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Abstract

We propose the combination of a robotics

ontology (KnowRob) with a linguistically

motivated one (GUM) under the upper on-

tology DUL. We use the DUL Event, Situ-

ation, Description pattern to formalize rea-

soning techniques to convert between a

robot’s beliefstate and its linguistic utter-

ances. We plan to employ these techniques

to equip robots with a reason-aloud abil-

ity, through which they can explain their

actions as they perform them, in natural

language, at a level of granularity appro-

priate to the user, their query and the con-

text at hand.

1 Introduction

It is a sunny afternoon in the not too distant future,

and Elroy wants to play ball in the garden with

Rosie the robot. He finds her moving about in the

dining room and asks “What are you doing?”. “I

am busy”, Rosie answers, politely but suggesting

she doesn’t want to be interrupted right now. Dis-

appointed, but not wanting to let go just yet, Elroy

presses on. “What are you doing?” he asks again.

“I am setting the table,” Rosie answers. Still not

satified he repeats his question again and Rosie

explains “I am bringing cutlery and plates to the

table and currently looking in this cupboard for a

spoon and fork for Judy. They must not be plastic,

for she is allergic to it.”

The little scene above shows an interaction be-

tween a human and a household robot where the

appropriate level of granularity with which the
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robot should describe its task varies greatly as the

dialog situation evolves. Generally, such interac-

tions cannot be restricted to command-giving (by

the human) and command-taking (by the robot).

Even a specialized device, e.g. a coffee machine,

offers some feedback about its state. Indeed,

the spectrum of possible interactions can be quite

complex: the robot might ask for a way around

an obstacle it encountered in a task, discuss user

preferences and task schedules, take initiative in

asking for parameters of upcoming tasks, or ask

the users about their activities, as these will affect

the robot’s task planning and execution.

Compared to more complex situations, the one

in our example scene seems simple, but it never-

theless captures an aspect that will be important

for the interlocutionary capabilities of robots: the

ability to interpret events and to describe them un-

derstandably, at a level of granularity appropriate

for the user and their query. This requires integrat-

ing heterogeneous forms of knowledge, such as

records of sensor data, representations of activities

at different abstraction levels, and theories about

the environment and the interlocutionary partners.

For this undertaking, we envision a reason-

aloud capability for robotic agents, analogous to

human think-aloud. Humans are quite capable

of reflecting overtly on their actions and describ-

ing them in parallel to their execution, which is

why the think aloud protocol has become widely

used in numerous studies in cognitive science,

psychology and human-computer interaction (van

Someren and Barnard, 1994). For this a situated

artificial agent must combine knowledge of the ac-

tivities at hand with the knowledge required to ex-

press them declaratively.
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2 Approach

Our approach is to extend an Ontology for Every-

day Activities, originally developed as part of the

EASE project in robotics (Beetz et al., 2018). We

base this extended ontology on the principles pro-

posed by Masolo et al. using the DOLCE+DnS

Ultralite ontology (DUL) as an overarching foun-

dational framework (Masolo et al., 2003; Mascardi

et al., 2010). The purpose of the ontology is to ex-

tend the KnowRob ontology to support more nat-

ural, commonsense interactions concerning every-

day activities in robotics. Specific branches of the

KnowRob knowledge model pertaining to every-

day activities (Beetz et al., 2018), such as those in-

volved in table setting, have already been aligned

to the DUL framework. Additional axiomatization

that is beyond the scope of description logics is

integrated by means of the Distributed Ontology

Language (Mossakowski, 2016). The extension

we consider in this paper is for adding language

generation capabilities, to which end we align the

linguistically motivated ontology GUM (Bateman

et al., 2010), and its extension to spatial concepts,

to DUL and the EASE ontology.

The key advantage of this ontological alignment

via DUL is first and foremost a bridge between the

KnowRob system, a mature knowledge processing

system for robotics (see section 3) and language

generation software that uses GUM representa-

tions, such as KPML (Bateman, 1997). Using

the DUL-specific Descriptions and Situations pat-

tern, we can employ these to supply concepts and

reasoning methods for the problem of interpret-

ing Events into Situations and constructing

Descriptions for them (see section 4.1).

We will only look at command-taking and the

robot performing a “reasoning aloud” (analogous

to human “think aloud”) in this paper. We hope

the reasoning techniques enabled by our approach

will lay a scalable base for future work on more

complex interactions, e.g. dialogical negotiating

when activities conflict, but we stress that a “rea-

soning aloud” capability can be useful on its own.

It shows understanding on the robot’s part of the

task it performs, and makes the robot itself more

understandable to the user.

3 KnowRob and KPML

KnowRob (Beetz et al., 2018) is a software system

to integrate and reason with a variety of robotics

knowledge sources. Its interface is a database

query system via Prolog predicates, providing a

uniform way to access the reasoning mechanisms

underneath. These mechanisms can, however, be

varied by employing an approach called computa-

bles which allows for predicates to map to and take

results from functions appropriate for a task.

In this way, KnowRob can do hybrid reasoning

on symbolic data - which it queries or infers from a

logical database - as well as raw data - such as sen-

sor readings and log files. Reasoning mechanisms

can make use of logical axioms, but also perform

collision or visibility testing in an environment

and draw on inverse kinematics, physical simula-

tion, etc. To handle uncertainty, KnowRob uses

probabilistic, first-order relational models. These

models are intended to capture general principles

about similar objects. For example, they may rep-

resent a probability distribution on where to look

for an item, or where to store it in a kitchen, given

its type.

To handle environment dynamics, the

KnowRob ontology includes some concepts

for Actions and their Effects. We have extended

the ontology’s coverage in this respect and brought

it into alignment with DUL. Also, the KnowRob

ontology defines concepts that have been used

to construct what are termed within the EASE

project as NEEMS (Narratively Enabled Episodic

Memories), which are comprehensive records of

a robot’s activity: this includes what the robot

has observed through its sensors, how it acted in

the world, its task tree (from which a hierarchy

of intentions is discernible) and the execution

status of tasks. KnowRob contains predicates to

select and reason with Events recorded in the

NEEMS, including temporal calculi. NEEMS

were intended as data collection for learning, to

improve robot performance. Expert users can

employ them to debug the robot. On their own

however, they are too large and incomprehensible

for the average user to handle, making natural

language techniques highly relevant.

For generating comprehensible and appropriate

language we propose to employ KPML. This sys-

tem offers a well-tested platform for grammar en-

gineering that is specifically designed for natu-

ral language generation (Reiter and Dale, 2000).

KPML employs the use of large-scale gram-

mars written with the framework of Systemic-

Functional Linguistics (SFL). The employment of

SFL enables us to include linguistic phenomena
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which are important for the generation of natural

texts alongside the propositional content that is to

be expressed (Bateman, 1997).

In the following, we will outline how the re-

spective interleaving of the symbolic layers of

KnowRob and the ontological model of GUM via

DUL facilitates crossing the bridge from a robot

executing particular actions to talking about them

in real time. As stated before, we also are work-

ing on using the same bridge to enable the robot to

understand linguistic input, i.e. instructions.

4 From Language to Beliefstate– and

back again

4.1 Event, Situation, Description

We will first summarize a few DUL concepts that

are central to our approach. Events are either

Processes or States, in which several ob-

jects may participate. An Event is related to one

or more Situations, which are views on (or in-

terpretations of) an Event. A Situation sat-

isfies, or is consistent with, a Description. As

an example, a robot’s movements and the contacts

between objects that they cause would be events.

A situation would be the robot executing a plan for

table setting. The table setting plan itself would be

the description consistent with the situation.

A robot’s knowledge cuts across all these dis-

tinctions. The robot causes, observes, and records

events as they happen. It may be situated as ex-

ecuting a task, or interacting with a user towards

some purpose. And it has theories of the environ-

ment around itself, e.g. action, environment, and

user models, as well as higher-level plans.

Most generally, communication between user

and robot involves the two exchanging descrip-

tions, for which we identify two problems:

• command/inform: the robot receives a lin-

guistic description. It creates new descrip-

tions and situations as appropriate so as to up-

date its belief state about the world or begin

executing a requested task.

• reason aloud: the robot has a record of events,

a representation of the situations it is in,

and various descriptions. It summarizes this

knowledge into a description, to answer a

query at an appropriate level of granularity,

without overwhelming the user.

The purpose of our combined ontology is to en-

able reasoning techniques to bridge these conver-

sions: events to situations, and situations to de-

scriptions. All the more specific components are

consequently related to the DUL backbone.

4.2 Events ↔ Situations

The direction especially relevant for us here is go-

ing from events to situations that interpret them.

The opposite, from situations to events, means

simply that the robot causes events in the world ac-

cording to some chosen plan. For this purpose, we

define several classes of situations in our ontology,

with restrictions to specify when it is appropriate

to use the situation as an interpretation for the set

of events. Several situations may be appropriate to

interpret a set of events. Situations include:

• an agent (human/robot) acting on inanimate

objects, e.g. ‘Actor Creates Something’, ‘Ac-

tor Affects Something’, ‘Resource Absent’.

• human-robot interaction, e.g. ‘Command Is-

sued’, ‘Availability Query’.

• inanimate objects acting on each other, e.g.

‘Stable Placement’, ‘Physical Interaction’.

Usually, choosing an interpretation when the

robot is the only active agent in the events is

straightforward; the robot “knows” what its task

tree is, i.e., what it wants to do, because for the

robotic system we use the programs it runs are se-

mantically annotated with goals.

Finding an appropriate situation in other cases

either implies guessing the other agent’s inten-

tions, for which probabilistic reasoning or simula-

tion can be used to find the most likely intentions

given the observed evidence, or, if there is no ac-

tive agent in the event, parsing an event timeline

according to a grammar of situations (cf. (Beßler

et al., 2018b) for an action parser using the DUL

and KnowRob ontologies).

4.3 Situations ↔ Descriptions

We will first look at describing a situation to the

user. Some situation classes in our ontology have

unique description correspondents, e.g., “Actor

Creates Something” has GUM’s “CreativeMate-

rialAction”, while others may define, via restric-

tions, subsets of descriptions applicable to them.

To construct description individuals – filling in

semantic roles – we use a method employed in

KnowRob for assembly planning (Beßler et al.,

2018a) which checks that an individual asserted
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to belong to a class actually respects restrictions

placed on that class, in particular whether it is

linked to other individuals by appropriate object

properties. If this is not the case, the method

creates new individuals and relations as needed.

Restrictions on fillers for a description’s semantic

frame roles can be written in SWRL.

We will also investigate reasoning methods to

update the interaction situation in the robot’s be-

liefstate based on user utterances. These will

be semantically analyzed and interpreted as com-

mands or queries. For commands, robot programs

will be constructed using blocks from a library of

basic actions. Query answering involves the event-

situation-description bridges described previously.

As an example of how our approach is intended

to work, consider the following scenario: the robot

has “setting the table” as its top-level task, and it

knows this task is intended to prepare another task

(“eating”) to be done by other agents. The cur-

rent subtask the robot is performing is “picking” a

spoon. Note, mechanisms to represent and reason

about task trees are already in place in our knowl-

edge processing system.

Suppose the robot decides to report that it

is “setting the table” , which is a particular type of

situation captured by a broad situation concept

AgentAffectsSomething. Our ontological character-

ization is that a AgentAffectsSomething individual

satisfies some gum-DispositiveMaterialAction, so we

create an individual of this latter type to describe

what the robot is doing.

Individuals of type gum-DispositiveMaterialAction

should obey certain restrictions however. One

such restriction is such an individual should have

an actor that is some GUMThing, and our newly cre-

ated individual has no such information attached

yet. To enforce this restriction, an agenda item is

generated to create and look for a suitable actor,

which in this case will be a description of the agent

of the “setting the table” situation.

Where needed one can go beyond restric-

tions placed on descriptions in the GUM.

For example, suppose we want the robot to

say why it is “setting the table” . In this case,

we add a new restriction on the newly cre-

ated gum-DispositiveMaterialAction individual, that it

should have as reason some GUMThing, and this

will result in an agenda item to look for a filler for

this role, which will be a description of the task

that “setting the table” prepares.

What the user should be told as part of a “think-

aloud” protocol depends on what the robot thinks

the user might know about the robot’s task, so

let’s suppose as an example the user knows noth-

ing. The question then is what to report from

the task tree, which will probably have very many

nodes? Several heuristics may be tried here, but

they can be formulated in terms of the task tree

structure. One such heuristic is to report the cur-

rent subtask, “picking” , the robot’s top-level task,

“setting the table” , and the task being prepared by the

robot’s top-level task, “eating” .

Each of these situations gets a Description indi-

vidual of appropriate GUM type. There is flexi-

bility in choosing which of the three gets to be the

main clause of the resulting utterance and which

get to be dependents, which offers us flexibility in

generating a report:

I ’m p i c k i n g up t h e spoon b e c a u s e I ’m
s e t t i n g t h e t a b l e so p e o p l e can e a t .

I ’m s e t t i n g t h e t a b l e b e c a u s e p e o p l e w i l l
e a t , t h e r e f o r e I ’m p i c k i n g up t h e spoon .

P e op l e w i l l e a t soon t h e r e f o r e I ’m s e t t i n g
t h e t a b l e so I ’m p i c k i n g up t h e spoon .

4.4 Matching the Description Granularity

There may be several parses of a set of events, sev-

eral situations that are possible views on them, and

several descriptions for each situation; e.g., levels

of abstraction at which to report in the reasoning

aloud. Fortunately, the graphs representing the sit-

uations already feature different levels of general-

ity. For example, a situation where we encounter

a “grasp - lift - place - release” pattern will be cat-

egorized as a “pick and place” action, which, in

turn, can be part of a more general activity such as

“table setting”. The hierarchy and the respective

distances in the graph has to be aligned to the in-

formation stemming from the interaction situation

to pick out which level of abstraction to report.

Numerous approaches have been proposed to

control such alignments. Very prominent in nat-

ural language generation are approaches based on

user modeling, e.g. the TAILOR system (Paris,

1988). However, also discourse modeling (Pfleger

et al., 2003) or the situational context (Porzel,

2009) come into play when selecting the propo-

sitional level of granularity. Formally, levels of

granularity can also be expressed as a set of

theories forming a hierarchical structure (Hobbs,

1985). Nevertheless, a concrete method for match-

ing these structures has to be found and tested.
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