
FROM SIMPLE ASSOCIATIONS TO SYSTEMATIC REASONING:
A Connectionist representation of rules, variables,
and dynamic bindings using temporal synchrony

Lokendra Shastri

Computer and Information Science Department

University of Pennsylvania

Philadelphia, PA 19104

shastri@central.cis.upenn.edu

Venkat Ajjanagadde

Wilhelm-Schickard-Institut

University of Tuebingen

Sand 13 W-7400 Tuebingen, Germany

nnsaj01@mailserv.zdv.uni-tuebingen.de

Abstract: Human agents draw a variety of inferences effortlessly, spontaneously,

and with remarkable efficiency — as though these inferences are a reflex response of

their cognitive apparatus. Furthermore, these inferences are drawn with reference to

a large body of background knowledge. This remarkable human ability seems para-

doxical given the results about the complexity of reasoning reported by researchers

in artificial intelligence. It also poses a challenge for cognitive science and compu-

tational neuroscience: How can a system of simple and slow neuron-like elements

represent a large body of systematic knowledge and perform a range of inferences

with such speed? We describe a computational model that is a step toward address-

ing the cognitive science challenge and resolving the artificial intelligence paradox.

We show how a connectionist network can encode millions of facts and rules in-

volving n-ary predicates and variables, and perform a class of inferences in a few

hundred msec. Efficient reasoning requires the rapid representation and propagation

of dynamic bindings. Our model achieves this by i) representing dynamic bindings

as the synchronous firing of appropriate nodes, ii) rules as interconnection patterns

that direct the propagation of rhythmic activity, iii) and long-term facts as temporal

pattern-matching sub-networks. The model is consistent with recent neurophysio-

logical findings which suggest that synchronous activity occurs in the brain and may

play a representational role in neural information processing. The model also makes

specific predictions about the nature of reflexive reasoning that are psychologically

significant. It identifies constraints on the form of rules that may participate in such

reasoning and relates the capacity of the working memory underlying reflexive rea-

soning to biological parameters such as the lowest frequency at which nodes can

sustain synchronous oscillations and the coarseness of synchronization.
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1 Introduction

The ability to represent and reason with a large body of knowledge in an effective and systematic

manner is a central characteristic of cognition. This is borne out by research in artificial intelli-

gence and cognitive science which suggests that reasoning underlies even the most commonplace

intelligent behavior. For example, language understanding, a task that we usually perform rapidly

and effortlessly, depends upon our ability to make predictions, generate explanations, and rec-

ognize speaker’s plans.1 To appreciate the richness and speed of human reasoning, consider the

following example derived from (Schubert 1989). Imagine a person reading a variation of the

Little Red Riding Hood (LRRH) story in which the wolf intends to eat LRRH in the woods. The

reader is at the point in the story where the wolf, who has followed LRRH into the woods, is

about to attack her. The next sentence reads: “The wolf heard some wood-cutters nearby and so

he decided to wait.” It seems reasonable to claim that the reader will understand this sentence

spontaneously and without conscious effort. However, a careful analysis suggests that even

though the reader remains unaware of it, understanding this sentence requires a chain of rea-

soning that may informally be described as follows (parenthetical text identifies the background

knowledge that might mediate the reasoning process):

The wolf will approach LRRH (to eat something you have to be near it); LRRH

will scream (because a child is scared by an approaching wild animal); upon hearing

the scream the wood-cutters will know that a child is in danger (because a child’s

screaming suggests that it is in danger); the wood-cutters will go to the child (people

want to protect children in danger and in part, this involves determining the source

of the danger); the wood-cutters will try to prevent the wolf from attacking LRRH

(people want to protect children); in doing so the wood-cutters may hurt the wolf

(preventing an animal from attacking may involve physical force ...); so the wolf

decides to wait (because an animal does not want to get hurt).

One could argue that some of the steps in the above reasoning process are pre-compiled

or ‘chunked’, but it would be unreasonable to claim that this entire chain of reasoning can be

construed as direct retrieval or even a single step inference! Hence, in addition to accessing

lexical items, parsing, and resolving anaphoric reference, some computation similar to the above

chain of reasoning must occur when the sentence in question is processed. As another example

consider the sentence ‘John seems to have suicidal tendencies, he has joined the Columbian drug

enforcement agency.’ In spite of it being novel, we can understand the sentence spontaneously

and without conscious effort. This sentence, however, could not have been understood without

using background knowledge and dynamically inferring that joining the Columbian drug en-

forcement agency has dangerous consequences and since John probably knows this, his decision

to join the agency suggests that he has suicidal tendencies.

As the above examples suggest, we can draw a variety of inferences rapidly, spontaneously

and without conscious effort — as though they were a reflex response of our cognitive apparatus.

In view of this let us describe such reasoning as reflexive (Shastri 1990).2 Reflexive reasoning

may be contrasted with reflective reasoning which requires reflection, conscious deliberation, and

often an overt consideration of alternatives and weighing of possibilities. Reflective reasoning
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takes longer and often requires the use of external props such as a paper and pencil. Some

examples of such reasoning are solving logic puzzles, doing cryptarithmetic, or planning a

vacation.3

Our remarkable ability to perform reflexive reasoning poses a challenge for cognitive science

and neuroscience: How can a system of simple and slow neuron-like elements represent a

large body of systematic knowledge and perform a range of inferences with such speed? With

nearly 1012 computing elements and 1015 interconnections, the brain’s capacity for encoding,

communicating, and processing information seems awesome. But if the brain is extremely

powerful it is also extremely limited: First, neurons are slow computing devices. Second, they

communicate relatively simple messages that can encode only a few bits of information. Hence a

neuron’s output cannot encode names, pointers, or complex structures.4 Finally, the computation

performed by a neuron is best described as an analog spatio-temporal integration of its inputs.

The relative simplicity of a neuron’s processing ability with reference to the needs of symbolic

computation, and the restriction on the complexity of messages exchanged by neurons, impose

strong constraints on the nature of neural representations and processes (Feldman & Ballard

1982; Feldman 1989; Shastri 1991). As we discuss in Section 2, a reasoning system must be

capable of encoding systematic and abstract knowledge and instantiating it in specific situations

to draw appropriate inferences. This means that the system must solve a complex version

of the variable binding problem (Feldman 1982; Malsburg 1986). In particular, the system

must be capable of representing composite structures in a dynamic fashion and systematically

propagating them to instantiate other composite structures. This turns out to be a difficult problem

for neurally motivated models. As McCarthy (1988) observed most connectionist systems suffer

from the “unary or even propositional fixation” with their representational power restricted to

unary predicates applied to a fixed object. Fodor and Pylyshyn (1988) have even questioned the

ability of connectionist networks to embody systematicity and compositionality.

1.1 Reflexive reasoning: some assumptions and hypotheses

Reflexive reasoning occurs with reference to a large body of long-term knowledge. This knowl-

edge forms an integral part of an agent’s conceptual representation and is retained for a con-

siderable period of time once it is acquired. We wish to distinguish long-term knowledge from

short-term knowledge as well as medium-term knowledge. By the latter we mean knowledge that

persists longer than short-term knowledge and may be remembered for days or even weeks. Such

medium-term knowledge however, may be forgotten without being integrated into the agent’s

long-term conceptual representation. The distinction between medium and long-term knowledge

is not arbitrary and seems to have a neurological basis. It is likely that medium-term memories

are encoded via long-term potentiation (LTP) (Lynch 1986) and some of them subsequently con-

verted into long-term memories and encoded via essentially permanent structural changes (see

e.g., Marr 1971; Squire 1987; Squire & Zola-Morgan 1991).

An agent’s long-term knowledge base (LTKB) encodes several kinds of knowledge. These

include specific knowledge about particular entities, relations, events and situations, as well as

general systematic knowledge about the regularities and dependencies in the agent’s environment.

For example, an agent’s LTKB may contain specific knowledge such as ‘Paris is the capital of
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France’ and ‘Susan bought a Rolls Royce’, as well as systematic and instantiation independent

knowledge such as ‘if one buys something then one owns it’. We will refer to specific knowledge

as facts, and general instantiation independent knowledge as rules (note that by a ‘rule’ we do not

mean a ‘rule of inference’ such as modus-ponens). The LTKB may also include knowledge about

the attributes or features of concepts and the super/sub-concept relationships among concepts,

and also procedural knowledge such as ‘how to mow a lawn’.

In discussing the LTKB we are focusing on representational adequacy — i.e., the need

for representing entities, relations, inferential dependencies, and specific as well as general

(instantiation independent) knowledge. The expressiveness implied by this generic specification,

however, is sufficient to represent knowledge structures such as frames (Minsky 1975), scripts

(Schank & Abelson 1977), and productions or if-then rules (Newell & Simon 1972).

A serious attempt at compiling common sense knowledge suggests that the LTKB may contain

as many as 108 items (Guha & Lenat 1990). This should not be very surprising given that it

must include, besides other things, our knowledge of naive physics and naive psychology; facts

about ourselves, our family and friends; facts about history and geography; our knowledge of

artifacts; sports, art, and music trivia; and our models of social and civic interactions.

Space and time constraints on a reflexive reasoner

Given that there are about 1012 cells in the brain, the expected size of the LTKB (108) rules out

any encoding scheme whose node requirement is quadratic (or higher) in the size of the LTKB.5

In view of this we adopt the working hypothesis that the node requirement of a model of reflexive

reasoning should be no more than linear in (i.e., proportional to) the size of the LTKB. This is a

reasonable hypothesis. Observe that i) a node in an idealized computational model may easily

correspond to a hundred or so actual cells and ii) the number of cells available for encoding the

LTKB can only be a fraction of the total number of cells.

We believe that although the size of an agent’s LTKB increases considerably from, say, age

ten to thirty, the time taken by an agent to understand natural language does not. This leads

us to suspect that the time taken by an episode of reflexive reasoning does not depend on the

overall size of the LTKB, but only on the complexity of the particular episode of reasoning.

Hence we adopt the working hypothesis that the time required to perform reflexive reasoning is

independent of the size of the LTKB.6

The independence of i) the time taken by reflexive reasoning and ii) the size of the LTKB,

implies that reflexive reasoning is a parallel process and involves the simultaneous exploration

of a number of inferential paths. Hence a model of reflexive reasoning must be parallel at the

level of rule application and reasoning, i.e., it must support knowledge-level parallelism. This

is a critical constraint and one that is not necessarily satisfied by a connectionist model simply

because it is ‘connectionist’ (also see Sumida & Dyer 1989).

We understand written language at the rate of somewhere between 150 and 400 words per

minute (Carpenter & Just 1977). In other words, we can understand a typical sentence in a matter

of one to two seconds. Given that reflexive reasoning occurs during language understanding, it

follows that episodes of reflexive reasoning may take as little as a few hundred msec.
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Reflexive reasoning is limited reasoning

Complexity theory rules out the existence of a general purpose reasoning system that derives all

inferences efficiently. This entails that there must exist constraints on the class of reasoning that

may be performed in a reflexive manner. Not surprisingly, cognitive agents can perform only a

limited class of inferences with extreme efficiency. Naturally, we expect that the representational

and reasoning ability of the proposed system will also be constrained and limited in a number of

ways. However, we would like the strengths and limitations of the system to be psychologically

plausible and mirror some of the strengths and limitations of human reasoning.

1.2 Computational constraints

Connectionist models (Feldman & Ballard 1982; Rumelhart & McClelland 1986) are intended

to emulate the information processing characteristics of the brain — albeit at an abstract com-

putational level — and reflect its strengths and weaknesses. Typically, a node in a connectionist

network corresponds to an idealized neuron, and a link corresponds to an idealized synaptic con-

nection. Let us enumerate some core computational features of connectionist models: i) Nodes

compute very simple functions of their inputs, ii) They can only hold limited state information

— while a node may maintain a scalar ‘potential’, it cannot store and selectively manipulate bit

strings. iii) Node outputs do not have sufficient resolution to encode symbolic names or pointers.

iv) There is no central controller that instructs individual nodes to perform specific operations

at each step of processing.

1.3 A preview

We discuss the variable binding problem as it arises in the context of reasoning and describe a

neurally plausible solution to this problem. The solution involves maintaining and propagating

dynamic bindings using synchronous firing of appropriate nodes. We show how our solution

leads to a connectionist knowledge representation and reasoning system that can encode a large

LTKB consisting of facts and rules involving n-ary predicates and variables, and perform a

broad class of reasoning with extreme efficiency. Once a query is posed to the system by

initializing the activity of appropriate nodes, the system computes an answer automatically and

in time proportional to the length of the shortest chain of reasoning leading to the conclusion.

The ability to reason rapidly is a consequence, in part, of the system’s ability to maintain and

propagate a large number of dynamic bindings simultaneously.

The view of information processing implied by the proposed system is one where i) reasoning

is the transient but systematic propagation of a rhythmic pattern of activity, ii) each entity in the

dynamic memory is a phase in the above rhythmic activity, iii) dynamic bindings are represented

as the synchronous firing of appropriate nodes, iv) long-term facts are subnetworks that act as

temporal pattern matchers, and v) rules are interconnection patterns that cause the propagation

and transformation of rhythmic patterns of activity.

We cite neurophysiological data which suggests that the basic mechanisms proposed for

representing and propagating dynamic variable bindings, namely, the propagation of rhythmic
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patterns of activity and the synchronous activation of nodes, exist in the brain and appear to play

a role in the representation and processing of information.

Our system predicts a number of constraints on reflexive reasoning that have psychological

implications. These predictions concern the capacity of the working memory underlying reflexive

reasoning (WMRR) and the form of rules that can participate in such reasoning. The predictions

also relate the capacity of the WMRR and the time it would take to perform one step of

reasoning to biological parameters such as the lowest frequency at which nodes can sustain

synchronous oscillations, the coarseness of synchronization, and the time it takes connected

nodes to synchronize. By choosing biologically plausible system parameters we show that it

is possible for a system of neuron-like elements to encode millions of facts and rules and yet

perform multi-step inferences in a few hundred msec.

Reasoning is the spontaneous and natural outcome of the system’s behavior. The system

does not apply syntactic rules of inference such as modus-ponens. There is no separate inter-

preter or inference mechanism that manipulates and rewrites symbols. The network encoding

of the LTKB is best viewed as a vivid internal model of the agent’s environment, where the

interconnections between (internal) representations directly encode the dependencies between the

associated (external) entities. When the nodes in this model are activated to reflect a given state

of affairs in the environment, the model spontaneously simulates the behavior of the external

world and in doing so makes predictions and draws inferences.

The representational and inferential machinery developed in this work has wider significance

and can be applied to other problems whose formulation requires the expressive power of n-ary

predicates, and whose solution requires the rapid and systematic interaction between long-term

and dynamic structures. Some examples of such problems are i) parsing and the dynamic linking

of syntactic and semantic structures during language processing and ii) model-based visual object

recognition requiring the dynamic representation and analysis of spatial relations between objects

and/or parts of objects. Recently, Henderson (1991) has proposed the design of a natural language

parser based on our computational model.

1.4 Some caveats

Our primary concern has been to extend the representational and inferential power of neurally

plausible (connectionist) models and to demonstrate their scalability. We are also concerned that

the strengths and limitations of our system be psychologically plausible. However, our aim has

not been to model data from specific psychological experiments. What we describe is a partial

model of reflexive reasoning. It demonstrates how a range of reasoning can be performed in

a reflexive manner and also identifies certain types of reasoning that cannot be performed in

a reflexive manner. Our system, however, does not model all aspects of reflexive reasoning.

For example, we focus primarily on declarative and semantic knowledge and do not model

reflexive analogical reasoning, or reflexive reasoning involving episodic memory (Tulving 1983)

and imagery. We do not say much about what the actual contents of an agent’s LTKB ought to

be. We do not provide a detailed answer to the question of learning. We do however, discuss

in brief how specific facts may be learned and existing rules modified (Section 10.6). Neural

plausibility is an important aspect of this work — we show that the proposed system can be
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realized using neurally plausible nodes and mechanisms, and we investigate the consequences of

choosing biologically motivated values of system parameters. Needless to say, what we describe

is an idealized computational model and it is not intended to be a blue-print of how the brain

encodes a LTKB and performs reflexive reasoning.

An outline of the paper

Section 2 discusses the dynamic binding problem in the context of reasoning. Section 3 presents

our solution to this problem and the encoding of long-term rules and facts. Section 4 describes

a reasoning system capable of encoding a LTKB and answering queries based on the encoded

knowledge. The interface of the basic reasoning system with an IS-A hierarchy that represents

entities, types (categories), and the super/sub-concept relations between them is described in

Section 5. Section 6 discusses a solution to the multiple instantiation problem. Section 7

discusses the biological plausibility of our system and identifies neurally plausible values of

certain system parameters. Section 8 points out the psychological implications of the constraints

on reflexive reasoning suggested by the system. Section 9 discusses related connectionist models

and the marker passing system NETL. Finally, Section 10 discusses some open problems related

to integrating the proposed reflexive reasoning system with an extended cognitive system. Certain

portions of the text are set in small type. These cover detailed technical material and may be

skipped without loss of continuity.

2 Reasoning and the dynamic binding problem

Assume that an agent’s LTKB embodies the following rules:7

1. If someone gives a recipient an object then the recipient comes to own that object.

2. Owners can sell what they own.

Given the above knowledge an agent would be capable of inferring ‘Mary owns Book1’

and ‘Mary can sell Book1’ on being told ‘John gave Mary Book1’. A connectionist reasoning

system that embodies the same knowledge should also be capable of making similar inferences,

and hence, exhibit the following behavior: If the network’s pattern of activity is initialized to

represent the fact ‘John gave Mary Book1’ then very soon, its activity should evolve to include

the representations of the facts ‘Mary owns Book1’ and ‘Mary can sell Book1’.

Before proceeding further let us point out that the knowledge embodied in a rule may be

viewed as having two distinct aspects. A rule specifies a systematic correspondence between the

arguments of certain ‘predicates’ (where a predicate may be thought of as a relation, a frame,

or a schema). For example, rule (1) specifies that a ‘give’ event leads to an ‘own’ event where

the recipient of ‘give’ corresponds to the owner of ‘own’, and the object of ‘give’ corresponds

to the object of ‘own’. Let us refer to this aspect of a rule as systematicity.8 The second aspect

of the knowledge embodied in a rule concerns the appropriateness of the specified argument

correspondence in a given situation depending upon the types (or features) of the argument-fillers

involved in that situation. Thus appropriateness may capture type restrictions that argument fillers
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must satisfy in order for a rule to fire. It may also indicate type preferences and provide a graded

measure of a rule’s applicability in a given situation based on the types of the argument-fillers

in that situation.

We will first focus on the problems that must be solved in order to incorporate systematicity

in a connectionist system. Later in Section 5 we will discuss how the solutions proposed to

deal with systematicity may be augmented to incorporate appropriateness and represent context

dependent rules that are sensitive to the types of the argument-fillers.

If we focus on systematicity, then rules can be succinctly described using the notation of

first-order logic. For example, rules (1) and (2) can be expressed as the following first-order

rules:

1. 8x; y; z [give(x; y; z) ) own(y; z)]
2. 8u; v [own(u; v) ) can-sell(u; v)]

wherein give is a three place predicate with arguments: giver, recipient, and give-object; own
is a two place predicate with arguments: owner and own-object; and can-sell is also a two

place predicate with arguments: potential-seller and can-sell-object. The use of quantifiers

and variables allows the expression of general, instantiation independent knowledge and helps

in specifying the systematic correspondence between predicate arguments.9

A fact may be expressed as a predicate instance (atomic formula). For example, the fact

‘John gave Mary Book1’ may be expressed as give(John, Mary, Book1).

A connectionist network must solve three technical problems in order to incorporate system-

aticity. We discuss these problems in the following three sections.

2.1 Dynamic representation of facts: instantiating predicates

A reflexive reasoning system should be capable of representing facts in a rapid and dynamic

fashion. Observe that the reasoning process generates inferred facts dynamically and the reason-

ing system should be capable of representing these inferred facts. Furthermore, the reasoning

system must interact with other processes that communicate facts and pose queries to it, and the

system should be capable of dynamically representing such facts and queries.

The dynamic representation of facts poses a problem for standard connectionist models.

Consider the fact give(John, Mary, Book1). This fact cannot be represented dynamically by

simply activating the representations of the arguments giver, recipient, and give-object, and the

constituents ‘John’, ‘Mary’, and ‘Book1’. Such a representation would suffer from cross-talk and

would be indistinguishable from the representations of give(Mary, John, Book1) and give(Book1,

Mary, John). The problem is that this fact — like any other instantiation of an n-ary predicate

— is a composite structure: it does not merely express an association between the constituents

‘John’, ‘Mary’, and ‘Book1’, rather it expresses a specific relation wherein each constituent plays

a distinct role. Thus a fact is essentially a collection of bindings between predicate arguments

and fillers. For example, the fact give(John, Mary, Book1) is the collection of argument-filler

bindings (giver=John, recipient=Mary, give-object=Book1). Hence representing a dynamic fact

amounts to representing — in a dynamic fashion — the appropriate bindings between predicate

arguments and fillers.

The dynamic representation of facts should also support the simultaneous representation of

7



multiple facts such as give(John, Mary, Book1) and give(Mary, John, Car3) without ‘creating’

ghost facts such as give(Mary, John, Book1).

Static versus dynamic bindings

A connectionist encoding that represents the bindings associated with the fact give(John, Mary,

Book1) without cross-talk is illustrated in Fig. 1 (cf. Shastri & Feldman 1986; Shastri 1988b).

Each triangular binder node binds the appropriate filler to the appropriate argument and the

focal node give23 provides the requisite grouping between the set of bindings that make up

the fact. The binder nodes become active on receiving two inputs and thus serve to retrieve

the correct filler given a fact and an argument (and vice-versa). Such a static encoding using

physically interconnected nodes and links to represent argument-filler bindings is suitable for

representing stable and long-term knowledge because the required focal and binder nodes may

be learned (or recruited) over time in order to represent new but stable bindings of constituents.10

This scheme however, is implausible for representing bindings that will be required to encode

dynamic structures that will arise during language understanding and visual processing. Such

dynamic bindings may have to be represented very rapidly — within a hundred msec — and it is

unlikely that there exist mechanisms that can support wide spread structural changes and growth

of new links within such time scales. An alternative would be to assume that interconnections

between all possible pairs of arguments and fillers already exist. These links normally remain

“inactive” but the appropriate subset of these links become “active” temporarily to represent

dynamic bindings (Feldman 1982; von der Malsburg 1986). This approach, however, is also

problematic because the number of all possible argument-filler bindings is extremely large and

having pre-existing structures for representing all these bindings will require a prohibitively

large number of nodes and links. Techniques for representing argument-filler bindings based on

the von Neumann architecture also pose difficulties because they require communicating names

or pointers of fillers to appropriate argument nodes and vice versa. As pointed out earlier, the

storage and processing capacity of nodes as well as the resolution of their outputs is not sufficient

to store, process, and communicate names or pointers.

*********** Figure 1 goes about here **********

2.2 Inference, propagation of dynamic bindings, and the encoding of rules

The second technical problem that a connectionist reasoning system must solve concerns the

dynamic generation of inferred facts. For example, starting with a dynamic representation of

give(John, Mary, Book1) the state of a network encoding rules (1) and (2) should evolve rapidly to

include the dynamic representations of the inferred facts: own(Mary, Book1) and can-sell(Mary,

Book1). This process should also be free of cross-talk and not lead to spurious bindings.

Generating inferred facts involves the systematic propagation of dynamic bindings in ac-

cordance with the rules embodied in the system. A rule specifies antecedent and consequent

predicates and a correspondence between the arguments of these predicates. For example, the rule

8x; y; z [give(x; y; z) ) own(y; z)] specifies that a give event results in an own event wherein

the recipient of a give event corresponds to the owner of an own event and the give-object of a
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give event corresponds to the own-object of an own event. An application of a rule (i.e., a step of

inference), therefore amounts to taking an instance of the antecedent predicate(s) and creating —

dynamically — an instance of the consequent predicate, with the argument bindings of the latter

being determined by applying the argument correspondence specified in the rule to the argument

bindings of the former. Thus the application of the rule 8x; y; z [give(x; y; z) ) own(y; z)]
in conjunction with an instance of give, give(John, Mary, Book1), creates an instance of own

with the bindings (owner=Mary,own-object=Book1). These bindings constitute the inferred fact

own(Mary, Book1). Once the representation of an inferred fact is established, it may be used

in conjunction with other domain rules to create other inferred facts. Such a chain of inference

may lead to a proliferation of inferred facts and the associated dynamic bindings.

2.3 Encoding long-term facts

In addition to encoding domain rules such as (1) and (2), a connectionist reasoning system must

also be capable of encoding facts in its LTKB and using them during recall, recognition, query

answering, and reasoning. For example, we expect our system to be capable of encoding a

fact such as ‘John bought a Rolls-Royce’ in its LTKB and use it to rapidly answer the query

‘Did John buy a Rolls-Royce?’. We also expect it to use this fact in conjunction with other

knowledge to rapidly answer queries such as ‘Does John own a car?’ Observe that storing a

long-term fact would require storing the associated bindings as a static long-term structure. This

structure should interact with dynamic bindings and recognize those that match it.

2.4 Dynamic binding and categorization

As discussed at the beginning of Section 2, the appropriateness of a rule in a specific situation may

depend on the types/features of the argument-fillers involved in that situation. Thus categorization

plays a crucial role in the propagation of dynamic bindings during reasoning. Consider the rule:

8x; y walk-into(x; y) ) hurt(x) (i.e., if one walks into something then one gets hurt’). As

stated the rule only encodes systematicity and underspecifies the relation between ‘walking into’

and ‘getting hurt’. It would fire even in the situation “John walked into the mist” and lead to the

inference “John got hurt”. A complete encoding of the knowledge embodied in the rule would

also specify the types/features of the argument-fillers of ‘walk-into’ for which the application

of this rule would be appropriate. Given such an encoding the propagation of binding from the

first argument of walk-into to the argument of hurt will occur only if the fillers of the arguments

of walk-into belong to the appropriate type (we discuss the encoding of such rules in Section 5).

The use of categorization can also prevent certain cases of cross-talk in the representation

of dynamic facts. For example, categorization may prevent cross-talk in the representation of

buy(Mary, Book1) because spurious versions of this fact such as buy(Book1, Mary) would violate

category restrictions, and hence, would be unstable. However, categorization cannot in of itself,

solve the dynamic binding problem. This because it alone cannot enforce systematicity. For

example, categorization cannot determine that the dynamic fact give(John, Mary, Book1) should

result in the inferred fact own(Mary, Book1) but not own(John, Book1).
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2.5 The dynamic binding problem in vision and language

The need for systematically dealing with composite objects in a dynamic manner immediately

gives rise to the dynamic binding problem. Thus the dynamic binding problem arises in any

cognitive activity that admits systematicity and compositionality. Consider vision. Visual object

recognition involves the rapid grouping of information over the spatial extent of an object and

across different feature maps so that features belonging to one object are not confused with

those of another (Treisman and Gelade 1980). The binding of features during visual processing

is similar to the binding of argument fillers during reasoning. In terms of representational power,

however, the grouping of all features belonging to the same object can be expressed using unary-

predicates.11 But as we have seen, reasoning requires the representation of unary as well as n-ary

predicates. A similar need would arise in a more sophisticated vision system that dynamically

represents and analyzes spatial relations between objects and/or parts of object.

While there may be considerable disagreement over the choice of primitives and the functional

relationship between the ‘meaning’ of a composite structure and that of its constituents, it seems

apparent that a computational model of language should be capable of computing and representing

composite structures in a systematic and dynamic manner. Thus language understanding requires

a solution to the dynamic binding problem, not only to support reasoning, but also to support

syntactic processing and the dynamic linking of syntactic and semantic structures.

3 Solving the dynamic binding problem

In this section we describe solutions to the three technical problems discussed in sections 2.1

through 2.3. The solution involves several ideas that complement each other and together lead

to a connectionist model of knowledge representation and reflexive reasoning.

As pointed out in Section 2.1, it is implausible to represent dynamic bindings using structural

changes, pre-wired interconnection networks, or by communicating names/pointers of arguments

and fillers. Instead, what is required is a neurally plausible mechanism for rapidly and temporarily

labeling the representations of fillers and predicate arguments to dynamically encode argument-

filler bindings. Also required are mechanisms for systematically propagating such transient labels

and allowing them to interact with long-term structures.

In the proposed system we use the temporal structure of node activity to provide the necessary

labeling. Specifically, we represent dynamic bindings between arguments and fillers by the

synchronous firing of appropriate nodes. We also propose appropriate representations for n-ary

predicates, rules, long-term facts, and an IS-A hierarchy that facilitate the efficient propagation

and recognition of dynamic bindings.12

The significance of temporally organized neural activity has long been recognized (Hebb

1949; Freeman 1981; Sejnowski 1981). In particular, von der Malsburg (1981,1986) has pro-

posed that correlated activity within a group of cells can be used to represent dynamic grouping

of cells. He also used temporal synchrony and synapses that can alter their weights within

hundreds of msec to model sensory segmentation and the human ability to attend to a specific

speaker in a noisy environment (von der Malsburg & Schneider 1986). Abeles (1982, 1991) has

put forth the hypothesis that computations in the cortex occur via “synfire chains” — propagation
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of synchronous activity along diverging and converging pathways between richly interconnected

cell assemblies. Crick (1984) has also suggested the use of fine temporal coincidence to rep-

resent dynamic bindings and synchronized activity across distant regions forms the keystone

of Damasio’s (1991) general framework for memory and consciousness. Several researchers

have reported the occurrence of synchronous activity in the cat and monkey visual cortex and

presented evidence in support of the conjecture that the visual cortex may be using synchronous

and/or oscillatory activity to solve the binding problem (see Section 7).

Recently, other researchers have used temporal synchrony to solve various aspects of the

binding problem in visual perception (Strong & Whitehead 1989; Hummel & Biederman 1991;

Horn, Sagi & Usher 1991). In this work we use temporal synchrony to solve a different problem,

namely, the representation of, and systematic reasoning with, conceptual knowledge. In solving

this problem we also demonstrate that temporal synchrony can support more complex represen-

tations. The expressiveness and inferential power of our model exceeds that of the models cited

above because our system can represent dynamic instantiations of n-ary predicates — including

multiple instantiations of the same predicate.13

Clossman (1988) had used synchronous activity to represent argument-filler bindings but he

had not suggested an effective representation of ‘rules’. Consequently, his system could not

propagate dynamic bindings to perform inferences.

As an abstract computational mechanism, temporal synchrony can be related to the notion of

marker passing (Quillian 1968; Fahlman 1979).14 Fahlman had proposed the design of a marker

passing machine consisting of a parallel network of simple processors and a serial computer

that controlled the operation of the parallel network. Each node could store a small number of

discrete ‘markers’ (or tags) and each link could propagate markers between nodes under the su-

pervision of the network controller. Fahlman showed how his machine could compute transitive

closure and set intersection in parallel, and in turn, solve a class of inheritance and recognition

problems efficiently. Fahlman’s system however, was not neurally plausible. First, nodes in the

system were required to store, match, and selectively propagate marker bits. Although units with

the appropriate memory and processing characteristics may be readily realized using electronic

hardware, they do not have any direct neural analog. Second, the marker passing system oper-

ated under the strict control of a serial computer that specified, at every step of the propagation,

exactly which types of links were to pass which markers in which directions.

The relation between marker passing and temporal synchrony can be recognized by noting

that nodes firing in synchrony may be viewed as being marked with the same marker and the

propagation of synchronous activity along a chain of connected nodes can be viewed as the

propagation of markers. Thus in developing our reasoning system using temporal synchrony

we have also established that marker passing systems can be realized in a neurally plausible

manner. In the proposed system, nothing has to be stored at a node in order to mark it with a

marker. Instead, the time of firing of a node relative to other nodes and the coincidence between

the time of firing of a node and that of other nodes, has the effect of marking a node with a

particular marker! A node in our system is not required to match any markers, it simply has to

detect whether appropriate inputs are coincident. Thus our approach enables us to realize the

abstract notion of markers by using time, a dimension that is forever present, and giving it added

representational status.
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As we shall see, the neural plausibility of our system also results from its ability to operate

without a central controller. Once a query is posed to the system by activating appropriate nodes,

it computes the solution without an external controller directing the activity of nodes at each

step of processing. (Also see Section 9.1).

Several other connectionist solutions to the binding problem have been suggested (Feldman

1982; Touretzky & Hinton 1988; Barnden & Srinivas 1991; Dolan & Smolensky 1989; and

Lange & Dyer 1989). These alternatives are discussed in Section 9.3.

3.1 Representing dynamic bindings

Refer to the representation of some predicates and entities shown in Fig. 2. Observe that

predicates, their arguments, and entities are represented using distinct nodes. For example, the

ternary predicate give is represented by the three argument nodes labeled giver, recip, and g-

obj together with an associated ‘node’ depicted as a dotted rectangle. The role of this ‘node’

will be specified later in Section 3.3. For simplicity we will assume that each argument node

corresponds to an individual connectionist node. This is an idealization. Later in Section 7.3 we

discuss how each argument node corresponds to an ensemble of nodes. Nodes such as John and

Mary correspond to focal nodes of more elaborate connectionist representations of the entities

‘John’ and ‘Mary’. Information about the attribute values (features) of ‘John’ and its relationship

to other concepts is encoded by linking the focal node John to appropriate nodes. Details of

such an encoding may be found in (Shastri & Feldman 1986; Shastri 1991). As explained in

(Feldman 1989), a focal node may also be realized by a small ensemble of nodes.

*********** Figure 2 goes about here **********

Dynamic bindings are represented in the system by the synchronous firing of appropriate

nodes. Specifically, a dynamic binding between a predicate argument and its filler is represented

by the synchronous firing of nodes that represent the argument and the filler. With reference to

the nodes in Fig. 2 the dynamic representation of the bindings (giver=John, recipient=Mary,

give-object=Book1), i.e., the dynamic fact give(John, Mary, Book1), is represented by rhythmic

pattern of activity shown in Fig. 3. The absolute phase of firing of fillers and arguments nodes is

not significant — what matters is the coincidence (or the lack thereof) in the firing of nodes. The

activity of the dotted rectangular nodes is not significant at this point and is not specified. As

another example, consider the firing pattern shown in Fig. 4. This pattern of activation represents

the single binding (giver=John) and corresponds to the partially instantiated fact give(John,x,y)

(i.e., ‘John gave someone something’).

*********** Figures 3, 4 and 5 go about here **********

Fig. 5 shows the firing pattern of nodes corresponding to the dynamic representation of the

bindings (giver=John, recipient=Mary, give-object=Book1, owner=Mary, own-object=Book1,

potential-seller=Mary, can-sell-object=Book1). These bindings encode the facts give(John,

Mary, Book1), own(Mary,Book1), and can-sell(Mary,Book1). Observe that the (multiple) bind-

ings between Mary and the arguments recipient, owner, and potential-seller are represented by

these argument nodes firing in-phase with Mary. Observe that the individual concepts Mary,

Book1, and John are firing out of phase and occupy distinct phases in the rhythmic pattern of

activity. This highlights some significant aspects of the proposed solution:
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� The transient or short-term representation of an entity is simply a phase within a rhythmic

pattern of activity

� The number of distinct phases within the rhythmic activation pattern only equals the

number of distinct entities participating in the dynamic bindings. In particular, this does

not depend on the total number of dynamic bindings being represented by the activation

pattern.

� The number of distinct entities that can participate in dynamic bindings at the same time

is limited by the ratio of the period of the rhythmic activity and the width of individual

spikes.

Thus far we have assumed that nodes firing in synchrony fire precisely in-phase. This is an

idealization. In general we would assume a coarser form of synchrony where nodes firing with

a lag or lead of less than !=2 of one another would be considered to be firing in synchrony.

This corresponds to treating the width of the ‘window of synchrony’ to be !.

3.2 Encoding rules and propagating dynamic bindings

In Section 2.2 we described how a step of inference or rule application may be viewed as taking

an instance of the antecedent predicate and dynamically creating an instance of the consequent

predicate, with the argument bindings of the latter being determined by (i) the argument bindings

of the former and (ii) the argument correspondence specified by the rule. Consequently, the

encoding of a rule should provide a means for propagating bindings from the arguments of

the antecedent predicate to the arguments of the consequent predicate in accordance with the

argument correspondence specified in the rule. With reference to Fig. 2, encoding the rules

8x; y; z [give(x; y; z) ) own(y; z)] and 8u; v [own(u; v) ) can-sell(u; v)] should have the

following effect: The state of activation described by the rhythmic activation pattern shown in

Fig. 3 should eventually lead to the rhythmic activation pattern shown in Fig. 5.

The desired behavior may be realized if a rule is encoded by linking the arguments of the

antecedent and consequent predicates so as to reflect the correspondence between arguments

specified by the rule. For example, the rule 8x; y; z [give(x; y; z) ) own(y; z)] can be en-

coded by establishing links between the arguments recipient and give-object of give and the

arguments owner and own-object of own, respectively. If we also wish to encode the rule:

8x; y [buy(x; y) ) own(x; y)], we can do so by connecting the arguments buyer and buy-object

of buy to the arguments owner and own-object of own, respectively. This encoding is illustrated

in Fig. 6. In the idealized model we are assuming that each argument is represented as a single

node and each argument correspondence is encoded by a one to one connection between the ap-

propriate argument nodes. As discussed in Section 7.3, however, each argument will be encoded

as an ensemble of nodes and each argument correspondence will be encoded by many-to-many

connections between the appropriate ensembles (for a preview see Fig. 26).

*********** Figure 6 goes about here **********

Arguments and concepts are encoded using what we call �-btu nodes. These nodes have the

following idealized behavior:
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� If a node A is connected to node B then the activity of node B will synchronize with the

activity of node A. In particular, a periodic firing of A will lead to a periodic and in-phase

firing of B. We assume that �-btu nodes can respond in this manner as long as the period

of firing, �, lies in the interval [�min; �max]. This interval can be interpreted as defining

the frequency range over which �-btu nodes can sustain a synchronized response.

� To simplify the description of our model we will assume that periodic activity in a node

can lead to synchronous periodic activity in a connected node within one period.

� A threshold, n, associated with a node indicates that the node will fire only if it receives

n or more synchronous inputs.15 If unspecified, a node’s threshold is assumed to be 1.16

As described above, interconnected �-btu nodes can propagate synchronous activity and form

chains of nodes firing in synchrony. In Section 7 we point to evidence from neurophysiology

and cite work on neural modeling which suggests that the propagation of synchronous activity

is neurally plausible.

*********** Figures 7, 8 and 9 go about here **********

Given the above interconnection pattern and node behavior, the initial state of activation

shown in Fig. 7 will lead to the state of activation shown in Fig. 8 after one period, and to the

state of activation shown in Fig. 9 after another period.

The encoding of rules by the explicit encoding of the inferential dependency between pred-

icates and predicate arguments, in conjunction with the use of temporal synchrony provides

an efficient mechanism for propagating dynamic bindings and performing systematic reasoning.

Conceptually, the proposed encoding of rules creates a directed inferential dependency graph:

Each predicate argument is represented by a node in this graph and each rule is represented by

links between nodes denoting the arguments of the antecedent and consequent predicates. In

terms of this conceptualization, it should be easy to see that the evolution of the system’s state

of activity corresponds to a parallel breadth-first traversal of the directed inferential dependency

graph. This means that i) a large number of rules can fire in parallel and ii) the time taken

to generate a chain of inference is independent of the total number of rules and just equals l�
where l is the length of the chain of inference and � is the period of oscillatory activity.

3.3 Encoding long-term facts: Memory as a temporal pattern matcher

As stated in Section 2.3, our system must also be capable of representing long-term facts which

are essentially a permanent record of a set of bindings describing a particular situation. The

representation of a long-term fact should encode the bindings pertaining to the fact in a manner

that allows the system to rapidly recognize dynamic bindings that match the encoded fact. Given

that dynamic bindings are represented as temporal patterns, it follows that the encoding of a long-

term fact should behave like a temporal pattern matcher that becomes active whenever the static

bindings it encodes match the dynamic bindings represented in the system’s state of activation.

*********** Figures 10 and 11 go about here **********

The design of such a temporal pattern matcher is illustrated in Figs. 10 and 11 that depict

the encoding of the long-term facts give(John,Mary,Book1) and give(John,Susan,x), respectively
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(the latter means ‘John gave Susan something’). The encoding fully specifies how a predicate

is encoded. Observe that in addition to �-btu nodes, the encoding also makes use of pentagon

shaped � -and nodes that have the following idealized behavior:

� A � -and node becomes active on receiving an uninterrupted pulse train, i.e., a pulse train

such that the gap between adjacent pulses is less than a spike width. Thus a � -and node

behaves like a temporal and node. On becoming active, such a node produces an output

pulse train similar to the input pulse train.

� Note that a � -and node driven by a periodic input consisting of a train of pulses of width

comparable to the period �, will produce a periodic train of pulses of width and periodicity

�. We assume that a � -and node can behave in this manner as long as the period of the

input pulse train lies in the interval [�min; �max].

� A threshold, n, associated with a � -and node indicates that the node will fire only if it

receives n or more synchronous pulse trains. If unspecified, n is assumed to be 1.

An n-ary predicate P is encoded using two � -and nodes and n �-btu nodes. One of these

� -and nodes is referred to as the enabler and the other as the collector. An enabler will be

referred to as e:P and drawn pointing upwards while a collector will be referred to as c:P and

drawn pointing downwards. With reference to Figs. 10 and 11, the ternary predicate give is

represented by the enabler e:give, the collector c:give, and the three argument nodes: giver,

recip, and g-obj. The representational significance of the enabler and collector nodes is as

follows. The enabler e:P of a predicate P has to be activated whenever the system is queried

about P . Such a query may be posed by an external process or generated internally by the

system itself during an episode of reasoning (see Section 4.4). On the other hand, the system

activates the collector c:P of a predicate P whenever the dynamic bindings of the arguments of

P are consistent with the knowledge encoded in the system.

A long-term fact is encoded using a � -and node which receives an input from the enabler

node of the associated predicate. This input is modified by inhibitory links from argument nodes

of the associated predicate. If an argument is bound to an entity, the modifier input from the

argument node is in turn modified by an inhibitory link from the appropriate entity node. The

output of the � -and node encoding a long-term fact is connected to the collector of the associated

predicate. We will refer to the � -and node associated with a long-term fact as a fact node. Note

that there is only one enabler node, one collector node, and one set of argument nodes for each

predicate. These nodes are shared by all the long-term facts pertaining to that predicate.

It can be shown that a fact node becomes active if and only if the static bindings it encodes match the

dynamic bindings represented in the network’s state of activation. As stated above, e:P becomes active

whenever any query involving the predicate P is represented in the system. Once active, e:P outputs

an uninterrupted pulse train which propagates to various fact nodes attached to e:P. Now the pulse train

arriving at a fact node will be interrupted by an active argument of P, unless the filler of this argument

specified by the long-term fact is firing in synchrony with the argument. But a filler and an argument

will be firing in synchrony if and only if they are bound in the dynamic bindings. Thus a fact node

will receive an uninterrupted pulse if and only if the dynamic bindings represented in the system’s state
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of activation are such that: Either an argument is unbound, or if it is bound, the argument filler in the

dynamic binding matches the argument filler specified in the long-term fact. The reader may wish to

verify that the encodings given in Figs. 10 and 11 will behave as expected.

The encoding of the long-term fact give(John, Mary, Book1) will recognize dynamic bindings

that represent dynamic facts such as: give(John, Mary, Book1), give(John, Mary, x), give(x, Mary,

y), and give(x, y, z). However it will not recognize those that represent give(Mary, John, Book1)

or give(John, Susan, x). Similarly, the encoding of the long-term fact give(John, Susan, x) will

recognize dynamic bindings that encode: give(John, Susan, x), give(x, Susan, y), and give(x, y,

z), but not give(Susan, John, x) or give(John, Susan, Car7).

3.4 Dynamic bindings and temporal synchrony— some observations

Given the representation of dynamic bindings and the encoding of rules described in the pre-

ceding sections, one may view i) reasoning as the transient but systematic propagation of a

rhythmic pattern of activation, ii) an object in the dynamic memory as a phase in the above

rhythmic activity, iii) bindings as the in-phase firing of argument and filler nodes, iv) rules as

interconnection patterns that cause the propagation and transformation of such rhythmic patterns

of activation, and v) facts as temporal pattern matchers. During an episode of reasoning, all

the arguments bound to a filler become active in the same phase as the filler thereby creating

transient ‘temporal frames’ of knowledge grouped together by temporal synchrony. This can be

contrasted with ‘static’ frames of knowledge where knowledge is grouped together — spatially

— using hard-wired links and nodes.

The system can represent a large number of dynamic bindings at the same time, provided the

number of distinct entities involved in these bindings does not exceed b�max=!c, where �max
is the maximum period (or the lowest frequency) at which �-btu nodes can sustain synchronous

oscillations and ! is the width of the window of synchrony. Recall that a window of synchrony

of ! implies that nodes firing with a lag or lead of less than !=2 of one other are considered

to be in synchrony. We discuss biologically plausible values of � and ! in Section 7.2 and the

psychological implications of these limits in Section 8.

As described thus far, the system allows the simultaneous representation of a large number of

dynamic facts but only supports the representation of one dynamic fact per predicate. In Section

6 we discuss a generalization of the proposed representation that allows multiple dynamic facts

pertaining to each predicate to be active simultaneously.

Although synchronous activity is central to the representation and propagation of binding,

the system does not require a global clock or a central controller. The propagation of in-phase

activity occurs automatically — once the system’s state of activation is initialized to represent an

input situation by setting up appropriate dynamic bindings, the system state evolves automatically

to represent the dynamic bindings corresponding to situations that follow from the input situation.

Reasoning is the spontaneous outcome of the system’s behavior. The system does not encode

syntactic rules of inference such as modus-ponens. There is no separate interpreter or inference

mechanism in the system that manipulates and rewrites symbols. The encoding of the LTKB is

best viewed as a vivid internal model of the agent’s environment. When the nodes in this model

are activated to reflect a particular situation in the environment, the model simulates the behavior

16



of the external world and dynamically creates a vivid model of the state of affairs resulting from

the given situation. The system is clearly not a rule following system. At the same time it is

not rule described or rule governed in the sense a falling apple is. As Hatfield (1991) argues,

the system is best described as being rule instantiating.

3.5 From mechanisms to systems

The mechanisms proposed in the previous sections provide the building blocks for a connectionist

system that can represent and reason with knowledge involving n-ary predicates and variables.

These mechanisms may interact in different ways to realize different sorts of reasoning behavior.

For example, they can lead to a forward reasoning system that can perform predictive inferences.

Our discussion in the previous sections was in the context of such a system.

The proposed mechanisms may also be used to create a backward reasoning system that

behaves as follows: If the system’s state of activation is initialized to represent a query, it

attempts to answer the query based on the knowledge encoded in its LTKB. A backward reasoning

system may be generalized to perform explanatory inferences. If the state of such a system is

initialized to represent an input ‘situation’, it will automatically attempt to explain this situation

on the basis of knowledge in its LTKB and a ‘minimal’ set of assumptions.

With the aid of additional mechanisms it is possible to design a system that performs both

predictive and explanatory inferences. Such a system would make predictions based on incom-

ing information and at the same time, seek explanations for, and test the consistency of, this

information.

4 A backward reasoning system

In this section we describe a backward reasoning system based on the representational mecha-

nisms described in Section 3. The system encodes facts and rules in its LTKB and answers queries

based on this knowledge. For example, if the system encodes rules 8x; y; z [give(x; y; z) )
own(y; z)] and 8u; v [own(u; v) ) can-sell(u; v)], and the long-term fact ‘John bought Porsche7’

it will respond ‘yes’ to queries such as ‘Does John own Porsche7’, or ‘Can John sell something?’.

The time taken to respond ‘yes’ to a query is only proportional to the length of the shortest

derivation of the query and is independent of the size of the LTKB.

In subsequent sections we describe several extensions of the backward reasoning system.

In Section 5 we show how the system may be combined with an IS-A hierarchy that encodes

entities, types (categories), and the super/sub-concept relations between them. The augmented

system allows the occurrence of types, non-specific instances of types, as well as entities in

rules, facts, and queries. This in turn makes it easier to encode the appropriateness aspect of

rules. An extension of the system to perform abduction is described in (Ajjanagadde 1991).

4.1 The backward reasoning system – a functional specification

The reasoning system can encode rules of the form:17
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8x1; :::; xm [P1(:::) ^ P2(:::)::: ^ Pn(:::) ) 9z1; :::zl Q(:::)]

The arguments of Pi’s are elements of fx1; x2; :::xmg. An argument of Q is either an element

of fx1; x2; :::xmg, or an element of fz1; z2; :::zlg, or a constant. It is required that any variable

occurring in multiple argument positions in the antecedent of a rule must also appear in the

consequent.18 The significance of this constraint is discussed in Section 4.9. Additional examples

of rules are:

8x; y; t [omnipresent(x) ) present(x; y; t)]
; Anyone who is omnipresent is present everywhere at all times

8x; y [born(x; y) ) 9t present(x; y; t)]
; Everyone must have been present at his or her birthplace sometime.

8x [triangle(x) ) number-of -sides(x; 3)]
8x; y [sibling(x; y) ^ born-together(x; y) ) twins(x; y)]

Facts are assumed to be partial or complete instantiations of predicates. In other words,

facts are atomic formulae of the form P (t1; t2:::tk) where ti’s are either constants or distinct

existentially quantified variables. Some examples of facts are:

give(John;Mary;Book1); John gave Mary Book1.

give(x; Susan;Ball2); Someone gave Susan Ball2.

buy(John; x); John bought something.

own(Mary;Ball1); Mary owns Ball1.

omnipresent(x); There exists someone who is omnipresent.

triangle(A3); A3 is a triangle.

sibling(Susan;Mary); Susan and Mary are siblings.

born-together(Susan;Mary); Susan and Mary were born at the same time.

A query has the same form as a fact. A query, all of whose arguments are bound to constants,

corresponds to the yes-no question: ‘Does the query follow from the rules and facts encoded in

the long-term memory of the system?’ A query with existentially quantified variables, however,

has several interpretations. For example, the query P (a; x), where a is a constant and x is an

existentially quantified argument, may be viewed as the yes-no query: ‘Does P (a; x) follow

from the rules and facts for some value of x?’ Alternately this query may be viewed as the

wh-query: ‘For what values of x does P (a; x) follow from the rules and facts in the system’s

long-term memory?’ Table 1 lists some queries, their interpretation(s), and their answer(s).

****** Table 1 goes about here ******

In describing the backward reasoner, we will begin by making several simplifying assump-

tions. We will assume that rules have a single predicate in the antecedent and that constants and

existentially quantified variables do not appear in the consequents of rules. We will also restrict

ourselves to yes-no queries at first. Subsequent sections will provide the relevant details.
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4.2 Encoding rules and facts in the long-term memory

Fig. 12 depicts the encoding of the rules: 8x; y; z [give(x; y; z) ) own(y; z)], 8x; y [buy(x; y)
) own(x; y)], and 8x; y [own(x; y) ) can-sell(x; y)]; and the facts: give(John, Mary, Book1),

buy(John, x), and own(Mary, Ball1).

*********** Figure 12 goes about here **********

As stated in Section 3, a constant (i.e., an entity) is represented by a �-btu node and an

n-ary predicate is represented by a pair of � -and nodes and n �-btu nodes. One of the � -and

nodes is referred to as the enabler and the other as the collector. An enabler is drawn pointing

upwards and is named e:[predicate-name]. A collector is drawn pointing downwards and is

named c:[predicate-name]. The enabler, e:P, of a predicate P has to be activated whenever the

system is queried about P . As we shall see, such a query may be posed by an external process

or generated internally by the system during an episode of reasoning. On the other hand, the

system activates the collector, c:P, of a predicate P whenever the current dynamic bindings of

the arguments of P are consistent with the long-term knowledge encoded in the system.

Each fact is encoded using a distinct � -and node that is interconnected with the appropriate

enabler, collector, argument and entity nodes as described in Section 3.3.

A rule is encoded by connecting i) the collector of the antecedent predicate to the collector

of the consequent predicate, ii) the enabler of the consequent predicate to the enabler of the

antecedent predicate, and iii) the argument nodes of the consequent predicate to the argument

nodes of the antecedent predicate in accordance with the correspondence between these arguments

specified in the rule (refer to Fig. 12). Notice that the links are directed from the arguments of

the consequent predicate to the arguments of the antecedent predicate. The direction of links is

reversed because the system performs backward reasoning.

4.3 Posing a query: specifying dynamic bindings

A query is a (partially) specified predicate instance of the form P (t1; :::; tn)?, where tis are either

constants (entities) or existentially quantified variables. Therefore, posing a query to the system

involves specifying the query predicate and the argument bindings specified in the query. We will

assume that only one external process communicates with the reasoning system. The possibility

of communication among several modules is discussed in Section 10.4 (also see Sections 10.1–

10.3). Let us choose an arbitrary point in time — say, t0 — as our point of reference for

initiating the query. The argument bindings specified in the query are communicated to the

network as follows:

� Let the argument bindings involve m distinct entities: c1; :::; cm. With each ci, associate a

delay �i such that no two delays are within ! of one another and the longest delay is less

than � � !. Here ! is the width of the window of synchrony, and � lies in the interval

[�min, �max].

� The argument bindings of an entity ci are indicated to the system by providing an oscillatory

spike train of periodicity � starting at t0+�i, to ci and all arguments of the query predicate

bound to ci. As a result, a distinct phase is associated with each distinct entity introduced
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in the query and argument bindings are represented by the synchronous activation of the

appropriate entity and argument nodes.

� The query predicate is specified by activating e:P, the enabler of the query predicate P ,

with a pulse train of width and periodicity � starting at time t0.

Observe that posing a query simply involves activating the enabler node of the query predicate

and the arguments and fillers specified in the query. There is no central controller that monitors

and regulates the behavior of individual nodes at each step of processing.

4.4 The inference process for yes-no queries

Once a query is posed to the system, it’s state of activation evolves automatically and produces

an answer to the query. The activation of the collector node of the query predicate indicates

that the answer to the query is yes. The time taken by the system to produce a yes answer

equals 2�(l + 1), where � is the period of oscillation of nodes and l equals the length of the

shortest derivation of the query.19 If the collector node of the query predicate does not receive

any activation within 2(d + 1) periods of oscillations — where d equals the diameter of the

inferential dependency graph, the answer to the query is don’t know. If we make the closed

world assumption20 then a don’t know answer can be viewed as a ‘no’ answer.

We illustrate the inference process with the help of an example (refer to Fig. 12). Consider the

query can-sell(Mary,Book1)? (i.e., ‘Can Mary sell Book1?’). This query is posed by providing

inputs to the entities Mary and Book1, the arguments p-seller, cs-obj and the enabler e:can-sell

as shown in Fig. 13. Observe that Mary and p-seller receive synchronous activation and so

do Book1 and cs-obj. Let us refer to the phase of activity of Mary and Book1 as phase-1 and

phase-2 respectively.

*********** Figure 13 goes about here **********

As a result of the inputs, Mary and p-seller fire synchronously in phase-1, while Book1

and cs-obj fire synchronously in phase-2 of every period of oscillation The node e:can-sell also

oscillates and generates a pulse train of periodicity and pulse width �. The activations from the

arguments p-seller and cs-obj reach the arguments owner and o-obj of the predicate own, and

consequently, starting with the second period of oscillation, owner and o-obj become active in

phase-1 and phase-2, respectively. Thereafter, the nodes Mary, owner, and p-seller are active in

phase-1, while the nodes Book1, cs-obj, and o-obj are active in phase-2. At the same time, the

activation from e:can-sell activates e:own. At this point the system has essentially, created two

dynamic bindings — owner = Mary and own-object = Book1. Given that e:own is also active,

the system’s state of activity now also encodes the internally generated query own(Mary,Book1)?

(i.e., ‘Does Mary own Book1?’)!

The fact node associated with the fact own(Mary,Ball1) does not match the query and remains

inactive. Recall that fact nodes are � -and nodes and hence, become active only upon receiving

an uninterrupted pulse train (see Section 3.3). Since Ball1 is not firing, the inhibitory activation

from the argument node owner interrupts the activation going from e:own to the fact node and

prevents it from becoming active.
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The activation from owner and o-obj reaches the arguments recip and g-obj of give, and

buyer and b-obj of buy respectively. Thus beginning with the third period, arguments recip and

buyer become active in phase-1 while arguments g-obj and b-obj become active in phase-2. In

essence, the system has created new bindings for the arguments of predicates can-sell and buy.

Given that the nodes e:buy and e:give are also active, the system’s state of activity now encodes

two additional queries: give(x,Mary,Book1)? and buy(Mary,Book1)?

The fact node representing the fact buy(John,x) does not become active because the activation

from e:buy is interrupted by the inhibitory activations from the arguments buyer and b-obj. (No-

tice that John is not active). The fact node F1, associated with the fact give(John,Mary,Book1)

however, does become active as a result of the uninterrupted activation it receives from e:give.

Observe that the argument giver is not firing and the inhibitory inputs from the arguments recip

and g-obj are blocked by the synchronous inputs from Mary and Book1, respectively. The acti-

vation from F1 causes c:give to become active and the output from c:give in turn causes c:own

to become active and transmit an output to c:can-sell. Consequently, c:can-sell, the collector of

the query predicate can-sell becomes active, resulting in an affirmative answer to the query.

4.5 Encoding rules with constants and repeated variables in the consequent

In this section we describe how rules containing constants (entities) and/or existentially quantified variables

in the consequent are encoded. Consider the rule:

8x1; x2; y [P (x1; x2)) 9z Q(x1; x2; y; z; a)] ::::: R2
*********** Figure 14 goes about here **********

The encoding of the rule R2 is shown in Fig. 14. It uses a new type of node which we refer to as a � -or

node (node g1, in Fig. 14). Such a node behaves like a temporal or node and becomes active on receiving

any input above its threshold and generates an oscillatory response with a period and pulse width equal

to �max, the maximum period at which the �-btu nodes can sustain synchronous activity.

Node g1 projects inhibitory modifiers to links between argument and enabler nodes that can block the

firing of the rule. The node g1 ensures that the rule participates in an inference only if all the conditions

implicit in the consequent of the rule are met. The first condition concerns the occurrence of existentially

quantified variables in the consequent of a rule. Observe that such a rule only warrants the inference that

there exists some filler of an existentially quantified argument, and hence, cannot be used to infer that a

specific entity fills such an argument. Therefore, if an existentially quantified variable in the consequent

of a rule gets bound in the reasoning process, the rule cannot be used to infer the consequent. With

reference to R2, the desired behavior is achieved by the link from the existentially quantified (fourth)

argument of Q to g1 and the inhibitory modifiers emanating from g1. The node g1 will become active

and block the firing of the rule whenever the fourth argument of Q gets bound to any filler.

The second condition concerns the occurrence of entities in the consequent of a rule. R2 cannot be

used if its fifth argument is bound to any entity other than a. In general, a rule that has an entity in

its consequent cannot be used if the corresponding argument gets bound to any other entity during the

reasoning process. In the encoding of R2, this constraint is encoded by a link from the fifth argument of

Q to g1 that is in turn modified by an inhibitory modifier from a. If the fifth argument of Q gets bound

to any entity other than a, g1 will become active and block the firing of the rule.

If the same variable occurs in multiple argument positions in the consequent of a rule, it means that

this variable should either remain unbound or get bound to the same entity. This constraint can be encoded

by introducing a node that receives inputs from all the arguments that correspond to the same variable
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and becomes active and inhibits the firing of the rule unless all such arguments are firing in synchrony.

Observe that due to the temporal encoding, arguments bound to the same entity will fire in the same phase

and hence, a node need only check that the inputs from appropriate argument nodes are in synchrony to

determine that the arguments are bound to the same entity. Consider the network fragment shown in Fig.

15 that depicts the encoding of the rule 8x; y P (x) ) Q(x; x; y;a). The node g2 is like a � -or node

except that it becomes active if it receives inputs in more than one phase within a period of oscillation.

This behavior ensures that the firing of the rule is inhibited unless the appropriate arguments are bound

to the same entity.

*********** Figure 15 goes about here **********

4.6 Encoding multiple antecedent rules

A rule with conjunctive predicates in the antecedent, i.e., a rule of the form P1(:::)^P2(:::)^ :::Pm(:::))
Q(:::), is encoded using an additional � -and node that has a threshold of m. The outputs of the col-

lector nodes of P1; :::;Pm are connected to this node which in turn is connected to the collector of Q.

This additional node becomes active if and only if it receives inputs from the collector nodes of all

the m antecedent predicates. The interconnections between the argument nodes of the antecedent and

consequent predicates remain unchanged. Fig. 16 illustrates the encoding of the multiple antecedent rule

8x; yP (x; y)^ Q(y; x)) R(x; y). The � -and node labeled g3 has a threshold of 2.

*********** Figure 16 goes about here **********

4.7 Answering wh-queries

As stated in Section 4.1, a query with unbound arguments can be interpreted either as a yes-no

query or a wh-query. To answer a yes-no query the system need only determine whether there

exist some instantiations of the unbound arguments. To answer a wh-query, however, the system

must also determine the instantiations of unbound arguments for which the query is true. We

describe how the proposed system can be extended to do so.

Consider the proof of the query can-sell(Mary; x) with respect to the network shown in Fig.

12. The yes-no version of this query will be answered in the affirmative and the two relevant

facts own(Mary;Ball1) and give(John;Mary;Book1) will become active. The answer to

the wh-query ‘What can Mary sell?’, simply consists of the entities bound to the arguments g-obj
and b-obj, respectively, of the two active facts. Observe that the arguments g-obj and b-obj
are precisely the arguments that map to the unbound argument cs-obj of can-sell via the rules

encoded in the system. The system can extract this information by the same binding propagation

mechanism it uses to map bound arguments. A straightforward way of doing so is to posit

an answer extraction stage that occurs after the yes-no query associated with the wh-query has

produced a yes answer. For example, given the query ‘What can Mary sell?’ the system first

computes the answer to the yes-no query ‘Can Mary sell something?’ and activate the facts that

lead to a yes answer, namely, own(Mary; Ball1) and give(John;Mary;Book1). The answer

extraction stage follows and picks out the entities Ball1 and Book1 as the answers.

*********** Figure 17 goes about here **********

In order to support answer extraction, the representation of a fact is augmented as shown in

Fig. 17. The representation of a fact involving an n-ary predicate is modified to include n+ 1
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additional nodes: for each of the n arguments there is a two input �-btu node with a threshold

of two. We refer to such a node as a binder node. The other node (shown as a filled-in pointed

pentagon) is like a � -and node except that once activated, it remains so even after the inputs

are withdrawn (for several periods of oscillations). This node, which we will refer to as a latch

node, receives an Answer input and an input from the associated fact node.

At the end of the first stage, the fact nodes corresponding to all the relevant facts would

have become active. The output of these nodes in conjunction with the Answer signal will turn

on the associated latch nodes and provide one of the two inputs to the binder nodes. If the

associated yes-no-query results in a yes answer (i.e., the collector of the query predicate becomes

active), the desired unbound arguments of the query predicate are activated in a distinct phase.

The activation of these arguments eventually leads to the activation of the appropriate arguments

in the facts relevant to answering the query. This provides an input to the appropriate binder

nodes of these facts. As the binder nodes were already receiving an input from a latch node,

they become active and produce an output that activates the associated entities in phase with

the appropriate query arguments. The answer to the wh-query — i.e., the entities that fill the

argument ai of the query — will be precisely those entities that are active in phase with ai. The

time taken by the answer extraction step is bounded by the depth of the inferential dependency

graph.

4.8 Admitting function terms

The expressiveness and reasoning power of the system can be extended by allowing restricted

occurrences of function-terms in rules and facts. Function-terms introduce new entities during

the reasoning process. But given that entities are represented as a phase in the pattern of activity,

an entity introduced by a function-term can be represented by an additional phase in the rhythmic

activity. Thus the reference to mother-of(Tom) during an episode of reasoning should lead to

activity in a distinct phase. This phase would represent the ‘mother of Tom’ and any arguments

bound to the ‘mother of Tom’ would now fire in this phase. A provisional solution along these

lines is described in (Ajjanagadde 1990).

4.9 Constraints on the form of rules

The encoding of rules described thus far enforces i) the correspondence between the arguments

of the antecedent and consequent predicates in a rule and ii) equality among arguments in

the consequent of a rule. In certain cases, however, it is difficult for the backward reasoning

system to enforce equality among arguments in the antecedent of a rule. Consider the rule

8x; y P (x; x; y) ) Q(y) and the query Q(a)? The processing of this query will result in

the dynamic query P (?; ?; a)? — where the first and second arguments are left unspecified.

Consequently, the system cannot enforce the condition implicit in the rule that a long-term fact

involving P should match the query Q(a) only if its first and second arguments are bound to

the same constant. Performing such an equality test is complicated in a system that allows

multiple predicates in the antecedent of rules and the chaining of inference. Consider the rule

8x; y P (x; y)^R(x; y) ) Q(y), and the query Q(a)? The predicates P and R may be derivable
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from other predicates by a long sequence of rule application. Hence to derive the query Q(a)?,

the system may have to test the equality of arbitrary pairs of argument-fillers in a potentially large

number of facts distributed across the LTKB. It is conjectured that such non-local and exhaustive

equality testing cannot be done effectively in any model that uses only a linear number of nodes

in the size of the LTKB, and time that is independent of the size of the LTKB.

Contrast the above situation with one wherein the rule is: 8x; y P (x; x; y) ) Q(x) and

the query is Q(a)?. The dynamic query resulting from the processing of the query Q(a)? will

be P (a; a; y)? Notice that now the condition that the first and second arguments of P should

be the same is automatically enforced by the propagation of bindings and is expressed in the

dynamically generated query at P . The crucial feature of the second situation is that x, the

repeated variable in the antecedent of the rule, also appears in the consequent and gets bound

in the reasoning process. The above entails that for the system to respond to a query,

any variable occurring in multiple argument positions in the antecedent of a rule that

participates in the answering of the query, should also appear in the consequent of

the rule and get bound during the query answering process.

The above constraint is required in a backward reasoning system but not in a forward reasoning

system. In a forward reasoning system, the rule 8x; y; z P (x; y) ^Q(y; z) ) R(x; z) would be

encoded as shown in Fig. 18. The � -or node with a threshold of 2 receives inputs from the two

argument nodes that should be bound to the same filler. It becomes active if it receives two inputs

in the same phase and enables the firing of the rule via intermediary �-btu and � -and nodes. This

ensures that the rule fires only if the second and first arguments of P and Q respectively, are

bound to the same filler. In the case of forward reasoning, a rule that has variables occurring in

multiple argument positions in its consequent can participate in the reasoning process provided

such variables also appear in its antecedent and get bound during the reasoning process. The

restrictions mentioned above on the form of rules excludes certain inferences. We discuss these

exclusions and their implications in Section 8.2.

*********** Figure 18 goes about here **********

5 Integrating the rule-based reasoner with an IS-A hierarchy

The rule-based reasoner described in the previous section can be integrated with an IS-A hierarchy

representing entities, types (categories), the instance-of relations between entities and types, and

the super/sub-concept relations between types. For convenience, we will refer to the instance-of,

super-concept, and sub-concept relations collectively as the IS-A relation. The augmented system

allows the occurrence of types as well as entities in rules, facts, and queries. Consequently, the

system can store and retrieve long-term facts such as ‘Cats prey on birds’ and ‘John bought

a Porsche’ that refer to types (‘Cat’ and ‘Bird’) as well as non-specific instances of types

(‘a Porsche’). The system can also combine rule-based reasoning with type inheritance. For

example, it can infer ‘John owns a car’ and ‘Tweety is scared of Sylvester’ (the latter assumes

the existence of the rule ‘If x preys on y then y is scared of x’ and the IS-A relations ‘Sylvester

is a Cat’ and ‘Tweety is a Bird’). Combining the reasoning system with an IS-A hierarchy also
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facilitates the representation of the appropriateness aspect of a rule. Recall that appropriateness

concerns the applicability of the systematic aspect of a rule in a given situation, depending on the

types of the argument fillers involved in that situation. As we shall see, the augmented system

allows knowledge in the IS-A hierarchy to interact with the encoding of the systematic aspects

of a rule in order to enforce type restrictions and type preferences on argument-fillers.

The integration of the reasoner with the IS-A hierarchy described below is a first cut at enrich-

ing the representation of rules. We only model the instance-of, sub-concept, and super-concept

relations and suppress several issues such as a richer notion of semantic distance, frequency and

category size effects, and prototypicality (e.g., see Lakoff 1987).

*********** Figure 19 goes about here **********

Fig. 19 provides an overview of the encoding and reasoning in the integrated reasoning

system. The rule-base part of the network in Fig. 19 encodes the rule 8x; y [preys-on(x; y) )
scared-of(y; x)], and the facts 8x:Cat, y:Bird preys-on(x,y) and 9x:Cat 8y:Bird loves(x,y).

The first fact says ‘cats prey on birds’ and is equivalent to preys-on(Cat,Bird). The second

fact states ‘there exists a cat that loves all birds’. The type hierarchy in Fig. 19 encodes the

IS-A relationships: is-a(Bird,Animal), is-a(Cat,Animal), is-a(Robin,Bird), is-a(Canary,Bird), is-

a(Tweety,Canary), is-a(Chirpy,Robin), and is-a(Sylvester,Cat). Facts involving typed variables

are encoded in the following manner: A typed, universally quantified variable is treated as being

equivalent to its type. Thus 8x:Cat, y:Bird preys-on(x,y) is encoded as preys-on(Cat,Bird). A

typed existentially quantified variable is encoded using a unique sub-concept of the associated

type. Thus in Fig. 19, 9 x:Cat 8y:Bird loves(x,y) is encoded as loves(Cat-1,Bird) where Cat-1 is

some unique instance of Cat. In its current form, the system only deals with facts and queries

wherein all existential quantifiers occur outside the scope of universal quantifiers.

For now let us assume that i) each concept21 (type or entity) in the IS-A hierarchy is encoded

as a �-btu node, ii) each IS-A relationship, say is-a(A,B), is encoded using two links — a bottom-

up link from A to B and a top-down link from B to A, and iii) the top-down and bottom-up links

can be enabled selectively by built-in and automatic control mechanisms. How this is realized

is explained in Section 5.2.

*********** Figure 20 goes about here **********

The time course of activation for the query: scared-of(Tweety,Sylvester)? (Is Tweety scared

of Sylvester?) is given in Fig. 20. The query is posed by turning on e:scared-of and activating

the nodes Tweety and Sylvester in synchrony with the first and second arguments of scared-of,

respectively. The bottom-up links emanating from Tweety and Sylvester are also enabled. The

activation spreads along the IS-A hierarchy and eventually, Bird and Cat start firing in synchrony

with Tweety and Sylvester, respectively. At the same time, the activation propagates in the rule-

base. As a result, the initial query scared-of(Tweety,Sylvester)? is transformed into the query

preys-on(Cat,Bird)? which matches the stored fact preys-on(Cat,Bird) and leads to the activation

of c:preys-on. In turn c:scared-of becomes active and signals an affirmative answer.

The advantages of expressing certain rules as facts

Although the reasoning system described in Section 4 can use rules to draw inferences, it cannot

retrieve the rules per se; for knowledge to be retrievable, it must be in the form of a fact.
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Hence integrating the rule-based reasoner with an IS-A hierarchy has added significance because

it allows certain rule-like knowledge to be expressed as facts thereby also making it retrievable

in addition to being usable during inference. Consider ‘Cats prey on birds’. The rule-based

reasoner can only express this as the rule: 8 x,y Cat(x) ^ Bird(y) ) preys-on(x,y) and use it to

answer queries such as preys-on(Sylvester,Tweety)?. It however, cannot answer queries such as

preys-on(Cat,Bird)? that can be answered by the integrated system.

5.1 Some technical problems

There are two technical problems that must be solved in order to integrate the IS-A hierarchy

and the rule-based component. First, the encoding of the IS-A hierarchy should be capable of

representing multiple instantiations of a concept. For example, in the query discussed above,

the concept Animal would receive activation originating at Tweety and well as Sylvester. We

would like the network’s state of activation to represent both ‘the animal Tweety’ and ‘the

animal Sylvester’. This however, cannot happen if concepts are represented by a single �-

btu node because the node Animal cannot fire in synchrony with both Tweety and Sylvester

at the same time. Second, the encoding must provide built-in mechanisms for automatically

controlling the direction of activation in the IS-A hierarchy so as to correctly deal with queries

containing existentially and universally quantified variables. The correct treatment of quantified

variables — assuming that all IS-A links are indefeasible, i.e., without exceptions22 — requires

that activation originating from a concept C that is either an entity or the type corresponding to

a universally quantified variable in the query, should propagate upwards to all the ancestors of

C . The upward propagation checks if the relevant fact is universally true of some super-concept

of C . The activation originating from a concept C that appears as an existentially quantified

variable in the query should propagate to the ancestors of C , the descendants of C , as well as the

ancestors of the descendants of C .23 A possible solution to these problems has been proposed

in (Mani & Shastri 1991) and is outlined below.

5.2 Encoding of the IS-A hierarchy

Each concept C represented in the IS-A hierarchy, is encoded by a group of nodes called the

concept cluster for C . Such a cluster is shown in the middle of Fig. 21. The concept cluster

for C has k1 banks of �-btu nodes, where k1 is the multiple instantiation constant and refers to

the number of dynamic instantiations a concept can accommodate. In general, the value of k1
may vary from concept to concept but for ease of exposition we will assume that it is the same

for all concepts. In Fig. 21 k1 is 3. Each bank of concept C consists of three �-btu nodes: Ci,

Ci", Ci#. Each Ci can represent a distinct (dynamic) instantiation of C . The relay nodes Ci"

and Ci# control the direction of the propagation of activation from Ci. The nodes Ci" and Ci#

have a threshold of 2. Note that Ci is connected to Ci" and Ci# and Ci# is linked to Ci".

*********** Figure 21 goes about here **********

Every concept C is associated with two subnetworks — the top-down switch and the bottom-

up switch. These switches are identical in structure and automatically control the flow of activa-

tion to the concept cluster. A switch has k1 outputs. Outputi (1 � i � k1) from the bottom-up
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switch connects to Ci and Ci" while the outputi from the top-down switch goes to nodes Ci

and Ci#. The bottom-up switch has k1nsub inputs while the top-down switch has k1nsup inputs,

where nsub and nsup are the number of sub- and super-concepts of C , respectively. There are

also links from the Ci nodes to both the switches. The interaction between the switches and the

concept cluster brings about efficient and automatic dynamic allocation of banks in the concept

cluster by ensuring that (i) activation gets channeled to the concept cluster banks only if any

‘free’ banks are available and (ii) each instantiation occupies only one bank.
*********** Figure 22 goes about here **********

The architecture of the switch (with k1 = 3) is illustrated in Fig. 22. The k1 �-btu nodes, S1; : : : ; Sk1 ,

with their associated � -or nodes form the switch. Inputs to the switch make two connections — one exci-

tatory and one inhibitory — to each of S2; : : : ; Sk1 . As a result of these excitatory-inhibitory connections,

nodes S1; : : : ; Sk1 are initially disabled and cannot respond to incoming activation. Any input activation

only effects node S1 since the switch inputs directly connect to S1. S1 becomes active in response to

the first available input and continues to fire in phase with the input as long as the input persists. As S1
becomes active, the � -or node associated with S1 turns on and enables S2. However, inhibitory feedback

from C1 ensures that S2 is not enabled in the phase in which C1 is firing. Thus S2 can start firing only

in a phase other than �. Once S2 starts firing, S3 gets enabled and so on.

Note that Ci could receive input in two phases — one from its bottom-up switch for C, and another

from its top-down switch. Ci being a �-btu node, fires in only one of these phases. At any stage, if

Ci, 1 � i � k1, picks up activation channeled by the other switch, feedback from Ci into the � -or node

associated with Si causes Si+1 to become enabled even though Si may not be firing. The net result is

that as instantiations occur in the concept cluster, the �-btu nodes in the switch get enabled, in turn, from

left to right in distinct phases.

*********** Figure 23 goes about here **********

An IS-A relation of the form is-a(A,B) is represented as shown in Fig. 23 by: (i) connecting the

Ai"; i = 1; : : : ; k1 nodes to the bottom-up switch for B; (ii) connecting the Bi#; i = 1; : : : ; k1 nodes to

the top-down switch for A.

Consider a concept C in the IS-A hierarchy. Suppose Ci receives activation from the bottom-up

switch in phase �. In response, Ci starts firing in synchrony with this activation. The Ci" node now

receives two inputs in phase � (one from the bottom-up switch and another from Ci; see Fig. 21). Since

it has a threshold of 2, Ci" also starts firing in phase �. This causes activation in phase � to eventually

spread to the super-concept of C. Hence any upward traveling activation continues to travel upward –

which is the required behavior when C is associated with a universal typed variable. Similarly, when Ci

receives activation from the top-down switch in phase �, both Ci and Ci# become active in phase �. Ci"

soon follows suit because of the link from Ci# to Ci". Thus eventually the whole ith bank starts firing

in phase �. This built-in mechanism allows a concept associated with an existential typed variable to

eventually spread its activation to its ancestors, descendants and ancestors of descendants. The switching

mechanism introduces an extra delay in the propagation of activation along IS-A links and typically, the

switch takes three steps to channel the activation. In the worst — and also the least likely — case the

switch may take up to eight steps to propagate activation.

The time taken to perform inferences in the integrated system is also independent of the size of the

LTKB and is proportional only to the length of the shortest derivation of the query. The time taken to

perform a predictive inference is approximately l1�+3l2�, where l1 and l2 are the lengths of the shortest

chain of rules, and the shortest chain of IS-A links, respectively, that must be traversed in order to perform

the inference. The time required to answer a yes-no query is approximately max(l1�; 3l2�)+ l1�+2�.24
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5.3 Typed variables in queries

Consider a query P (: : : ; x; : : :)?, where the jth argument is specified as a typed variable x. If

x is universally quantified, i.e., the query is of the form 8x : C P (: : : ; x; : : :), Ci and Ci" are

activated in phase with the jth argument node of P (the subscript i refers to one of the banks of

C). If x is existentially quantified, i.e., the query is of the form 9x : C P (: : : ; x; : : :), Ci and

Ci# are activated in phase with the jth argument node of P . As before (Section 4.3) an untyped

variable in a query is not activated. Simple queries of the type IS-A(C;D)? are posed by simply

activating the nodes Ci and Ci" and observing whether one or more Di’s become active.

5.4 Encoding appropriateness as type restrictions on argument fillers

The IS-A hierarchy can be used to impose type restrictions on variables occurring in rules.

This allows the system to encode context dependent rules that are sensitive to the types of the

argument-fillers involved in particular situations. Fig. 24 shown the encoding of the following

rule in a forward reasoning system: 8x : animate; y : solid-obj walk-into(x; y) ) hurt(x)
(i.e., ‘If an animate agent walks into a solid object, the agent gets hurt’). The types associated

with variables specify the admissible types (categories) of fillers, and the rule is expected to fire

only if the fillers bound to the arguments are of the appropriate type. The encoding makes use

of � -or nodes that automatically check whether the filler of an argument is of the appropriate

type. Thus the � -or node a in Fig. 24 would become active if and only if the first argument of

walk-into is firing in synchrony with animate indicating that the filler of the argument is of type

animate. Similarly, the � -or node b would become active if and only if the second argument of

walk-into is firing in synchrony with solid-object indicating that the filler of this argument is of

type solid-object. The activation of nodes a and b would enable the propagation of activity from

the antecedent to the consequent predicate. In a forward reasoner, typed variables are allowed

only in the antecedent of the rule.

*********** Figure 24 goes about here **********

In the backward reasoner, typed variables are allowed only in the consequent of a rule. The

encoding of a typed universally quantified variable in the consequent is similar to the encoding of

an entity in the consequent of a rule explained in Section 4.5 (see Fig. 14). Instead of originating

at an entity, the inhibitory link originates at the concept representing the type of the universally

quantified variable. The encoding of a typed existentially quantified variable is similar to that of

a typed universally quantified variable except that the inhibitory link originates from a unique

subconcept of the associated concept. For details refer to (Mani & Shastri 1991).

The rule: 8 x:animate, y:solid-obj walk-into(x,y) ) hurt(x) is logically equivalent to the rule: 8 x,y

animate(x) ^ solid-obj(y) ^ walk-into(x,y) ) hurt(x). Thus it would appear that the IS-A hierarchy is not

essential for encoding type restrictions on rules. Note however, that while the former variant has only one

predicate in the antecedent, the latter has three. This increase in the number of antecedent predicates can

be very costly, especially in a forward reasoning system capable of supporting multiple dynamic predicate

instantiations (Mani & Shastri 1992). In such a system, the number of nodes required to encode a rule

is proportional to km2 , where k2 is the bound on the number of times a predicate may be instantiated

dynamically during reasoning (see Section 6), and m equals the number of predicates in the antecedent

of the rule. Thus it is critical that m be very small. The IS-A hierarchy plays a crucial role in reducing
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the value of m by allowing restrictions on predicate arguments to be expressed as type restrictions.25

5.5 Encoding soft and defeasible rules

The proposed solution to the binding problem can be generalized to soft/defeasible rules. Observe

that the strength of dynamic bindings may be represented by the degree of synchronization

between an argument and a filler (this possibility was suggested by Jed Harris). Such a scheme

becomes plausible if each argument is encoded by an ensemble of nodes (see Section 7.3). For

then the degree of coherence in the phase of firing of nodes within an argument ensemble can

indicate the strength of the binding the argument is participating in. In the limiting case, a highly

dispersed activity in an argument ensemble may mean that the argument is bound to one of the

active entities, although it is not clear which (Shastri 1992).26

In addition to specifying a mechanism for representing the strength of dynamic bindings and

rule firing, we also need to specify the basis for computing these strengths. It is customary to

view the strength of a rule as a numerical quantity associated with a rule (e.g., certainty factors in

MYCIN (Buchanan & Shortliffe 1984)). Such an ‘atomic’ and uninterpreted view of the strength

of a rule is inadequate for modeling rules involving n-ary predicates. Our approach involves

defining the ‘strength’ of a rule (and similarly, the strength of a binding) to be a dynamic quantity

that depends upon the types/features of the entities bound to arguments in the rule at the time of

rule application. Such a strength measure also generalizes the notion of type restrictions on rules

to type preferences on rules. Thus instead of rules of the form: 8x : animate; y : solid-obj
walk-into(x; y) ) hurt(x), the system can encode rules of the form:

8x; y walk-into(x; y) ) [with strength �(type(x); type(y))] ) hurt(x)
where the strength of the rule may vary from one situation to another as a function, �, of the

types of the argument-fillers in a given situation. Observe that the value of �(ti; tj) need not

be known for all types ti and tj in the IS-A hierarchy, and may be inherited. For example, if

�(t1; t2) is not known but �(tm; tn) is, and t1 and t2 are subtypes of tm and tn respectively,

then �(tm; tn) can be used in place of �(t1; t2). This is analogous to property inheritance in an

IS-A hierarchy, where property values may be attached to just a few concepts and the property

values of the rest of the concepts inferred via inheritance. The proposed treatment would allow

the system to incorporate exceptional and default information during reasoning. This relates to

Shastri’s (1988a,b) work on a connectionist semantic network (see Section 9.2).

6 Representing multiple dynamic instantiations of a predicate

The representation of dynamic bindings described thus far cannot simultaneously represent mul-

tiple dynamic facts about the same predicate. The proposed representation can be extended to

do so by generalizing the scheme for encoding multiple instantiations of concepts outlined in

Section 5.2. The extension assumes that during an episode of reflexive reasoning, each predicate

can be instantiated only a bounded number of times. In general, this bound may vary across

predicates and some critical predicates may have a marginally higher bound. For ease of expo-

sition however, we will assume that this bound is the same for all predicates and refer to it as
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k2. The ability to handle multiple instantiations of the same predicate allows the system to deal

with more complex inferential dependencies including circularities and bounded recursion. The

system can make use of rules such as 8x; y sibling(x; y) ) sibling(y; x). A forward reasoning

system can use a rule such as 8x; y; z greater(x; y) ^ greater(y; z) ) greater(x; z) and infer

‘a is greater than c’ on being told ‘a is greater than b’ and ‘b is greater than c’.

Since up to k2 dynamic instantiations of a predicate may have to be represented simultane-

ously, the representation of an n-ary predicate is augmented so that each predicate is represented

by k2 banks of nodes, with each bank containing a collector, an enabler, and n argument nodes.

For a given predicate P , the enabler of the i-th bank e:Pi will be active whenever the i-th bank

has been instantiated with some dynamic binding. The collector c:Pi of the i-th bank will be

activated whenever the dynamic bindings in the i-th bank are consistent with the knowledge

encoded in the system. Fig. 25 depicts the encoding of two binary predicates P and Q and a

ternary predicate R.

*********** Figure 25 goes about here **********

Given that a predicate is represented using multiple banks of predicate and argument nodes,

the connections between arguments of the antecedent and consequent predicates of a rule have to

be mediated by a ‘switching’ mechanism similar to the one described in Section 5.2. The switch

automatically channels input instantiations into available banks of its associated predicate. It

also ensures that each distinct instantiation occupies only one bank irrespective of the number

of consequent predicates that may be communicating this instantiation to the switch.

With the inclusion of the switch in the backward reasoning system, the number of nodes

required to represent a predicate and a long-term fact becomes proportional to k2 and the number

of nodes required to encode a rule becomes proportional to k22 . Furthermore, the time required

for propagating multiple instantiations of a predicate increases by a factor of k2. Thus there

is significant space and time costs associated with multiple instantiation of predicates. The

complete realization of the switch and its interconnection is described in (Mani & Shastri 92).

7 Biological plausibility

In this section we cite recent neurophysiological data that suggests that synchronous and rhythmic

activity occurs in the brain and the time course of such activity is consistent with the requirements

of reflexive reasoning. The data also provides evidence in support of the hypothesis that the cat

visual system solves the dynamic binding problem using temporal synchrony.

7.1 Neurophysiological support

There is considerable evidence for the existence of rhythmic activity in the animal brain. Syn-

chronous activity has been documented for some time in the olfactory bulb, hippocampus, and

the visual cortex (Freeman 1981; MacVicar & Dudek 1980; Gerstein 1970; Toyama, Kimura &

Tanaka 1981). The most compelling evidence for such activity, however, comes from findings of

synchronous oscillations in the visual cortex of anaesthetized cats responding to moving visual

stimuli (Eckhorn, Bauer, Jordan, Brosch, Kruse, Munk & Reitboeck 1988; Eckhorn, Reitboeck,
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Arndt & Dicke 1990; Engel, Koenig, Kreiter, Gray & Singer 1991; Gray & Singer 1989; Gray,

Koenig, Engel & Singer 1989; Gray, Engel, Koenig & Singer 1991). These findings are based

on the correlational analysis of local field potentials, multi-unit recordings, as well as single unit

recordings. Recently, similar activity has also been reported in an awake and behaving monkey

(Kreiter & Singer 1992).27 Relevant aspects of the experimental findings are summarized below.

� Synchronous oscillations have been observed at frequencies ranging from 30 – 80 Hz. A

typical frequency being around 50 Hz.

� Synchronization of neural activity can occur within a few (sometimes even one) periods

of oscillations (Gray et al. 1991).

� In most cases synchronization occurs with a lag or lead of less than 3 msec although in

some cases it even occurs with precise phase-locking (Gray et al. 1991).

� Synchronization of neural activity occurs i) between local cortical cells (Eckhorn et al.

1988, Gray & Singer 1989), ii) among distant cells in the same cortical area (Gray et al.

1989), iii) among cells in two different cortical areas — for example, areas 17 and 18

(Eckhorn et al. 1988) and areas 17 and PMLS (Engel et al. 1991), and iv) among cells

across the two hemispheres (Engel et al. 1991).

� Once achieved, synchrony may last several hundred msec (Gray et al. 1991).

The synchronous activity observed in the brain is a complex and dynamic phenomenon. The

frequency and degree of phase-locking varies considerably over time and the synchronization is

most robust when viewed as a property of groups of neurons. The nature of synchronous activity

assumed by our model is an idealization of such a complex phenomenon (but see Sections 7.3

and 10.1–10.4).

Temporal synchrony and dynamic bindings in the cat visual cortex

Neurophysiological findings also support the hypothesis that the dynamic binding of visual fea-

tures pertaining to a single object may be realized by the synchronous activity of cells encoding

these features (see Eckhorn et al. 1990; Engel et al. 1991). In one experiment, multi-unit re-

sponses were recorded from four different sites that had overlapping receptive fields but different

orientation preferences — 157o, 67o, 22o, and 90o, respectively. A vertical light bar resulted in

a synchronized response at sites 1 and 3 while a light bar oriented at 67o lead to a synchronized

response at sites 2 and 4. A combined stimulus with the two light bars superimposed lead to

activity at all the four sites, but while the activity at sites 1 and 3 was synchronized and that at

sites 2 and 4 was synchronized, there was no correlation in the activity across these pair of sites

(Engel et al. 1991). Experimental evidence such as the above suggests that the synchronous

activity in orientation specific cells may be the brain’s way of encoding that these cells are

participating in the representation of a single object. This is analogous to the situation in Fig. 9

wherein the synchronous activity of the nodes recip, owner and cs-seller in phase with Mary is

the system’s way of encoding that all these roles are being filled by the same object, Mary.
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7.2 Some neurally plausible values of system parameters

The neurophysiological data cited above also provides a basis for making coarse but neurally

plausible estimates of some system parameters. The data indicates that plausible estimates of

�min and �max may be 12 and 33 msec, respectively, and a typical value of � may be 20 msec.

The degree of synchronization varies from episode to episode but a conservative estimate of !,

the width of the window of synchrony, may be derived on the basis of the cumulative histogram

of the phase difference (lead or lag) observed in a large number of synchronous events. The

standard deviation of the phase differences was 2.6 msec in one data set and 3 msec in another

(Gray et al. 1991). Thus a plausible estimate of ! may be about 6 msec. Given that the activity

of nodes can get synchronized within a few cycles — sometimes even within one, and given

the estimates of �min and �max, it is plausible that synchronous activity can propagate from one

�-btu node to another in about 50 msec. The data also suggests that synchronous activity lasts

long enough to support episodes of reflexive reasoning requiring several steps.

7.3 Propagation of synchronous activity — a provisional model

Our system requires the propagation of synchronous activity over interconnected nodes in spite of

non-zero and noisy propagation delays. The neurophysiological evidence cited in the previous

sections suggests that such propagation occurs in the cortex. The exact neural mechanisms

underlying the propagation of such activity, however, remain to be determined. On the basis

of anatomical and physiological data (1982), theoretical analysis, and simulation results (1991),

Abeles has argued that synchronous activity can propagate over chains of neurons connected

in a many-to-many fashion (synfire chains) with a small and stable ‘jitter’ even if random

fluctuations are taken into account. Bienenstock (1991) has examined how synfire chains may

arise in networks as a result of learning. Below we outline a provisional model (Mandelbaum

& Shastri 1990) which demonstrates that synchronized activity can propagate in spite of noisy

propagation delays. The model is meant to demonstrate the feasibility of such propagation and

should not be viewed as a detailed neural model.

We assume that each argument in the reasoning system is represented by an ensemble of n
nodes rather than just a single node. Connections between arguments are encoded by connecting

nodes in the appropriate ensembles: if ensemble A connects to ensemble B, then each node in A
is randomly connected to m nodes in B (m � n). Thus on an average, each node in B receives

inputs from m nodes in A (see Fig. 26) and has a threshold comparable to m. The propagation

delay between nodes in two different ensembles is assumed to be noisy and is modeled as a

Gaussian distribution. If ensemble A is connected to ensemble B and nodes in ensemble A are

firing in synchrony, then we desire that within a few periods of oscillation nodes in ensemble B
start firing in synchrony with nodes in ensemble A.

*********** Figure 26 goes about here **********

Nodes within an ensemble are also sparsely interconnected, with each node receiving inputs

from a few neighboring nodes within the ensemble. Synchronization within an ensemble is re-

alized as a result of the interaction between the feedback received by a node from its neighbors

within the ensemble. The model makes use of the negative slope of the threshold-time charac-

teristic during the relative refractory period (RRP) to modulate the timing of the spike generated
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by a node. Observe that a higher excitation can hasten, while a lower excitation can delay, the

firing of a node. At the same time, the lag between the firing times of nodes in two connected

ensembles due to the mean propagation delay is partially offset by the interaction between the

various parameters of the system enumerated below.

*********** Figure 27 goes about here **********

The threshold-time characteristic of a node and the distribution of the arrival times of input

spikes from a preceding ensemble are illustrated in Fig. 27. After firing, a node enters an

absolute refractory period (ARP) in which its threshold is essentially infinite. The ARP is

followed by a decaying RRP during which the threshold decays to its resting value. During the

RRP the threshold-time characteristic is approximated as a straight line of gradient g (a linear

approximation is not critical). The incoming spikes from a preceding ensemble arrive during

a node’s ARP and the early part of its RRP. It is assumed that immediate neighbors within an

ensemble can rapidly communicate their potential to each other.

A node’s potential is the combined result of the inter-ensemble and intra-ensemble inter-

actions and in the period between spikes is modeled as: Pi(t + �t) = Pi(t) + Ini(t) + � �
P

j[Pi(t) � Pj(t)]
Pi(t) is the potential of node i at time t. The change in potential is caused by Ini(t), the input

arriving at node i from nodes in the preceding ensemble as well as the difference in the potential

of i and that of its immediate neighbors j. In the simulation, j ranged over six immediate

neighbors of i. If nodes i and j are immediate neighbors and i is firing ahead of j, then we

want i to hasten the firing of j by sending it an excitatory signal and j to delay the firing i by

sending it an inhibitory signal. Doing so would raise the potential of j, causing it to fire early,

and lower the potential of i, causing it to fire later in the next cycle. Thus i and j will tend to

get synchronized.28

*********** Figure 28 goes about here **********

The results of a sample simulation are shown in Fig. 28. The diagram shows the cycle-by-

cycle distribution of the firing times of nodes within a ‘driven’ ensemble that is being driven

by a ‘driver’ ensemble whose nodes are oscillating in phase-lock. �t was chosen to be a 0.001

time units (i.e., all calculations were done every 1=1000 of a time unit), where a unit of time

may be assumed to be 1 msec. Other simulation parameters were as follows: i) n, the number of

nodes in ensemble equals 64, ii) m, the inter-ensemble connectivity equals 20, iii) g, the slope

of the threshold during the RRP equals 0.032, iv) �, the ‘coupling’ factor between immediate

neighbors within an ensemble equals 0.07, v) d, the average inter-ensemble propagation delay

equals 4.5 time units, vi) s, the standard deviation of inter-ensemble propagation delay equals

1.5 time units, and vii) �, the expected period of oscillation equals 10.5 time units.

As shown in Fig. 28, despite noisy propagation delays, the maximum lag in the firing of

nodes in the ‘driven’ ensemble becomes less than 3 msec and the mean lag becomes less than 1

msec within 2 cycles. By the end of 7 cycles the maximum and mean lags reduce to 1 and 0.2

msec, respectively.
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8 Psychological Implications

In this section we examine the psychological implications of our system, specially in view of

the biologically motivated estimates of the system parameters discussed in Section 7.3.

8.1 A neurally plausible model of reflexive reasoning

The proposed system can encode specific as well as general instantiation independent knowledge

and perform a broad range of reasoning with efficiency. The system makes use of very simple

nodes and yet its node requirement is only linear in the size of the LTKB (the size being measured

in terms of the number of predicates, facts, rules, concepts, and IS-A relations). Thus the system

illustrates how a large LTKB may be encoded using only a fraction of 1012 nodes.

The system demonstrates that a class of forward and backward reasoning can be performed

very rapidly, in time independent of the size of the LTKB. Below we set the values of appropriate

system parameters to neurally plausible values identified in Section 7.3 and indicate the time the

system takes to perform certain inferences.29 These times are at best, broad indicators of the

time we expect the internal reasoning process to take. Also note that they do not include the

time that would be taken by perceptual, linguistic, and motor processes to process and respond

to inputs.

Some typical retrieval and inference timings

Let us choose � to be 20 msec and assume that �-btu nodes can synchronize within two periods

of oscillations. The system takes 320 msec to infer ‘John is jealous of Tom’ after being given

the dynamic facts ‘John loves Susan’ and ‘Susan loves Tom’ (this assumes the rule ‘if x loves

y and y loves z then x is jealous of z). The system takes 260 msec to infer ‘John is a sibling

of Jack’ given ‘Jack is a sibling of John’. Similarly, the system takes 320 msecs to infer ‘Susan

owns a car’ after its internal state is initialized to represent ‘Susan bought a Rolls-Royce’. If

the system’s LTKB includes the long-term fact ‘John bought a Rolls-Royce’, the system takes

140 msec, 420 msec, and 740 msec, respectively, to answer ‘yes’ to the queries ‘Did John buy

a Rolls-Royce’, ‘Does John own a car?’ and ‘Can John sell a car?’

Thus our system demonstrates that a class of reasoning can occur rapidly, both in the forward

(predictive) mode as well as backward (query answering) mode. The above times are independent

of the size of the LTKB and do not increase when additional rules, facts, and IS-A relationships

are added to the LTKB. If anything, these times may decrease if one of the additional rules is a

composite rule and short-circuits an existing inferential path. For example, if a new rule ‘if x
buys y then x can sell y’ were to be added to the LTKB, the system would answer the query

‘Can John sell a car?’ in 420 msec instead of 740 msec.

Variations in inference and retrieval times

Consider two �-btu nodes A and B such that A is connected to B (although we are referring

to individual nodes, the following comment would also apply if A and B were ensembles of

nodes). It seems reasonable to assume that the number of cycles required for B to synchronize
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with A will depend on the synaptic efficacy of the link from A to B. This suggests that the time

taken by the propagation of bindings — and hence, rule firing — will vary depending on the

weights on the links between the argument nodes of the antecedent and consequent predicates.

Rules whose associated links have high weights will fire and propagate bindings faster than rules

whose associated links have lower weights. It also follows that different facts will take different

times to be retrieved depending on the weights of the links connecting the appropriate arguments

and filler concepts (refer to Fig. 10). Note that the inhibitory signal from an argument will

continue to block the activation of a fact node until the signals from the filler concepts and the

argument get synchronized. Similarly, during the processing of wh-queries, the time it would

take for the filler concepts to synchronize with the binder units will depend on the weights of

the links from the binder nodes to the concept nodes (refer to Fig. 17). Thus the retrieval of

argument fillers will be faster if the weights on the appropriate links are high.30 Observe that

the variation in times refers to the variations in the time it takes for nodes to synchronize and not

the time it takes for nodes to become active. This suggests that the time course of systematic

inferences and associative priming may be quite different.

8.2 Nature of reflexive reasoning

Our model suggests several constraints on the nature of reflexive reasoning. These have to do

with i) the capacity of the working memory underlying reflexive reasoning, ii) the form of rules

that may participate in such reasoning, and iii) the depth of the chain of reasoning.

The working memory underlying reflexive reasoning

Dynamic bindings, and hence, dynamic facts are represented in the system as a rhythmic pattern

of activity over nodes in the LTKB network. In functional terms, this transient state of activation

can be viewed as a limited capacity dynamic working memory that temporarily holds information

during an episode of reflexive reasoning. Let us refer to this working memory as the WMRR.

Our system predicts that the capacity of the WMRR is very large, and at the same time, it

is very limited! The number of dynamic facts that can simultaneously be present in the WMRR

is very high and is given by k2p, where k2 is the predicate multiple instantiation constant

introduced in Section 6, and p is the number of predicates represented in the system. The

number of concepts that may be active simultaneously is also very high and equals k1c, where c
is the number of concepts in the IS-A hierarchy and k1 is the multiple instantiation constant for

concepts introduced in Section 5.2. But as we discuss below there are two constraints that limit

the number of dynamic facts that may actually be present in the WMRR at any given time.

Working memory, medium-term memory, and overt short-term memory

Before moving on let us make two observations. First, the dynamic facts represented in the

WMRR during an episode of reasoning should not be confused with the small number of short-

term facts that an agent may overtly keep track of during reflective processing and problem

solving. In particular, the WMRR should not be confused with the (overt) short-term memory

implicated in various memory span tasks (for a review see Baddeley 1986). Second, our reasoning
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system implies that a large number of dynamic facts will be produced as intermediate results

during reasoning and would be represented in the WMRR. These facts, however, are only

potentially relevant and would remain covert and decay in a short time unless they turn out to be

relevant in answering a ‘query’ or providing an explanation. We expect that only a small number

of dynamic facts would turn out to be relevant, and any that do, would ‘enter’ a medium-term

memory where they would be available for a much longer time (see Section 10.5). Some of

these facts may also enter the overt short-term memory. Note that this short-term memory need

not be a physically distinct ‘module’. It may simply consist of facts/entities in the WMRR that

are currently receiving an attentional spotlight (cf: Crick 1984; Crick & Koch 1990).

A bound on the number of distinct entities referenced in the WMRR

During an episode of reasoning, each entity involved in dynamic bindings occupies a distinct

phase in the rhythmic pattern of activity. Hence the number of distinct entities that can occur as

argument-fillers in the dynamic facts represented in the WMRR cannot exceed b�max=!c, where

�max is the maximum period (corresponding to the lowest frequency) at which �-btu nodes can

sustain synchronous oscillations and ! equals the width of the window of synchrony. Thus the

WMRR may represent a large number of facts, as long as these facts refer to only a small number

of distinct entities. Note that the activation of an entity together with all its active super-concepts

counts as only one entity.

In Section 7.2 we pointed out that a neurally plausible value of �max is about 33 msec and

a conservative estimate of ! is around 6 msec. This suggests that as long as the number of

entities referenced by the dynamic facts in the WMRR is five or less, there will essentially be

no cross-talk among the dynamic facts. If more entities occur as argument-fillers in dynamic

facts, the window of synchrony ! would have to shrink in order to accommodate all the entities.

For example, ! would have to shrink to about 5 msec in order to accommodate 7 entities. As

! shrinks, the possibility of cross-talk between dynamic bindings would increase and eventually

disrupt the reasoning process. The exact bound on the number of distinct entities that may

fill arguments in dynamic facts would depend on the smallest feasible value of !. Given the

noise and variation indicated by the data on synchronous activity cited in Section 7.1, it appears

unlikely that ! can be less than 3 msec. Hence we predict that a neurally plausible upper bound

on the number of distinct entities that can be referenced by the dynamic facts represented in

the WMRR is about 10. This prediction is consistent with our belief that most cognitive tasks

performed without deliberate thought tend to involve only a small number of distinct entities at

a time (though of course, these entities may occur in multiple situations and relationships).

It is remarkable that the bound on the number of entities that may be referenced by the

dynamic facts in the WMRR relates so well to 7� 2, the robust measure of short-term memory

capacity (Miller 1956). This unexpected coincidence merits further investigation as it suggests

that temporal synchrony may also underlie other short-term and dynamic representations. Similar

limitations of the human dynamic binding mechanism are also illustrated in experimental work

on the attribute binding problem (Stenning, Shepard & Levy 1988).

The bound on the number of distinct entities referenced in the WMRR is independent of

similar bounds on the working memories of other subsystems. As we discuss in Section 10.4,
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dynamic structures in the working memory of other subsystems may refer to different sets of

entities using phase distributions local to those subsystems.

A bound on the multiple instantiation of predicates

The capacity of the WMRR is also limited by the constraint that it may only contain a small

number of dynamic facts pertaining to each predicate. This constraint stems from the high

cost of maintaining multiple instantiations of a predicate. As stated in Section 6, in a backward

reasoning system, if k2 denotes the bound on the number of times a predicate may be instantiated

during an episode of reasoning, then the number of nodes required to represent a predicate and

the associated long-term facts is proportional to k2, and the number of nodes required to encode

a rule is proportional to k22 . Thus a backward reasoning system that can represent three dynamic

instantiations of each predicate will have anywhere from three to nine times as many nodes as

a system that can only represent one instantiation per predicate. In a forward reasoning system

the cost is even higher and the number of nodes required to encode a rule is km2 , where m is

the number of antecedents in the rule. The time required for propagating multiple instantiations

of a predicate also increases by a factor of k2. In view of the significant space and time costs

associated with multiple instantiation and the necessity of keeping these resources within bounds

in the context of reflexive reasoning, we predict that k2 is quite small, perhaps no more than 3.

As observed in Section 6, k2 need not be the same for all predicates and it is possible that some

critical predicates may have a slightly higher k2.
31

Form of rules that may participate in reflexive reasoning

In Section 4.9 we pointed out that when answering queries based on the long-term knowledge

encoded in the LTKB, our reflexive reasoning system cannot use rules that contain variables

occurring in multiple argument positions in the antecedent unless such variables also appear

in the consequent and get bound during the query answering process. A similar constraint

applies to forward (predictive) reasoning: When making predictions based on given dynamic

facts, a system cannot use a rule that contains variables occurring in multiple argument positions

in the consequent, unless such variables also appear in the antecedent and get bound during

the reasoning process. These constraints predict that certain queries cannot be answered in

a reflexive manner even though the corresponding predictions can be made reflexively. For

example, consider an agent whose LTKB includes the rule ‘if x loves y and y loves z then x
is jealous of z’, and the long-term facts ‘John loves Mary’ and ‘Mary loves Tom’. Our system

predicts that if this agent is asked ‘Is John jealous of Tom?’, she will be unable to answer the

query in a reflexive manner. Note that the antecedent of the rule includes a repeated variable, y,

that does not occur in the consequent. Hence our system predicts that answering this question

will require deliberate and conscious processing (unless the relevant long-term facts are active

in the WMRR for some reason at the time the query is posed). However, an agent who has the

above rule about love and jealousy in its LTKB would be able infer ‘John is jealous of Tom’

in a reflexive manner, on being ‘told’ ‘John loves Mary’ and ‘Mary loves Tom’. This because

such an inference involves forward (predictive) reasoning.
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As another example of the predictions made by the constraint, assume that our agent’s

conception of kinship relations is one wherein the maternal/paternal distinction at the grandparent

level is not primary. Let us also assume that the agent’s maternal-grandfather is George. The

constraint predicts that the agent cannot answer ‘yes’ to the query ‘Is George your maternal

grandfather?’ in a reflexive manner even though he/she may be able to answer the question ‘Is

George your grandfather?’ in a reflexive manner (this example is due to Jerry Feldman). The

basis of this prediction is as follows: If ‘maternal-grandfather’ is not a primary kinship relation

then it must be computed using an appropriate rule. Given the nature of the maternal-grandfather

relationship, any rule that does so would violate the repeated variable restriction.32

The restrictions imposed on the reasoning system also imply that it is not possible to apply

the abstract notion of transitivity in a reflexive manner when answering queries. Observe that

we need to state 8x; y; zP (x; y) ^ P (y; z) ) P (x; z) in order to assert that the relation P is

transitive and the rule has the variable y occurring twice in the antecedent but not even once in

the consequent. Given that transitivity plays an important role in common sense reasoning — to

wit, reasoning about sub and super-categories, part-of relationships, greater and less than — the

inability to handle transitivity might appear to be overly limiting. However, this is not the case.

We believe that as far as query answering is concerned, humans are only good at dealing with

the transitivity of a small number of relations. In these cases, the transitivity of the appropriate

relations is encoded explicitly and the computation of transitivity does not require the use of an

abstract transitivity rule. The organization of concepts in an IS-A hierarchy using IS-A links to

capture the sub-class/super-class relationship is an excellent case in point. The use of IS-A links

converts the problem of computing the transitive closure from one of applying the transitivity

rule 8 x,y,z IS-A(x,y) ^ IS-A(y,z) ) IS-A(x,z), to one of propagating activation along links.

Bound on the depth of the chain of reasoning

Two things might happen as activity propagates along a chain of argument ensembles during

an episode of reflexive reasoning. First, the lag in the firing times of successive ensembles

may gradually build up due to the propagation delay introduced at each level in the chain.

Second, the dispersion within each ensemble may gradually increase due to the variations in

propagation delays and the noise inherent in synaptic and neuronal processes. While the increased

lag along successive ensembles will lead to a ‘phase shift’ and hence, binding confusions, the

increased dispersion of activity within successive ensembles will lead to a gradual loss of binding

information. Increased dispersion would mean less phase specificity, and hence, more uncertainty

about the argument’s filler. Due to the increase in dispersion along the chain of reasoning, the

propagation of activity will correspond less and less to a propagation of argument bindings and

more and more to an associative spread of activation. For example, the propagation of activity

along the chain of rules: P1(x; y; z) ) P2(x; y; z) ) : : : Pn(x; y; z) resulting from the input

P1(a; b; c) may lead to a state of activation where all one can say about Pn is that there is an

instance of Pn involving the entities a; b; and c, but it is not clear which entity fills which role

of Pn.

In view of the above, it follows that the depth to which an agent may reason during reflexive

reasoning is bounded. Thus an agent may be unable to make a prediction (or answer a query)
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— even when the prediction (or answer) logically follows from the knowledge encoded in the

LTKB — if the length of the derivation leading to the prediction (or the answer) exceeds this

bound. It should be possible to relate the bound on the depth of reflexive reasoning to specific

physiological parameters, but at this time we are not aware of the relevant data upon which to

base such a prediction. We would welcome pointers to appropriate data.

8.3 Nature of inputs to the reflexive reasoner

Our system demonstrates that rule-like knowledge may be used effectively during reflexive

reasoning provided it is integrated into the LTKB and wired into the inferential dependency

graph. It also demonstrates that reflexive reasoning can effectively deal with small dynamic

input in the form of facts.33 We suspect that the ability of any reflexive reasoning system to

deal with novel rule-like information will be extremely limited; if the input contains rule-like

information that is not already present in the LTKB, the agent may have to revert to a reflective

mode of reasoning in order to use this information. This may partially explain why human

agents find it difficult to perform syllogistic reasoning without deliberate and conscious effort

even though, in a formal sense, such reasoning is simpler than some of the reasoning tasks we

can perform in a reflexive manner. In syllogistic reasoning, the ‘input’ has the form of rules and

the reflexive reasoner may be unable to use them unless they are already part of the LTKB.

8.4 The reflexive reasoning system and production systems

As may be evident, there exists a correspondence between a production system and the reflexive

reasoning system described in this paper — the declarative memory corresponds to long-term

facts, productions correspond to rules, and the working memory corresponds to the WMRR.

Thus our system can be viewed as a parallel production system.

Estimates of the working memory capacity of production system models range from very

small (about seven elements) to essentially unlimited. Our work points out that the working

memory of a reflexive processor can contain a very large number of elements (dynamic facts in

the case of the reasoning system) as long as i) the elements do not refer to more than (about)

10 entities and ii) the elements do not involve the same relation (predicate) more than (about)

3 times. The proposed system also demonstrates that a large number of rules — even those

containing variables — may fire in parallel as long as any predicate is not instantiated more than

(about) 3 times (cf: Newell’s suggestion (1980) that while productions without variables can be

executed in parallel, productions with variables may have to be executed in a serial fashion).

A number of cognitive models are based on the production system formalism; two of the

most comprehensive being ACT* (Anderson 1983) and SOAR (Newell 1990). Neurally plausible

realizations of these models, however, have not been proposed. Although several aspects of

ACT* such as its use of levels of activation and weighted links have neural underpinnings, it

has not been shown how certain critical aspects of the model may be realized in a neurally

plausible manner. For example, ACT* represents productions with variables, but Anderson does

not provide a neurally plausible explanation of how bindings are propagated and how nodes

determine whether two bindings are the same. In his exposition of SOAR, Newell had analyzed
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the time course of neural processes to estimate how long various SOAR operations should take,

but he had not suggested how a system such as SOAR may be realized in a neurally plausible

manner (see p. 440 Newell, 1990). Although a complete mapping of comprehensive systems

such as SOAR and ACT* to a neurally plausible architecture still remains an open problem, our

system could provide a basis for doing so. In this context, the biologically motivated constraints

on the capacity of the WMRR indicated by our system seem particularly significant.

8.5 Reflexive reasoning and text understanding

Several problems will have to be addressed in order to integrate the proposed reasoning system

with a comprehensive cognitive system. Some of these problems are discussed in Section 10 and

include i) interactions between the reflexive reasoning system and the medium-term memory, ii)

how medium-term memory is mapped into long-term memory, iii) how the set of entities in the

WMRR changes in a fluid manner, and iv) how distinct modules performing different reflexive

processes (e.g., a parser and a reasoner) communicate with one another.

The problem of text understanding is particularly relevant because there exists a rich body

of empirical data on the role of inferences based on long-term knowledge during language un-

derstanding. The data strongly suggests that certain types of inferences, for example, inferences

that help establish referential and causal coherence, do occur very rapidly and automatically

during text understanding (see e.g., Kintsch 1974; Carpenter & Just 1977; McKoon & Ratcliff

1980; McKoon & Ratcliff 1981; Keenan, Baillet, and Brown 1984). The evidence for the

automatic occurrence of elaborative inferences however, is mixed (see e.g., Singer & Ferreira

1983; McKoon & Ratcliff 1986; Kintsch 1988; Potts, Keenan, and Golding 1988). Elaborative

inferences predict highly likely consequences of events mentioned in the discourse and corre-

spond to forward reasoning in our system. However, as Potts et al. (1988) point out, available

experimental evidence does not rule out the possibility that elaborative inferences are performed

during reading. The experiments involve two sentence texts and it is likely that the subjects do

not have any inherent interest in making predictive inferences. It may turn out that subjects do

make such inferences when reading longer texts.

Our system suggests that reflexive reasoning can occur in backward as well as forward direc-

tion (although as pointed out in Section 8.2 there are critical differences in the form of rules that

may participate in the two types of reasoning). This suggests that agents may perform inferences

required for establishing referential and causal coherence as well as predictive inferences in a

reflexive manner. The system’s prediction can be resolved with the observed data if we assume

that the results of predictive inferences only last for a short time (say a few hundred msec) and

then disperse unless subsequent input (text) indicates that these inferences are significant and/or

relevant to the discourse. Only those inferred facts that turn out to be relevant get encoded in

the medium-term memory and become available for a longer time.

The extensive body of empirical data on the role of long-term knowledge and inferences in

reading will inform future work on our model of reflexive reasoning. At the same time, we hope

that the constraints on the form of rules and the capacity of the working memory underlying

reflexive reasoning that have emerged from our work will help experimental psychologists in

formulating and testing novel hypotheses about the role of reflexive reasoning in reading.
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8.6 Reflexive reasoning and the fan effect

Our initial hypothesis as well as our system’s behavior suggests that the time taken by reflexive

reasoning is independent of the size of the LTKB. This conflicts with the fan effect (Anderson

1983; Reder & Ross 1983). In broad terms, this effect refers to the following phenomenon:

The more facts associated with a particular concept, the slower the recognition of any one of

the facts. We hypothesize that this effect applies only to medium-term knowledge and not to

long-term knowledge (where we use ‘long-term’ in the sense discussed in Section 1.1). Consider

the nature of the task that leads to the fan effect. An agent studies a set of facts until he can

recall them. Subsequently, the agent is asked to recognize and make consistency judgments

about the learned material and his reaction times are recorded. It is observed that the time taken

to recognize a fact increases with the number of facts studied by the agent involving the same

concept(s). Observe however, that the fan effect concerns an arbitrary collection of facts that

the agent studied prior to the experiment. We hypothesize that these facts only get encoded in

the agent’s medium-term memory and do not get assimilated into the agent’s LTKB. Thus the

fan effect is not about facts in the LTKB, rather it is about facts in the medium-term memory.

9 Related work

In spite of the apparent significance of reflexive reasoning there have been very few attempts

at modeling such rapid inference with reference to a large body of knowledge. Some past

exceptions are Fahlman’s work on NETL (1979) and Shastri’s work on a connectionist semantic

memory (1988a) (also see Geller & Du, 1991). Both these models primarily deal only with

inheritance and classification within an IS-A hierarchy. Hölldobler (1990) and Ullman and van

Gelder (1988) have proposed parallel systems for performing more powerful logical inferences,

but these systems have unrealistic space requirements. The number of nodes in Hölldobler’s

system is quadratic in the the size of the LTKB and the number of processors required by

Ullman and van Gelder is even higher.34 A significant amount of work has been done by

researchers in knowledge representation and reasoning to identify classes of inference that can

be performed efficiently (e.g., see Frisch & Allen 1982; Levesque & Brachman 1985; Levesque

1988; McAllester 1990; Bylander, Allemang, Tanner, & Josephson 1991; Kautz & Selman 1991).

The results however, have largely been negative. The few positive results reported do not provide

insights into the problem of reflexive reasoning because they assume a weak notion of efficiency

(polynomial time), restrict inference in implausible ways (e.g., by excluding chaining of rules),

and/or deal with overly limited expressiveness (e.g., only propositional calculus).

9.1 Relation between NETL and the proposed system

It was pointed out in Section 3 that as an abstract computational mechanism, temporal synchrony

is related to the notion of marker passing. It was also mentioned that Fahlman had proposed

the design of a parallel marker passing machine (NETL) that could solve a class of inheritance

and recognition problems efficiently. But as discussed in Section 3, NETL was not neurally

plausible. In view of the correspondence between temporal synchrony and marker passing, our
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system offers a neurally plausible realization of marker passing. It is important to underscore

the significance of this realization. First, nothing is stored at a node in order to mark it with

a marker. Instead, the time of firing of a node relative to other nodes and the coincidence

between the time of firing of a node and that of other nodes has the effect of marking a node

with a particular marker. Furthermore, a node does not have to match anything akin to markers.

It simply has to detect whether appropriate inputs are coincident. Second, the system does

not require a central controller. Once a query is posed to the system by activating appropriate

nodes, it computes the solution without an external controller directing the activity of every node

at every step of processing. The system’s ability to do so stems from the distributed control

mechanisms that are an integral part of the representation. Some examples of such built-in

mechanisms that automatically control the propagation of activation are the C", and C# relay

nodes in concept clusters (Section 5.2), and the switch networks associated with concepts and

predicates that automatically direct the flow of activation to unused banks (Sections 5.2 and 6).

Third, our realization of marker passing quantifies the capacity of the working memory underlying

reflexive processing in terms of biological parameters. As we have seen, these constraints have

psychological significance.

In addition to demonstrating that a marker passing system can be realized in a neurally plau-

sible manner, our system also shows that a richer class of representation and reasoning problems

can be performed using temporal synchrony — and hence, marker passing — than what was real-

ized in NETL. If we set aside the issue of exceptional knowledge (see below), NETL represented

an IS-A hierarchy and n-ary facts, where terms in a fact could be types or instances in the IS-A

hierarchy. NETL however, did not represent rules involving n-ary predicates. NETL derived

inherited facts by replacing terms in a fact by their subtypes or instances (this characterization

accounts for NETL’s ability to perform simple (unary) inheritance as well as relational inheri-

tance), but it did not combine inheritance with rule-based reasoning. Consider the example of

relational inheritance where “preys-on(Sylvester,Tweety)” is derived from “preys-on(Cat,Bird)”.

Observe that this only involves substituting Sylvester for Cat and Tweety for Bird based on

the IS-A relations “IS-A(Sylvester, Cat)” and “IS-A(Tweety,Bird)”. This form of reasoning is

weaker than that performed by our system. Our reasoning system can also encode rules such as

8x; y preys-on(x; y) ) scared-of(y; x) and given “preys-on(Cat,Bird)”, it can not only infer

“preys-on(Sylvester,Tweety)” but also “scared-of(Tweety,Sylvester)”.

The presence of a central controller allowed NETL to compute and enumerate results of

queries involving an arbitrary sequence of set intersection and set union operations. NETL’s

central controller could decompose a query into the required sequence of intersection and union

operations and instruct NETL to perform these operations in the proper sequence. This is

something our reflexive reasoning system does not (and is not intended to) do.

NETL also allowed exceptions in the IS-A hierarchy, but its treatment of exceptions suffered

from serious semantic problems (see Fahlman, Touretzky & von Roggen 1981; and Touretzky

1986). In Sections 5.4 and 5.5 we described how rules with type restrictions are encoded in our

system and explained how this encoding may be extended to deal with type preferences so that

the appropriateness — or strength — of a rule firing in a specific situation may depend on the

types of the entities involved in that situation. The ability to encode evidential rules will allow

our system to incorporate exceptional and default information in an IS-A hierarchy (see below).
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9.2 CSN — A connectionist semantic memory

Shastri (1988a,b) developed CSN, a connectionist semantic network that could solve a class

of inheritance and classification problems in time proportional to the depth of the conceptual

hierarchy. CSN computed its solutions in accordance with an evidential formalization and dealt

with exceptional and conflicting information in a principled manner. It found the most likely

answers to inheritance and recognition queries by combining the information encoded in the

semantic network. CSN operated without a central network controller that regulated the activity

of its nodes at each step of processing. This was the result of using distributed mechanisms (e.g.,

relay nodes) for controlling the flow of activity. A complete integration of a CSN-like system

and the proposed reasoning system should lead to a system capable of dealing with evidential

and conflicting rules and facts in a principled manner.

9.3 Some connectionist approaches to the dynamic binding problem

Feldman (1982) addressed the problem of dynamically associating any element of a group of

N entities with any element of another group of N entities using an interconnection network.

He showed how it was possible to achieve the association task with an interconnection network

having only 4N3=2 nodes. The work however did not address how such a representation could

be incorporated within a reasoning system where bindings need to be propagated.

Touretzky and Hinton (1988) developed DCPS, a distributed connectionist production system,

to address the problem of rule-based reasoning within a connectionist framework. The ability of

DCPS to maintain and propagate dynamic bindings is, however, quite limited. First, DCPS can

only deal with rules that have a single variable. Second, DCPS is serial at the knowledge level

because each step in its reasoning process involves selecting and applying a single rule. Thus

in terms of efficiency, DCPS is similar to a traditional (serial) production system and must deal

with the combinatorics of search. Third, it assumes that there is only one candidate rule that can

fire at each step of processing. Hence it is not a viable model of reflexive reasoning.

Smolensky (1990) describes a representation of dynamic bindings using tensor products.

Arguments and fillers are viewed as n and m dimensional vectors, respectively, and a binding is

viewed as the n �m dimensional vector obtained by taking the tensor product of the appropriate

argument and filler vectors. The system encodes arguments and fillers as patterns over pools

of n argument and m filler nodes and argument bindings over a network of n �m nodes. The

system can only encode n�m bindings without cross-talk, although a greater number of bindings

can be stored if some cross-talk is acceptable. Dolan and Smolensky (1989) describe TPPS, a

production system based on the tensor product encoding of dynamic bindings. However, like

DCPS, TPPS is also serial at the knowledge level and allows only one rule to fire at a time.

The primary cause of knowledge level serialism in DCPS and TPPS is that these systems

represent arguments and fillers as patterns of activity over common pools of nodes. This severely

limits the number of arguments, fillers, and dynamic bindings that may be represented at the

same time. In contrast, the compact encoding of predicates, arguments, and concepts in our

system allows it to represent and propagate a large number of dynamic bindings simultaneously.

Another system that uses a compact encoding and supports knowledge level parallelism is

ROBIN (Lange & Dyer 1989). This system was designed to address the problem of natural
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language understanding — in particular, the problem of ambiguity resolution using evidential

knowledge. ROBIN and our system have several features in common, for example, ROBIN

can also maintain a large number of dynamic bindings and encode ‘rules’ having multiple

variables. There are also important differences in the two systems. ROBIN permanently allocates

a unique numerical signature to each constant in the domain and represents dynamic bindings

by propagating the signature of the appropriate constant to the argument(s) to which it is bound.

The use of signatures allows ROBIN to deal with a large number of entities during an episode

of reasoning. There is, however, a potential problem with the use of signatures: if each entity

has a unique signature, then signatures can end up being high precision quantities. For example,

assigning a distinct signature to 50,000 concepts will require a precision of 16 bits. Hence

propagating bindings would require nodes to propagate and compare high precision analog values.

This problem may be circumvented by representing signatures as n-bit vectors and encoding

arguments as clusters of n nodes communicating via bundles of links (see Section 9.4).

The temporal synchrony approach can be compared to the signature based approach as

follows: Although the total number of entities is very large, the number of entities involved in

a particular reasoning episode is small. Hence instead of assigning a distinct signature to every

entity, it suffices to assign distinct signatures to only entities that are participating in an episode of

reasoning. Furthermore, this assignment need exist only for the duration of a reasoning episode.

One can interpret the relative phase in which a node is firing as such a transient signature of

the node. The discussion in Section 8.2 about working memory and medium-term memory (also

Section 10) suggests how an augmented system including a medium-term memory may engage

in tasks involving more than 10 or so entities.

Barnden & Srinivas (1991) have proposed ‘Conposit’, a connectionist production system. In

Conposit, patterns are associated by virtue of the relative position of registers containing these

patterns, as well as the similarity between patterns. Argument bindings are propagated by a

connectionist interpreter that reads the contents of registers and updates them. We believe that

Conposit may be an appropriate architecture for modeling complex reflective processes, but it

may not be best suited for modeling reflexive reasoning.

Another solution to the binding problem is based on frequency modulation whereby dy-

namic bindings may be encoded by having the appropriate nodes fire with the same frequency

(Tomabechi & Kitano 1989).

9.4 Using patterns for propagating bindings

An important aspect of the proposed reasoning system is the organization of n-ary rules into a di-

rected graph wherein the inferential dependencies between antecedent and consequent predicates

together with the correspondence between the predicate arguments are represented explicitly. As

we have seen, this encoding in conjunction with the temporal representation of dynamic bind-

ings leads to an efficient reasoning system. But the above encoding of rules is significant in its

own right. One may take this framework for organizing rules and obtain other organizationally

isomorphic connectionist systems by using alternate techniques (e.g., frequency encoding) for

representing dynamic bindings. These systems, however, will differ in the size of the resulting

network, constraints on the nature of reasoning, reasoning speed, and biological plausibility. To
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illustrate how the suggested organization of rules and arguments may be combined with alter-

nate techniques for propagating dynamic bindings, we use the proposed encoding of rules in

conjunction with what may be referred to as the pattern-containment approach.35

In the pattern-containment approach we assume that each argument is represented by a cluster

of n nodes and inferential links between arguments are represented by connecting the nodes in

the associated argument clusters. An n-dimensional pattern of activity is associated with each

concept (i.e., an instance or a type), and a dynamic binding between a concept and an argument

is represented by inducing the pattern of activation associated with the concept in the appropriate

argument cluster. The propagation of dynamic bindings in the system occurs by the propagation

(replication) of patterns of activity along connected argument clusters.

It is instructive to compare the pattern-containment approach with the temporal synchrony

approach. The key question is: ‘What is the significance of the pattern of activity that is

associated with a concept and propagated across argument clusters?’ One possibility is that

each n dimensional pattern encodes the signature associated with some concept (Lange & Dyer

1989). As we pointed out earlier, the value of n would depend on N , the number of distinct

concepts represented in the system. If we assume that concepts are assigned arbitrary patterns

as signatures, n would equal log2N . Alternately the pattern of activity could encode all the

micro-features of a concept (Hinton, 1981; Rumelhart & McClelland, 1986). Such a pattern,

however, would have to be even larger. Both these interpretations of patterns make suboptimal

use of computational resources: Each argument cluster has to be large enough to encode the

full signature of a concept or all the micro-features associated with a concept. Also individual

bindings have to be propagated by propagating large patterns of activity. An attractive alternative

would be to assume that the patterns associated with concepts during the propagation of bindings

are some sort of reduced descriptions. We suggest that the temporal synchrony approach does

exactly this — albeit in an unusual manner. During the propagation of bindings, the relative

phase of firing of an active concept acts as a highly reduced description of that concept.

The use of temporal synchrony enables our system to do with one node and one link, what

the pattern-containment approach does using n nodes and links. The temporal approach also

leads to a simple encoding of long-term facts. In contrast, the realization of a long-term fact in

the pattern-containment approach will be more complex since it must support m — where m
is the arity of the fact predicate — n-bit comparisons to check whether the dynamic bindings

match the static bindings encoded in the fact. In Section 7.3, we suggested that single (idealized)

nodes in our system would have to be mapped to ensembles of nodes and single (idealized) links

would have to be mapped to a group of links. This mapping however, was required to deal

with noise in the system and the pattern-containment approach will also have to be augmented

in order to deal with noise.

10 Discussion

We have presented a neurally plausible model for knowledge representation and reflexive reason-

ing. The model supports the long-term encoding of general instantiation independent structures

as well as specific situations involving n-ary relations. It also supports the representation of

dynamic information and its interaction with long-term knowledge. Everything presented in the
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paper, except for the treatment of soft rules (Section 5.5) has been simulated. The proposed

model makes several specific predictions about the nature of reflexive reasoning and the capacity

of the working memory underlying reflexive reasoning. These predictions are verifiable and we

hope that they will be explored by experimental psychologists. The proposed representational

mechanisms are quite general and should be applicable to other problems in cognition whose for-

mulation requires the expressive power of n-ary predicates and whose solution requires rapid and

systematic interactions between long-term and dynamic structures. These include problems in

high-level vision, other problems in language processing such as syntactic processing, and reac-

tive planning. Below we discuss some problems that need to be addressed if the representational

mechanisms proposed here are to be applied in an extended setting.

10.1 Where do phases originate?

In a sense, the ‘source’ of rhythmic activity in the proposed reasoning system is clearly iden-

tifiable: The process that poses a query to the system provides staggered oscillatory inputs to

entities mentioned in the query and thereby activates them in distinct phases. In a composite

perceptual/linguistic/reasoning system, however, such a separation in the phase of the firing of

distinct entities must occur intrinsically. For example, the utterance ‘John gave Mary Book1’

should automatically result in the representations of ‘John’, ‘Mary’, and ‘Book1’ firing in dif-

ferent phases and synchronously with giver, recipient, and give-obj, respectively.

The problem of automatic phase separation and consequent segmentation and feature binding

has been addressed by several researchers. For example, Horn et al. (1991) demonstrate how

an input pattern containing a red square and a blue circle, can result in the firing of nodes

representing the features ‘red’ and ‘square’ in one phase, and the nodes representing the features

‘blue’ and ‘circle’ in a different phase. The model, however, does not work if there are more

than two objects. An internal attentional mechanism similar to the ‘searchlight’ proposed by

Crick (1984) may be required for dealing with more elaborate situations.

In the case of linguistic input, we believe that the initial phase separation in the firing of

each constituent is the outcome of the parsing process. The parser module expresses the result

of the parsing process — primarily, the bindings between syntactic arguments and constituents

— by forcing appropriate nodes to fire in, and out of, synchrony. This is illustrated in a parser

for English designed by Henderson (1991) using the proposed model for reflexive reasoning.

10.2 Who reads the synchronous firing of nodes?

There is no homunculus in our system that ‘reads’ the synchronous activity to detect dynamic

bindings. Instead, the synchronous activity is ‘read’ by various long-term structures in the

system which do so by simply detecting coincidence (or the lack of it) among their inputs. For

example, long-term facts ‘read’ the rhythmic activity as it propagates past them and become active

whenever the dynamic bindings are appropriate. Similarly, � -or nodes enforce type restrictions

(e.g., the node a in Fig. 24) by enabling the firing of a rule whenever the appropriate argument

and type nodes are firing in phase. We have also designed a connectionist mechanism that

automatically extracts answers to wh-queries and relays them to an output device (McKendall
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1991). We associate a code or a ‘name’ with each concept. This name has no internal significance

and is meant solely for communicating with the system’s environment. The mechanism channels

the ‘names’ of concepts that constitute an answer to an output buffer in an interleaved fashion.

For example, the patterns for ‘Ball1’ and ‘Book1’ would alternate in the output buffer after the

wh-query own(Mary,?)? is posed with reference to the network in Fig. 12.

10.3 How are phases recycled?

The constraint that computations must involve only a small number of entities at any given time

seems reasonable if we restrict ourselves to a single episode of reasoning, understanding a few

sentences, or observing a simple scene. But what happens when the agent is participating in

a dialog or scanning a complex scene where the total number of significant entities exceeds

the number of distinct phases that can coexist. In such situations the set of entities in ‘focus’

must keep changing constantly with entities shifting in and out of focus in a dynamic manner.

Identifying the mechanisms that underlie such internal shifts of attention and cause the system’s

oscillatory activity to evolve smoothly so that new entities start firing in a phase while entities

presently firing in a phase gradually ‘release’ their phase, remains a challenging open problem

(but see Crick & Koch 1990). In this context one must also note that the notion of an entity

is itself very fluid. In certain situations, John may be an appropriate entity. In other situations,

John’s face or perhaps even John’s nose may be the appropriate entity.

The notion of the release of phases has a natural interpretation in the parsing system described

in (Henderson 1991). The parser is incremental and its output is a sequence of derivation steps

that leads to the parse. The entities in the parser are non-terminals of the grammar, and hence,

each active non-terminal must fire in a distinct phase. Under appropriate conditions during

the parsing process — for example, when a non-terminal ceases to be on the right frontier of

the phrase structure — the phase associated with a non-terminal can be ‘released’ and hence,

become available for non-terminals introduced by subsequent words in the input. This allows the

parser to recover the structure of arbitrary long sentences as long as the dynamic state required

to parse the sentence does not exceed the bounds on the number of phases and the number of

instantiations per predicate.

10.4 Generalizing the use of synchronous oscillations

Thus far we have assumed that the scope of phase distribution is the entire system. We must

however, consider the possibility where the system is composed of several modules (say the

perceptual, linguistic, or reasoning modules). If we combine the requirements of all these

modules, it becomes obvious that ten or so phases will be inadequate for representing all the

entities that must remain active at any given time. Thus a temporal coding of dynamic bindings

is not viable if a single phase distribution must extend across all the modules. Therefore it

becomes crucial that each module have its own phase distribution so that each module may

maintain bindings involving ten or so entities. This however, poses a problem: how should

modules communicate with each other in a consistent manner? Consider a system whose visual

module is seeing ‘John’ and whose conceptual module is thinking something about John. How
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should the visual and conceptual modules share information about John even though the phase

and frequency of the nodes encoding John in the two systems may be different? Aaronson

(1991) describes a connectionist interface that allows two phase-based modules, each with its

own phase structure, to exchange binding information.

10.5 Memorizing facts: converting dynamic bindings to static patterns

In the proposed system, dynamic information is represented as transient rhythmic activity while

long-term memory is encoded using ‘hard-wired’ interconnections between nodes. We have not

discussed how appropriate dynamic information may be converted into, and recorded as, synap-

tically encoded long-term structures. A specific problem concerns the conversion of dynamic

bindings corresponding to a novel (but salient) fact into a medium-term fact by converting the

set of dynamic bindings into a set of static bindings that last longer than a few hundred msec

(perhaps, even days or weeks). This problem has been addressed in (Geib 1990) by using re-

cruitment learning (Wickelgren 1979; Feldman 1982; Shastri 1988a) in conjunction with a fast

weight change process abstractly modeled after long-term potentiation (Lynch 1986). The pro-

posed solution allows a one-shot conversion of dynamic facts into a structurally encoded fact in

the presence of a ‘learn’ signal. It is envisaged that subsequently, such medium-term structures

can be converted into long-term structures by other processes (Marr 1971; Squire 1987; Squire

& Zola-Morgan 1991). The notion of fast synapses proposed by von der Malsburg (1981) may

also play an intermediate role in sustaining memories that must last beyond a few hundred msec.

10.6 Learning rules

The problem of learning the representation of rules in a system that uses a temporal representa-

tion is no more difficult than the problem of learning structured representation in connectionist

networks. Instead of being triggered by ‘simple’ co-activation, learning must now be triggered

by synchronous activation. Recently, Mozer, Zemel & Behrman (1991) have demonstrated how

backpropagation style learning may be generalized to networks of nodes that are essentially like

�-btu nodes. We are addressing the problem of learning in the context of pre-existing predicates

and concepts where it is desired that the co-occurrence of events should lead to the formation of

appropriate connections between predicate arguments. A special case involves assuming generic

interconnections between predicate arguments, and viewing rule-learning as learning the correct

type restrictions/preferences on argument fillers. This may be achieved by modifying weights

on links between the type hierarchy and the rule component. (refer to Sections 5.4 and 5.5).

End Notes

1. For example, see Kintsch 1974; Bobrow & Collins 1975; Charniak 1976; Just & Carpenter

1977; Schank & Abelson 1977; Fahlman 1979; Lehnert & Ringle 1982; Dyer 1983;

Wilensky 1983; Allen 1987; Norvig 1989; and Corriveau 1991.

2. That reflexive reasoning occurs spontaneously and without conscious effort does not imply

that the agent cannot become aware and conscious of the result of such reasoning. To wit,
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an agent’s ‘yes’ response to the question ‘Does John own a car?’ given ‘John bought a

Rolls-Royce’. In many situations, however, the result of reflexive reasoning may only be

manifest in the ‘mental state’ of the agent. For example, during reading the effect of such

reasoning may be manifest primarily in the agent’s sense of ‘understanding’, ‘coherence’

(or lack thereof), ‘disbelief’, ‘humor’, etc.

3. The reflexive/reflective distinction we make here in the context of reasoning, shares a num-

ber of features with the automatic/controlled distinction proposed by Schneider and Shiffrin

(Schneider & Shiffrin 1977; Shiffrin & Schneider 1977) (also see Posner & Snyder 1975).

Like automatic processing, reflexive reasoning is parallel, fast, occurs spontaneously, and

the agent is unaware of the reasoning process per se. However, the working memory under-

lying reflexive reasoning has specific capacity limitations (see Section 8.2). In formulating

the problem of reflexive reasoning and developing a detailed computational model for it,

we have generalized the notion of automatic processing by bringing into its fold the more

conceptual task of systematic reasoning.

4. If we assume that information is encoded in the firing rate of a neuron then the amount

of information that can be conveyed in a ‘message’ would depend on �F , the range

over which the firing frequency of a presynaptic neuron can vary, and �T , the window

of time over which a postsynaptic neuron can ‘sample’ the incident spike train. �T is

essentially how long a neuron can ‘remember’ a spike and depends on the time course

of the postsynaptic potential and the ensuing changes in the membrane potential of the

postsynaptic neuron. A plausible value of �F may be about 200. This means that in

order to decode a message containing 2 bits of information, �T has to be about 15 msec,

and to decode a 3-bit message it must be 35 about msec.

One could argue that neurons may be capable of communicating more complex messages

by using variations in interspike delays to encode information (for e.g., see Strehler &

Lestienne 1986). However, Thorpe and Imbert (1989) have argued that in the context of

rapid processing, the firing rate of neurons relative to the time available to neurons to

respond to their inputs implies that a presynaptic neuron can only communicate one or

two spikes to a postsynaptic neuron before the latter must produce an output. Thus the

information communicated in a message remains limited even if interspike delays are used

as temporal codes. This does not imply that networks of neurons cannot represent and

process complex structures. Clearly they can. The interesting question is how?

5. This observation does not presuppose any particular encoding scheme and applies to ‘lo-

calist’, ‘distributed’, as well as ‘hybrid’ schemes of representation. The point is purely

numerical — any encoding scheme that requires n2 nodes to represent a LTKB of size n
will require 1016 nodes to represent a LTKB of size 108.

6. This hypothesis does not conflict with the fan effect (Anderson 1983). See Section 8.6.

7. The rules used in this and other examples are only meant to illustrate the dynamic binding

problem, and are not intended to be a detailed characterization of common sense knowl-
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edge. For example, the rule relating ‘giving’ and ‘owning’ is an oversimplification and

does not capture the richness and complexity of the actual notions of giving and owning.

8. While ‘systematicity’ has a broader connotation (e.g., see Fodor & Pylyshyn 1988), we use

it here to refer specifically to the correspondence between predicate arguments stipulated

by rules.

9. The symbol 8 is the universal quantifier which may informally be interpreted to mean

‘for all’, and the symbol ) is the logical connective ‘implies’. Thus the statement

8u; v [buy(u; v) ) own(u; v)] asserts that ‘for any assignment of values to u and v,

if u buys v then u owns v’.

10. A similar formation of ‘static’ bindings occurs in any learning network with hidden nodes.

Observe that a hidden node at level l learns to respond systematically to the activity of

nodes at levels l�1 and below, and in doing so the network learns new bindings between

representations at level l and l � 1. These bindings, however, are static and the time it

takes for such ‘bindings’ to get established is many orders of magnitude greater than the

time within which dynamic bindings must be established.

11. Feature binding can be achieved by creating sets of features such that features belonging to

the same entity are placed in the same set. In terms of expressive power, unary predicates

suffice to solve this problem. For example, the grouping of features belonging to a ‘red

smooth square’ and a ‘blue dotted circle’ can be expressed using unary predicates such as:

red(obj1)^ smooth(obj1)^ square(obj1) and blue(obj2)^dotted(obj2)^ circle(obj2).

12. We first described our proposed model in 1990 (Shastri & Ajjanagadde 1990). An earlier

version using a central clock was reported in (Ajjanagadde & Shastri 1989).

13. As stated in note 11 unary predicates suffice to solve the feature binding problem and the

expressive power of the models cited above is limited to unary-predicates (see Hummel

& Biederman 1991). The greater expressive power provided by n-ary predicates would

eventually be required by more sophisticated models of visual processing.

14. There are other variants of marker passing (e.g., see Charniak 1983; Hirst 1987; Hendler

1987; and Norvig 1989) where ‘markers’ are even more complex messages containing a

marker bit, a strength measure, backpointers to the original and immediate source of the

marker, and sometimes a flag that indicates which types of links the marker will propagate

along. The marker passing system has to process the information contained in markers,

extract paths traced by markers, and evaluate the relevance of these paths. In view of this,

such marker passing systems are not relevant to our discussion.

15. We can generalize the behavior of a �-btu node to account for weighted links by assuming

that a node will fire if and only if the weighted sum of synchronous inputs is greater than

or equal to n (see Section 5.5 and 8.1).

50



16. In the idealized model each argument is encoded as a single �-btu node and hence, it is

reasonable to assume that a node may fire in response to a single input. The thresholds

of nodes in the ensemble based model will be higher and will depend on the average

inter-ensemble connections per node.

17. A constant refers to a specific entity in the domain, the symbol 9 is the existential quan-

tifier which may be interpreted to mean ‘there exists’. Recall that the symbol 8 is the

universal quantifier which may be interpreted to mean ‘for all’. Thus the statement:

8x [person(x) ) 9z mother(z; x)] asserts that ‘for every person x there exists some z
such that z is the mother of x. The symbol ^ is the logical connective ‘and’.

18. The system can encode first-order, function-free Horn Clauses with the added restriction

that any variable occurring in multiple argument positions in the antecedent of a rule must

also appear in the consequent. Horn Clauses form the basis of PROLOG, a programming

language used extensively in artificial intelligence (e.g., see Genesereth & Nilsson 1987).

19. This time consists of i) l�, the time taken by the activation originating at the enabler of the

query predicate to reach the enabler of the predicate(s) that are relevant to the derivation

of the query, ii) �, the time taken by the relevant fact(s) to become active, iii) �, the time

taken by the active fact(s) to activate the relevant collector(s), and iv) l�, the time taken

by the activation to travel from the collector of the relevant predicate(s) to the collector

of the query predicate.

20. The closed world assumption simply means that any fact F that is neither in the knowledge

base nor deducible from the knowledge base, may be assumed to be false.

21. Here we are using ‘concept’ to refer only to the entities and types encoded in the hierarchy.

This is not to suggest that predicates such as ‘give’ and ‘own’ that are not represented in

the IS-A hierarchy are not concepts in the broader sense of the word.

22. In our formulation each IS-A link is strict and only property values are exceptional. This

approach for dealing with exceptional and defeasible information in IS-A hierarchies is

explained in (Shastri 1988a).

23. This is required because a fact is true of some entity of type C if one or more of the

following holds: i) The fact is universally true of a super-concept of C , ii) the fact is true

of some sub-concept/instance of C , or iii) the fact is universally true of a super-concept of

a sub-concept/instance of C . The latter is required if concepts in the IS-A hierarchy can

have multiple parents.

24. These times are approximate because the time required for propagation along the IS-A

hierarchy and the rules may overlap and hence, the actual time may be less. For example,

the time to perform a predictive inference may also only be max(l1�; 3l2�). It is also

possible for the actual time to be greater because in the worst case, it may take up to eight

cycles instead of three to traverse an IS-A link.
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25. m, the number of antecedent predicates in a rule, can also be reduced by introducing

ancillary predicates. For example, the rule 8x; y; z P (x; y; z) ^Q(x; y; z) ^R(x; y; z) )
S(x; y; z) may be replaced by two rules each of which has only two antecedent predicates:

8x; y; z P (x; y; z) ^ Q(x; y; z) ) S1(x; y; z) and 8x; y; z S1(x; y; z) ^ R(x; y; z) )
S(x; y; z). The benefit of reducing m in this manner has to be weighed against the cost

of introducing an additional predicate in the system. But the savings outweigh the costs

if such a predicate helps in reducing the m value of several rules.

26. The reasoning system uses of the phase of activation to encode binding information.

Therefore, in principle, the amplitude of activation could be used to represent the ‘strength’

of dynamic bindings and rule firings. Note however, that the amplitude of a node’s output

is encoded by the spiking frequency and the use of varying frequency to encode rule

strengths will interfere with the encoding of dynamic bindings.

27. While the occurrence of synchronous activity is less controversial, the occurrence of syn-

chronized oscillations in the animal brain and its representational significance is still a

matter of controversy. More evidence is needed to firmly establish the role of oscillatory

activity in neural information processing. Some researchers have reported difficulty in

demonstrating oscillatory activity in the primate visual system using static stimuli (e.g.,

Rolls 1991; Tovee & Rolls 1992). In this context, however, it must be recognized that

a very small fraction of neurons would be expected to participate in an episode of syn-

chronous activity. Furthermore, the grouping of neurons will be dynamic and vary consid-

erably from one episode of reasoning to another. Hence synchronous oscillations would

be very difficult to detect.

28. A more detailed model of such coupling has since been developed (Mandelbaum 1991).

29. These timings were obtained by analyzing the simulations of the reflexive reasoning system

carried out using a simulation system developed by D.R. Mani.

30. The above behavior generalizes the notion of a ‘strength’ associated with concepts (cf:

Anderson 1983) and extends it to rules, IS-A relations, facts, and even individual static

bindings in the LTKB.

31. The cost of realizing multiple instantiation of concepts is considerably lower than that of

realizing the multiple instantiation of predicates. Thus the value of k1 can be higher than

3. Observe however, that k1 need be no more than b�max=!c.

32. There are several ways of encoding the relevant kinship knowledge. All these, how-

ever, pose the same problem — the antecedent of one of the rules contains a repeated

variable that does not occur in the consequent. One possible encoding of the rele-

vant knowledge is given below (note that ‘Self’ refers to the agent and the rest of

the names have been chosen arbitrarily to complete the example). The long-term facts

are: grandfather(George; Self), mother(Susan; Self), and father(George; Susan).
The rule is: 8x; y; z grandfather(x; y) ^father(x; z) ^mother(z; y) ) maternal-
grandfather(x; y).
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33. In addition to the constraints on the WMRR, the number of dynamic facts that can be

communicated to an agent at one time will be bounded by the rather limited capacity of

the overt short-term memory.

34. Ullman and van Gelder treat the number of nodes required to encode the LTKB as a fixed

cost, and hence, do not refer to its size in computing the space complexity of their system.

If the size of the LTKB is taken into account, the number of processors required by their

system turns out to be a high degree polynomial.

35. The relation between our approach and the pattern-containment approach was pointed out

by Geoff Hinton.
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Figure Captions

Fig. 1. Encoding static bindings using dedicated nodes and links. give23 is a focal node and

the triangular nodes are binder nodes.

Fig. 2. Encoding predicates and individual concepts. Distinct predicates and arguments are

encoded using distinct nodes. Later in Section 7.4 we will discuss how nodes may be replaced

by an ensemble of nodes.

Fig. 3. Rhythmic pattern of activation representing the dynamic bindings (giver = John;
recipient = Mary; give-object = Book1). These bindings constitute the fact give(John;
Mary; Book1). The binding between an argument and a filler is represented by the in-phase

firing of associated nodes.

Fig. 4. Representation of the dynamic binding (giver = John) that constitutes the partially

instantiated fact ‘John gave someone something’.

Fig. 5. Pattern of activation representing the dynamic bindings (giver = John; recipient =
Mary; give-object = Book1; owner = Mary; own-object = Book1; potential-seller =
Mary; can-sell-object = Book1). These bindings constitute the facts give(John; Mary;
Book1), own(Mary; Book1), and can-sell(Mary; Book1). The transient representation of

an entity is simply a phase within an oscillatory pattern of activity. The number of distinct

phases required to represent a set of dynamic bindings only equals the number of distinct entities

involved in the bindings. In this example three distinct phases are required. The bindings

between Mary and the arguments recipient, owner, and potential-seller are represented by

the in-phase firing of the appropriate argument nodes with Mary.

Fig. 6. Encoding of predicates, individual concepts, and the rules: 8x; y; z [give(x; y; z) )
own(y; z)], 8x; y [own(x; y) ) can-sell(x; y)], and 8x; y [buy(x; y) ) own(x; y)]. Links

between arguments reflect the correspondence between arguments in the antecedents and conse-

quents of rules.

Fig. 7. Initial pattern of activation representing the bindings (giver=John, recipient=Mary,

give-object=Book1)

Fig. 8. Pattern of activation after one period of oscillation (with reference to the state of

activation in Fig. 7). This state represents the dynamic bindings: (giver=John, recipient=Mary,

give-object=Book1, owner=Mary, own-object=Book1). The system has essentially inferred the

fact own(Mary;Book1).
Fig. 9. Pattern of activation after two periods of oscillation (with reference to the state

of activation in Fig. 7). This state represents the dynamic bindings: (giver=John, recip-

ient=Mary, give-object=Book1, owner=Mary, own-object=Book1, potential-seller=Mary, can-

sell-object=Book1). The system has essentially inferred the facts own(Mary, Book1) and can-

sell(Mary, Book1).

Fig. 10. Encoding of a long-term fact. The interconnections shown here encode the static

bindings (giver=John, recipient=Mary, give-object=Book1) that constitute the long-term fact

give(John,Mary,Book1). The pentagon shaped nodes are � -and nodes. A � -and node becomes

active if it receives an uninterrupted input for the duration of the period of oscillation. The

activation of e:give represents an externally or internally generated query asking whether the
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dynamic bindings indicated by the pattern of activity of argument nodes match any long-term

fact encoded in the LTKB. The activation of c:give represents an assertion by the system that

these dynamic bindings match the knowledge encoded in the LTKB.

Fig. 11. Encoding of the partially instantiated long-term fact give(John;Mary; x), i.e., ‘John

gave Mary something’. The input from g-obj does not receive an inhibitory input from any

filler.

Fig. 12. A network encoding the rules: 8x; y; z [give(x; y; z) ) own(y; z)], 8x; y [buy(x; y) )
own(x; y)], and 8x; y [own(x; y) ) can-sell(x; y)]; and the long-term facts: give(John;
Mary; Book1), buy(John; x), and own(Mary; Book2). The links between arguments are in

the reverse direction because the rules are wired for ‘backward reasoning’.

Fig. 13. Activation trace for the query can-sell(Mary; Book1)? (Can Mary sell Book1?). The

query is posed by providing an oscillatory input to e:can-sell, Mary, Book1, p-seller and cs-obj

as shown. The activation of c:can-sell indicates a yes answer.

Fig. 14. Encoding rules with existentially quantified variables and constants in the consequent.

The network encodes the rule 8x1; x2; y [P (x1; x2) ) 9z Q(x1; x2; y; z; a)]. This rule must

not fire during the processing of a query, if either the existentially bound argument z gets bound,

or the last argument gets bound to a constant other than a. The node g1 is a � -or node. It

projects inhibitory modifiers that block the firing of the rule if the above condition is violated.

Fig. 15. Encoding rules where the same variable occurs in multiple argument positions in the

consequent. The network encodes the rule 8x P (x) ) 8yQ(x; x; y; a). The rule must fire only

if a multiply occurring variable is unbound, or all occurrences of the variable are bound to the

same constant. The node g2 is like a � -or node except that it becomes active if it receives

inputs in more than one phase within a period of oscillation. On becoming active it activates

the � -or node g1. The firing of g1 blocks the firing of the rule whenever the first and second

arguments of Q get bound to different constants. (The encoding also enforces the constraint that

last argument of Q should not be bound to any constant other than a.

Fig. 16. The encoding of the rule 8x; yP (x; y) ^ Q(y; x) ) R(x; y). The � -and node labeled

g3 has a threshold of 2. Multiple antecedent rules are encoded using an additional � -and node

whose threshold equals the number of predicates in the antecedent. This node becomes active

on receiving inputs from the collector nodes of all the antecedent predicates.

Fig. 17. Augmented representation of a long-term fact in order to support answer extraction.

For each argument of the associated predicate there exists a �-btu node with a threshold of two.

The node shown as a filled-in pentagon behaves like a � -and node except that once activated, it

stays active for some time – say about 20� – even after the inputs are withdrawn.

Fig. 18. Encoding a rule with repeated variables in the antecedent within a forward reasoning

system. The figure shows the encoding of the rule 8x; y; z P (x; y) ^ Q(y; z) ) R(x; z). This

rule should fire only if the two arguments in the antecedent corresponding to variable y get

bound to the same constant. The � -or node with a threshold of 2 receives inputs from the two

argument nodes that should be bound to the same filler. It becomes active if it receives two

inputs in the same phase and enables the firing of the rule via intermediary �-btu and � -and

nodes. These nodes have suitable thresholds.

Fig. 19. Interaction between a rule-based reasoner and an IS-A hierarchy. The rule component

encodes the rule 8x; y preys-on(x; y) ) scared-of(y; x) and the facts 8x:Cat, y:Bird preys-
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on(x,y) and 9x:Cat 8y:Bird loves(x,y). The first fact is equivalent to preys-on(Cat,Bird) and

states that ‘cats prey on birds’. The second fact states that there is a cat that loves all birds’.

Fig. 20. Activation trace for the query scared-of(Tweety; Sylvester)?, i.e., ‘Is Tweety scared

of Sylvester?’

Fig. 21. Structure of the concept cluster for C and its interaction with the bottom-up and top-

down switches. The cluster has three banks of nodes and is capable of storing upto 3 distinct

instances of the concept (in other words, the multiple instantiation constant k1 equals 3). The "

and # relay nodes have a threshold of 2.

Fig. 22. Architecture of a switch that mediates the flow of activation into concept clusters. The

depicted switch assumes that the associated cluster can represent upto 3 instances. The switch

provides a built-in and distributed control mechanism for automatically allocating banks within

a concept cluster. Each distinct incoming instantiation is directed to a distinct bank provided a

bank is available.

Fig. 23. Encoding of the IS-A relation is-a(A,B). A bundle of k1 links is shown as a single link.

Fig. 24. Encoding rules with typed variables. The network fragment encodes the rule: 8x :
animate; y : solid-obj walk-into(x; y) ) hurt(x). The numbers associated with nodes denote

thresholds (only thresholds other than 1 have been indicated explicitly). The � -or node a (b)

become active if and only if the first (second) argument node of walk-into fires in synchrony

with the concept animate (solid-obj). Once active, these nodes enable the propagation of binding

to the predicate hurt. Thus type restrictions are enforced using temporal synchrony.

Fig. 25. The encoding of predicates for accommodating multiple instantiations. P and Q are

binary predicates and R is a ternary predicate. The encoding assumes that any predicate may

be instantiated at most three times (i.e., the multiple instantiation constant k2 = 3). An n-ary

predicate is represented by k2 banks of nodes. The connections suggest that there are two rules,

one of the form P () ) Q() and the other of the form P () ) R() (the argument correspondence

is not shown). The connections between antecedent and consequent predicates of a rule are

mediated by a ‘switching’ mechanism similar to the one described in Fig. 22. The switch for

P automatically channels incoming instantiations of P into available banks of P . The switch

has k2 output ‘cables’ where each cable consists of output links to a predicate bank of P . The

inputs to the switch are cables from banks of predicates that are in the consequent of rules in

which P occurs in the antecedent.

Fig. 26. Individual �-btu nodes are replaced by an ensemble of such nodes. A connection

between a pair of individual �-btu nodes is replaced by a number of random inter-ensemble

connections. Nodes within an ensemble can communicate with their immediate neighbors in the

ensemble and the intra-ensemble propagation delays are assumed to be much smaller than the

inter-ensemble propagation delays.

Fig. 27. The time course of a node’s threshold. After generating a spike a node enters an

absolute refractory period (ARP). The ARP is followed by a relative refractory period (RRP).

After the RRP a node’s threshold reverts to its normal level. The distribution of the arrival times

of signals from a connected ensemble is depicted by the shaded region. The noisy propagation

delays are modeled as a Gaussian with mean d and standard deviation s.

Fig. 28. The cycle-by-cycle distribution of the firing times of nodes within a ‘driven’ ensemble

being driven by a ‘driver’ ensemble whose nodes are firing in synchrony. The left hand ‘wall’
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of the isometric diagram displays the standard deviation and mean of the node firing times with

reference to the ideal firing time. The nodes in the driven ensemble become synchronized in

spite of noisy propagation delays. The maximum lag in the firing times of nodes in the ‘driven’

ensemble becomes less than 3 msec and the mean lag becomes less than 1 msec within 2 cycles.

By the end of 7 cycles the maximum and mean lags reduce to 1 and 0.2 msec, respectively.
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