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Abstract. We study the problem of verifiable computation (VC) in
which a computationally weak client wishes to delegate the computation
of a function f on an input x to a computationally strong but untrusted
server. We present new general approaches for constructing VC proto-
cols, as well as solving the related problems of program checking and
self-correcting. The new approaches reduce the task of verifiable com-
putation to suitable variants of secure multiparty computation (MPC)
protocols. In particular, we show how to efficiently convert the secrecy
property of MPC protocols into soundness of a VC protocol via the use
of a message authentication code (MAC). The new connections allow us
to apply results from the area of MPC towards simplifying, unifying, and
improving over previous results on VC and related problems.
In particular, we obtain the following concrete applications: (1) The first
VC protocols for arithmetic computations which only make a black-box
use of the underlying field or ring; (2) a non-interactive VC protocol
for boolean circuits in the preprocessing model, conceptually simplify-
ing and improving the online complexity of a recent protocol of Gen-
naro et al. (Cryptology ePrint Archive: Report 2009/547); (3) NC0 self-
correctors for complete languages in the complexity class NC1 and var-
ious log-space classes, strengthening previous AC0 correctors of Gold-
wasser et al. (STOC 2008).

1 Introduction

In the verifiable computation (VC) problem, we have a computationally weak
device (client) who wishes to compute a complex function f on an input x. The
client is too weak to compute f on its own and so it delegates the computation
to a computationally strong server. However, the client does not trust the server
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and therefore would like to be able to verify the correctness of the computation
without investing too much resources. One may also consider a stronger variant
of the problem in which, in addition to the ability to detect arbitrary errors,
the client should be able to correct the errors as long as the server is somewhat
correct with respect to some predefined distribution over the inputs. This cor-
responds to the scenario where the server, or alternatively a program locally
run by the client, makes “unintentional” errors on some fraction of the inputs
(e.g., due to implementation bugs). Still, a malicious server should not be able
to fool the client to accept an erroneous answer. We refer to this variant as the
correctable verifiable computation (CVC) problem.

VC and CVC are fundamental problems which were extensively studied in
various settings, originating from the early works on interactive proofs [4, 21]
and program checking [7, 9, 28]. Recent advances in technology further moti-
vate these problems. On the one hand, computationally weak peripheral devices
such as smart phones and netbooks are becoming increasingly common; on the
other hand, the increasing use of distributed computing over the internet also
makes strong servers more commonly available. Indeed, the growing volume of
outsourcable computation in the form of “cloud computing” or in projects like
SETI@Home has attracted a renewed interest in the VC problem, and a consid-
erable amount of research was devoted to these problems in the last few years [22,
18–20, 15, 11]. See [20, 15] for further discussion of applications as well as a survey
of related work.

In this work, we present new general approaches for solving the VC and
CVC problems, as well as the related problems of program checking and self-
correcting. Our approaches employ variants of secure multi-party computation
(MPC), converting their secrecy features into soundness by making additional use
of basic cryptographic primitives such as message authentication codes (MACs)
and symmetric encryption. By instantiating these general approaches we obtain
several improvements over previous results in this area. We stress that the idea of
employing secrecy in the context of verification is not unique to our work. This
idea can be traced back to the first works on interactive proofs and program
checking [4, 21, 7, 28] and is also implicit in more recent works in the area [18,
19, 15, 11]. Our work provides new approaches for converting secrecy into sound-
ness that have advantages of generality, efficiency, and simplicity over previous
approaches.

1.1 Background

Before introducing our new approaches to VC, we review some of the relevant
notions and previous approaches.

MPC and related primitives. A protocol for secure two-party computation [32,
17] allows two parties, each holding a private input xi, to compute a function on
their joint input without revealing any additional information to each other. That
is, the first (resp., second) party learns the output of some predefined function
f1(x1, x2) (resp., f2(x1, x2)) without learning any additional information about



x2 (resp., x1). Unless otherwise mentioned, we only require computational secu-
rity against semi-honest parties who operate as instructed by the protocol (but
may try to learn additional information from the messages they observe), and
make no secrecy or correctness requirements in the presence of malicious parties.

We will be interested in secure protocols in which one of the parties is re-
stricted in its computational resources in a way that prevents it from computing
the output on its own, even when given the entire input. Such restrictions may
include bounds on sequential or parallel time (either with or without preprocess-
ing), on space complexity, on arithmetic circuit complexity, etc. We will refer to
the weak party as the client and to the strong party as the server. In contrast
to the typical study of feasibility questions in the area of secure computation,
in the context of restricted clients it makes sense to consider even functions for
which only the client holds an input, as well as protocols for such functions
with perfect or statistical rather than computational security. (The existence of
statistically secure two-party protocols can be ruled out for almost all natural
functions which depend on both inputs.)

A client-server protocol in which only the client has an input and gets an
output is called an instance-hiding (IH) protocol [1, 5]. For simplicity, we will
mainly restrict the attention to one-round (or two-message) IH protocols which
consist of a single “query” from the client to the server followed by a single
“answer” from the server to the client. A natural extension to multi-round IH
protocols is deferred to the full version.

Central to this work is a different (and in some sense more stringent) variant
of client-server protocols, in which only the client has an input x but both parties
learn the same output f(x). One-round protocols of this type coincide with the
notion of randomized encoding from [23, 3]. A randomized encoding (RE) of f

is a function f̂(x; r) whose output on a uniformly random and secret r can
be used to decode f(x) but reveals no additional information about x. In the
corresponding client-server protocol, the client picks r at random and sends the
encoded output f̂(x; r) as a query to the server; the server decodes the output
f(x) and sends it back as an answer to the client. In the full version, we discuss
applications of an interactive variant of this primitive, referred to as interactive
randomized encoding (IRE).4 RE and IRE protocols can be easily converted into
IH protocols with the same number of rounds by modifying the function f to
compute an encryption of the output under a secret key selected by the client.
A similar transformation in the other direction seems unlikely. As a notable
example, the existence of a fully homomorphic encryption scheme [16] implies
a one-round IH protocol for any polynomial-time computable f in which the
client’s time complexity grows only linearly with the input length, whereas the
existence of similar RE protocols is an open problem.

Note that for all of the above types of client-server protocols, we are not
concerned with protecting the privacy of the server, since the server has no

4 This generalization is somewhat subtle in that it involves a nontrivial security re-
quirement against a malicious server; see full version for details.



input. We can therefore assume, without loss of generality, that an honest server
is deterministic.

The traditional approach for VC. The literature on program checking and in-
teractive proofs already makes an implicit use of a general transformation from
IH to VC.5 For simplicity, we restrict the attention to one-round IH protocols.
The basic idea is roughly as follows. The client uses the IH protocol to compute
f(x) while hiding the input x from the server, except that it randomly mixes the
“real” IH query with an appropriately-distributed random query whose correct
answer is somehow known (more on this below). The client accepts the output
obtained from the real IH instance only if the server’s answer on the dummy
query is identical to the precomputed answer. By the hiding property, the server
cannot distinguish the real query from the dummy one, and so a cheating server
will be caught with probability 1

2 . (The soundness can be amplified via repeti-
tion.) More formally, this approach requires two building blocks: (1) a one-round
IH protocol, in which the client efficiently maps x to a query x̂ such that, given
the server’s answer g(x̂) (together with the client’s randomness), it is possible
to efficiently recover f(x); and (2) a solved instance generator (SIG): an efficient
way for generating a random instance r for g (under the distribution defined by
the client’s query in the IH scheme) together with its solution g(r).

We summarize the advantages and disadvantages of the SIG+IH approach.
On the positive side, IH is a relatively liberal notion which is implied by secure
computation in the semi-honest model, and SIG is easy in many cases, e.g.,
it is given “for free” if polynomial-time preprocessing is allowed before each
real query. (See [11] for a the usefulness of this approach when applied with
IH based on fully homomorphic encryption, and [15, 11] for the further use of
fully homomorphic encryption towards reusable preprocessing.) On the negative
side, SIGs are not always easy to construct (for instance, the absence of parallel
SIGs significantly complicated the parallel checkers of [19] and prevented [19]
from achieving highly parallel correctors for, say, log-space complexity classes).
Another disadvantage of the SIG+IH approach has to do with the overhead
of soundness amplification: in order to achieve soundness error of 2−τ , the VC
protocol needs to invoke the IH and SIG protocols Ω(τ) times.

1.2 Our solutions

Motivated by the above disadvantages of the traditional approach, we present
two new approaches for transforming variants of MPC into VC or CVC.

Construction 1: VC from RE+MAC. Our first approach is based on a novel com-
bination of an RE (or IRE protocol) with a private-key signature scheme (also
known as message authentication code or MAC). Unlike previous approaches,
we employ secrecy in order to hide the MAC’s secret key, rather than the inputs

5 The following formulation is similar to the one from Section 1.2 of [18]; see [9, 14,
19, 11] for other variants and applications of this approach.



of the computation. The idea is as follows: Given an input x, the client asks the
server to compute y = f(x) and, in addition, to generate a signature on f(x)
under a private key k which is chosen randomly by the client. The latter request
is computed via an RE protocol that hides the private key from the server. More
precisely, the client who holds both x and k, invokes an RE such that both par-
ties learn the function g(x, k) = MACk(f(x)). The client then accepts the answer
y if and only if the result of the protocol is a valid signature on y under the
key k. The soundness of the protocol follows by showing that a cheating server,
which fools the client to accept an erroneous y∗ 6= f(x), can be used to either
break the privacy of the RE or to forge a valid signature on a new message.
For this argument to hold, it is crucial for the RE to be secure in the follow-
ing sense: a malicious server should not be able to force an erroneous output
which violates privacy; that is, one should be able to simulate erroneous outputs
solely based on the correct outputs. In the case of RE (where there are only
two messages), this requirement follows automatically from the basic secrecy re-
quirement against a semi-honest server. In the interactive setting, we show that
such useful IRE protocols can be extracted from various MPC protocols that
appear in the literature.

Note that the above approach eliminates both of the disadvantages of the
SIG+IH approach mentioned above, at the expense of replacing IH with the
stronger RE primitive and (slightly) increasing the complexity of the function f
by applying a MAC computation to its output.

Construction 2: CVC from RE + One-time pad. The previous construction does
not seem to apply to the case of CVC. Our second construction yields a CVC
protocol and, as can be expected, is somewhat less efficient. The starting point is
the well-known CVC version of the SIG+IH approach [9]. In this version, dummy
IH queries obtained via SIG are mixed with (randomized) IH queries for the real
instance. The client first verifies that most of the dummy queries were answered
correctly, and then outputs the majority vote of the outputs obtained from the
real answers. Our main goal here is to eliminate the need for SIG primitive.
The idea is to generate the dummy queries by applying the IH to some default
input x0 whose image y0 = f(x0) is known, and compare the outputs obtained
from these dummy queries to the known output y0. (The fixed value of y0 can be
“wired” into the description of the client and used in all subsequent invocations.)
By the hiding property the messages of the client are distributed according to
some fixed universal probability distribution D which does not depend on the
actual input. By using standard concentration bounds, one can show that the
client will correct the errors of a “buggy” (rather than malicious) server which
doesn’t err too much over messages drawn from D. Intuitively, the privacy of
the IH protocol also prevents a malicious server from cheating, as such a server
cannot distinguish between a “dummy” query to a “real” one, and therefore a
cheating behavior will be be detected (whp). However, this intuition is inaccurate
as, in general, even if the server cannot distinguish dummy queries from real ones,
it might be able to apply the same strategy to all the queries such that errors will



be generated only in the real queries.6 Fortunately, this can be fixed by requiring
an additional sensitivity property: any erroneous message of the server should
lead to an erroneous answer of the client. To achieve this property, we combine
an RE protocol with a one-time pad encryption scheme. That is, we employ an
RE for the function g(x, k) = k ⊕ f(x) where k is used as a one-time pad. The
use of one-time pad transforms the RE to a “sensitive” IH.

Compared to the traditional approach, the above approach eliminates the
need for SIG at the expense of strengthening the IH primitive.

2 Applications

By instantiating our generic approaches, we derive new constructions of VC and
CVC protocols in several settings.

2.1 Online/offline non-interactive VC

In the online/offline setting [20, 15], the client can afford to invest a lot of com-
putational resources in a preprocessing phase before seeing the actual input x,
but only a small amount of computational resources after x is known. (Imagine
a smart card which is initialized in a secure environment and later operates in
a hostile environment with an untrusted server.) Since communication may also
be limited, especially for weak devices, we would like the protocol to be non-
interactive. That is, in the offline phase the client should perform some (possibly
expensive) computation and send the result (the “public-key”) to the server or
publish it somewhere.7 In the online phase, when the client obtains its input x,
it should send a single computationally-cheap message to the server. The server
then computes the result without any intermediate interaction with the client,
which in the meantime can be disconnected from the network. At the end of the
computation, the server publishes an answer. Based on this answer, the client
recovers the result y = f(x) or announces an error in the case of a cheating
server.

We would like to minimize the client’s online time complexity ideally to be
only linear in the input and output length of f . We also require the complexity
of the server to be polynomial in the time complexity of f . There are only
few known solutions that yield almost optimal non-interactive VCs (NIVCs)
for general Boolean functions. These include the constructions of Micali [30]

6 Consider, for example, an IH in which a client whose input equals to the all zero
string, ignores the server’s answers and outputs f(0). A CVC protocol which makes
use of such an IH together with x0 = 0 can be trivially broken by a malicious server
which sends erroneous answers.

7 In a concurrent and independent work, Chung, Kalai, and Vadhan [11] obtain a
qualitatively stronger type of non-interactive VC protocols, where the offline pre-
processing phase can only involve a local computation performed by the client with
no additional interaction. The applications we present only apply to the weaker
model of non-interactive VC, but obtain better online efficiency in this model.



in the random oracle model, the construction of Goldwasser et al. and Kalai
and Raz [20, 26] for low-depth circuits, and the recent construction by Gennaro
et al. [15] for polynomial-size Boolean circuits which relies on the existence of
one-way functions.

While these constructions provide good solutions for binary computations,
they suffer from large overhead in the case of arithmetic computations. Indeed,
a client who wishes to delegate a computational task which should be performed
over non-binary domains such as the integers, finite-precision reals, matrices, or
elements of a big finite ring, has no choice but to translate the computation
into a binary circuit and then apply one of the above solutions. This results in
large computational and communication overhead which heavily depends on the
exact structure of the underlying ring.8 A much more satisfactory solution would
be to describe the computation in an arithmetic model in which computational
operations are performed over some ringR and then employ an arithmetic NIVC.
More formally, we would like to have a protocol in which both the server and the
client only have a black-box access to R. This black-box access enables the client
and server to perform ring operations and sample random ring elements, but the
correspondence between ring elements and their identifiers (or even the exact
size of the ring) will be unknown to the algorithms. The black-box ring model
allows to abstract away the exact structure of the underlying ring, and thus to
obtain protocols in which the number of ring operations does not depend on the
actual algebraic structure of R. Unfortunately, all the above constructions do
not seem to achieve such a result. The reason is that the main tools employed
by these constructions (i.e., PCP machinery in the case of [30, 20], and Yao’s
garbled circuit [32] in the case of [15]) do not seem to work in the arithmetic
black-box model, even for the special case of black-box fields.

Our results. We obtain NIVCs in the black-box ring model for arithmetic branch-
ing programs [6] (ABPs) which are the arithmetic analog of log-space counting
classes.9

Theorem 1 (informal). Assuming the existence of one-way functions, there
exists a NIVC in the BBR model with perfect completeness and computational
soundness error neg(τ) where τ is the security parameter. The complexity of the
offline phase and the server’s complexity are poly(s, τ), the time complexity of
the online phase is O(nτ) at the query step and O(τ) at the verification step,
where n is the input length, and s is the size of the ABP.

To the best of our knowledge, this is the first construction of VC in the black-
box arithmetic model, even for the case of black-vox fields and even if many
rounds of interaction are allowed. The main ingredient is a new construction
of arithmetic REs with low online complexity (which is based on [24, 12]). The

8 For example, even in the case of finite fields with n-bit elements, the size of the best
known Boolean multiplication circuits is ω(n log n); the situation is significantly
worse for other useful rings, such as matrix rings.

9 Such programs are quite expressive and are capable of emulating arithmetic formulas.



NIVC is obtained by plugging this RE (together with black-box arithmetic MAC)
into our RE+MAC approach.

Optimized and simplified NIVC for Boolean circuits. As an additional appli-
cation, we simplify the recent online/offline NIVC of Gennaro, Gentry and
Parno [15] as well as improve its online efficiency. Specifically, GGP constructed
a NIVC for every polynomial-size circuit f : {0, 1}n → {0, 1}m with low online
complexity as well as low amortized offline complexity. This is achieved in two
steps. First, a basic NIVC with low online complexity is constructed by relying
on special properties of Yao’s garbled circuit (GC) construction and, then, a
fully homomorphic encryption scheme is used to reduce the amortized complex-
ity of the offline phase. Our version of the basic protocol follows immediately by
instantiating the RE+MAC approach with computationally-sound RE based on
GC [2]. This leads to the following theorem:

Theorem 2 (informal). Assuming the existence of one-way functions, every
function f : {0, 1}n → {0, 1}m of circuit size s, can be realized by a NIVC with
perfect completeness, computational soundness error of neg(τ) + 2−σ (where τ
and σ are computational and statistical security parameters, respectively), and
complexity as follows. Client: Offline complexity O(s · τ + σ), and online com-
plexity of O(n · τ) at the query step, and O(m + σ) at the verification step.
Server: complexity of O(s · τ + σ).

This theorem simplifies and slightly improves the efficiency of the basic GGP
scheme. Simplification comes from the fact that we do not need to rely on any
specific properties of Yao’s encoding other than its standard security and the
well known ability to break the computation of the GC into an offline phase
and a cheap online phase. Moreover, we also get an efficiency advantage: in the
online phase of the GGP protocol the client needs to get an encryption key for
each bit of the output. Hence, both the communication and computation com-
plexity at the verification stage are O(mτ) where τ is a computational security
parameter. In our case, the client needs to get (in addition to the output) only
a short certification string of size σ, where σ is a statistical security parameter,
and so the complexity is O(m + σ). This difference can be significant for com-
putations in which the output is much longer than the input (and shorter than
the circuit size). For instance, think of image processing algorithms which return
“enhanced” versions of low-quality pictures or movies.10 Finally, we observe that
the second step of the [15] construction in which the offline complexity is be-
ing amortized forms a general transformation and so it can be used to amortize
the offline stage of our construction as well. (A similar observation was made
independently and concurrently by [11].)

10 One thing to note, though, is that if the client already knows a candidate y for f(x)
(obtained either from the server or from some other source) then the GGP approach
can be applied for the boolean function g(x, y) which verifies that y = f(x). In
such a case, the communication to the client will only be m + O(τ), but the online
communication to the server grows asymptotically when y is longer than x.



Program checking and correcting. In the setting of program checking [7,
9], one would like to have a VC protocol for a function f in which the power of
the honest server is limited: it can only compute the function f itself. That is,
the honest server always responds to a message q by the message f(q). Such a
VC protocol is called program self-checker.11 Indeed, a checker can be used to
check the correctness of a possibly faulty program for f on a given input, by
letting the program play the role of the server. Similarly, a CVC in which the
server can be implemented by f is called a self-tester/corrector pair, as it allows
to test whether a given program is not too faulty, and if so to correct it.

Minimizing the parallel complexity. Rubinfeld [31] initiated the study of the par-
allel complexity (circuit depth) of program checkers and correctors, and showed
that some non-trivial functions can be checked by AC0 checkers (i.e., con-
stant depth circuits with AND and OR gates of unbounded fan-in). Goldwasser
et al. [19] proved several surprising results about the parallel complexity of pro-
gram checking and correcting. Among other things, they showed that a rich
family of combinatorial and algebraic languages, namely, all the complete lan-
guages in the complexity classes NC1,⊕L/poly,ModkL/poly, can be checked in
NC0 (i.e., by constant depth circuits with bounded-fan in gates) and corrected
in AC0.12 We improve this result by showing that all these languages can be
also corrected in NC0:

Theorem 3 (informal). Every language which is complete for one of the com-
plexity classes NC1,⊕L/poly,ModkL/poly under NC0 Karp reductions can be
checked, tested and corrected by an NC0 client with perfect completeness and
(arbitrarily small) constant statistical soundness error. Correction succeeds with
arbitrary large constant probability (say 2/3) as long as the server’s error prob-
ability is bounded away from 1/2 (e.g., 1/3).

Furthermore, our corrector (and checker) only makes a constant number of
calls to the program in a non-adaptive way. This is contrasted with the con-
structions of [19] which make an adaptive use of the program even in the case of
checkers. (This difference seems to be inherent to the “composition approach”
of [19] which breaks the computation to subroutines and checks them by sub-
checkers.) As a concrete example of our improvement, consider the function Det
which computes the determinant of an n×n matrix over a field Fp of fixed prime
order. Since Det is complete for the class ModpL/poly [29], we can get an NC0

tester/correcter for the determinant over any fixed finite field which makes a
constant number of calls to the program. Previous correctors either had poly-
nomial depth [9], or were implemented in AC0 and made large (non-constant)
number of calls to the program [19]. (See [19, Table 1]). Our constructions are
obtained by instantiating the RE+OTP approach with the NC0 REs of [3].
11 In fact, the notion defined here is slightly stronger than the original definition of [7],

and corresponds to adaptive checkers as in [8].
12 Recall that there is a considerable gap between these two classes, as in NC0 circuits

each bit of the output depends only on a constant number of input bits; thus, an
NC0 circuit cannot compute even an n-bit AND gate.



Additional properties. We mention that most of our protocols satisfy additional
useful properties. For example, we can add input-privacy and allow the client
(or checker) employ the program without revealing its input. In some cases, we
can also add a form of zero-knowledge property: the client learns only the value
f(x) and no other additional information that she cannot compute by herself
using her own weak resources. This may be useful when the server is getting paid
for his work and does not want to be abused and supply additional computation
services for free during the VC protocol. These extensions are deferred to the
full version.

3 Verifiable computation from RE and MAC

3.1 Definitions

Message Authentication Codes. A one-time message authentication code (MAC)
is an efficiently computable function MAC : M×K → C which maps a message
x ∈M and a random secret key k ∈ K to a signature σ = MACk(x) ∈ C. A MAC
is statistically secure with error ε if for every x ∈M and every computationally
unbounded adversary A, Prk[A(x, MACk(x)) = (y, MACk(y)) ∧ (y 6= x)] ≤ ε.

Verifiable Computation. A verifiable computation protocol (VC) for a function
f with soundness error 0 ≤ ε ≤ 1 is an interactive protocol between a client C
and a server P such that (1) perfect completeness13: for every input x the client
outputs f(x) at the interaction (C, P )(x) with probability 1; and (2) soundness:
for every input x of the client and every cheating P ∗, we have Pr[(C, P ∗)(x) /∈
{f(x),⊥}] ≤ ε, where ⊥ is a special “rejection” symbol and the probability is
taken over the coin tosses of the client C. If P ∗ is restricted to be a polynomial-
size circuit then the protocol is computationally sound.

Randomized Encoding [23, 3]. A randomized encoding (RE) for a function f is a
non-interactive protocol in which the client uses its randomness r and its input
x to compute a message ŷ = f̂(x; r) and sends it to the server, who responds
by applying a decoder algorithm B to ŷ, recovers f(x) and sends it back to
the client. The protocol should satisfy: (1) perfect completeness (as in VC); and
(2) ε-privacy : There exists a simulator S∗ such that for every x the distribution
S∗(1|x|, f(x)) is at most ε-far (in statistical distance) from the distribution of the
client’s message f̂(x; r). Computational privacy is defined by restricting S∗ to be
a polynomial-size circuit and replacing statistical distance with ε-computational
indistinguishability.

3.2 Our reduction

Our protocol is described in Figure 1.
13 Due to space limitations, we always assume that protocols have perfect completeness.

Our results hold in the more general setting where protocols have some completeness
error δ.



– Primitives: MAC MAC, and RE ĝ for g(k, x) = MACk(f(x)).
– Client’s input: x ∈ {0, 1}n.

1. Client: Client chooses a random key k for MAC, and random coins r and sends
x together with the encoding ĝ((k, x); r).

2. Server: Applies the decoder of ĝ((k, x); r) and sends the result z together
with y = f(x).

3. Client: Accepts y if MACk(y) equals to z.

Fig. 1. A verifiable computation protocol for f based on a RE for g(k, x) = MACk(f(x)).

The following lemma (whose proof is deferred to the full version) holds both
in the statistical and computational setting:

Lemma 1. Suppose that the RE and MAC have privacy errors of ε and ε′,
respectively. Then, the above protocol is a VC for f with soundness error ε + ε′.

Proof (sketch). Fix a cheating server P ∗ and an input x∗. Let α be the proba-
bility that the client accepts some y 6= f(x∗). We show that α ≤ ε+ ε′. Consider
the following attack on the MAC. Given x∗ we compute f(x∗) and ask for a sig-
nature MACk(f(x∗)), where k is an unknown uniformly chosen MAC key. Then,
we will use the RE simulator to simulate the encoding of MACk(f(x)) up to dis-
tance ε and send the result together with x to P ∗. Finally, output the pair (y, z)
generated by P ∗. Since the view of the adversary is ε-close to the view of P ∗ in
a real interaction, the attack succeeds with probability at least α− ε, which by
the security of the MAC should be at most ε′. It follows that α ≤ ε + ε′.
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