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SUMMARY 

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length 
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non- 
uniform and follow a generalized form of Zipf's law: we find relatively few common and many rare ones. 
By using an algorithm for inverse folding, we show that sequences sharing the same structure are 
distributed randomly over sequence space. All common structures can be accessed from an arbitrary 
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated 
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications 
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular 
structure by mutation and selection is much simpler than expected and, even if catalytic activity should 
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes. 

1. INTRODUCTION 

Folding sequences into structures is a central problem 
in biopolymer research. Both robustness and accessi- 
bility of structures, as functions of mutational change 
in the underlying sequence, are crucial to both natural 
and applied molecular evolution. Test-tube evolution 
experiments are based on properties of RNA molecules: 
as sequences they are genotypes, and as spatial 
structures they are phenotypes (Spiegelman 1971; 
Biebricher 1983). Our concern is the mapping from 
RNA sequences into structures being the simplest, and 
the only tractable, example of a genotype-phenotype 
mapping. 

An RNA sequence is a point in the space of all 4n 
sequences with fixed length n. This space has a natural 
metric induced by point mutations interconverting 
sequences known as the Hamming distance (Hamming 
1950, 1986). The folding process considered here maps 
an RNA sequence into a secondary structure (figure 
1 a) minimizing free energy. A secondary structure is 
tantamount to a list of Watson-Crick type and GU 
base pairs, and can be represented as a tree graph 
(figure 1 b). This emphasizes the combinatorial nature 
of secondary structures and allows for a canonical 
distance measure between structures (Tai 1979). 
Assuming elementary edit operations with pre-defined 
costs, such as deletion, insertion and relabelling of 
nodes, the distance between two trees is given by the 
smallest sum of the edit costs along any path that 
converts one tree into the other (Sankoff & Kruskal 
1983). 

An approximate upper bound on the number of 
minimum free-energy structures (of fixed chain length 
n) can be obtained along the lines devised by Stein & 
Waterman (1978). Counting only those planar sec- 
ondary structures that contain hairpin loops of size 
three or more (steric constraint), and that contain no 
isolated base pairs (stacks of two or more pairs are 
essentially the only stabilizing elements), one finds: 

n 1.4848 x n 2(1.8488), 

which is consistently smaller than the number of 
sequences. 

Folding can thus be viewed as a map between two 
metric spaces of combinatorial complexity, a sequence 
space and a shape space. (The notion of shape space 
was originally used in theoretical immunology in a 
similar context by Perelson & Oster (1979).) 'Shape' 
refers to a discretized (and hence coarse-grained) 
structure representation, such as the secondary struc- 
tures or the tree graphs used here. The notion of 
secondary structure is but one among a spectrum of 
possible levels of resolution that can be used to define 
shape. It discards atomic coordinates, as well as the 
relative spatial orientation of the structural elements, 
taking into account only their number, size and relative 
connectedness. Nevertheless, secondary structure is a 
major component of whatever turns out to be an 
adequate shape definition for RNA: it covers the 
dominant part of the three-dimensional folding en- 
ergies, very often it can be used successfully in the 
interpretation of function and reactivity, and it is 
frequently conserved in evolution (Sankoff et al. 1978; 
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Figure 1. (a) A secondary structure on a sequence is any pattern of base pairs such that no bases inside a loop pair 
to bases outside it. Such a structure can be uniquely decomposed into structural elements that are: (i) base pair stacks; 
(ii) loops differing in size (number of unpaired bases) and branching degree, i.e. hairpin loops (degree one), internal 
loops (degree two or more); and (iii) bases which are not part of a stack or a loop, termed external (freely rotating 
joints and unpaired ends). Each stack or loop element contributes additively to the overall free energy of the structure 
according to empirically determined parameters that depend on the nucleotide sequence. A minimum free-energy 
structure is constructed according to an algorithm proposed by Zuker & Stiegler (1981) and Zuker & Sankoff (1984). 
(b) A secondary structure graph (a) is equivalent to an ordered rooted tree. An internal node (black) of the tree 
corresponds to a base pair (two nucleotides), a leaf node (white) corresponds to one unpaired nucleotide, and the root 
node (black square) is a virtual parent to the external elements. Contiguous base pair stacks translate into 'ropes' 
of internal nodes, and loops appear as bushes of leaves. Recursively traversing a tree by first visiting the root then 
visiting its subtrees in left to right order, finally visiting the root again, assigns numbers to the nodes in correspondence 
to the 5'-3' positions along the sequence. (Internal nodes are assigned two numbers reflecting the paired positions.) 

Konings & Hogeweg 1989; Le & Zuker 1990), 
sometimes together with a few tertiary interactions 
(Cech 1988). This suggests that many of the relevant 
intermolecular interactions that collectively set a 
natural scale for shape are indeed strongly influenced 
by the secondary structure. The observation, then, is 
that- at least in the present case - the shape space is 
considerably smaller than the sequence space. (We 
remark that this is also true for protein models on 
lattices.) 

2. FREQUENCIES OF SHAPES AND INVERSE 
FOLDING 

Frequencies of occurrence for individual shapes in 
sequence space were obtained from large samples 
derived by folding random sequences of fixed chain 
length. Ranking according to decreasing frequencies 
yields a distribution which obeys a generalized Zipf's 
law (figure 2). We are thus dealing with relatively few 
common shapes and many rare ones. How are the 
sequences which fold into the same shape distributed in 
sequence space? This distribution is evaluated with a 
heuristic inverse folding procedure, aimed at devising 
sequences that fold into an arbitrary pre-defined target 

shape (Hofacker et al. 1993). The obvious first step is to 
construct a compatible test sequence with nucleotide 
assignments such that the target shape is indeed a 
possible secondary structure, although typically not a 
minimum free-energy one. We choose at random 
among the many compatible sequences. The next step 
is to decompose the minimum energy structure on the 
chosen test sequence into substructures, and to mutate 
by trial and error the corresponding subsequences. 
When the individual substructures are as in the target, 
the entire sequence is reassembled. The procedure 
stops if the reassembled sequence folds into the target 
shape. This happens in about 50 O of the cases. Several 
sequences that fold into the same structure are sampled 
by starting the procedure with different compatible 
sequences. The average number of mutations that 
converted a random compatible sequence of chain 
length n 100 into one with the desired target shape 
was 7.2. 

The resulting ensemble of compatible sequences that 
fold into a pre-defined target has been analysed for the 
target being the secondary structure of t-RNAPhe and 
for three randomly constructed examples. In each case 
about 1000 sequences were derived by the inverse 
folding algorithm. The distribution of pairwise dis- 
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Figure 2. The frequency distribution of RNA secondary 
structures. Shapes are ranked by their frequencies. The 
particular example shown here deals with the loop structures 
(Shapiro & Zhang 1990) of 105 RNA molecules of chain 
length 100 which are derived from secondary structures by 
further coarse graining that eliminates all details concerning 
stack lengths and loop sizes. The diagram covers 97 % of the 
total frequency. The frequencies follow a generalized form of 
Zipf's law:f(x) = a(b+x)->, with x being the rank of a shape 
andf(x) its frequency. Parameter values of the best fit (thin 
curve) are a = 1.25, b = 71.2 and c = 1.73. The frequency 
distribution of full secondary structures is essentially the same 
as shown in the insert for chain length 30. Computation of the 
distribution for longer chains is hardly possible as the number 
of structures exceeds by far the available capacities (there are 
about 7 x 1023 full secondary structures of chain length n = 
100). 

tances is not distinguishable from the one expected for 
random compatible sequences. The properties of the 
sequence sample as seen by statistical geometry (Eigen 
et al. 1988 a) and split-decomposition (Bandelt & Dress 
1992) yield the same result: sequences folding into the 
same structure are randomly distributed in the space of 
compatible sequences. 

3. STRUCTURE DENSITY SURFACES 

Generalizing the previous question we ask how the 
possible shapes are distributed over the possible 
sequences. One insight is provided by considering the 
probability density (Fontana et al. 1993 a, b) P(tl Ih) of 
two structures being at (tree) distance t, given that the 
underlying sequences are at (Hamming) distance h. 
This structure density surface (SDS) shows how the 
distribution of structure differences changes as the 
sequences become more and more uncorrelated with 
increasing Hamming distance from the reference 
(figure 3 presents the SDS for sequences of chain length 
n= 100). Three observations are immediate: (i) 
although for very small Hamming distances (h = 1, 2, 
3) the most probable structures are identical or very 
similar, there is none the less some probability that 
even a single mutation substantially alters the struc- 
ture; (ii) beyond distance h = 3, identical or even 
closely related structures are extremely unlikely; and 
(iii) in the range 15 <Ah < 20, the density becomes 
independent of A, thus approaching essentially what is 
expected for a sample of randomly drawn sequences 
(A 75). 
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Figure 3. (a) The structure density surface (SDS) for RNA 
sequences of length n = 100 (upper). This surface was 
obtained as follows: (i) choose a random reference sequence 
and compute its structure; (ii) sample randomly ten different 
sequences in each distance class (Hamming distance 1-100) 
from the reference sequence, and bin the distances between 
their structures and the reference structure. This procedure 
was repeated for 1000 random reference sequences. Con- 
vergence is remarkably fast; no substantial changes were 
observed when doubling the number of reference sequences. 
This procedure conditions the density surface to sequences 
with base composition peaked at uniformity, and does not, 
therefore, yield information about strongly biased com- 
positions. (b) Contour plot of the SDS. 

The latter suggests that the structures of a reference 
sequence and its mutants at distances between 15 and 
20 or larger are effectively uncorrelated. This suggests 
that memory of the reference structure is sufficiently 
lost to allow the mutants at that distance to acquire 
any frequent minimum energy structure, at least in its 
essential features. From the SDS the complete structure 
autocorrelation function can be recovered (Fontana et 
al. 1993 a). This function is to a reasonable approxi- 
mation a single decaying exponential with a charac- 
teristic length, I = 7.6 in the present case (chain length 
n = 100). From figure 3 it is seen that this corresponds 
essentially to the distance at which the dominant peak 
resulting from identical or very similar structures has 
disappeared. 

4. SHAPE SPACE COVERING 

Combination of the previous results (showing the 
existence of relatively few common shapes which are 
minimum free-energy structures for sequences ran- 
domly distributed in sequence space) with the in- 
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Figure 4. Neutral paths. A neutral path is defined by a series 
of nearest neighbour sequences that fold into identical 
structures. Two classes of nearest neighbours are admitted: 
neighbours of Hamming distance 1, which are obtained by 
single base exchanges in unpaired stretches of the structure, 
and neighbours of Hamming distance 2, resulting from base 
pair exchanges in stacks. Two probability densities of 
Hamming distances are shown that were obtained by 
searching for neutral paths in sequence space: (i) an upper 
bound for the closest approach of trial and target sequences 
(open circles) obtained as endpoints of neutral paths 
approaching the target from a random trial sequence (185 
targets and 100 trials for each were used); (ii) a lower bound 
for the closest approach of trial and target sequences (open 
diamonds) derived from secondary structure statistics 
(Fontana et al. 1993a; see this paper, ?4); and (iii) longest 
distances between the reference and the endpoints of 
monotonously diverging neutral paths (filled circles) (500 
reference sequences were used). 

formation from the SDS (showing the existence of a 
transition from local to global features) provides strong 
evidence for the existence of a neighbourhood (a high- 
dimensional ball) around every random sequence that 
contains sequences whose structures include almost all 
common shapes. 

To verify the prediction of a characteristic neigh- 
bourhood covering almost all common shapes we did a 
computer experiment. A target sequence is chosen at 
random. A second random sequence serves as an initial 
trial sequence, and its structure as a reference structure. 
Next we search for a nearest neighbour of the trial 
sequence that folds into the reference structure but lies 
closer to the target. If such a sequence is found, it is 
accepted as the new trial sequence, and the procedure 
is repeated until no further approach to the target is 
possible. The final Hamming distance to the target is 
an upper bound for the minimum distance between 
two sequences folding into the reference structure and 
the structure of the target, respectively. The probability 
density of this upper bound to the closest approach 
distances determined for RNA molecules of chain 
length 100 is shown in figure 4 (open circles). It yields 
a mean value of 19.8. (It is remarkable that this value 
coincides with the critical Hamming distance at which 
we observe the change from local to global features in 
the SDS; analogous investigations on RNA molecules 
with only GC or only AU base pairs have shown that 
the precise agreement is not generally valid.) 

We can also compute a lower bound for the mean 
value of the closest approach distance. The probability 

that two arbitrarily chosen bases of an RNA sequence 
can form a base pair is given by the number of pairings 
divided by the number of possible combinations of two 
bases: 6/16 = 3/8 (as we have six classes of base pairs: 
AU, GC, GU and inversions). The mean number of 
bases that have to be changed in a random sequence, 
to form a sequence which is compatible with the target 
structure (representing the lower bound), is obtained 
from the probability not to form a base pair by 
multiplication with the mean number of base pairs: 
(1 - 3) x nBp = 5iRBp. For RNA molecules of chain 
length 100, the mean number of base pairs is 24.34 
(Fontana et al. 1993 a), and we obtain a mean 
Hamming distance of 15.2 for the lower bound. From 
the probability density of the number of base pairs, we 
derive a distribution of the lower bound also shown in 
figure 4 (open diamonds). The characteristic neigh- 
bourhood has a radius of 15 < he < 20. 

5. NEUTRAL PATHS THROUGH SEQUENCE 
SPACE 

The structure of the RNA shape space over the 
sequence space is complemented by a second computer 
experiment. We search for neutral paths with mono- 
tonously increasing distance from a reference sequence. 
A neutral path ends when no sequence that forms the 
same structure is found among the nearest neighbours. 
The probability density of the lengths of these paths is 
shown in figure 4 (filled circles). The vast extension of 
the network of neutral paths came as a surprise: 21.7 00 
of all paths percolate the entire sequence space and end 
in a sequence which has not a single base in common 
with the reference. (The existence of extensive neutral 
networks meets a claim raised by Maynard-Smith 
(1970) for protein spaces that are suitable for efficient 
evolution.) 

6. DISCUSSION 

The existence of a ball with characteristic radius 
around any random sequence within which almost all 
common shapes are found (figure 5) is a robust 
phenomenon of the mapping from sequences into RNA 
secondary structures. It depends on the ratio of 
sequences to structures. Changes in the base-pairing 
alphabet, in particular the consideration of pure GC or 
pure AU sequences, may cause minor alterations that 
can be interpreted by much smaller values of this ratio 
as well as by differences in the topology of sequence 
space. Alphabet dependencies will be published else- 
where. The major features of the shape space structure 
depend on the generic properties of RNA folding, in 
particular on the non-local nature of base pairing, but 
they are insensitive to the empirical energy parameter 
sets used in folding algorithms, as well as to the 
distance measure between structures used in the 5D5 

(essentially the same SDSS were obtained with a now 
superseded parameter set (Fontana et al. 1991), and 
also with a different structure distance measure 
(Hogeweg & Hesper 1984; Huynen et al. 1993)). 

Proc. R. Soc. Lond. B (1994) 

This content downloaded from 142.58.160.201 on Thu, 11 Sep 2014 16:50:08 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RNA secondary structures P. Schuster and others 283 

sequence space shape space 

Figure 5. A sketch of the mapping from sequences into RNA 
secondary structures as derived here. Any random sequence 
is surrounded by a ball in sequence space which contains 
sequences folding into (almost) all common structures. The 
radius of this ball is much smaller than the dimension of 
sequence space. 

There are caveats to our approach. 
1. We use a thermodynamic criterion for RNA 

structure formation, not one that mimics the kinetics of 
folding. This does not constitute a problem for short 
sequences up to a few hundred nucleotides. Moreover, 
the number of possible kinetic structures is not entirely 
different from the number of thermodynamic struc- 
tures, the principles of base pairing are the same, and 
thus the generic features of mappings of sequences into 
kinetic or thermodynamic structures will be essentially 
the same, too. 

2. We consider only a single minimum free-energy 
structure for each sequence. Our approach can be 
carried over to ensembles comprising optimal and 
suboptimal foldings, as represented by partition func- 
tions (McCaskill 1990; Bonhoeffer et al. 1993). 'Shape', 
then, becomes a matrix of temperature-dependent 
base-pairing probabilities, and the concept of distance 
is changed accordingly. All qualitative features of the 
SDS remain essentially unchanged, and numerical 
corrections are in the range of 100 (as, for example, in 
the case of correlation lengths (Bonhoeffer et al. 1993)). 

3. We do not consider three-dimensional structure. 
Nevertheless, the secondary structure defines an in- 
formative scale of resolution. In addition, it constitutes 
an approximation to a coarse-grained spatial structure 
(current algorithms for the modelling of RNA three- 
dimensional structures start from secondary structures, 
and introduce a few tertiary interactions (Major et al. 
1991, 1993)). 

The consequences of our results for natural and 
artificial selection are immediate. We predict that 
there is no need to search systematically huge portions 
of the sequence space. In the particular example of 
RNA molecules of chain length 100, the characteristic 
ball contains some 1027 sequences, which is only a 
fraction of i0" of the entire sequence space. Almost 
all structures are within reach of a few mutations from 
a compatible sequence (average: 7.2), and even in 
reasonable proximity of any non-compatible random 
sequence (~ 18). The conclusion is thus that optim- 
ization of structures by evolutionary trial and error 

strategies is much simpler than is often assumed. It 
provides further support to the idea of widespread 
applicability of molecular evolution (Eigen 1971; 
Eigen & Schuster 1979; Eigen et al. 1988 b, 1989). The 
existence of networks of neutral paths percolating the 
entire sequence space has strong implications for 
(molecular) evolution in nature, as well as in the 
laboratory. Populations replicating with sufficiently 
high error rates will readily spread along these 
networks and can reach more distant regions in 
sequence space. 

If one were to design the ultimate evolvable molecule 
that carries information and is engaged in functional 
interactions, it would ideally require two features: (i) 
capability of drifting across sequence space without the 
necessity of changing shape; and (ii) proximity to any 
common shape everywhere. These are precisely the 
features that statistically characterize the mapping 
from RNA sequence to secondary structure. 
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(PHY-9021437). We thank Professor Leo Buss and Professor 
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