of Biological Sciences, Northern Kentucky University, USA
16		
17	7	² Faculty of Life Sciences and Medicine, King's College London, UK
18		
19	8	³ Faculty of Science and Technology and Athabasca River Basin Research Institute,
20		
21	9	Athabasca University, Canada
22		
24	10	[•] Department of Biological Sciences, University of Alberta, Canada
25	4.4	
26	11	
27	10	
28	12	
29 30	13	* Corresponding author at:
31	10	
32	14	SC 245 Nunn Dr
33		
34	15	Highland Heights, KY 41099
35		
30	16	Email: <u>thompsone1@nku.edu</u>
38		
39	17	
40	10	
41	18	
42 42	19	
43	15	
45	20	
46		
47		
48		
49 50		
50		
52		
53		
54		
55		
56 57		
57 58		
59		
60		

21 Abstract

The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environmental concentrations. Metal hyperaccumulating animals are usually marine invertebrates, likely owing to environmental (e.g. constant exposure via the water) and physiological (e.g. osmoconforming and reduced integument permeability) factors. However, there are examples of terrestrial animals (insect larvae) and marine vertebrates (e.g. squirrelfish) that accumulate high body and/or tissue metal burdens. This review examines examples of animal hyperaccumulation of the elements arsenic, copper, iron, titanium, vanadium and zinc, describing mechanisms by which accumulation occurs and, where possible, hypothesizing functional roles. Groups such as the ascidians (sea squirts), molluscs (gastropods, bivalves and cephalopods) and polychaete annelids feature prominently as animals with hyperaccumulating capacity. Many of these species are potential model organisms offering insight into fundamental processes underlying metal handling, with relevance to human disease and aquatic metal toxicity, and some offer promise in applied fields such as bioremediation.

1 2		
3 4	40	Significance to metallomics
5 6	41	
7	42	This review examines examples of hyperaccumulation in animals, the mechanisms by
9 10	43	which this is achieved, the biological roles that have been proposed for this phenomenon, and
11 12	44	identifies knowledge gaps requiring further research. The hyperaccumulation of trace metals
13 14	45	such as arsenic, copper, iron, titanium, vanadium and zinc in animal models can offer
15 16 17	46	significant insight into human metal handling disorders and the risks associated with
17 18 19	47	environmental metal contamination.
20 21	48	
22 23		
24 25		
25 26		
27		
28 29		
30		
31		
32 33		
34		
35		
36 37		
38		
39		
40 41		
41		
43		
44		
45 46		
47		
48		
49 50		
50		
52		
53		
54 55		
55 56		
57		
58		
59 60		
00		

49 Introduction

Trace elements are those that are found at relatively low concentrations within the environment, and biologically can be classified as either essential or non-essential. Essential elements such as copper (Cu), zinc (Zn), and iron (Fe) perform a variety of key functions through their association with biomolecules such as proteins.¹ However, even elements that in human biology are considered non-essential, for example the metalloid arsenic (As), still can have important roles in other biota.² For most elements, and in most organisms, accumulation is limited, usually through regulation of uptake and/or excretion.¹ This is vital as even essential elements accumulated to high concentrations can cause a variety of deleterious effects. However, there are a number of species that maintain elevated concentrations of elements within specific tissues and/or cellular compartments. This is a particularly prominent phenomenon in plants, wherein approximately 500 taxa can be defined as metal hyperaccumulators.³⁻⁶ While hyperaccumulation has also been widely noted in bacteria. veast, and fungi.^{7,8} it has received little attention in animals. This is somewhat surprising given the potential importance of animal hyperaccumulators as model species for understanding processes critical for ecological risk assessment (e.g. regulatory tools utilizing body burden as a predictor of impact),^{9,10} environmental remediation,¹¹ food safety,¹² and human disease.¹³ To address this gap, the current review seeks to summarize the existing literature regarding facultative trace element hyperaccumulation in animals, particularly focussing on trace metals and metalloids.

- 71 Hyperaccumulation: defined and refined

Page 5 of 51

3	73	In the current review, we define hyperaccumulators as species that concentrate
4 5 6	74	elements to levels greater than 1 000 mg kg ⁻¹ , on either a whole animal or tissue basis. To
7 8	75	place this threshold in context, Luoma and Rainbow conducted a literature survey of
9 10	76	bioaccumulation in aquatic organisms, including those from contaminated ecosystems, and
11 12	77	found that 88% of trace element concentrations fell between 0.1 and 100 mg kg ⁻¹ . ¹⁴ It is
13 14	78	important to highlight that our definition of hyperaccumulation is simplified relative to that
15 16	79	used by previous authors, ¹¹ in that it uses the same threshold for all trace elements, rather
17 18	80	than making element-specific distinction. Consistent with some definitions of
19 20	81	hyperaccumulation in the plant literature, ¹⁵ we largely exclude from discussion those animals
21 22 22	82	in which experimental exposures can result in increased tissue element burdens, and also
23 24 25	83	those animals exposed naturally to extreme environmental contamination scenarios.
26 27	84	Consequently, we focus on facultative hyperaccumulators. These are animals that
28 29	85	strategically concentrate elements, without evidence of a toxicological impact, and in spite of
30 31	86	relatively low environmental concentrations. It is notable that for many of these species the
32 33	87	functional role of hyperaccumulation has yet to be discerned.
34 35 26	88	In some studies hyperaccumulation can be a consequence of how animals or tissues
30 37 38	89	are handled for analysis. For example, failure to flush or depurate gut contents can result in
39 40	90	artificially elevated tissue burdens by measuring gastrointestinal sediments or prey items that
41 42	91	may have elevated metal contents, but which are not accumulated. ¹⁶ This will be particularly
43 44	92	important where there is an unrecognized environmental enrichment of elements (e.g.
45 46	93	contamination and/or metal-enriched geology). An example of this effect is in studies of Fe
47 48	94	accumulation in field-collected ascidians, where it was noted that body burdens reduced
49 50 51	95	significantly after animals were held in clean seawater for several days following collection. ¹⁷
52 53	96	This was attributed to the flushing of Fe-containing particulate matter originating from the
54 55	97	point of collection, from the body cavity. The importance of this artifact is underlined by the
56 57		

drop in Fe body burden, which took the animals from a hyperaccumulator status (as high as 2600 mg kg⁻¹), to values under this threshold (as low as 900 mg kg⁻¹).¹⁷ A similar effect is likely to explain many of the observations of hyperaccumulation in the sponges.¹⁸ Here, the confounding factor is not only the presence of abiotic factors such as sediments associated with sponge tissues, but also the accumulation of trace elements associated with symbionts. For example, the observation of elevated molybdenum (Mo) concentrations in the tissue of the sponge *Halichondria phakellioides*, was attributed to a bacterial symbiont, and not the sponge itself.¹⁹ Similarly, elevated arsenic (As) concentrations in giant clams have been attributed to uptake of the element by commensal algae through mimicry of phosphate in low phosphate waters.^{20,21}

A related phenomenon influencing hyperaccumulation designation is the consideration of adsorbed (i.e. adhering to the tissue/animal surface) metal, as accumulated burden. For example, a common biological response to metal exposure in aquatic animals is the secretion of mucus.^{22,23} In a laboratory study examining waterborne aluminium (Al) accumulation in freshwater crayfish, mean gill Al concentrations in excess of 1 200 mg kg⁻¹ were reported. However, the vast majority of branchial Al was complexed to mucus, and not actually accumulated inside the animal.²⁴ Similarly, the carapace of crustaceans,²⁵ and the cuticle of insects,²⁶ can bind elements such as nickel (Ni) and Fe at levels close to, or greater than, 1 000 mg kg⁻¹. This implies hyperaccumulation even though the elements associated with these tissues are not, technically, absorbed (i.e. taken into the animal).

Another issue in collating hyperaccumulation data is inter-individual variation, and the reporting of burden values as a mean. Many authors have noted that tissue accumulation can vary significantly, even between animals of the same species collected at the same time.¹⁷ The reasons for variations in individual burdens are not always known, but include factors such as fed state, sex, developmental stage/age, and/or reproductive state.^{17,27,28} The

3 ⊿	123	consequence of this variation is that mean values, the standard measure for reporting burdens,
5	124	can be below the hyperaccumulation threshold, even though individuals within the species
7 8	125	display hyperaccumulation characteristics. This issue could be alleviated by authors detailing
9 10	126	ranges of individual tissue burdens, in addition to mean values.
11 12	127	
13 14 15	128	Most hyperaccumulating animals are aquatic and, specifically, marine
15 16 17	129	
17 18 19	130	Aquatic animals are more likely to be hyperaccumulators than terrestrial animals. This
20 21	131	could be a consequence of a greater research focus on metal accumulation in aquatic biota,
22 23	132	but there are also environmental factors and organismal physiology factors that are likely to
24 25	133	explain this trend. While terrestrial species are exposed to trace elements solely through the
26 27	134	gastrointestinal system, aquatic biota are also exposed via the water. Not only does this create
28 29 30	135	an additional route for uptake, it often also increases the duration of exposure. With the
31 32	136	exception of behavioral responses (e.g. valve closure in molluscs), ²⁹ waterborne exposure is
33 34	137	constant, while dietary exposure is periodic, associated with the transit of a meal. The
35 36	138	respiratory surfaces of aquatic animals are also used for mineral uptake and excretion and are
37 38	139	exquisitely designed for transport processes, with reduced diffusive distances, large surface
39 40	140	areas, and high perfusion rates. ³⁰ Consequently, this extra pathway for absorption may partly
41 42 42	141	explain their greater capacity for accumulation relative to terrestrial species.
43 44 45	142	Many marine species osmoconform, an important physiological trait that is likely to
46 47	143	enhance trace element assimilation. These animals, mostly marine invertebrates, maintain
48 49	144	body water and ion contents consistent with their environments, and therefore have a limited
50 51	145	need to utilize the integument as a barrier against environmental ion exchange (see Figure 1).
52 53	146	Consequently, they display relatively permeable body surfaces, which may perform roles in
54 55 56 57 58	147	trace element acquisition. ³² For example, the primitive hagfish, the only known vertebrate

148	ionic and osmotic conformer, has been shown to accumulate Fe and Ni across its skin
149	surface. ^{33,34} This may, therefore, be a contributing factor explaining the over-representation
150	of marine osmoconformers among hyperaccumulating animals.
151	
152	Trace element uptake and the importance of chemical speciation
153	
154	The key first step necessary for trace element hyperaccumulation is uptake across an
155	epithelial surface. The bioavailability of a given element is dependent upon a number of
156	chemical and biological factors that influence the permeability of the epithelium. ¹⁰ Chemical
157	factors include element concentration, chemistry of the medium (water or diet), metal
158	speciation, and size fraction of any particulate element. Biologically, uptake will be
159	determined by fundamental characteristics of the transporting surface, including the cell types
160	present, and biological modification of the organism-environment interface (e.g. mucus, acid-
161	base fluxes), with these themselves varying as a function of life history, developmental stage,
162	fed state and environmental characteristics such as salinity, temperature, and dissolved
163	oxygen. ^{34,35}
164	As noted above, trace elements are absorbed via one of three epithelial surfaces in
165	aquatic animals: the epidermis, gill or gut. While these surfaces all possess distinct chemical
166	and biological properties, the fundamental pathways of uptake are conserved. Waterborne
167	trace elements are almost entirely absorbed as the free metal ion, through specific membrane
168	transport pathways. ¹ Consequently, water chemistries that favor the formation of anionic
169	trace element complexes decrease bioavailability by reducing free metal ion availability and
170	thus access to the transporter. ¹⁰ The transporters that comprise these pathways may be
171	dedicated to the translocation of specific nutrient metals, or may be promiscuous and absorb a
172	number of substrates (e.g. divalent metal transporter; DMT-1). ¹ It is worth noting that these

Metallomics

transporters are also implicated in metal hyperaccumulation in plant and microbial species,
suggesting a fundamental conservation of the mechanisms underlying hyperaccumulation
between these diverse groups.⁶ Some metals are also able to move through epithelia as
mimics of other elements, such as sodium and calcium.¹ Under this transport scenario, the
presence of enhanced water cation content increases competition for the transporter, reducing
uptake.¹⁰ Specific examples of these transport pathways are provided in element-specific
sections below.

However, there are other mechanisms of trace element uptake which may contribute to hyperaccumulation in animals. For example, trace elements bound to nutrient ligands may also be bioavailable. The best example of this is the absorption of metals liganded to amino acids, which are subsequently taken up via amino acid transporters.^{37,38} This will be more important for transport across digestive epithelia where the concentrations of nutrient ligands are sufficiently high for this to contribute significantly to uptake. However, it should be noted that enhanced elemental transport in the presence of ligands can sometimes be explained by chemodynamic phenomena.³⁹ Under this scenario the ligand acts to shuttle the trace element to a transporter, and following ligand-element dissociation, uptake occurs via the free ionic elemental form, and not through the nutrient transporter.

190 Chemical speciation may also result in a third route of uptake. Trace elements that 191 form neutral complexes, be they organic or inorganic, may be able to cross epithelia through 192 simple diffusion.⁴⁰ While there is evidence for this as a route of trace element uptake in algae 193 and bacteria,⁴¹ it has not been well described in animals, in part due to an inability to 194 delineate between actual transport of these complexes and the chemodynamic effect of 195 increasing substrate access to epithelial transporters.⁴²

196 Finally, elements bound to particulate matter, in insoluble precipitates, or in197 nanoparticle form, may be taken up by endocytosis. This is a mechanism that is commonly

198	reported for metals in the digestive system of molluscs. ³⁶ However, there is little evidence for
199	this being an important pathway of metal uptake in the transport epithelia of other
200	hyperaccumulating groups such as polychaetes and ascidians.
201	
202	Value of studies in hyperaccumulating animals
203	
204	The study of hyperaccumulating animals has significant utility from both fundamental
205	and applied perspectives. Investigating basic biological function is greatly facilitated by
206	animal models that exhibit extreme phenotypes, an approach in alignment with Krogh's
207	Principle ("For a large number of problems there will be some animal of choice or a few such
208	animals on which it can be most conveniently studied"). ⁴³ To this end the study of
209	hyperaccumulating animals can offer significant insight into mechanisms of trace element
210	absorption and intracellular handling. There is particular value in studying the mechanisms
211	by which these species can withstand levels of trace metals that would be highly toxic to
212	other species. Hyperaccumulating animals could also find utility as model systems for human
213	conditions associated with metal accumulation, such as Wilson's disease, hemochromatosis,
214	and the myriad of metal accumulation disorders in neuropathological disease. ¹³ This utility is
215	conferred by metal transport pathways and cellular handling mechanisms that are largely
216	conserved between humans and animals. ¹
217	The use of metal hyperaccumulating animals in the remediation of contaminated
218	environments has been proposed. Two groups of organisms have particular promise in this
219	regard. When cultivated in contaminated waters, bivalve molluscs such as pearl oysters can
220	accumulate trace metals to levels that exceed the 1 000 mg kg ⁻¹ threshold. ¹¹ The second group
221	are sponges, which have been shown to hyperaccumulate Fe. ^{18,44} These animals are of
222	specific interest in that they bring added value as remediators, through the cultivation of

Page 11 of 51

1

60

2 3	223	pearls and the extraction of novel bioactive materials, respectively. ¹¹ A related concept is the
4 5	224	use of hyperaccumulators to extract precious metals. Species that can concentrate valuable
0 7 8	225	elements in tissues from a dilute source, have the potential to make metal extraction
9 10	226	economically viable. For practical reasons, bacterial and plant species, ⁴⁵ and/or animal waste
11 12	227	products (e.g. chicken feathers), ⁴⁶ are advantageous over the use of animals in these
13 14	228	approaches. However, biomimetic technologies based on animal models are being explored.
15 16 17	229	For example, a compound modelled on tunichrome, a key entity associated with vanadium
17 18 19	230	(V) accumulation in ascidians (see Vanadium below), has recently been shown to effectively
20 21	231	remove gold (Au) from test effluents. ⁴⁷
22 23	232	Some researchers have even suggested animals that accumulate high concentrations of
24 25	233	metals with important biological properties could find utility as functional foods. For
26 27	234	example, the sea cucumber Aposticophus japonicus is a luxury food item in parts of Asia, ⁴⁸
28 29	235	and accumulates organic forms of V in edible tissues following waterborne exposure to this
30 31 32	236	metal. ⁴⁹ When fed to mice, V-enriched sea cucumber protein was shown to have anti-diabetic
33 34	237	properties, ⁴⁹ a well-established biological effect of V. ⁵⁰ Organic V species are postulated to
35 36	238	have a higher efficacy and lower toxicity than inorganic V forms, and thus specifically
37 38	239	cultured V-rich sea cucumbers may have promise as a health supplement. ⁴⁹
39 40	240	
41 42	241	Trace elements in facultative hyperaccumulators
43 44 45	242	
45 46 47	243	Arsenic (As)
48 49	244	Arsenic is a naturally-occurring metalloid element that can be found worldwide at low
50 51	245	concentrations in surface water (~20 nM). ⁵¹ However, As concentrations can be enriched
52 53	246	through anthropogenic processes such as Cu refining, herbicide production, and wood
54 55 56 57 58 59	247	preservation, ⁵² and there is a seasonality to waterborne As concentrations associated with

248	geodynamic processes such as sediment cycling. ⁵¹ Arsenic exhibits four redox states (-3, 0,
249	+3, and +5), with the dominant state being dependent upon redox potential and pH . ⁵³ In
250	aquatic environments, As typically exists as either trivalent arsenite (As ^{III}) or pentavalent
251	arsenate (As^{V}) forms, with arsenite being more common under reducing conditions, and
252	arsenate being more common under oxidizing conditions. ⁵⁴ Trivalent As is generally more
253	toxic than the pentavalent form. ⁵⁵ Organic forms of As, such as monomethylarsonic acid
254	(MMA ^V) and dimethylarsinic acid (DMA ^V), are also found in seawater, ⁵⁶ and are considered
255	less toxic than inorganic As species. ⁵⁷ While no physiological function is typically associated
256	with As, evidence from rodent studies suggests a possible role for As in methionine
257	metabolism. ⁵⁸
258	A number of polychaete species have been shown to hyperaccumulate As. For
259	example, the cirratulid polychaete Tharyx marioni exhibits whole-body concentrations of As
260	that exceed 2 000 mg kg ⁻¹ , with the palps being especially high in As (up to 13 000 mg kg ⁻¹) ⁵⁹
261	(Table 1). This occurs even when the organisms are living in low ambient As, and regardless
262	of the age of the individuals. A separate study in the Mediterranean fan worm Sabella
263	<i>spallanzanii</i> identified mean concentrations of As higher than 1 000 mg kg ⁻¹ in the branchial
264	crowns of these organisms. ⁷³ Organisms from multiple sites were sampled to eliminate the
265	possibility that body burdens reflected any anthropogenic As inputs.
266	Arsenic hyperaccumulation occurs principally via inorganic forms (Figure 2).
267	Pentavalent As is a phosphate analogue and as such can be taken up by phosphate
268	transporters in all eukaryotic cells, ⁷⁴ whereas trivalent As appears to be transported by
269	aquaglyceroporins and/or hexose permeases. ⁷⁵ Once absorbed, inorganic As is biomethylated,
270	likely as a mechanism of detoxification. ^{76,77} This process involves the actions of glutathione
271	S-transferase, and arsenic methyltransferase with S-adenosylmethionine as a methyl donor,
272	resulting in the production of mono-, di-, and tri-methylated species. ⁷⁷ Eventually, in marine

Page 13 of 51

1

Metallomics

C	
2 3	
4 5 6	
0 7 8	
9 10	
10 11 12	
12 13 14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38 30	
39 40 41	
41 42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	

60

biota most As ends up as the relatively non-toxic arsenobetaine.⁵¹ However, the predominant
form of As found within the branchial crown tissues of polychaetes is not arsenobetaine, but
rather the somewhat more toxic DMA^V.⁷³
The retention of DMA^V in polychaete tissues could indicate a role for As

277 hyperaccumulation as an anti-predatory mechanism. The palps and branchial crowns of these 278 organisms are exposed and vulnerable, therefore reducing the palatability of these tissues by 279 accumulating a toxic form of As may serve as protection against predators. Supporting this, 280 feeding experiments using the seabream *Diplodus sargus sargus* revealed that these fish 281 rejected the As-rich branchial crown of S. spallanzanii, while accepting the relatively Aspoor thorax of the same animals.⁷³ However, in feeding trials with the two-spot goby 282 283 Gobiusculus flavescens, some individuals repeatedly rejected whole T. marioni, but other individuals accepted them without hesitation.⁵⁹ Thus a role for As hyperaccumulation as an 284 285 anti-predatory strategy in polychaetes remains speculative.

286 Arsenic also provides the only known example of metal hyperaccumulation in a 287 terrestrial animal. The caterpillar of the moth *Callopistria floridensis* can accumulate As to whole body concentrations higher than 4 200 mg kg⁻¹ (mean value 1 462 mg kg⁻¹ Table 1), a 288 consequence of feeding on an As hyperaccumulating fern.⁶⁰ The hyperaccumulation of As 289 290 appears to be a specific adaptation, as a closely related species (*Mamestra configurata*) 291 directly dosed with dietary As exhibited whole body burdens less than 1% of those in C. *floridensis*.⁷⁸ The accumulation of As in *C. floridensis* could be considered facultative as it 292 293 permits the exploitation of a feeding resource that would otherwise be unavailable owing to 294 its toxicity. However, it also represents an example of a species that accumulates a trace 295 element owing to its enrichment in the environment, and as such does not strictly meet the 296 criteria for hyperaccumulation as defined in the current review. Similarly, there are some 297 insects that feed on Ni-hyperaccumulating plants leading to tissue Ni levels as high as 700

mg kg⁻¹.^{79,80} In this case there is evidence suggesting that this accumulation protects the insect against predation.⁸¹ This indicates that, in at least some situations, trace element hyperaccumulation in insects that feed on hyperaccumulating plants has a strategic benefit, whether or not that accumulation is strictly facultative in nature. Copper (Cu) Copper is an essential trace element, acting as a cofactor for a number of key proteins.⁸² Owing to its flexible redox state. Cu plays a particularly vital role in proteins, such as cytochrome c oxidase, which are associated with cellular respiration.¹ Copper is naturally present in the Earth's crust and as is typically found in seawater within the range of 0.5 to 4.5 nM.⁸³ Carbonate complexes are the dominant forms of inorganic Cu in seawater, with only a small fraction of Cu being present in the bioavailable ionic Cu²⁺ form.⁸⁴ Copper also binds to dissolved organic matter with high affinity,⁸⁵ which will further limit waterborne bioavailability. As such, the primary means of Cu uptake in aquatic organisms is dietary.⁸⁴ However, Cu transporters have been characterised in both the gill and gut epithelia of fish. These include a high affinity Cu-specific transporter (Ctr), an apical transporter which recognizes Cu in its free monovalent form (Cu^+) , and which works in association with an epithelial reductase.¹ Basolateral Cu export appears to be achieved by a highly conserved Cu-ATPase. There is also evidence that Cu transport can be achieved via sodium transporters, owing to the physicochemical similarities between Cu⁺ and ionic sodium.¹ There are several groups of aquatic biota that have species which hyperaccumulate Cu. In fish, two known examples have been characterized. In the striped bass (Morone *americana*)⁶³ and the mullet (*Mugil cephalus*),⁸⁶ some individuals display hepatic Cu levels as high as 2 440 and 1 936 mg kg⁻¹, respectively, although only for the former species were mean tissue Cu levels greater than 1 000 mg kg⁻¹ (1 020 mg kg⁻¹; Table 1). A high variation

Page 15 of 51

2 3	323	in accumulation between individuals was suggested to relate to differences in age and sex, ⁶³
4 5 6	324	but there was no relationship between accumulation and environmental Cu concentrations in
7 8	325	either study. In striped bass Cu hyperaccumulation was associated with pathological findings,
9 10	326	suggesting that this phenomenon might be a piscine equivalent of human Cu storage
11 12	327	disorders, such as Wilson's Disease, ⁶³ and thus may not serve a useful biological role.
13 14	328	Several species of cephalopod molluscs accumulate Cu in the digestive gland. The
15 16	329	best described example is the squid <i>Loligo opalescens</i> (8 370 mg kg ⁻¹) ⁶¹ (Table 1). However,
17 18 10	330	many of the same cephalopods that accumulate Cu will also accumulate Zn, ^{62,87,88} likely
20 21	331	owing to similarities in the physicochemistry of these two elements. Copper
22 23	332	hyperaccumulation is also noted in bivalve molluscs, and is especially prominent in oysters.
24 25	333	Carpene and colleagues found that oysters accumulated Cu to concentrations two orders of
26 27	334	magnitude higher than those in other bivalve species in the same environment (~1 000 mg kg ⁻
28 29	335	¹ ; Table 1). ⁶² Similar to the accumulation of Zn and Fe (see sections below), without
30 31 32	336	environmental measurements of trace elements it can be difficult to distinguish between
33 34	337	facultative hyperaccumulators that are strategically concentrating Cu, and those species
35 36	338	where hyperaccumulation occurs as a result of exposure to elevated environmental Cu.
37 38	339	Certainly it is well-described that very high tissue Cu burdens can result in oysters collected
39 40	340	from contaminated waters (e.g. $> 20\ 000\ \text{mg kg}^{-1}$). ⁸⁹
41 42 42	341	Elevated Cu concentrations in molluscs are often associated with the utilization of Cu-
43 44 45	342	containing hemocyanin as a respiratory pigment. ^{62,80} Hence, in these species the
46 47	343	accumulation of Cu is likely to be a reservoir for hemocyanin synthesis. ⁹¹
48 49	344	
50 51	345	Iron (Fe)
52 53	346	Although an abundant element in geology, aquatic Fe concentrations are low (high
54 55 56 57	347	pM to low nM) owing to its generally poor solubility. ⁹² Iron in its ferric form (Fe ^{III}) readily

1	
2	
2	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
<u>4</u> 2	
-⊤∠ ⁄\⊃	
45	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

348	forms insoluble precipitates with hydroxides, reducing its bioavailability to aquatic animals.
349	Consequently, bioavailability of Fe is highest in anoxic waters, as these favor the divalent
350	ferrous form (Fe ^{II}). However, irrespective of oxidation state, most dissolved Fe in natural
351	waters is found complexed to organic ligands. ⁹³ Consequently, most aquatic animals absorb
352	Fe via the dietary pathway, for its essential roles as a cofactor of multiple enzymes, and as a
353	component of heme. ¹ Epithelial Fe transport is well characterized in mammals, and evidence
354	to date suggests that the entities involved are conserved throughout the animal kingdom. For
355	example, in fish apical uptake of ferrous Fe in its free ion form occurs via DMT-1, with
356	basolateral export promoted by ferroportin (also known as iron regulated protein, IREG). ¹
357	Distinguishing between facultative hyperaccumulators of Fe and those animals that
358	hyperaccumulate as a consequence of elevated environmental Fe concentrations is especially
359	challenging. Iron is an important and relatively common contaminant, and thus accumulation
360	can often be linked to sources of pollution. For example, sea snakes accumulate Fe
361	concentrations as high as 6 000 mg kg ⁻¹ in shed skin, likely as a mechanism for eliminating
362	toxicant burden associated with Fe-rich effluents. ⁹⁴ However, tissue Fe can also be elevated
363	owing to naturally Fe-rich geology. ⁹⁵ Unfortunately, not all studies that describe Fe burdens
364	in animals associate these measures with analysis of Fe content in water and sediments. In
365	fact, this is true for many of the trace elements considered in the current study (e.g. Cu, Zn,
366	As).
367	Molluscs are one group for which there is compelling evidence for Fe
368	hyperaccumulation. ^{96,97} This is particularly notable in Patellidae limpets, ⁹⁸ where digestive
369	gland Fe concentrations greater than 11 000 mg kg ⁻¹ have been reported. ⁶⁵ In this, and other
370	mollusc species, the deposited Fe likely acts as a reservoir for supplying Fe to the radula.
371	This is a tooth-like structure, common to all molluscs except the bivalves, usually used as a
372	digestive tool for scraping algae off hard surfaces and/or grinding hard substrates to release

Page 17 of 51

Metallomics

nutrients. This role requires high mechanical strength, a property provided by veneers of biomineralized Fe, embedded in a chitin-based matrix.⁹⁹ In fact, the Fe content of radulae can be close to 100 000 mg kg⁻¹ (Table 1).⁶⁴ The exact mineral comprising the radula differs between mollusc groups, with chitons generally utilizing magnetite (Fe₃O₄), and limpets using goethite (α -FeOOH). Biomineralization of Fe is not restricted to molluscs, however. For example, horny sponges accumulate crystals of lepidocrocite (γ -FeOOH), which are likely to perform a structural role.²⁷

Digestive gland Fe in hyperaccumulating molluscs is largely stored in insoluble granules.⁹⁷ In this particulate form, Fe is redox inert and thus cannot cause toxicity through the generation of oxidative stress.¹ Storage of Fe within the body as a mechanism to supply the radula, rather than environmental acquisition, is likely a consequence of the evolutionary history of molluscs. The radula of molluscs appeared very early in evolution, with evidence of a similar tooth-like structure in the forebears of modern molluses from the Cambrian,¹⁰⁰ before the rise in atmospheric oxygen that occurred late in this geological period. This increase in oxygen that occurred during the Cambrian would have created a scenario where Fe bioavailability in water was decreased due the formation of insoluble Fe oxides and hydroxides. Given the high Fe demands required for radula synthesis,⁶⁴ this may have necessitated mechanisms allowing storage of Fe, and other transition metals, in body tissues.¹⁰¹ It is also possible that Fe hyperaccumulation plays an important role in the adhesion of bivalve molluscs to substrates. Catechol moieties have a strong affinity for Fe, and will form crosslinks that add cohesion and strength to mussel adhesion plagues.¹⁰² Fe is also hyperaccumulated in some ascidians. This is a group of primitive filter-feeding chordates, also known as sea squirts, on the basis of their effective siphons, or as tunicates, owing to the tough outer mantle surfaces resembling a tunic. Of the three main suborders of ascidians, Fe accumulation is largely restricted to the Stolidobranchia. Although

398	the highest reported concentration of Fe in a hyperaccumulating ascidian occurs in the tunic
399	(Table 1), for most species the blood cells are the main Fe reservoirs, similar to the pattern
400	observed for V (see Vanadium). ⁶⁶ Intriguingly, the stolidobranchs are the ascidian suborder
401	that display relatively low concentrations of V. This suggests that Fe accumulation is
402	"compensating" for V accumulation (or vice versa), insinuating that Fe and V have similar,
403	albeit unknown, functions in this group. This concept is supported by a number of
404	circumstantial lines of evidence. For example, seasonal fluctuations of Fe and V burdens are
405	similar in <i>Ciona intestinalis</i> , ¹⁰³ while some of the entities associated with V accumulation
406	may also bind Fe (e.g. tunichrome, VBP-129). ^{104,105} However, there are also novel
407	biomolecules in ascidians with specific putative roles in Fe handling. Ferrascidin, for
408	example, is a small peptide isolated from ascidians considered to have a strong Fe-binding
409	capacity. ¹⁰⁶ To date, however, Fe-binding by ferreascidin has not been shown <i>in vivo</i> , and the
410	protein is thought to exist in a different cellular compartment to the metal, ¹⁰⁷ suggesting that
411	ferreascidin is not involved directly in Fe sequestration in blood cells.
412	There are reports that some aquatic insect larvae hyperaccumulate Fe. ^{108,109} However,
413	this is likely a function of the metal adhering to the body wall. ²⁶ Similarly, the livers of sperm
414	whales (only one of three individuals), ¹¹⁰ dolphins and some penguin species, ¹¹¹ have all been
415	reported to meet the 1 000 mg kg ⁻¹ hyperaccumulation threshold for Fe. However, verifying
416	whether this accumulation is facultative (e.g. associated with Fe roles as a co-factor,
417	component of hemoglobin), or a consequence of consuming food with high Fe burdens, is
418	difficult for these migratory predators.
419	
420	Titanium (Ti)
421	Titanium is not an obvious target for hyperaccumulation. For example, to date there
422	are no confirmed roles for Ti in biology, ¹¹² and the ambient concentrations of Ti in seawater

Page 19 of 51

2 3	423	are very low (~4-200 pM). ¹¹³ In natural waters Ti is most stable in its tetravalent form (Ti^{IV}),
4 5 6	424	where it is most often associated with the particulate fraction. This association is in the form
7 8	425	of adhesion to, or incorporation into, inorganic colloids, a phenomenon of particular
9 10	426	importance in estuarine settings. ¹¹⁴ Consequently, marine filter feeders that ingest particulate
11 12	427	matter are likely to be exposed to Ti through the diet.
13 14	428	The only group in which Ti hyperaccumulation has been observed are the ascidians.
15 16	429	Specifically, Levine showed that Eudistoma ritteri accumulated whole body Ti
17 18	430	concentrations in excess of 1 500 mg kg ⁻¹ . ¹¹⁵ It is worthwhile noting that follow-up studies
19 20 21	431	reported lower concentrations (150 mg kg ⁻¹), and attributed these differences to
22 23	432	developmental stage and/or environmental factors. ¹⁷ In another ascidian, Ascidia dispar,
24 25	433	compartment-specific Ti accumulation was examined, with the blood cells shown to
26 27	434	accumulate Ti to 1 552 mg kg ⁻¹ , and the tunic accumulating 126 mg Ti kg ⁻¹ (Table 1). ⁶⁷ In
28 29	435	general, Ti accumulation in the tunicates is less widespread than for V (see Vanadium below),
30 31	436	but this could be a function of the relatively fewer studies that have attempted Ti
32 33 34	437	measurement. The only other group that displays significant Ti accumulation, albeit well
35 36	438	below the threshold for hyperaccumulation, are the sabellid polychaetes. The only
37 38	439	characterised example is that of the feather duster tube worm, Eudistylia vancouveri, which
39 40	440	has Ti tissue burdens of 72 mg kg ⁻¹ . ¹¹⁶
41 42	441	Based on chemical properties, it has been suggested that the biological roles of Ti
43 44	442	accumulation in ascidians are similar to those of V, ¹¹⁵ which still remain enigmatic. However,
45 46	443	a number of specific biological functions for Ti in hyperaccumulating ascidians have been
47 48 49	444	suggested. These include acting as a sunscreen protecting the animal from ultraviolet (UV)
50 51	445	light damage, a role in anti-microbial defence (through the generation of UV-activated
52 53	446	reactive oxygen species), wound repair, and as a protective structural component of the
54 55	447	tunic. ¹¹² All of these hypotheses await experimental testing.
56 57		
58		

448	
449	Vanadium (V)
450	Vanadium is the second most common trace metal in seawater, occurring at
451	concentrations in the order of 30 nM. ⁵⁰ Although V can exist in a number of oxidation states
452	in natural waters, pentavalent V (V^V) dominates in oxic seawater, occurring primarily as
453	HVO_4^{2-} and $H_2VO_4^{117}$ At high concentrations V can exert toxic effects on biological systems
454	by acting as an analogue of phosphate, and through generation of oxidative stress. ¹¹⁸
455	However, it does have some important biological functions. For example, V acts as a metal
456	co-factor for bacterial haloperoxidases and nitrogenases, while its anti-diabetic properties
457	have been exploited for the development of human medicines. ⁵⁰
458	The remarkable capacity of ascidians to hyperaccumulate V has been recognized for
459	more than a century. ¹¹⁹ The best example of V accumulation is found in Ascidia gemmata,
460	which displays blood V concentrations in excess of 17 000 mg kg ⁻¹ (Table 1), ⁶⁸ representing a
461	bioaccumulation factor (ratio of tissue concentration to seawater concentration) of more than
462	10^7 . Patterns of metal hyperaccumulation in ascidians are phylogenetically aligned, with the
463	sub-order Phlebobranchia accumulating the highest concentrations of V, followed by the
464	Aplousobranchia and Stolidobranchia suborders, the latter of which generally accumulates
465	little V and instead hyperaccumulates Fe (see Iron). ¹²⁰ There are also differences in the
466	oxidation states of accumulated V in these species, with trivalent V (V ^{III}) the primary storage
467	form in cells of phlebobranchs, and tetravalent V (V^{IV}) the main form in aplousobranchs. ¹²⁰
468	The highest concentrations of V (often greater than 10 000 mg kg ⁻¹) are found in the vacuoles
469	of specific blood cells called signet ring cells (also termed vanadocytes). ¹²¹ The protective
470	tunic may also contain high V concentration, although these are usually an order of
471	magnitude lower than those found in vanadocytes. ¹²² Intestinal and branchial sac tissues,
472	which likely represent uptake pathways, also display elevated V ($\sim 100 \text{ mg kg}^{-1}$). ¹²³

Metallomics

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
דו 20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 17	
-+/ /0	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Interestingly, V is transferred to gametes,¹²⁴ and body V concentrations peak in reproductive
season,¹⁰³ suggestive of a role in development akin to that suggested for Zn in squirrelfish
(see *Zinc*).

The only other group that comes close to matching the V hyperaccumulating capacity of the ascidians, are the polychaetes, in which hyperaccumulation has been noted in a small number of species.^{69,125,126} In polychaetes the branchial crowns display the highest concentrations of V (up to 10 500 mg kg⁻¹ in *Perkinsiana littoralis* Table 1).⁶⁹ Concentrations in the trunk of these species are significantly lower (~50 to 900 mg kg⁻¹),^{69,125} albeit still high relative to species that do not accumulate V. In fact, for most animals tissue levels of V are below the limits of detection for most analytical approaches.

The mechanisms by which V is accumulated in ascidians has been the subject of 483 significant investigation (Figure 3).¹²³ Pentavalent V, the dominant oxidation in state in 484 485 natural waters, shares some physicochemical properties with phosphate, and passage through epithelial phosphate transporters is considered the likely pathway of V uptake.¹²⁷ Vanadium 486 487 accumulates to high concentrations in epithelial cells of the intestine and branchial sacs, and 488 exits these cells into the blood through an unknown mechanism, thought to be passive owing to the favourable electrochemical gradient.¹²³ The exact oxidation state of V (i.e. tetravalent 489 490 or pentavalent) at this stage in assimilation is unknown. In the plasma, V is bound by specific 491 high affinity proteins (e.g. vanadinP, VBP-129), capable of sequestering 6 to 13 V atoms per peptide.^{105,128} These proteins shuttle V to the cell membrane of vanadocytes, where uptake is 492 likely achieved by phosphate transporters and/or other unknown transporters.¹²³ In the blood 493 494 cell cytoplasm, V is present in a tetravalent form, with reduction from the pentavalent form facilitated by vanabins, specific V-binding proteins which act as both chaperones and 495 reductants.¹²⁹ Reductive power is provided by NADPH from the pentose phosphate pathway, 496 which is upregulated in V-accumulating ascidians.¹³⁰ Tetravalent V is then transported into 497

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 52	
22	
54	
55	
56	
57	
58	
59	
60	

1

498	the vanadocyte vacuole, likely via an ascidian homologue of the divalent metal transporter,
499	DMT-1. ¹²³ This transport is coupled to proton efflux, powered by the actions of a proton
500	pump which can reduce vacuole pH levels to less than 2. ¹³¹ The low pH of the vacuoles is
501	also essential for the maintenance of vacuolar V in a reduced state, with reduction achieved
502	by the actions of an as yet uncharacterised agent. In addition to high proton concentration, the
503	vanadocyte vacuole is also highly enriched in sulfate, ¹³² thus the V is essentially bathed in a
504	strong sulfuric acid solution. The exact chemical species of V storage forms, pH levels, and
505	sulfate concentrations, are all highly variable, even within the same cell. ¹³³ Less is known
506	regarding V handling in polychaetes. However, it has been shown that antibodies raised
507	against ascidian V-binding proteins cross-react with polychaete tissues, ¹³⁴ and that storage of
508	V also occurs in a sulfuric acid-rich environment. ¹³⁵

The biological function of V hyperaccumulation in ascidians and polychaetes remains 509 510 elusive. Based partly on the localization of V in the blood of ascidians and the respiratory tissues of polychaetes, early studies suggested that V may play a role in oxygen acquisition 511 and transport, as a component of a respiratory pigment.^{135,136} However, studies have failed to 512 show reversible oxygen binding in the blood of ascidians, largely excluding this as an 513 explanation for V hyperaccumulation.¹³⁷ In fact, rather than a facilitator of aerobic 514 metabolism, it has been hypothesized that high tissue V burden may in fact promote hypoxia 515 tolerance.¹³⁸ This is a hypothesis that has yet to be tested, but it has been noted that anaerobic 516 capacity does not appear to correlate with V accumulation in ascidians,¹³⁹ suggesting that this 517 518 may not be the explanation behind V hyperaccumulation.

Ascidians are also characterised by the presence of tunichromes, small oligopeptides with a number of putative roles, and a high metal-binding affinity.¹⁰⁴ One proposed function of tunichrome is as a structural component of the protective tunic. Consistent with the observation that V can be incorporated into the tunic, it has been suggested that metalPage 23 of 51

1

Metallomics

2
2
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
24
2⊤ 2⊑
25
26
27
28
29
30
31
27
5Z
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
10
т/ 10
40
49
50
51
52
53
54
54
22
56
57
58
59
60

523	tunichrome complexes might provide a particular strong outer barrier, and thus serve an
524	important protective role. ¹⁰⁴ This may be facilitated by catechol crosslinking, as suggested
525	for Fe in mussel adhesion plaques (see Iron).
526	Another common proposition is that the accumulation of V is an anti-predator
527	mechanism. There is some evidence supporting this concept for polychaetes. For example, if
528	offered the V-rich branchial crowns of the polychaete Perkinsiana littoralis, rock cod
529	(Trematomus berancchii) will not feed, but they will consume offered trunk tissues
530	containing much lower V concentrations. ⁶⁹ A similar finding has been observed for the
531	ascidian Phallusia nigra. ¹²² A wrasse (Thalassoma bifasciatum) offered fresh preparations of
532	whole tunic, internal tissues, and blood, all containing high concentrations of V rejected these
533	food items. However, this deterrence disappeared when the wrasse was offered these same
534	tissues that had been previously frozen. Analysis showed that the acid component of the
535	ascidian tissues, which was neutralized by freezing, and not the V component, was
536	responsible for this effect. ¹²² Similar studies to specifically link V to an anti-predatory effect
537	have not been performed for polychaetes. Odate and Pawlik also showed that putative anti-
538	microbial properties of V hyperaccumulation were acid-dependent. ¹²² Previous work had
539	associated V with the lack of fouling epibionts in some ascidians, ¹⁴⁰ with the suggestion that
540	anti-microbial effects relate to the capacity of V to generate reactive oxygen species through
541	its interaction with tunichrome. ¹³⁹ However, specific evidence that these effects are mediated
542	by V is lacking.
543	
544	Zinc (Zn)

Zinc is an essential trace element, necessary for a variety of processes including
transcription, enzyme structure and activity, antioxidant defence, maintenance of membrane
integrity, and cell signalling.¹⁴¹ Although Zn is a relatively abundant element in the Earth's

548	crust, its concentrations in the oceans are generally low, ranging from 50 pM to 9 nM . ⁸³ In
549	natural waters, Zn is divalent and exists as a variety of chemical species depending on pH,
550	chloride ion and dissolved organic matter concentration. ^{142,143} In aquatic organisms
551	absorption from dietary Zn is considered more important than that from waterborne Zn with
552	respect to overall Zn uptake. ¹⁴⁴⁻¹⁴⁶
553	Homeostasis of body Zn burden is critical for ensuring that toxic effects do not
554	accrue. ¹⁴⁷ However, in some molluscs the level at which tissue Zn is maintained qualifies as
555	hyperaccumulation. For example, Miramand and Guary found mean concentrations of 1 450
556	mg Zn kg ⁻¹ in the digestive gland of the common octopus (Octopus vulgaris) collected along
557	the coast of Monaco (Table 1). ⁷⁰ This phenomenon is not geographically unique, as multiple
558	additional studies have indicated similar Zn levels in the digestive gland of this widely-
559	distributed species. ^{88,148} However, while the ability of octopus to accumulate high
560	concentrations of Zn is commonly reported, the magnitude of the accumulation does vary.
561	For example, concentrations of digestive gland Zn as high as 14 720 mg kg ⁻¹ have been
562	described, ⁸⁸ although the reasons for differences in the extent of accumulation are not
563	understood. Zinc hyperaccumulation in cephalopods is not restricted to octopus, but has also
564	been observed in squid and cuttlefish. ^{87,149}
565	The localization of Zn to the digestive gland in cephalopods is made possible by the
566	ability of the Zn-binding protein metallothionein (MT) and MT-like proteins to be expressed
567	at high levels in this organ. ¹⁵⁰ These sulfur-rich proteins play a number of important roles in
568	normal biological processes by virtue of their ability to bind metals, such as Zn, that are
569	required as enzyme cofactors. The ability to chelate Zn, coupled with their inducibility, also
570	allows MT to effectively reduce the bioreactivity of Zn and minimize toxic effects associated
571	with its accumulation. ¹⁵¹ These proteins are the major intracellular regulators of Zn
572	metabolism, and work in association with dedicated Zn transporters of the ZnT/CDF (Slc30)

Page 25 of 51

Metallomics

573	and ZIP (Slc39) protein families. ¹⁵² The role of MT and Zn transporters in cephalopod Zn
574	hyperaccumulation has yet to be specifically studied, but this general scheme for control of
575	cellular Zn homeostasis appears to be highly conserved, from prokaryotes to mammals. ¹⁵²
576	The exact purpose of Zn hyperaccumulation in cephalopods is not known. However, it
577	is known that Zn has important roles in ameliorating oxidative stress. Therefore, one
578	possibility is that Zn hyperaccumulation in the molluscan digestive gland could facilitate
579	antioxidant defense, particularly in response to increased metabolism during warmer periods
580	of the year. ¹⁵³ This may be especially relevant for organisms such as the common octopus, an
581	active carnivore that exhibits rapid growth during a relatively short life span of 1 to 2
582	years. ¹⁵⁴ This could be mediated by Zn induction of MT, with this protein known to function
583	as an effective scavenger of reactive oxygen species. ^{155,156} Zinc is also a cofactor of copper-
584	zinc superoxide dismutase (SOD), an enzyme that performs an important role in antioxidant
585	defense by converting reactive superoxide radicals to oxygen or hydrogen peroxide. Indeed,
586	elevated Zn levels in the common octopus have been shown to be positively correlated to
587	SOD activity, ¹⁵⁷ with the highest levels in the digestive gland for both Zn and SOD activity
588	occurring in summer.
589	Bivalve molluscs are also well documented to be hyperaccumulators of Zn. The New
590	Zealand oyster, Ostrea sinuata, contains Zn concentrations in the soft portions of the whole
591	body that exceed 1 000 mg kg ⁻¹ , with the highest levels existing in the mantle (4 760 mg kg ⁻¹) $k_{\rm s}$
592	1) ⁷¹ (Table 1). In fact, Zn hyperaccumulation appears to be especially prominent in oysters.
593	Carpene et al. found that some species accumulated Zn (>1 000 mg kg ⁻¹) to concentrations
594	three orders of magnitude higher than other bivalves in the same environment, suggesting that
595	this accumulation is biologically rather than environmentally driven. ⁶² As with cephalopods

597 Zn increase,⁸⁹ suggesting that mechanisms of uptake and sequestration are likely conserved

the expression of MT and MT-like proteins in bivalves increases as tissue concentrations of

598	among molluscs. The subcellular compartmentalization of Zn into insoluble fractions such as
599	Zn-phosphate granules is also an important means for handling Zn load in bivalves. ¹⁵⁸
600	As for cephalopods, a biological role for hyperaccumulated Zn in bivalves has not
601	been determined. Oysters and other bivalves have the ability to filter very large volumes of
602	water to satisfy their nutritional and respiratory requirements, and as such increased uptake of
603	Zn (and other metals such as Cu; see above) could occur as a by-product. There is also
604	circumstantial evidence that Zn hyperaccumulation is associated with reproduction. Seasonal
605	fluctuations in trace metal bioaccumulation in bivalves has been observed, ¹⁵⁹ with peaks
606	occurring before the reproduction period. More studies examining the role of Zn
607	hyperaccumulation in reproduction in molluscs are warranted.
608	Facultative hyperaccumulators of trace elements are most often marine invertebrates.
609	One notable vertebrate exception to this is the squirrelfish family of teleost fish
610	(Holocentridae), where females can accumulate Zn in the liver at concentrations up to 500
611	times higher (2 630 mg kg ⁻¹) than those observed in livers of other vertebrates, including
612	male squirrelfish (Table 1). ⁷² The Zn accumulation observed in female squirrelfish is
613	independent of diet and occurs in the absence of elevated Zn levels in the environment. ¹⁶⁰
614	The difference in accumulation between males and females is partly a consequence of an
615	enhanced capacity of female squirrelfish to absorb Zn across the intestinal epithelium relative
616	to males, with this acquired Zn then being preferentially accumulated in the liver. ¹⁶¹ As with
617	molluscs, Zn uptake and sequestration is likely achieved by the roles of MT and Zn
618	transporters (Figure 4). It has been shown, for example, that hepatic Zn concentration is
619	closely correlated to hepatic MT, which binds upwards of 70% of the Zn present in the
620	liver. ¹⁶⁰ Ongoing research is seeking to examine the characteristics of Zn transporters in this
621	system. However, it is known that hepatic Zn transport in squirrelfish is regulated by 17β -
622	estradiol. ¹⁶² This observation is consistent with the presence of multiple estrogen response

Page 27 of 51

3	623	elements in the promotor region, and the estrogen responsiveness, of the gene for the human
4 5 6	624	Zn importer ZIP6. ^{163,164} Because this gene is highly conserved through evolution, and present
7 8	625	in fish, ¹⁶⁵ it is a strong candidate for estrogen-regulated Zn uptake in squirrelfish.
9 10	626	Owing to the clear sex differences in hepatic tissue burden, a reproductive role has
11 12	627	been suggested for Zn hyperaccumulation in squirrelfish. During sexual maturation in
13 14	628	females a marked increase in hepatic Zn accumulation occurs. ¹⁶⁶ Studies of the reproductive
15 16	629	cycle of female squirrelfish indicate a systemic shuttling of sequestered Zn from the liver to
17 18 10	630	the ovaries prior to spawning (Figure 4). ¹⁶⁷ At least a portion of this hepato-ovarian Zn
20 21	631	transfer occurs via the bloodstream where Zn is bound to the hepatically-produced yolk
22 23	632	protein vitellogenin (VTG). ¹⁶⁷ This redistribution can result in ovarian Zn levels as high as
24 25	633	215 mg kg ⁻¹ . ¹⁶⁷ The exact mechanism by which Zn is taken into the ovaries is not known.
26 27	634	One possibility is that there is incorporation of VTG-bound Zn into the oocytes.
28 29	635	Alternatively, ovarian Zn uptake may be mediated by ZIP9, which was recently discovered as
30 31	636	an androgen-gated Zn importer on the granulosa cells of Atlantic croaker (Micropogonias
32 33 24	637	undulatus) ovarian follicles. ¹⁶⁸
35 36	638	A number of roles related to reproduction have been identified for Zn. For example,
37 38	639	Zn is required for female gamete development and fertilization in mammals, and sufficient
39 40	640	Zn levels are necessary for early mitotic divisions in the mammalian preimplantation
41 42	641	embryo. ^{169, 170} This does not, however, appear to be specific to mammals, as Zn content also
43 44	642	increases during oocyte development in zebrafish for example, and the epithelial-
45 46 47	643	mesenchymal transition that occurs during gastrulation is dependent on the presence of the
47 48 49	644	ZIP6 Zn transporter. ^{171, 172} Likewise it appears the intent of loading Zn into the squirrelfish
50 51	645	ovary is to make this Zn available to the developing oocyte. Indeed, the average Zn
52 53	646	concentration in eggs produced by captive-bred squirrelfish is 1 668 mg kg ⁻¹ , upwards of two
54 55 56	647	orders of magnitude greater than that observed in the eggs of other studied teleosts. ¹⁶²
57 58		

648	Several hypotheses exist regarding the possible function of this hyperaccumulation of
649	Zn in squirrelfish eggs. Elevated levels of Zn ($\geq 1~000 \text{ mg kg}^{-1}$) have been shown to be
650	necessary for viability of the squirrelfish egg, ¹⁶² thus Zn is proposed to enhance the chances
651	of successful hatching. High concentrations of Zn may also be required by the larvae, for
652	example in the proper development and function of the eye. ¹⁷³ The tapetum lucidum, a
653	reflective layer of the eye underlying the retina, acts to enhance vision in low light conditions
654	such as those experienced by the nocturnal squirrelfish, and is known to be a Zn-rich
655	tissue. ¹⁷³ It is noteworthy that the eye is large in larval squirrelfish relative to total body size.
656	
657	Conclusions and perspectives
658	
659	The current review covers a wide range of trace elements with often distinct
660	physicochemical properties. Despite this, a number of common themes were discerned.
661	Studies of metal hyperaccumulation would be aided by measurements of elemental
662	concentrations in environmental media (sediment/soil, water, diet), allowing researchers to
663	identify scenarios of facultative versus obligate accumulation. Special care should also be
664	taken to ensure that tissue handling protocols are robust, to eliminate the confounding effects
665	of metal-rich gut contents and metals adhering to body surfaces and mucus.
666	It is also remarkable that we understand so little regarding the functions of metal
667	hyperaccumulation in these systems. There is a significant need for further research that
668	investigates behavioral consequences of hyperaccumulation (i.e., predator and microbial
669	defence), and the roles of these elements in biology (e.g., oxidative defence and
670	reproduction). However, it is also possible that in many hyperaccumulating species this
671	phenomenon is an ancient evolutionary adaptation to cope with reduced metal bioavailability
672	in a period of Earth's history. This may complicate efforts to link accumulation to function.

2 3	673	In several groups, hyperaccumulation is not element-specific. Some ascidians,
4 5 6	674	molluscs, and polychaetes are able to accumulate multiple metals, although this accumulation
7 8	675	may be mutually exclusive. This does, however, indicate that the mechanism of accumulation
9 10	676	in these species may be relatively promiscuous. Importantly, there is also evidence that the
11 12	677	pathways by which uptake and accumulation occur are conserved, both within accumulators
13 14	678	and relative to non-accumulators. This suggests that hyperaccumulating animals may
15 16	679	function as model organisms, offering insight into metal handling, thus elucidating processes
17 18	680	involved in human disease and wildlife toxicology.
19 20 21	681	
21 22 23	682	Conflicts of interest
24 25	683	
26 27	684	The authors have no conflicts of interest to declare.
28 29	685	
30 31	686	Acknowledgements
32 33	687	
34 35 36	688	CNG is supported by a Campus Alberta Innovates Program Research Chair, and a Natural
37 38	689	Sciences and Engineering Research Council of Canada Discovery Grant (251083).
39 40	690	
41 42	691	References
43 44	692	
45 46	693	1. N. R. Bury, P. A. Walker and C. N. Glover, Nutritive metal uptake in teleost fish. J. Exp.
47 48	694	<i>Biol.</i> , 2003, 206 , 11-23.
49 50	695	2. L. A. Clowes and K. A. Francesconi, Uptake and elimination of arsenobetaine by the
52	696	mussel Mytilus edulis is related to salinity. Comp. Biochem. Physiol. C, 2004, 137, 35-
53 54	697	42.
55 56 57 58 59 60	698	3. U. Kramer, Metal hyperaccumulation in plants. Ann. Rev. Plant Biol., 2010, 61, 517-534.

699	 H. Bothe and A. Slomka, Divergent biology of facultative heavy metal plants. J. Plant
700	Physiol., 2017, 219, 45-61.
701	 A. J. Pollard, R. D. Reeves and A. J. M. Baker, Facultative hyperaccumulation of heavy
702	metals and metalloids. <i>Plant Sci.</i> , 2014, 217, 8-17.
703	6. N. Rascio and F. Navari-Izzo, Heavy metal hyperaccumulating plants: how and why do
704	they do it? And what makes them so interesting? <i>Plant Sci.</i> , 2011, 180, 169-181.
705	 A. J. Palumbo, S. C. Taylor, S. L. Addison, A. H. Slade and C. N. Glover, Metal
706	biosorption in lignocellulosic biofuel biorefinery effluent: an initial step towards
707	sustainability of water resources. <i>J. Ind. Microbiol. Biotechnol.</i> , 2012, 39 , 1345-1356.
708	 H. L. Yuan, Z. J. Li, J. Y. Ying and E. T. Wang, Cadmium(II) removal by a
709	hyperaccumulator fungus <i>Phoma</i> sp F2 isolated from blende soil. <i>Curr. Microbiol.</i> ,
710	2007, 55, 223-227.
711	 W. J. Birge, D. J. Price, J. R. Shaw, J. A. Spromberg, A. J. Wigginton and C. Hogstrand,
712	Metal body burden and biological sensors as ecological indicators. <i>Environ. Toxicol.</i>
713	<i>Chem.</i> , 2000, 19, 1199-1212.
714	 D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin and R. C. Santore,
715	Biotic ligand model of the acute toxicity of metals. 1. Technical basis. <i>Environ.</i>
716	<i>Toxicol. Chem.</i> , 2001, 20, 2383-2396.
717	 S. Gifford, R. H. Dunstan, W. O'Connor, C. E. Koller and G. R. MacFarlane, Aquatic
718	zooremediation: deploying animals to remediate contaminated aquatic environments.
719	<i>Trends Biotechnol.</i> , 2007, 25, 60-65.
720	 M. J. McLaughlin, D. R. Parker and J. M. Clarke, Metals and micronutrients - food safety
721	issues. <i>Field Crops Res.</i> , 1999, 60, 143-163.
722	 K. A. Jellinger, The relevance of metals in the pathophysiology of neurodegeneration,
723	pathological considerations. <i>Int. Rev. Neurobiol.</i> , 2013, 110 , 1-47.
724	 S. N. Luoma and P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics
725	as a unifying concept. <i>Environ. Sci. Technol.</i> , 2005, 39 , 1921-1931.
726 727 728	 15. A. van der Ent, A. J. M. Baker, R. D. Reeves, A. J. Pollard and H. Schat, Hyperaccumulators of metal and metalloid trace elements: facts and fiction. <i>Plant Soil</i>, 2013, 362, 319-334.

Page 31 of 51

1		
2 3	729	16. P. L. Gillis, P. Chow-Fraser, J. F. Ranville, P. E. Ross and C. M. Wood, Daphnia need to
4 5	730	be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated
6	731	sediment on the gut-clearance patterns of D. magna. Aquat. Toxicol., 2005, 71, 143-
7 8	732	154.
9 10	733	17. J. H. Swineheart, W. R. Biggs, D. J. Halko and N. C. Schroeder, The vanadium and
11 12	734	selected metal contents of some ascidians. Biol. Bull., 1974, 146, 302-312.
13 14	735	18. A. Padovan, N. Munksgaard, B. Alvarez, K. McGuinness, D. Parry and K. Gibb, Trace
15	736	metal concentrations in the tropical sponge Spheciospongia vagabunda at a sewage
16 17	737	outfall: synchrotron X-ray imaging reveals the micron-scale distribution of accumulated
18 19	738	metals. Hydrobiologia, 2012, 68, 275–288.
20 21	739	19. C. Buccella, B. Alvarez, K. Gibb and A. Padovan, A rod-like bacterium is responsible for
22	740	high molybdenum concentrations in the tropical sponge Halichondria phakellioides.
23 24	741	Mar. Freshwater Res., 2014, 65, 838–848.
25 26	742	20. A. A. Benson and R. E. Summons, Arsenic accumulation in Great Barrier Reef
27 28	743	invertebrates. Science, 1981, 211, 482-483.
29 30	744	21. G. Lunde, Occurrence and transformation of arsenic in the marine environment. <i>Environ</i> .
31 32	745	Health Perspect., 1977, 19, 47-52.
33	746	22. C. N. Glover and C. Hogstrand, In vivo characterisation of intestinal zinc uptake in
34 35	747	freshwater rainbow trout. J. Exp. Biol., 2002, 205, 141-150.
36 37	748	23. R. D. Handy and F. B. Eddy, The interactions between the surface of rainbow trout,
38 39	749	Oncorhynchus mykiss, and waterborne metal toxicants. Funct. Ecol., 1990, 4, 385-392.
40 41	750	24. E. Alexopoulus, C. R. McCrohan, J. J. Powell, R. Jugdaosingh and K. N. White,
42 43	751	Bioavailability and toxicity of freshly neutralized aluminium to the freshwater crayfish
44	752	Pacifastacus leniusculus. Arch. Environ. Contam. Toxicol., 2003, 45, 509-514.
46	753	25. T. A. Blewett, C. N. Glover, S. Fehsenfeld, M. J. Lawrence, S. Niyogi, G. G. Goss and C.
47 48	754	M. Wood, Making sense of nickel accumulation and sub-lethal toxicity in saline waters:
49 50	755	fate and effects of nickel in the green crab, Carcinus maenas. Aquat. Toxicol., 2015,
51	756	164 , 23-33.
52	757	26. K. M. Vuori and J. Kukkonen, Metal concentrations in Hydropsyche pellucidula larvae
54 55	758	(Trichoptera, Hydropsychidae) in relation to the anal papillae abnormalities and age of
56 57 58 59 60	759	exocuticle. Water Res., 1996, 30 , 2265-2272.

760	 K. M. Towe and K. Rützler, Lepidocrocite iron mineralization in keratose sponge
761	granules. <i>Science</i> , 1968, 162, 268-269.
762	28. C. Hogstrand, N. J. Gassman, B. Popova, C. M. Wood and P. J. Walsh, The physiology of
763	massive zinc accumulation in the liver of female squirrelfish and its relationship to
764	reproduction. <i>J. Exp. Biol.</i> , 1996, 199 , 2543-2554.
765 766	29. F. G. Doherty, D. S. Cherry and J. Cairns, Jr., Valve closure responses of the Asiatic clam <i>Corbicula fluminea</i> exposed to cadmium and zinc. <i>Hydrobiologia</i> , 1987, 153 , 159-167.
767	30. C. M. Wood, An introduction to metals in fish physiology and toxicology: basic
768	principles, in <i>Fish Physiology, volume 31A, Metals: Homeostasis and Toxicology:</i>
769	<i>Essential Metals</i> , eds. C. M. Wood, A. P. Farrell, C. J. Brauner, Academic Press, San
770	Diego, 2012, pp. 1-51.
771	31. P. S. Rainbow and W.H. Black, Physicochemistry or physiology: cadmium uptake and
772	effects of salinity and osmolality in three crabs of different ecologies. <i>Mar. Ecol. Prog.</i>
773	<i>Ser.</i> , 2005, 286, 217–229.
774 775	32. C. N. Glover, C. Bucking and C. M. Wood, The skin of fish as a transport epithelium: a review. <i>J. Comp. Physiol. B</i> , 2013, 183 , 877-891.
776	33. C. N. Glover, T. A. Blewett and C. M. Wood, Novel route of toxicant exposure in an
777	ancient extant vertebrate: nickel uptake by hagfish skin and the modifying effects of
778	slime. <i>Environ. Sci. Technol.</i> , 2015, 49, 1896-1902.
779	34. C. N. Glover, S. Niyogi, T. A. Blewett and C. M. Wood, Iron transport across the skin
780	and gut epithelia of Pacific hagfish: kinetic characterisation and effect of hypoxia.
781	<i>Comp. Biochem. Physiol. A</i> , 2016, 199 , 1-7.
782 783	35. M. H. Depledge and P. S. Rainbow, Models of regulation and accumulation of trace metals in marine invertebrates. <i>Comp. Biochem. Physiol. C</i> , 1990, 97 , 1-7.
784 785	36. I. Marigomez, M. Soto, M. P. Cajaraville, E. Angulo and L. Giamberini, Cellular and subcellular distribution of metals in molluscs. <i>Microsc. Res. Tech.</i> , 2002, 56 , 358–392.
786	37. C. N. Glover, N. R. Bury and C. Hogstrand, Zinc uptake across the apical membrane of
787	freshwater rainbow trout intestine is mediated by high affinity, low affinity and
788	histidine-facilitated pathways. <i>Biochim. Biophys. Acta- Biomembr.</i> 2003, 1614, 211-
780	210
193	217.

Page 33 of 51

3	790	38. C. N. Glover and C. M. Wood, Absorption of copper and copper-histidine complexes
4 5	791	across the apical surface of freshwater rainbow trout intestine. J. Comp. Physiol. B,
6	792	2008, 178 , 101-109.
7 8 9	793	39. J. Buffle, K. J. Wilkinson and H. P. van Leeuwen, Chemodynamics and bioavailability in
10	794	natural waters. Environ. Sci. Technol., 2009, 43, 7170-7174.
11 12 13	795	40. N. R. Bury and C. Hogstrand, Influence of chloride and metals on silver bioavailability to
14	796	Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) yolk-sac fry.
15 16	797	Environ. Sci. Technol., 2002, 36, 2884-2888.
17 18	798	41. C. M. Zhao, P. G. C. Campbell and K. J. Wilkinson, When are metal complexes
19 20	799	bioavailable? Environ. Chem., 2016, 13, 425-433.
21	800	42. C. Fortin and P. G. C. Campbell, Silver uptake by the green alga Chlamydomonas
22	801	reinhardtii in relation to chemical speciation: influence of chloride. Environ. Toxicol.
24	802	Chem., 2000, 19, 2769-2778.
25 26		
20 27	803	43. A. Krogh, The progress of physiology. <i>Am. J. Physiol.</i> , 1929, 90 , 243-251.
28 29	804	44. C. Gentric, K. Rehel, A. Dufour and P. Sauleau, Bioaccumulation of metallic trace
30	805	elements and organic pollutants in marine sponges from the South Brittany Coast,
31 32 33	806	France. J. Environ. Sci. Health A, 2016, 51 , 213-219.
34	807	45. D. E. Rawlings, Heavy metal mining using microbes. Ann. Rev. Microbiol., 2002, 56, 65-
35 36	808	91.
37 38	809	46. K. Suyama, Y. Fukazawa and H. Suzumura, Biosorption of precious metal ions by
39 40	810	chicken feather. Appl. Biochem. Biotechnol., 1996, 57/58, 67-74.
41	811	47. A. D. Dwivedi, R. Permana, J. P. Singh, H. Yoon, K. H. Chae, Y. S. Chang and D. S.
42 43	812	Hwang, Tunichrome-inspired gold-enrichment dispersion matrix and its application in
44	813	water treatment: a proof-of-concept investigation ACS Appl Mater Interfaces 2017
45 46 47	814	9 , 19815-19824.
47	815	48. O. X. Han, J. K. Keesing and D. Y. Liu, A review of sea cucumber aquaculture, ranching.
49	016	and stock enhancement in China Ray Fish Sci Aquacult 2016 24 326 341
50 51	810	and stock emiancement in emina. <i>Rev. Pisn. Sci. Aquacut.</i> , 2010, 24 , 520-541.
52	817	49. Y. Liu, Q. Zhou, Y. Zhao, Y. Wang, Y. Wang, J. Wang, J. Xu and C. Xe, Enrichment,
53 54	818	distribution of vanadium-containing protein in vanadium-enriched sea cucumber
55 56		
57		
58		
72		

819 820	<i>Apostichopus japonicus</i> and the ameliorative effect on insulin resistance. <i>Biol. Trace Elem. Res.</i> , 2016, 171 , 167–175.
821	50. D. Rehder, The role of vanadium in biology. Metallomics, 2015, 7, 730-742.
822 823	51. J. M. Neff, Ecotoxicology of arsenic in the marine environment. <i>Environ. Toxicol. Chem.</i> , 1997, 16 , 917-927.
824 825 826	52. A. Gomez-Caminero, P. Howe, M. Hughes, E. Kenyon, D. R. Lewis, M. Moore, J. Ng, A. Aitio and G. Becking, Arsenic and Arsenic Compounds, World Health Organization, Geneva, 2001, 1-114.
827 828 829	53. S. C. Carapella, Arsenic and arsenic alloys, in <i>Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 3</i> , eds. J. I. Kroschwitz, M. Howe-Grant, John Wiley & Sons, New York, 1992, pp. 624-633.
830 831	54. M. Sadiq, Arsenic chemistry in marine environments: a comparison between theoretical and field observations. <i>Mar. Chem.</i> , 1990, 31 , 285-297.
832 833	55. V. Dutre and C. Vandecasteele, Solidification stabilization of hazardous arsenic- containing waste from a copper refining process. <i>J. Hazard. Mater.</i> , 1995, 40 , 55-68.
834 835 836	56. M. D. Andreae, Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. <i>Limnol.</i> <i>Oceanogr.</i> , 1979, 24 , 440-452.
837 838 839	57. J. G. Farmer, L. R. Johnson and M. A. Lovell, Urinary arsenic speciation and the assessment of UK dietary, environmental and occupational exposures to arsenic. <i>Environ. Geochem. Health</i> , 1989, 11 , 93–95.
840 841	 E. O. Ulthus, Arsenic essentiality: a role affecting methionine metabolism. J. Trace Elem. Exp. Med., 2003, 16, 345-355.
842 843	59. P. E. Gibbs, W. J. Langston, G. R. Burt and P. L. Pascoe, <i>Tharyx marioni</i> (Polychaeta): a remarkable accumulator of arsenic. <i>J. Mar. Biol. Assoc. U.K.</i> , 1983, 63 , 313-325.
844 845 846	60. B. D. Jaffe, M. E. Ketterer and R. W. Hofstetter, Terrestrial invertebrate arsenic accumulation associated with an arsenic hyperaccumulating fern, <i>Pteris vittata</i> (Polypodiales: Pteridaceae). <i>Environ. Entomol.</i> , 2016, 45 , 1306–1315.
847 848	61. J. Martin and A. Flegal, High copper concentrations in squid livers in association with elevated levels of silver, cadmium, and zinc. <i>Mar. Biol.</i> , 1975, 30 , 51-55.

Page 35 of 51

Metallomics

2	819	62 F. Carnene, G. Andreani and G. Isani. Trace elements in unconventional animals: a 40-
5 4	850	year experience. J. Trace Elem. Med. Biol., 2017, 43, 169-179.
5 6	054	(2 T.F. Denter, S.M. Dehei, S.M. Conner and I.M. Frazier, Almontal horizontal
7	851	63. I. E. Bunton, S. M. Baksi, S. M. George and J. M. Frazier, Abnormal nepatic copper
9	852	storage in a teleost fish (Morone americana). Vet. Pathol., 1987, 24, 515-524.
10 11	853	64. J. A. Shaw, D. J. Macey and L. R. Brooker, Radula synthesis by three species of iron
12	854	mineralizing molluscs: production rate and elemental demand. J. Mar. Biol. Assoc.
13 14	855	U.K., 2008, 88 , 597–601.
15	856	65 I.V. Ahn, K.W. Kim and H. I. Choi. A baseline study on metal concentrations in the
16 17	050	Antarctic limpet Nacella concinna (Costropode: Datellidee) on King George Island:
18	050	Antarctic impet <i>Nacena concinna</i> (Gastropoda. Fatenidae) on King George Island.
19 20	858	variations with sex and body parts. <i>Mar. Pollut. Bull.</i> , 2002, 44, 421–431.
21	859	66. H. Michibata, T. Terada, N. Anada, K. Yamakawa and T. Numakunai, The accumulation
22 23	860	and distribution of vanadium, iron, and manganese in some solitary ascidians. Biol.
24	861	Bull., 1986, 171 , 672-686.
25 26	862	67. D. A. Roman, J. Molina and L. Rivera. Inorganic aspects of the blood chemistry of
27 28	863	ascidians - jonic composition and Ti V and Fe in the blood plasma of <i>Pyura chilensis</i>
29	864	and Ascidia dispar Rial Rull 1988 175 154-166
30 31	004	and <i>Insentia auspur</i> . <i>Diol. Duil.</i> , 1966, 175, 194-106.
32	865	68. H. Michibata, Y. Iwata and J. Hirata, Isolation of highly acidic and vanadium-containing
33 34	866	blood cells from among several types of blood cell from Ascidiidae species by density-
35	867	gradient centrifugation. J. Exp. Zool., 1991, 257, 306-313.
36 37	868	69. D. Fattorini, A. Notti, M. Nigro and F. Regoli, Hyperaccumulation of vanadium in the
38	869	Antarctic polychaete <i>Perkinsiana littoralis</i> as a natural chemical defense against
40	870	predation. <i>Environ. Sci. Pollut. Res.</i> , 2010, 17 , 220–228.
41 42		
43	871	70. P. Miramand and J. C. Guary, High concentrations of some heavy metals in tissues of the
44 45	872	Mediterranean octopus. Bull. Environ. Contam. Toxicol., 1980, 24, 783-788.
46	873	71. R. R. Brooks and M. G. Rumsby, The biogeochemistry of trace element uptake by some
47 48	874	New Zealand bivalves. Limnol. Oceanogr., 1965, 10, 521-527.
49 50	875	72. C. Hogstrand and C. Haux, Metallothionein as an indicator of heavy-metal exposure in
51	876	two subtropical fish species. J. Exp. Mar. Biol. Ecol., 1990, 138, 69-84.
52 53	877	73 D Fattorini and F Regoli Arsenic speciation in the tissues of the Mediterranean
54 55	070	polychaete Saholla snallanzanii Environ Toxicol Cham 2004 23 1991 1997
56	070	porychaete Subenu spunanzanii. Environ. 10x1col. Chem., 2004, 23, 1881-1887.
57 58		

879	 74. B. L. Persson, J. Petersson, U. Fristedt, R. Weinander, A. Berhe and J. Pattison,
880	Phosphate permeases of <i>Saccharomyces cerevisiae</i> : structure, function and regulation.
881	<i>Biochim. Biophys. Acta</i> , 1999, 1422, 255–272.
882	 B. P. Rosen and Z. Liu, Transport pathways for arsenic and selenium: a minireview.
883	<i>Environ. Int.</i> , 2009, 35 , 512–515.
884 885	76. H. T. Aposhian, Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. <i>Ann. Rev. Pharmacol. Toxicol.</i> , 1997, 37 , 397-419.
886 887	77. W. R. Cullen and K. J. Reimer, Arsenic speciation in the environment. <i>Chem. Rev.</i>, 1989, 89, 713-64.
888	 R. Andrahennadi and I. J. Pickering, Arsenic accumulation, biotransformation and
889	localization in bertha armyworm moths. <i>Environ. Chem.</i> , 2008, 5, 413–419.
890	79. M. D. Schwartz and M. A. Wall, <i>Melanotrichus boydi</i> , a new species of plant bug
891	(Heteroptera: Miridae: Orthotylini) restricted to the nickel hyperaccumulator
892	<i>Streptanthus polygaloides</i> (Brassicaceae). <i>Pan-Pac. Entomol.</i> , 2001, 77, 39-44.
893 894 895	 M. Augustyniak, W. Przybyłowicz, J. Mesjasz-Przybyłowicz, M. Tarnawska, P. Migula, E. Głowacka and A. Babczyńska, Nuclear microprobe studies of grasshopper feeding on nickel hyperaccumulating plants. <i>X-Ray Spectrom.</i>, 2008, 37, 142-145.
896 897 898	81. R. S. Boyd and M. A. Wall, Responses of generalist predators fed high-Ni <i>Melanotrichus boydi</i> (Heteroptera: Miridae): elemental defense against the third trophic level. <i>Am. Midl. Nat.</i> , 2001, 146 , 186–198.
899	 E. I. Solomon and M. D. Lowery, Electronic structure contributions to function in
900	bioinorganic chemistry. <i>Science</i> , 1993, 259, 1575–1581.
901 902	83. K. W. Bruland and M. C. Lohan, Controls of trace metals in seawater. <i>Treatise on Geochemistry</i> , 2003, 6 , 23-47.
903	84. M. Grosell, Copper, in Fish Physiology, volume 31A, Metals: Homeostasis and
904	Toxicology: Essential Metals, eds. C. M. Wood, A. P. Farrell, C. J. Brauner, Academic
905	Press, San Diego, 2012, pp. 53-133.
906	85. R. C. Playle and D. G. Dixon, Copper and cadmium binding to fish gills: modification by
907	dissolved organic carbon and synthetic ligands. <i>Can. J. Fish. Aquat. Sci.</i> , 1993, 50 ,
908	2667–2677.

Page 37 of 51

2		
3	909	86. A. R. Linde, D. Klein and K. H. Summer, Phenomenon of hepatic overload of copper in
4 5	910	Mugil cephalus: role of metallothionein and patterns of copper cellular distribution.
6 7	911	Basic Clin. Pharmacol. Toxicol., 2005, 97, 230-235.
8 9	912	87. P. Pereira, J. Raimundo, C. Vale and E. Kadar, Metal concentrations in digestive gland
10	913	and mantle of Sepia officinalis from two coastal lagoons of Portugal. Sci. Total
11 12	914	Environ., 2009, 407 , 1080-1088.
13 14	915	88. J. Raimundo, M. Caetano and C. Vale, Geographical variation and partition of metals in
15	916	tissues of Octopus vulgaris along the Portuguese coast. Sci. Total Environ., 2004, 325,
17 18	917	71-81.
19	918	89. W. X. Wang, Y. Yang, X. Guo, M. He, F. Guo and C. Ke, Copper and zinc contamination
20 21	919	in oysters: subcellular distribution and detoxification. Environ. Toxicol. Chem., 2011,
22 23	920	30 , 1767-1774.
24	921	90. B. Salvato, P. Zatta, A. Ghiretti-Magaldi and F. Ghiretti, On the active site of
25 26 27	922	hemocyanin. FEBS Lett., 1973, 32 , 35–36.
28	923	91. A. Z. Mason and J. A. Nott, The role of intracellular biomineralized granules in the
29 30	924	regulation and detoxification of metals in gastropods with special reference to the
31 32	925	marine prosobranch Littorina littorea. Aquat. Toxicol., 1981, 1, 239-256.
33 34	926	92. J. K. Moore and O. Braucher, Observations of dissolved iron concentrations in the World
35	927	Ocean: implications and constraints for ocean biogeochemical models. Biogeosci.
36 37	928	Discuss., 2007, 4, 1241-1277.
38 39	929	93. M. Gledhill and K. N. Buck, The organic complexation of iron in the marine
40 41	930	environment: a review. Front. Microbiol., 2012, 3, 69.
42	931	94. C. Goiran, P. Bustamante and R. Shine, Industrial melanism in the seasnake
43 44 45	932	Emydocephalus annulatus. Curr. Biol., 2017, 27, 2510-2513.
46	933	95. A. G. Ferreira, A. L. D. Machado and I. R. Zalmon, Temporal and spatial variation on
47 48	934	heavy metal concentrations in the bivalve Perna perna (Linnaeus, 1758) on the
49 50	935	northern coast of Rio de Janeiro State, Brazil. Braz. Arch. Biol. Technol., 2004, 47,
50 51	936	319-327.
52 53	937	96. G. W. Bryan, G.W. Potts and G. R. Forster, Heavy metals in the gastropod mollusc
54 55 56	938	Haliotis tuberculata (L.). J. Mar. Biol. Assoc. U.K., 1977, 57, 379-390.
57 58		
59		
60		

939	97. R. V. Hyne, J. D. Smith and G. Ellender, Tissue and sub-cellular distribution of Fe, Cu,
940	Zn and ²¹⁰ Po in the abalone <i>Haliotis rubra</i> . <i>Mar. Biol.</i> 1992, 112 , 75-80.
941 942	98. A. Cravo, M. J. Bebianno and P. Foster, Partitioning of trace metals between soft tissues and shells of <i>Patella aspera</i> . <i>Environ</i> . <i>Int.</i> , 2004, 30 , 87-98.
943 944	99. D. Faivre and T. U. Godec, From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. <i>Angew. Chem. Int. Ed.</i> , 2015, 54 , 4728-4747.
945	100. A. H. Scheltema, K. Kerth and A. M. Kuzirian, Original molluscan radula: comparisons
946	among Aplacophora, Polyplacophora, Gastropoda, and the Cambrian fossil <i>Wiwaxia</i>
947	<i>corrugata</i> . J. Morphol., 2003, 257, 219–245.
948	101. M. J. Smith, D. Kim, B. Horenstein, K. Nakanishi and K. Kustin, Unraveling the
949	chemistry of tunichrome. Acc. Chem. Res., 1991, 24, 117-124.
950	102. G. P. Maier and A. Butler, Siderophores and mussel foot proteins: the role of catechol,
951	cations, and metal coordination in surface adhesion. <i>J. Biol. Inorg. Chem.</i> , 2017, 22,
952	739-749.
953	103. J. E. Stacey and W. R. Driedzic, Temporal variability in, and impact of food availability
954	on vanadium and iron concentrations in <i>Ciona intestinalis</i> tissues (Tunicata,
955	Ascidiacea). <i>J. Exp. Mar. Biol. Ecol.</i> , 2010, 386 , 11–18.
956 957	104. M. Sugumaran and W. E. Robinson, Structure, biosynthesis and possible function of tunichromes and related compounds. <i>Comp. Biochem. Physiol. B</i> , 2012, 163 , 1-25.
958 959 960	105. M. Yoshihara, T. Ueki, N. Yamaguchi, K. Kamino and H. Michibata, Characterization of a novel vanadium-binding protein (VBP-129) from blood plasma of the vanadium-rich ascidian <i>Ascidia sydneiensis samea</i> . <i>Biochim. Biophys. Acta</i> , 2008, 1780 , 256-263.
961	106. S. W. Taylor, C. J. Hawkins and D. J. Winzor, Spectrophotometric evidence for
962	involvement of aromatic residues in the interaction of ferreascidin with ferric ion.
963	<i>Inorg. Chem.</i> , 1993, 32 , 422-427.
964 965	107. J. P. Gaffney and A. M. Valentine, The challenges of trafficking hydrolysis prone metals and ascidians as an archetype. <i>Dalton Trans.</i> , 2011, 40 , 5827–5835.
966	108. H. Nasirian and K. N. Irvine, Odonata larvae as a bioindicator of metal contamination in
967	aquatic environments: application to ecologically important wetlands in Iran. <i>Environ.</i>
968	<i>Monitor. Assess.</i> , 2017, 189 , 436.

Page 39 of 51

2	969	109 M Nummelin M Lodenius E Tulisalo H Hirvonen and T Alanko Predatory insects
5 4 5	970	as bioindicators of heavy metal pollution. <i>Environ. Pollut.</i> , 2007, 145 , 339-347.
6	971	110 S. Squadrone, P. Brizio, F. Chiaravalle and M. C. Abete, Sperm whales (<i>Physeter</i>
7 8	972	<i>macrocenhalus</i>) found stranded along the Adriatic coast (Southern Italy
9 10	972	Mediterranean Sea) as bioindicators of essential and non-essential trace elements in the
10 11 12	974	environment. <i>Environ. Indicat.</i> , 2015, 58 , 418-425.
13 14	975	111. R. Ninomiya, N. Koizumi and K. Murata, Metal concentrations in the liver and kidney
15 16	976	of aquatic mammals and penguins. <i>Biol. Trace Elem. Res.</i> , 2004, 97 , 135-147.
17 18	977	112. M. R. Zierden and A. M. Valentine, Contemplating a role for titanium in organisms.
19 20	978	Metallomics, 2016, 8, 9-16.
21 22	979	113. K. J. Orians, E. A. Boyle and K. W. Bruland, Dissolved titanium in the open ocean.
22	980	Nature, 1990, 348 , 322-325.
24 25 26	981	114. S. A. Skrabal, W. J. Ullman and G.W. Luther, III, Estuarine distributions of dissolved
20	982	titanium. Mar. Chem., 1992, 37 , 83-103.
28 29	983	115. E. P. Levine, Occurrence of titanium, vanadium, chromium, and sulfuric acid in the
30 31	984	ascidian Euclistoma ritteri. Science, 1961, 133, 1352–1353.
32 33	985	116. J. D. Popham and J. M. D'Auria, A new sentinel organism for vanadium and titanium.
34	986	Mar. Pollut. Bull., 1982, 13, 25-27.
35 36 27	987	117. G. C. McLeod, K. V. Ladd, K. Kustin and D. L. Toppen, Extraction of vanadium(V)
37 38	988	from seawater by tunicates - revision of concepts. Limnol. Oceanogr., 1975, 20, 491-
39 40	989	493.
41	990	118. F. L. Assem and L. S. Levy. A review of current toxicological concerns on vanadium
42 43	991	pentoxide and other vanadium compounds: gaps in knowledge and directions for future
44 45	992	research. J. Toxicol. Environ. Health B, 2009, 12, 289-306.
46 47	993	119. M. Henze, Untersuchungen über das blut der Ascidien I. Mitteilung die vanadium-
48 40	994	verbindungen der blutkörperchen. Hoppe Seylers Z. Physiol. Chem., 1911, 72, 494-
49 50	995	501.
51 52	996	120. M. A. Cheney, J. R. Berg and J. H. Swinehart, The uptake of vanadium(V) and other
53 54	997	metals by the isolated branchial sacs of the ascidians Ascidia ceratodes, Ciona
55	998	intestinalis, and Styela montereyensis. Comp. Biochem. Physiol. C, 1997, 116, 149-153.
56 57		
58		
59 60		

2 3 4	999	121. H. Michibata, J. Hirata, M. Uesaka, T. Numakunai and H. Sakurai, Separation of
5 6 7	1000	blood cells of the ascidian, <i>Ascidia ahodori. J. Exp. Zool.</i> , 1987, 244 , 33-38.
7 8 9	1002	122. S. Odate and J. R. Pawlik, The role of vanadium in the chemical defense of the solitary
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1003	tunicate, Phallusia nigra. J. Chem. Ecol., 2007, 33 , 643–654.
	1004 1005	123. T. Ueki, N. Yamaguchi, Romaidi, Y. Isago and H. Tanahashi, Vanadium accumulation in ascidians: a system overview. <i>Coord. Chem. Rev.</i> 2015. 301/302 . 300–308
	1005	
	1006	124. H. Michibata, J. Uchiyama, Y. Seki, T. Numakunai and M. Uyama, Accumulation of
	1007	vanadium during embryogenesis in the vanadium-rich ascidian, Ascidia gemmata. Biol.
	1008	<i>Trace Elem. Res.</i> , 1992, 34 , 219-223.
	1009	125. T. Ishii, I. Nakai, C. Numako, K. Okoshi and T. Otake, Discovery of a new vanadium
23	1010	accumulator, the fan worm <i>Pseudopotamilla occelata</i> . Naturwissenschaften, 1993, 80 ,
24 25	1011	268-270.
26 27	1012	126. A. Giangrande, M. Licciano, M. del Pasqua, F. P. Fanizzi, D. Migoni and L Stabili,
28	1013	Heavy metals in five Sabellidae species (Annelida, Polychaeta): ecological
29 30	1014	implications. Environ. Sci. Pollut. Res., 2017, 24, 3759-3768.
31 32	1015	127. A. L. Dingley, K. Kustin, I. G. Macara and G. C. McLeod, Accumulation of vanadium
33 34	1016	by tunicate blood cells occurs via a specific anion transport system. Biochim. Biophys.
34 35 36 37 38 39 40	1017	Acta- Biomembr., 1981, 649, 493-502.
	1018	128. M. Yoshihara, T. Ueki, T. Watanabe, N. Yamaguchi, K. Kamino and H. Michibata,
	1019	VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian,
	1020	Ascidia sydneiensis samea. Biochim. Biophys. Acta- Gene Struct. Expr., 2005, 1730,
41 42	1021	206-214.
43 44	1022	129. N. Kawakami, T. Ueki, Y. Amata, K. Kanamori, K. Matsuo, K. Gekko and H.
45 46	1023	Michibata, A novel vanadium reductase, Vanabin2, forms a possible cascade involved
40 47 48	1024	in electron transfer. Biochim. Biophys. Acta- Prot. Proteom., 2009, 1794, 647-679.
49	1025	130. J. R. Treberg, J. E. Stacey and W. R. Driedzic, Vanadium accumulation in ascidian
50 51	1026	coelomic cells is associated with enhanced pentose phosphate pathway capacity but not
52	1027	overall aerobic or anaerobic metabolism Comp. Biochem. Physiol. B 2012 161 323–
53 54 55 56 57 58 59	1028	330
	1020	

Page 41 of 51

1		
2 3 4	1029	131. P. Frank, R. M. K. Carlson and K. O. Hodgson, Vanadyl ion EPR as a noninvasive
5	1030	probe of pH in intact vanadocytes from Ascidia ceratodes. Inorg. Chem., 1986, 25,
6 7	1031	470–478.
8 9	1032	132. K. Kanamori and H. Michibata, Raman spectroscopic study of the vanadium and
10	1033	sulphate in blood cell homogenates of the ascidian, Ascidia gemmata. J. Mar. Biol.
11 12	1034	Assoc. U.K., 1994, 74, 279-286.
13 14	1035	133. P. Frank, R. M. K. Carlson, E. J. Carlson and K. O. Hodgson, The vanadium
15 16	1036	environment in blood cells of Ascidia ceratodes is divergent at all organismal levels: an
17 18	1037	XAS and EPR spectroscopic study. J. Inorg. Biochem., 2003, 94, 59-71.
19 20	1038	134. T. Uyama, Y. Nose, J. Wuchiyama, Y. Moriyama and H. Michibata, Finding of the same
20	1039	antigens in the polychaete, Pseudopotamilla occelata, as those in the vanadium-rich
22 23	1040	ascidian, Ascidia sydneiensis samea. Zool. Sci., 1997, 14, 43-47.
24 25	1041	135. T. Ishii, T. Otake, K. Okoshi, M. Nakahara and R. Nakamura, Intracellular localization
26	1042	of vanadium in the fan worm Pseudopotamilla occelata. Mar. Biol., 1994, 121, 143-
27 28	1043	151.
29 30	1044	136. D. B. Carlisle, Vanadium and other metals in ascidians. Proc. Roy. Soc. B, 1968, 171,
31 32	1045	31-42.
33	1046	137. I. G. Macara, G. C. McLeod and K. Kustin, Vanadium in tunicates: oxygen-binding
34 35 36	1047	studies. Comp. Biochem. Physiol. A, 1979, 62, 821-826.
37 38	1048	138. M. J. Smith, Vanadium biochemistry - the unknown role of vanadium-containing cells in
39 40	1049	ascidians (sea squirts). Experientia, 1989, 45, 452-457.
40 41	1050	139. A. Abebe, Q. F. Kuang, J. Evans, W. E. Robinson and M. Sugumaran, Oxidative
42 43	1051	transformation of a tunichrome model compound provides new insight into the
44 45	1052	crosslinking and defense reaction of tunichromes. <i>Bioinorg. Chem.</i> , 2017, 71, 219-229.
46 47	1053	140. D. Stoecker, Resistance of a tunicate to fouling. Biol. Bull., 1978, 155, 615-626.
48 40	1054	141. T. Fukada, S. Yamasaki, K. Nishida, M. Murakami and T. Hirano, Zinc homeostasis and
50	1055	signaling in health and diseases: zinc signaling. J. Biol. Inorg. Chem., 2011, 16, 1123-
51 52	1056	1134.
52 53		
54		
55 56		
50 57		
58		
59		
60		

142. C. Hogstrand, Zinc, in Fish Physiology, volume 31A, Metals: Homeostasis and Toxicology: Essential Metals, eds. C. M. Wood, A. P. Farrell, C. J. Brauner, Academic Press, San Diego, 2012, pp. 135-200. 143. R. A. G. Jansen, H. P. Van Leeuwen, R. F. M. J. Cleven and M. A. G. T. Van den Hoop, Speciation and lability of zinc(II) in river waters. Environ. Sci. Technol. 1998, 32, 3882-3886. 144. J. N. Willis and W. G. Sunda, Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Mar. Biol., 1984, 80, 273–279. 145. D. J. Spry, P. V. Hodson and C. M. Wood, Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Can. J. Fish. Aquat. Sci., 1988, 45, 32-41. 146. J. H. Lee, G. F. Birch, T. Creswell, M. P. Johansen, M. S. Adams and S. L. Simpson, Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): a biokinetic model for zinc. Aquat. Toxicol., 2015, 167, 46-54. 147. C. Hogstrand and C. M. Wood, The physiology and toxicology of zinc in fish, in Toxicology of Aquatic Pollution, ed. E. W. Taylor, Cambridge University Press, Cambridge, 1996, pp. 61-84. 148. F. Soldevilla, Metales pesados en el pulpo común (Octopus vulgaris) del banco sahariano (costas NO de Africa). Alimentaria, 1987, 33, 33-37. 149. J. M. Finger and J. D. Smith, Molecular association of Cu, Zn, Cd, and ²¹⁰Po in the digestive gland of the squid Nototodarus gouldi. Mar. Biol., 1987, 95, 87-91. 150. J. Raimundo, C. Vale, R. Duarte and I Moura, Association of Zn, Cu, Cd and Pb with protein fractions and sub-cellular partitioning in the digestive gland of Octopus vulgaris living in habitats with different metal levels. Chemosphere, 2010, 81, 1314-1319. 151. T. Kimura and T. Kambe, The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int. J. Mol. Sci., 2016, 17, 336. 152. T. Kambe, T. Tsuji, A. Hashimoto and N. Itsumura, The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. *Physiol. Rev.*, 2015, 95, 749-784.

Page 43 of 51

1		
2 3	1087	153. A. Viarengo, L. Canesi, M. Pertica and D. R. Livingstone, Seasonal variations in the
4 5	1088	antioxidant defence systems and lipid peroxidation of the digestive gland of mussels.
6 7	1089	Comp. Biochem. Physiol. C, 1991, 100, 187–190.
, 8 9	1090	154. K. Mangold, Octopus vulgaris, in Cephalopod Life Cycles. I: Species Account, ed. P.
10 11	1091	Boyle, Academic Press, London, 1983, pp. 335-364.
12	1092	155. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology. Physiol.
13 14	1093	<i>Rev.</i> , 1993, 73 , 79-118.
15 16	1094	156. S. R. Powell, The antioxidant properties of zinc. J. Nutr., 2000, 130, 14478-1454S.
17 18	1095	157. M. Semedo, M. A. Reis-Henriques, L. Rey-Salgueiro, M. Oliveira, C. Delerue-Matos, S.
19 20	1096	Morais and M. Ferreira, Metal accumulation and oxidative stress biomarkers in octopus
21 22	1097	(Octopus vulgaris) from Northwest Atlantic. Sci. Total Environ., 2012, 433, 230-237.
23	1098	158. S. G. George, B. J. S. Pirie, A. R. Cheyne, T. L. Coombs and P. T. Grant, Detoxication
24 25	1099	of metals by marine bivalves: an ultrastructural study of the compartmentation of
26 27	1100	copper and zinc in the oyster Qstrea edulis. Mar. Biol., 1978, 45, 147-156.
28 29	1101	159. A. Rouane-Hacene, Z. Boutiba, B. Belhaouari, M. E. Guibbolini-Sabatier, P. Francour,
30	1102	C. Risso-de Faverney, Seasonal assessment of biological indices, bioaccumulation and
32	1103	bioavailability of heavy metals in mussels Mytilus galloprovincialis from Algerian west
33 34	1104	coast, applied to environmental monitoring. Oceanologia, 2015, 57, 362-374.
35 36	1105	160. C. Hogstrand and C. Haux, Naturally high levels of zinc and metallothionein in liver of
37	1106	several species of the squirrelfish family from Queensland, Australia. Mar. Biol., 1996,
38 39	1107	125 , 23-31.
40 41	1108	161. C. N. Glover, S. Balesaria, G. D. Mayer, E. D. Thompson, P. J. Walsh and C.
42	1109	Hogstrand, Intestinal zinc uptake in the marine teleosts, squirrelfish (Holocentrus
43 44	1110	adscensionis) and Gulf toadfish (Opsanus beta). Physiol. Biochem. Zool., 2003, 76,
45 46	1111	321-330.
47 48	1112	162. E. D. Thompson, G. D. Mayer, C. N. Glover, T. Capo, P. J. Walsh and C. Hogstrand,
49 50	1113	Zinc hyperaccumulation in squirrelfish (Holocentrus adscenscionis) and its role in
51	1114	embryo viability. PLoS ONE, 2012, 7, e46127.
52 53	1115	163. K. M. Taylor, H. E. Morgan, K. Smart, N. M. Zahari, S. Pumford, I. O. Ellis, J. F. R.
54 55	1116	Robertson and R. I. Nicholson, The emerging role of the LIV-1 subfamily of zinc
56 57 58	1117	transporters in breast cancer. Mol. Med., 2007, 13, 396-406.
59 60		

1		
2	1118	164. C. Hogstrand, P. Kille, M. L. Ackland, S. Hiscox and K. M. Taylor, A mechanism for
4	1119	epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by
5 6	1120	zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3)
7	1121	Riocham I 2013 455 220 237
8 9	1121	<i>Diochem. J.</i> 2013, 4 35, 227-237.
10	1122	165. G. P. Feeney, D. L. Zheng, P. Kille and C. Hogstrand, The phylogeny of teleost ZIP and
11 12	1123	ZnT zinc transporters and their tissue specific expression and response to zinc in
13	1124	zebrafish. Biochim. Biophys. Acta- Gene Struct. Expr. 2005, 1732, 88-95.
14 15	1125	166 E. D. Thompson, G. D. Mayor, P. I. Walsh and C. Hogstrand, Sovuel meturation and
16	1125	100. E. D. Thompson, G. D. Mayer, P. J. Waish and C. Hogstrand, Sexual maturation and
17 18	1126	reproductive zinc physiology in the female squirrelfish. J. Exp. Biol., 2002, 205, 336/-
19	1127	3376.
20 21	1128	167. E. D. Thompson, G. D. Mayer, S. Balesaria, C. N. Glover, P. J. Walsh and C.
22	1129	Hogstrand, Characterization of the yearly reproductive cycle in the female squirrelfish.
23 24	1130	Comp. Biochem. Physiol. A 2003. 134 , 819-828.
25		
26 27	1131	168. A. H. Berg, C. D. Rice, M. S. Rahman, J. Dong and P. Thomas, Identification and
28	1132	characterization of membrane androgen receptors in the zip9 zinc transporter
29	1133	subfamily: I. discovery in female Atlantic croaker and evidence zip9 mediates
30	1134	testosterone-induced apoptosis of ovarian follicle cells. Endocrinology, 2014, 155,
32	1135	4237-4249.
33 34	1126	160 A M Kim S Vogt T V O'Helloren and T K Woodruff Zing availability regulates
35	1150	not from material in material memoralism accurate. Nature Cham Birl 2010 ((74)
30 37	1137	exit from meiosis in maturing mammanan oocytes. <i>Nature Chem. Biol.</i> , 2010, 6 , 6/4–
38	1138	681.
39 40	1139	170. B. Y. Kong, F. E. Duncan, E. L. Que, Y. Xu, S. Vogt, T. V. O'Halloran and T. K.
41	1140	Woodruff, The inorganic anatomy of the mammalian preimplantation embryo and the
42 43	1141	requirement of zinc during the first mitotic divisions. Dev. Dyn., 2015, 244, 935–947.
44		
45 46	1142	171. R. Riggio, S. Filosa, E. Parisi and R. Scudiero, Changes in zinc, copper, and
47	1143	metallothionein contents during oocyte growth and early development of the teleost
48 49	1144	Danio rerio (zebrafish). Comp. Biochem. Physiol. C, 2003, 135, 191-196.
50	1145	172. S. Yamashita, C. Miyagi, T. Fukada, N. Kagara, Y.S. Che and T. Hirano, Zinc
51 52	1146	transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula
53	11/17	organizer Nature 2004 429 298–302
54 55	114/	organizer. 1900 av 1, 727, 270-502.
56		
57 58		
59		

1148	173. G. Weitzel, F. Strecker, U. Roester, E. Buddecke and A. Fretzdorff, Zink im Tapetu
1149	lucidum. Hoppe Seylers Z. Physiol. Chem., 1954, 296, 19-30.

Table 1: Selected examples of trace element hyperaccumulation in animals.

Trace	Species	Description	Tissue	Concentration	Reference
element				mg kg ⁻¹ (mM)	
٨٩	Tharyx marioni	Cirratulid polychaete	Palp	13 048 (174)†	59
Π5	Callopistria floridensis	Insect (moth caterpillar)	Whole body	1 462 (20)	60
	Loligo opalescens	Squid (mollusc)	Digestive gland	8 370 (131)	61
Cu	Ostrea edulis	Oyster (mollusc)	Mantle	$1\ 000^{*}\ (16)^{a}$	62
-	Morone americana	Teleost fish	Liver	1 020* (16)	63
	Plaxiphora albida	Chiton (mollusc)	Radula	98 087 (1756) ^b	64
Fe	Nacella concinna	Limpet (mollusc)	Viscera	11 372 (204) ^c	65
	Molgula manhattensis	Ascidian	Tunic	7 588 (136)	66
Ti	Ascidia aspar	Ascidian	Blood cell	1 552 (30)	67
V	Ascidia gemmata	Ascidian	Blood	17 677 (347)*†	68
v	Perkinsiana littoralis	Polychaete fan worm	Branchial crown	10 461 (205)	69
	Octopus vulgaris	Octopus (mollusc)	Digestive gland	1 450 (22)	70
Zn	Ostrea sinuata	Oyster (mollusc)	Mantle	4 760 (73)	71
	Holocentrus rufus	Teleost fish	Liver	2 631 (40)*	72

4 1151

1152 Values are reported as mean values of dry weight concentrations (except: \dagger which indicates maximal or single measured concentration and \ast 1153 which indicates wet weight). a = estimated value from manuscript figure; b = element in biomineralized form; c = value may include radula.

1154 Figures

Figure 1: Diagrammatic representation of barrier importance in a marine osmoregulatory (A)
or marine osmoconformer (B), and a demonstration of the relationship between epithelial
permeability and Zn uptake in marine crabs in 100% seawater (data from ref. 31).

Facultative trace element hyperaccumulation in animals is reviewed, examining mechanisms of uptake and accumulation, and biological roles.