
From Signal Temporal Logic to FPGA Monitors

Stefan Jakšić∗, Ezio Bartocci†, Radu Grosu†, Reinhard Kloibhofer∗, Thang Nguyen‡ and Dejan Ničković∗

∗AIT Austrian Institute of Technology, Austria
†Faculty of Informatics, Vienna University of Technology, Austria

‡Infineon Technologies AG, Austria

Abstract—

Due to the heterogeneity and complexity of systems-of-
systems (SoS), their simulation is becoming very time consuming,
expensive and hence impractical. As a result, design simulation is
increasingly being complemented with more efficient design em-
ulation. Runtime monitoring of emulated designs would provide
a precious support in the verification activities of such complex
systems.

We propose novel algorithms for translating signal temporal
logic (STL) assertions to hardware runtime monitors imple-
mented in field programmable gate array (FPGA). In order to
accommodate to this hardware specific setting, we restrict our-
selves to past and bounded future temporal operators interpreted
over discrete time. We evaluate our approach on two examples:
the mixed signal bounded stabilization property; and the serial
peripheral interface (SPI) communication protocol. These case
studies demonstrate the suitability of our approach for runtime
monitoring of both digital and mixed signal systems.

I. INTRODUCTION

Modern system-of-systems (SoS) merge a number of em-
bedded elements that are often developed independently. Such
components are heterogeneous, and combine digital controllers
with analogue sensors and actuators. They interact with their
physical environment and are interconnected via communica-
tion protocols. This results in complex interactions generating
emergent behaviors that are not predictable in advance. Correct
system integration is crucial to achieve high standards with
respect to safety and security. For instance, the ISO 26262
standard from the automotive domain obliges suppliers to
provide sufficient correctness evidence about their systems to
the regulatory bodies.

Due to the heterogeneity and the complexity of modern
SoS, verification and validation (V&V) poses a major chal-
lenge and represents today the main bottleneck in the design
process. Verification by simulation and manual testing are
the dominant methods used in the V&V practice in many
industrial domains. However, these techniques have the fol-
lowing weaknesses: (1) they are ad-hoc, inefficient and prone
to human errors; and (2) simulation of complex SoS is very
time consuming, especially when heterogeneous components
are involved. Hence, not all required simulations can be done
within the given limited time frame.

We propose to improve this situation by combining
assertion-based runtime verification with design emulation on
field programmable gate array (FPGA), an integrated circuit
that can be configured by a designer. Assertion-based runtime
verification is a rigorous, yet practical method for checking
design correctness. Design emulation is a technique that com-
plements and sometimes even replaces classical simulation.
It enables execution of the design in real-time and thus

allows very long tests that are not possible with simulation-
based methods. Design emulation is used both to explore
the behavior of digital and analog components. In the latter
case, the (possibly mixed signal) component is approximated
with its discretized behavioral model. By combining these two
approaches, we provide a rigorous method for runtime verifi-
cation of long executions resulting from mixed signal design
emulations. In addition to design emulations, our proposed
solution can be used to monitor real mixed-signal devices in
post-silicon validation in real-time.

We choose Signal Temporal Logic (STL) [13] as our
specification language. STL allows describing complex timing
relations between digital and analog “events”, where the latter
are specified via numerical predicates. In this paper, we restrict
ourselves to the rich subset of STL that contains past and
bounded future operators. Due to the FPGA hardware context,
we interpret STL formulas over the discrete time.

We propose a compositional construction for STL monitors
implemented on FPGA. An FPGA operates at a given max-
imum frequency and contains look-up tables (LUT) that can
compute complex combinatorial functions, and flip-flops (FF)
that are used as memory elements. Given its limited speed and
computational resources, it is imperative to implement STL
monitors efficiently. In order to achieve this goal, we use a
simple architecture for our STL monitors, ensuring that we
minimize the usage of the resources. We base the STL monitor
generation on temporal testers [16]. Intuitively, a tester for an
STL formula ϕ is a transducer that observes an execution
trace w and outputs true at time t if and only if w satisfies ϕ
at time t. In order to decide the satisfaction of the formula at
runtime, we restrict ourselves to deterministic testers, which
have a natural translation to sequential circuits.

We use analog-to-digital converters (ADC) to handle nu-
merical predicates in STL. An ADC is a device that periodi-
cally transforms real-valued quantities to their digital numbers
approximations. We then apply the predicate operations on
the quantized values of the input signal. The bounded future
STL formulas do not naturally admit deterministic testers -
the satisfaction of ϕ at t depends on inputs at some future
t ′ > t. Inspired by [15], we propose a procedure to transform
the bounded future STL formula ϕ to an equisatisfiable past
STL formula ψ. The two formulas are related as follows -
ϕ is satisfied at time t if and only if ψ is satisfied at time
t +b, where b is the bounded future horizon of ϕ. It follows
that instead of monitoring ϕ, it is sufficient to monitor ψ and
delay the verdict by b time units. We adapt the procedure
in [14] to the discrete time setting and directly translate the
past fragment of STL to deterministic testers.

We implement the entire STL monitor generation and
deployment flow - from formal specifications to the lab en-

vironment. We demonstrate our approach on two case studies
coming from both the digital and the mixed signal domain:
(1) the bounded stabilization: and (2) the serial peripheral
interface (SPI) communication protocol. We summarize our
main contributions as follows:

• We focus on monitoring both digital and mixed signal
designs;

• We provide the hardware monitoring procedure which
handles bounded future temporal logic formulas by
transforming them into their past counterparts evalu-
ated with a fixed delay;

• We implement and present the entire flow from spec-
ifications to hardware monitors and evaluate our ap-
proach in real lab environment.

II. PROBLEM DESCRIPTION

The industrial V & V process includes the following
workflow of activities.

Pre-silicon verification covers all type of simulation at differ-
ent design level using different techniques from mixed-signal
to mixed-abstraction simulation.

Emulation at integrated circuit (IC) and system level uses
FPGA with mixed-signal test chip as an early prototype for
verifying long term test, stress test or sensor data transmission
test over a long period of time.

Post-silicon Verification refers to the verification of the real IC
in the lab. It is an extension of those test scenarios which could
not be checked during emulation that is used to cover mainly
certain safety critical functions (e.g.: sensor interfaces or the
deployment interfaces) but not the full design functionalities.

Despite all the aforementioned activities are well estab-
lished, they still involve many simulation and manual testing
methods used in the practice of the industry in many ap-
plication areas. Verification engineers usually need to create
input stimuli, to execute simulation models and to observe the
correctness of the output waveforms. This process is typically
manual, hence repetitive, tedious and time-consuming.

Since the verification effort for complex System-on-Chip
(SoC) IC products accounts for around 60%-70% of the total
development, any approach which would improve time-to-
market and product quality, boost up the verification process
using hardware acceleration platform and automate verification
is of extreme interest.

III. FROM SIGNAL TEMPORAL LOGIC TO HARDWARE

MONITORS

A. Signals, Signal Temporal Logic and Temporal Testers

In this paper, we study Signal Temporal Logic (STL) with
both past and future operators in the context of the runtime
verification problem, in which the monitors are implemented
on FPGA hardware. In order to accommodate the specification
language to this particular domain of application, we interpret
STL over discrete time and finite valued domains. We define
a signal w as a total function w : [0,δ] → B

m ×D
n, where

[0,δ] ⊆ N denotes the discrete time domain and D is a finite

valued domain. We denote by |w|= δ the length of the signal
w. Let P = {p1, . . . , pm} be the set of boolean variables and
X = {x1, . . . ,xn} the set of variables defined over D. We denote
by πe(w) the projection of w to e ∈ P∪X . Given a signal w
and its projection πp(w) to some p ∈ P, we say that πp(w) has
(∆, l)-variability if within every interval [i, i+∆−1], the value
of p changes at most l times.

The syntax of a STL formula ϕ over P∪X is defined by
the grammar

ϕ := p | x ∼ u | ¬ϕ | ϕ1 ∨ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2

where p ∈ P, x ∈ X , ∼∈ {<,≤}, u ∈ D, I is of the form [a,b]
or [a,∞) such that a,b ∈N and 0 ≤ a ≤ b. For intervals of the
form [a,a], we will use the notation {a} instead.

The semantics of a STL formula with respect to a signal w
is described via the satisfiability relation (w, i) |= ϕ, indicating
that the signal w satisfies ϕ at the time index i, according to
the following definition where T= [0, |w|].

(w, i) |= p ↔ πp(w)[i] = true

(w, i) |= x ∼ u ↔ πx(w)[i]∼ u
(w, i) |= ¬ϕ ↔ (w, i) 6|= ϕ
(w, i) |= ϕ1 ∨ϕ2 ↔ (w, i) |= ϕ1 or (w, i) |= ϕ2

(w, i) |= ϕ1 U Iϕ2 ↔ ∃ j ∈ (i+ I)∩T : (w, j) |= ϕ2 and
∀i < k < j,(w,k) |= ϕ1

(w, i) |= ϕ1 S Iϕ2 ↔ ∃ j ∈ (i− I)∩T : (w, j) |= ϕ2 and
∀ j < k < i,(w,k) |= ϕ1

From the basic definition of STL, we can derive the
following standard operators.

true = p∨¬p
false = ¬true

ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2)
✶I ϕ = true U Iϕ
✵I ϕ = ¬✶I ¬ϕ
◗I ϕ = true S Iϕ
❵I ϕ = ¬◗I ¬ϕ

We give strict semantics to the U I and S I operators from
which we can derive classical future and past LTL operators1,
using the following rules:

ϕ1 U ϕ2 = ϕ2 ∨ (ϕ1 ∧ϕ1 U [1,∞)ϕ2)
ϕ1 S ϕ2 = ϕ2 ∨ (ϕ1 ∧ϕ1 S [1,∞)ϕ2)
✷ϕ = false U{1}ϕ
✓ϕ = false S {1}ϕ

Let cl(ϕ) denote the set of all subformulas of ϕ. Given
a STL formula ϕ, we denote by Pϕ = {ψ | ψ ∈ cl(ϕ)} the
extended set that contains P and that assigns to every sub-
formula ψ of ϕ a boolean variable2. Given a signal w over
P∪X and a formula ϕ, we define the satisfaction signal wϕ

over Pϕ∪X such that for all ψ ∈ Pϕ and i ∈ [0,δ], πwϕ(ψ)(i) =
true iff (w, i) |= ψ.

1Note that in discrete time, STL and LTL with boolean predicates over
D have the same expressive power, however treating temporal operator with
bounds directly leads in general to more efficient monitoring algorithms.

2We abuse the notation and use the same symbol to denote the formula and
its associated boolean variable.

We also define two useful subsets of STL; (1) past STL
which forbids the usage of the U I operator; and (2) bounded
future STL which restricts the usage of the U I operator to the
case where I = [a,b] for some 0≤ a≤ b<∞. From now on, we
will use STL of the form ✵ϕ, where ϕ := ϕp | ϕ f | ¬ϕ | ϕ1∨
ϕ2, where ϕp contains only past and ϕ f only bounded future
temporal operators. We simply refer to this fragment as STL
in the rest of the paper when clear from the context.

B. Temporal Testers

We now present the concept of temporal testers we will
use in the paper to monitor signals. Pnueli et al. introduced
temporal testers in [16] showing how to build monitors in a
modular way starting from the syntax tree structure of the
temporal logic formula. A temporal tester is a transition system
that behaves as a transducer to compute the satisfaction signal
of a STL formula.

A transition system (TS) T is the tuple (Q, q̂,V,T ,λ),
where

• Q is a finite set of locations,

• q̂ ∈ Q is an initial state,

• V is a finite set of variables, where each variable v∈V
is defined over some finite domain D,

• T ⊆ Q×Q is the transition relation, and

• λ : T → B(V ∪V ′) is a labeling function that assigns
to each transition a boolean constraint over the current
and next state variables, where V ′ = {v′ | v ∈V}.

We denote by s : V →D the state over V . Given a set of
variables V ∪V ′, a state function s and a boolean constraint θ∈
B(V ∪V ′), we say that (s,s′) satisfies θ, denoted by (s,s′) |= θ
if by replacing all v∈V and v′ ∈V ′ that appear in θ by s(v) and
s′(v′) respectively, the constraint evaluates to true. A finite run
r of T is the sequence of locations q0,q1, . . . ,qn that satisfies
the following requirements:

1) q0 is the initial state, and
2) for all 0 ≤ i ≤ n−1, (qi,qi+1) ∈ T .

A finite trace σ over V is a sequence σ = s0,s1, . . . ,sn of its
states. We say that σ is a trace of T if there exists a run
r = q0,q1, . . . ,qn+1 of T such that for all 0 ≤ i ≤ n, (si,si+1) |=
λ(qi,qi+1). We say that T is deterministic if (q,q′),(q,q′′)∈ T

implies that λ(q,q′)∧λ(q,q′′) is unsatisfiable.

Given two TS’s T1 and T2, where Ti = (Qi, q̂i,Vi,Ti,λi),
we define their parallel composition T = T1 || T2 as the TS
(Q, q̂,V,T ,λ), where

• Q = Q1 ×Q2,

• q̂ = (q̂1, q̂2),

• V =V1 ∪V2,

• T = {((q1,q2),(q
′
1,q

′
2)) | (q1,q

′
1) ∈ T1 and (q2,q

′
2) ∈

T2} and λ((q1,q2),(q
′
1,q

′
2)) = λ1(q1,q

′
1)∧λ2(q2,q

′
2).

The basic temporal tester for a formula ϕ is a TS Tϕ with
Pϕ ⊆Vϕ that satisfies the following condition - for every trace
s0,s1, . . . ,sn of Tϕ, and w such that for all p ∈ P and i ∈ [0,n]

si(p) = πp(w)(i), si(ϕ) = true iff (w, i) |= ϕ. The full temporal
tester (or simply temporal tester) T{ϕ} for an arbitrary temporal
formula ϕ is the parallel composition ||ψ∈cl(ϕ)Tψ of the basic
temporal testers for its sub-formulas.

C. Hardware Monitor Synthesis

In this section, we present the algorithms for translating
STL specifications into deterministic temporal testers that
can be synthesized on FPGA hardware. In order to solve
this problem, we need to address the following challenges:
(1) implement numerical predicates over real-valued signal;
(2) provide a translation into memory-efficient monitors from
timed properties; and (3) find an appropriate approach for
evaluating properties with bounded future operators.

Numerical predicates over real-valued signals are rather an
implementation issue - hence we will discuss them in more
detail in Section IV.

We achieve the translation from real-time STL specifica-
tions into memory-efficient monitors by exploiting the bounded
variability property of STL timed operators. Similarly to
(∆, l)-variable signals, we say that a temporal operator has
(∆, l)-variability if within any interval of size ∆ its satisfaction
value can change l times at most. Instead of remembering the
satisfaction status of the formula at every cycle, this property
allows us to record only the changes in the satisfaction of the
formula.

Finally, we handle monitoring of STL specifications with
bounded future operators by transforming them into equi-
satisfiable STL formulas that contain only past operators.
This transformation eliminates the “predictive” aspect of the
original formula by changing the time direction from future
to past. It is possible because the formula refers only to
a statically pre-computable bounded future horizon. Hence,
its evaluation can be delayed until the horizon is reached.
Figure 1 illustrates the transformation Π from a bounded future
STL formula ϕ into its equisatisfiable past STL counterpart
Π(ϕ,H(ϕ)), where H(ϕ) is the time horizon of ϕ.

w

ϕ

Π(ϕ,H(ϕ))

0 t t +H(ϕ)

Fig. 1. From bounded future ϕ to past Π(ϕ,b).

1) Monitoring Past STL Specifications: In order to handle
arbitrary STL formulas, we will implement them as deter-
ministic temporal testers. For the past STL, we first observe
that directly treating S I and◗I may not be straightforward -
we use instead the following equivalences to first simplify the
formulas.

ϕ1 S [0,b]ϕ2 = (ϕ1 S ϕ2)∧◗[0,b] ϕ2

ϕ1 S [a,b]ϕ2 = ❵[0,a−1](ϕ∧✓(ϕ1 S ϕ2))∧◗[a,b] ϕ2

◗[a,b] ϕ = ◗{a}◗[0,b−a] ϕ

As a result, we need to only build testers for the✓, S ,◗[0,b]

and◗{a} temporal operators. In what follows, we describe the

algorithms for building basic temporal testers for each of these
operators.

a)✓ and S operators [12]: the temporal tester for
ψ =✓ϕ must satisfy ¬ψ′ in the first step, and in every
following step executes the transition labeled by ψ′ ↔ ϕ.
We notice that ψ = ϕ1 S ϕ2 is equivalent to the formula
ϕ2∨(ϕ1∧✓(ϕ1 S ϕ2). It follows that the temporal tester for ψ
must satisfy ϕ′

2 ↔ ψ′ is the first step and ψ′ ↔ (ϕ′
2∨ (ϕ′

1∧ψ))
in every following step. Both temporal testers require a single
memory element.

b)◗[0,a] operator: the temporal tester for ψ=◗[0,a] ϕ
uses a single counter c bounded by a + 1 to implement a
discrete time clock3 and works as follows. The tester observes
the satisfaction of ϕ over time and moves through its locations,
generating the output that follows the satisfaction relation of
the operator. Whenever the tester observes the satisfaction of
ϕ, the output of the tester must trivially satisfy ψ. Whenever
the tester detects a falling edge in the satisfaction of ϕ, the
counter c is reset to 0. As long as ϕ is violated and the counter
c is smaller or equal to a, the counter is incremented and
the output must still satisfy ψ - the property is satisfied since
the last observation where ϕ was true lies within the previous
[0,a] interval. If the tester still observes violation of ϕ while
the counter c reaches a+ 1, it must satisfy the output ¬ψ,
indicating the violation of the formula. The temporal tester for
◗[0,a] requires a single ⌈log2(a)⌉-bit counter.

¬ψ′

¬ψ′

0

ϕ′

ψ′

1

ψ′
ϕ′

¬ϕ′

c′ = 0

2

¬ϕ′

¬ψ′

3

ψ′
ϕ′

ϕ′

ψ′

¬ϕ′

c′ = c+1
ψ′

¬ϕ′

c < a−1

c = a−1

ψ′

¬ϕ′

Fig. 2. Temporal tester for ψ =◗[0,a] ϕ.

c)◗{a} operator: we first note that the operator

◗{a} ϕ simply shifts the satisfaction of ϕ by a time steps,

i.e. (w, i) |= ϕ if and only if (w, i+ a) |=◗{a} ϕ. There is a

very simple implementation of this formula by observing the
following equivalence

◗{a} ϕ = ✓✓ . . .✓
︸ ︷︷ ︸

a

ϕ

Despite its simplicity, this direct implementation for the
◗{a} ϕ requires a memory registers and may not be optimal

3From now on, we refer to the clocks from timed automata terminology as
counters, in order to avoid confusion with system clock signals in hardware.

if a is large and ϕ has bounded variability. Hence, we sketch
an alternative algorithm, illustrated in Figure 3, for building a
temporal tester for ψ =◗{a} ϕ when ϕ has (∆, l)-variability.

Instead of recording the last a values of ϕ, we instead memo-
rize only the relative times of the last l changes in ϕ by using
discrete counters. In the first a steps, the tester must satisfy
the output ¬ψ. Whenever a change is observed in ϕ, a fresh
discrete counter c is reset to 0 and incremented in the next
a steps. When the counter reaches a, the tester enforces the
same change in ψ. The number of active counters required at
any point in time is dependent on the variability of the input
signal and the bound a - whenever an active counter reaches a,
it is deactivated and can be reused. The implementation of this
algorithm with discrete counters requires at most ⌈ a·l

∆ ⌉·⌈log2 a⌉
bits.

◗a ϕ

c+1 := 0 c−1 := 0 c+2 := 0 c−2 := 0 c+1 := 0

c+1 = a c−1 = a c+2 = a c−2 = a

ϕ

Fig. 3. Computing◗
a

ϕ with discrete counters.

We remind the reader that we use ◗[a,b] ϕ =
◗{a}◗[0,b−a] ϕ to decompose the monitoring of arbitrary

once operators. The satisfaction signal ψ =◗[0,b−a] ϕ has

the (b− a+ 1,2)-variability. Hence, the algorithm that uses

counters needs ⌈ 2·a
b−a+1

⌉ · ⌈log2 a⌉ bits to implement the
operator. It follows that the direct implementation with
the shift registers is more optimal when the input signal
has high variability, while the algorithm with the counters
works better with low-varying signals. For instance, the
direct implementation of ◗{500} p requires 500 registers,

while the algorithm with counters needs 500 counters, each
having ⌈log2 500⌉ = 9 bits. On the other hand, the direct
implementation of ◗[500,1000] ϕ =◗{500}◗[0,500] ϕ requires

500 bits, while the algorithm using counters needs only
2 · ⌈log2 500⌉ = 18 bits. The optimal implementation choice
for the ◗{a} operator can be easily automated by doing a

syntactic analysis of the formula.

2) From Bounded Future to Past STL Specifications: We
now address the problem of developing monitors for bounded
future STL formulas. The challenge for monitoring such
formulas comes from the fact that the satisfaction at time index
i depends on the inputs that will become available only in some
future (but bounded) horizon [i, i+h]. The bound of the future
horizon can be syntactically computed from the specification,
as shown in [9], [15]. In order to solve this problem, we
adapt the pastification procedure from [15], which transforms
the bounded future specification ϕ into an equisatisfiable past
specification ψ that is evaluated with the delay h. Formally, the
two formulas are related as follows: (w, i) |=ϕ iff (w, i+h) |=ψ,
where h is the temporal depth of ϕ. The temporal depth h
is the maximum size of the input w suffix [i, i+h] needed to
determine the satisfaction of ϕ at the time index i. Formally, the
temporal depth h = H(ϕ) of ϕ is the syntax-dependent upper
bound on the actual depth of the formula and is computed

using the following recursive definition:

H(p) = 0
H(¬ϕ) = H(ϕ)
H(ϕ1 ∨ϕ2) = max{H(ϕ1),H(ϕ2)}
H(✷ϕ) = H(ϕ)+1
H(ϕ1 U [a,b]ϕ2) = b+max{H(ϕ1)−1,H(ϕ2)}

Consider the formula ϕ1 U [a,b]ϕ2 and let us interpret ϕ1

as the satisfaction signal of its first argument. An arbitrary
interval I = [i, i+b] admits a minimal partition I1, . . . , In such
that in every partition Ii the value of ϕ1 is constant and in
every two adjacent partitions the value of ϕ1 differs. It is
simple to see that the maximum number of partitions for such
arbitrary I is bounded by z = ⌈ b

2
⌉. We can then decompose

ϕ1 into z signals ϕ1
1, . . . ,ϕ

z
1 such that ϕ1 =

⋃
i∈[1,z] ϕ

i
1, ϕi

1 ∧ϕ
j
1

is false for every i 6= j and each ϕi
1 has (b,2)-variability with

at most one uniform subinterval of [i, i+b] where ϕi
1 is true.

This decomposition is achieved in practice by letting ϕi
1 rise

and fall only on the jth rising and falling of ϕ1, where j = i
mod b. After the decomposition, we have the following simple
equivalence:

(w, i) |= ϕ1 U [a,b]ϕ2 ↔ (w, i) |=
∨z

i=1 ϕi
1 U [a,b]ϕ2

↔ (w, i) |=
∨z

i=1(✷ϕi
1∧

✶[a−1,b−1](ϕ
i
1 ∧✷ϕ2))

The pastification operation Π on the STL formula ϕ with
past and bounded future and its bounded horizon d = H(ϕ) is
defined recursively as follows:

Π(p,d) = ◗{d} p

Π(¬ϕ,d) = ¬Π(ϕ,d)
Π(ϕ1 ∨ϕ2,d) = Π(ϕ1,d)∨Π(ϕ2,d)
Π(✷ϕ,d) = Π(ϕ,d −1)
Π(✶[a,b] ϕ,d) = ◗[0,b−a] Π(ϕ,d −b)

Π(ϕ1 U [a,b]ϕ2,d) ↔
∨z

i=1 Π(ϕi
1 U [a,b]ϕ2,d)

↔
∨z

i=1 Π(✷ϕi
1∧

✶[a−1,b−1](ϕ
i
1 ∧✷ϕ2),d)

We note that for monitoring Π(p U Iq,d) we first need

to decompose p into d
2

signals, each having (d,2)-variability.
Hence, for every decomposed signal, we must use at most 2
active counters of size ⌈log2 d⌉. As a result, the monitor for
Π(p U Iq,d) requires d · ⌈log2 d⌉ registers. It follows that the
monitor for an arbitrary bounded future formula requires at
most d · ⌈log2 d⌉ · |ϕ|.

IV. IMPLEMENTATION

We implement our monitors on Zynq7020 All Pro-
grammable SoC, a configurable hardware platform. Its main
parts are the Processing System and Programmable Logic.
The Programmable Logic primarily consists of Configurable
Logic Blocks (CLB) that contain lookup tables (LUT) and
flip-flops (FF). Such blocks can be arbitrarily connected by
programming desired connections in Switch Matrix. Each CLB
can implement combinatorial net in LUTs and sequential
circuits using FFs. Zynq7020 also contains dedicated physical
components for specific purpose such as block RAM (bRAM),
specific SLICEM blocks for efficient implementation of shift
registers and an internal Analog-to-Digital Converter (ADC).

We now provide a high-level overview of our implementation
flow showing the details of the monitor generation.

A. Implementation Overview

The implementation consists of three phases: (1) pre-
processing; (2) code generation; and (3) FPGA flow illustrated
in Figure 4.

In the pre-processing phase, we first translate the bounded-
future STL formula to its equisatisfiable past counterpart. We
then simplify the resulting past formula into an equivalent one
which uses only basic ✓, S , ◗[0,a] and ◗{a} operators.

This phase follows the algorithms and rewriting rules from
Section III-C.

For the code generation phase, we deploy a parser in
Java with a specific algorithm to extract information about
input signals, operators and composition of the formula. Then,
the algorithm uses a hash map to convert the parse tree
of the formula into a directed acyclic graph (DAG) and
eliminate duplicate sub-formulas. From this DAG we generate
a deterministic monitor in a compositional way resulting in
synthesizable Verilog code.

In the final phase, we follow the classical FPGA devel-
opment flow in order to map the synthesizable monitor to
the actual hardware. We use PlanAhead 14.7 and Vivado
2014.4 tools to perform the following steps: (1) synthesis; (2)
implementation; and (3) bit-stream generation. We program
the Zync7020 device with generated bit-stream and connect it
in the lab environment to an oscilloscope to probe the signals
of interest. In the digital case, we route the internal signals
out from the Zync7020 - it is thus sufficient to monitor only
external pins in the lab. In the analog case, the lab evaluation
is more difficult. We created an internal logic analyzer block
by deploying Xilinx IP core able to record quantized analog
signals at runtime. In addition, we dedicate a specific external
pin to alert the user on property violation. In Figure 5 we show
a running FPGA monitor with different signals displayed on
an oscilloscope.

B. Implementation Details

1) Numerical predicates: In our implementation, we con-
sider the case where the analog device is an external com-
ponent connected to the STL hardware monitor. We use the
XADC block that is integrated to the Xilinx IP to convert the
analog signal to a digital (quantized) one. We then implement
synthesizable Verilog code that compares the quantized value
of the signal to the threshold from the STL formula and
outputs the Boolean signal for further use. We note that the
precision of this approach is mainly limited by the character-
istics of the ADC: (1) the frequency at which it operates; (2)
its resolution; and (3) the maximum voltage that it is able to
process. The XADC block from the Xilinx IP operates at a
maximal frequency of 1MHz, has a resolution of 12 bits and
is able to process signals that have the maximal amplitude of
1V.

2) Monitor Integration: Monitors implemented on FPGA
are self-contained hardware units. There are different ways to
integrate such monitors with SUT. We first consider the case
when both SUT and monitors are implemented on the same

FPGA Flow

Pastification

Simplification

Parsing

Code
Generation

Synthesis

Implementation

Lab preparation

Pre−processing Code Generation

S
T

L
S

p
ec

ifi
ca

ti
o

n

P
as

t
S

T
L

S
p

ec
ifi

ca
ti

o
n

S
y

n
th

es
iz

ab
le

H
D

L

S
T

L
F

P
G

A
M

o
n

it
o

r

Fig. 4. Overview of the implementation.

Fig. 5. STL monitor running in real time in a lab environment.

FPGA programmable logic. This architecture is depicted in
Figure 6. In this situation, both SUT and the monitor are purely
digital blocks. The monitor non-intrusively observes relevant
SUT signals by connecting to the SUT interface. Based on the
observations, the monitor generates a verdict. Both the signals
of interest and the verdict can be routed out of the FPGA by
making the appropriate connections to the FPGA pinouts and
displayed on an oscilloscope. The monitor and the SUT operate
at the same frequency, limited by the maximum achievable
frequency of the FPGA. The architecture allows usage of either
internal or external clock generator. This architecture can be
used to connect the monitor to digital design emulations. In
this case, the SUT is either an emulation of a purely digital
design or a digital approximation of an analog design.

We also present an alternative architecture, in which the
monitor implemented on FPGA is connected to an external
device. This architecture is presented in Figure 6. In this case,
the SUT is an external digital, analog or mixed-signal device.
The monitor connects to external digital signals via FPGA
pinouts. The analog signals cannot be directly connected to
the monitor - we use the ADC block to quantify the input
signal and convert it to the digital domain, as explained in
Section IV-B1. The external visualization of signals of interest
and the verdict is done via the FPGA pinouts, as in the previous

Fig. 6. Self-contained architecture - monitor and SUT on the same FPGA.

case. The typical use case for this architecture is the real-time
monitoring of the real mixed-signal devices in the post-silicon
verification phase. The main limitation of this architecture is
the performance of AD converter and the inaccuracies that it
introduces.

Fig. 7. Integration of a FPGA monitor to an external device.

STL Formula # FF # LUT MHz
✵(p S (q∧❵ r)) 2 3 346
✵(p S (q∧✓(r S q))) 2 3 346
✵(p → (q S r)) 1 2 345
✵(◗ p∧◗q
∧◗r∧◗s∧◗ t) 5 7 339
✵(p → (q S (❵ r∨❵ s))) 3 4 346

TABLE I. RESOURCE BENCHMARKS OF UNTIMED PAST STL
FORMULAS.

V. EVALUATION

A. Experimental Results

We now present the experimental evaluation of our frame-
work. We translate several classes of STL formulas and collect
the data on hardware resources allocated to the resulting mon-
itors. For each formula we generate a hardware monitor and
report the number of flip-flops (FF) and lookup tables (LUT)
it consumes and the maximal achievable clock frequency in
MHz. We note that the maximal achievable clock frequency
depends in general on the size of the device implemented on
the FPGA, since large resource usage requires more complex
routing and internal signal propagation.

In our first experiment we consider only the untimed past
fragment of STL. The results of this experiment, shown in
Table I, clearly indicate that this fragment of the logic admits
monitors with a very small footprint.

In our second experiment (see Table II) we evaluate the
scalability of our approach w.r.t. a class of formulas from real
time past fragment of STL. In particular we explore formulas
containing the S [a,b] and study the impact of bound variations
to the resulting size of the monitor. In this experiment all
our monitors use the counters algorithm to record real time
data. We can first observe that for formulas with lower bound
equal to zero, the resulting monitors have a small resource
consumption and are insignificantly affected by the size of
the upper bound b. This is due to the fact that these monitors
require a single counter of size that is logarithmic in b. We can
also see that the size of the monitors for this class of formulas
are mostly affected by the ratio between the lower and the
upper time bounds. The variability of the S [a,b] operator, which
is a function of the aforementioned ratio, directly affects the
resource consumption of the monitor.

The third experiment has two purposes. On one hand we
evaluate the size of monitors for bounded future STL. On the
other hand we compare the resource requirements of two time
event recording algorithms: straightforward register buffering
and the counters algorithm. Table III shows the results. We
first observe that handling future operators can be very costly.
This result is as expected - checking online future formulas
requires the determinization of the underlying monitors. In
our approach we do this step at the syntactic level using
the pastification procedure. We observe that the monitors for
future formulas are in particular sensitive to the size of their
future horizon. Regarding the two event recording algorithms
we can notice that counters algorithm prevents the explosion
of memory demands. On the other hands it uses more LUTs
than the register buffer. This is due to arithmetical operations
performed on the counters. We can also see that the maximum

achievable frequency for the register buffering approach is in
general higher than the one for the counters approach. We
suspect that this results from more combinatorial operations
done in the counters algorithm. As a consequence, the monitor
computes more operations during a single clock cycle, thus
prolonging its minimal duration.

B. Mixed Signal Bounded Stabilization

In the first case study, we monitor a system generating a
boolean trigger and an analog signal x. Upon the rising edge of
the trigger, the analog signal is allowed to get unstable, but is
required to stabilize within a specified finite time horizon. The
informal specification in natural language is stated as follows:
“whenever the trigger is on its rising edge, the analog signal x
is allowed to take an arbitrary amplitude, but within 1ms, the
signal must take an amplitude smaller or equal than 0.5V and
continuously remain below that threshold for at least 500µs”.

We first model the analog signal x with perturbation
by using an external pulse generator. We generate a 5kHz
sinusoidal signal in the range of 250−800mV modulated with
a 250Hz down ramp with 33% maximal decline, in order to
obtain damped sine oscillations. This analog signal operates at
lower frequency than our ADC. We down-clock the monitor
to 200kHz and thus we avoid unnecessary computations.

The formalized requirement in STL and its past counterpart
are as follows:

✵(↑ trigger →✶[0,200]✵[0,100](x ≤ 0.5))
✵(◗{300} ↑ trigger →◗[0,200]❵[0,100](x ≤ 0.5)).

Figure 8 shows the screenshot from the oscilloscope on
which we observe the monitored results, delayed by 300 clock
cycles due to formula pastification. The yellow waveform
represents the analog input signal x, while the blue signal is
the predicate x ≤ 0.5. The red signal is the boolean trigger
and finally the green waveform is the assertion verdict, where
the peak represents the violation of the property. We can see
from Figure 8 that the property is violated because the signal
x stabilizes too slowly and does not remain below the 0.5
threshold for sufficient time .

Fig. 8. Stabilization property signals observed in our lab environment.

C. Serial Peripheral Interface

Serial Peripheral Interface (SPI) bus is a de facto standard
serial communication interface specification used for short
distance communication, primarily in embedded systems. SPI

STL Formula
b=50 b=500 b=5000

FF # LUT MHz # FF # LUT MHz # FF # LUT MHz
✵(p ↔ q S [0,b]r)) 13 18 346 16 26 346 20 36 346

✵(p ↔ q S [b
2 ,b]

r)) 42 136 329 61 193 321 84 321 317

✵(p ↔ q S [9b
10 ,b]

r)) 121 423 286 213 727 250 309 1446 213

TABLE II. RESOURCE BENCHMARKS FOR BOUNDED PAST STL FORMULAS.

STL Formula
Register Buffer Counters Algorithm

FF # LUT MHz # FF # LUT MHz
✵(p ↔ q U [0,50]r)) 1614 584 178 811 1807 155

✵(p ↔ q U [0,100]r)) 5915 1548 202 1751 4069 110

✵(p ↔ q U [0,200]r)) 22006 3476 177 3500 7630 103

✵(p ↔ q U [25,50]r)) 1588 532 208 779 1747 169

✵(p ↔ q U [50,100]r)) 5880 1463 191 1666 3912 105

✵(p ↔ q U [100,200]r)) 22001 3484 156 3620 7916 120

TABLE III. RESOURCE BENCHMARKS FOR BOUNDED FUTURE STL FORMULAS.

provides full duplex communication with a master-slave archi-
tecture.

Regular SPI interface consists of the following signals: SPI
clock (sck), slave select (ss), master input slave output (miso)
and master output slave input (mosi). In this case study, we
use a digital master device that has additional control signals
such as data available (dav) and FIFO read enable (fre).

We create a synthesizable test bench (TB) in Verilog to
stimulate the SPI device with several scenarios. In addition to
regular scenarios we inject errors to trigger property violations.
We synthesize both the TB and the SPI master on a single
Zync 7020 device. The user controls the emulation with a
programmed physical interrupt.

We consider two SPI requirements: nested pulse (NP) and
clock division (CD). NP property specifies mutual interaction
of control signals dev and fre - it states that once the FIFO read
is done, there should be no more data available for the transfer.
CD property requests that sck is slower than the system clock
by a rate determined by the rate signal value. We fix rate
to 0, meaning that sck must be twice slower than the system
clock. In addition, it is required that the sck clock is toggling
only when ss is asserted. We specify these two requirements
in natural language as follows:

1) fre pulse must be on its rising edge in the last cycle
of the dav pulse;

2) Every rising edge of sck is (1) the first one within the
current asserted interval of ss or (2) follows a falling
edge of sck in the previous cycle. The symmetric
property must hold for every falling edge of sck.

We formalize these requirements in past STL as follows:

✵(↓ dav → (↓ fre∧✓ ↑ fre)
✵((↑ sck)→ (¬sck S ↑ ss∨✓ ↓ sck))
✵((↓ sck)→ (sck S ↑ ss∨✓ ↑ sck))

The resulting monitors for these properties operate at
the Zynq system clock frequency of 100MHz and do not
additionally constrain the speed of the SUT. Figure 9 shows

Fig. 9. SPI clock division property observed in the lab environment.

the relevant CD property signals on an oscilloscope in our
lab environment. The blue signal represents the SPI master
device reset signal and it marks the start of the emulation.
The green signal denote the SPI slave select ss and the red
one represents the SPI clock sck. Finally, the yellow signal
shows the verdict for the property, where the peak in the signal
denotes its violation. As we can see from the Figure 9, the
property ✵((↑ sck) → (¬sck S ↑ ss∨✓ ↓ sck)) fails because
at the moment of its violation (peak in the yellow signal), the
first rising edge of sck arrives slightly before the rising edge of
the new ss window, thus falsifying both disjuncts ¬sck S ↑ ss
and ✓ ↓ sck of the right-hand side of the implication.

VI. RELATED WORK

In the last decade assertion based hardware monitoring
has received an increasing attention. Generating synthesizable
monitors from Property Specification Language (PSL) has
been proposed by several research groups and it has been
implemented first in the tools FoCs [8] developed by IBM
and MBAC [4], [5], [6] developed by Zilic and Boulé. On
the same line of research is also the work of Borrione et. al.
in [3] and Backasch et. al. in [2]. In contrast to our work, all
of them focus on untimed digital specifications. FoCs gener-
ates monitors for SystemC [1] simulations. MBAC adopts an
automata-oriented approach which conceptually differs from
our transducer-based compositional construction.

Finkbeiner et al. in [11] present a technique to synthesise
monitor circuits from LTL formulas with bounded and un-
bounded future operators. In contrast to our approach they
do not allow past formulas. Moreover, they evaluate their
approach only with formulas with the lower time bound equal
to zero.

Claessen et al. [7] propose some efficient techniques to
synthetize a LTL safety and liveness property checkers as
circuits with sequential elements rather than using the clas-
sical automata-based approach with transitions relations. The
authors focus more on model checking of hardware system de-
sign rather than runtime monitoring of analog and mixed signal
systems (AMS). Finally, they do not report any experiments
on real hardware.

Reinbacher et. al. propose in [17], [18] synthesizable hard-
ware monitors from different fragments of Metric Temporal
Logic (MTL). In [17] the authors tackle only the past fragment
of MTL using a transducer-based approach similar to ours.
In contrast to relative clocks that we adopt to record events,
the authors use an approach in which absolute time stamps
are memorized. Hence, the resources needed for implement-
ing their monitors depend on the duration of the emulation
runtime. The authors develop a sophisticated architecture that
targets reconfigurability of monitors. However, it also intro-
duces an overhead that requires their monitors to operate at a
considerable higher frequency than the SUT. In other words,
this imposes additional constraints on the maximum speed of
the SUT that such monitors can observe. In our approach, the
monitor and the SUT run at the same clock frequency. Finally,
the authors evaluate their approach using pre-collected data.

In [18] the authors address the future fragment of MTL.
They take a radically different approach to ours motivated
by the problem of embedded system health estimation. They
adopt a three-valued interpretation of the logic and produce
a ”maybe” output delaying a definite verdict until the for-
mula can be really evaluated. This approach is suitable for
estimating system health using a Bayesian network on top
of the observers. On the other hand, we are motivated by
the verification of AMS along their physical interface (time,
voltage, signal dependencies in time) and we choose to follow
a different approach. We treat formulas with bounded future
temporal operators, rewriting them in terms of past temporal
operators which gives us more uniform and simple approach in
terms of formula evaluation and system architecture. Similarly
to their previous work the authors evaluate their framework
only on pre-collected data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an effective procedure
for online checking of digital and mixed signal systems with
STL monitors implemented on FPGA hardware. We have
evaluated our approach in the lab environment, demonstrating
its feasibility and benefits for runtime monitoring of real time
systems.

This work is our first step in porting the formal methods
theory to the practical rigorous checking of complex, possibly
mixed signal designs. We are planning to explore several new
research directions on the topic. We will apply our technique
to a large automotive airbag SoC mixed signal case study. As

part of that effort, we will identify possible extensions to STL
that will increase its expressiveness and enable specification
of a richer set of requirements, including for instance data
integrity and frequency temporal properties [10]. We will study
the effect of inaccuracies due to noise and measurement errors
in the evaluation of numerical predicates over analog signals.
Finally, we will study the problem of diagnosing violations
of STL specifications during monitoring and identifying the
causes of property falsification.

VIII. ACKNOWLEDGEMENTS.

The authors acknowledge the support of the IKT der
Zukunft of Austrian FFG project HARMONIA (nr. 845631).

REFERENCES

[1] SystemC, http://www.systemc.org/

[2] Backasch, R., Hochberger, C., Weiss, A., Leucker, M., Lasslop, R.:
Runtime verification for multicore soc with high-quality trace data.
ACM Transactions on Design Automation of Electronic Systems 18(2)
(2013)

[3] Borrione, D., Liu, M., Morin-Allory, K., Ostier, P., Fesquet, L.: On-
line assertion-based verification with proven correct monitors. In: Proc.
of ITI 2005: the 3rd International Conference on Information and
Communications Technology. pp. 125–143 (2005)

[4] Boulé, M., Zilic, Z.: Incorporating efficient assertion checkers into
hardware emulation. In: Proc. of ICCD. pp. 221–228. IEEE Computer
Society Press (2005)

[5] Boulé, M., Zilic, Z.: Efficient automata-based assertion-checker synthe-
sis of PSL properties. In: Proc. of HLDVT. pp. 69–76. IEEE (2006)

[6] Boulé, M., Zilic, Z.: Automata-based assertion-checker synthesis of
PSL properties. ACM Transactions on Design Automation of Electronic
Systems 13(1) (2008)

[7] Claessen, K., Een, N., Sterin, B.: A circuit approach to ltl model
checking. In: Formal Methods in Computer-Aided Design (FMCAD),
2013. pp. 53–60 (Oct 2013)

[8] Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolfsthal,
Y., Benalycherif, L., Kamidem, R., Lahbib, Y.: Combining system level
modeling with assertion based verification. In: Proc. of ISQED 2005:
Sixth International Symposium on Quality of Electronic Design. pp.
310–315. IEEE (2005)

[9] D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W.,
Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: Run-
time monitoring of synchronous systems. In: Proceedings of the 12th
International Symposium of Temporal Representation and Reasoning
(TIME 2005). pp. 166–174. IEEE Computer Society Press (2005)

[10] Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka,
S.A.: On Temporal Logic and Signal Processing. In: Proc. of ATVA
2012: 10th International Symposium on Automated Technology for
Verification and Analysis, Thiruvananthapuram, India, October 3-6.
LNCS, vol. 7561, pp. 92–106 (2012)

[11] Finkbeiner, B., Kuhtz, L.: Monitor circuits for ltl with bounded and
unbounded future. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 5779 LNCS, 60–75 (2009)

[12] Havelund, K., Rosu, G.: Synthesizing monitors for safety properties.
In: Proc. of TACAS 2002: the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. LNCS,
vol. 2280, pp. 342–356. Springer (2002)

[13] Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-
signal circuits. STTT 15(3), 247–268 (2013)

[14] Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past,
present, future. In: Formal Modeling and Analysis of Timed Systems,
Third International Conference, FORMATS 2005, Uppsala, Sweden,
September 26-28, 2005, Proceedings. pp. 2–16 (2005)

http://www.systemc.org/

[15] Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from
bounded-response properties. In: Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings. pp. 95–107 (2007)

[16] Pnueli, A., Zaks, A.: On the merits of temporal testers. In: 25 Years
of Model Checking - History, Achievements, Perspectives. pp. 172–195
(2008)

[17] Reinbacher, T., Függer, M., Brauer, J.: Runtime verification of embed-
ded real-time systems. Formal Methods in System Design 44(3), 230–
239 (2014)

[18] Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based
runtime observer pairs for system health management of real-time
systems. In: Proc. of TACAS 2014. LNCS, vol. 8413, pp. 357–372.
Springer-Verlag (2014)

	Introduction
	Problem Description
	From Signal Temporal Logic to Hardware Monitors
	Signals, Signal Temporal Logic and Temporal Testers
	Temporal Testers
	Hardware Monitor Synthesis
	Monitoring Past STL Specifications
	From Bounded Future to Past STL Specifications

	Implementation
	Implementation Overview
	Implementation Details
	Numerical predicates
	Monitor Integration

	Evaluation
	Experimental Results
	Mixed Signal Bounded Stabilization
	Serial Peripheral Interface

	Related Work
	Conclusions and Future Work
	Acknowledgements.
	References

